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Abstract

We consider the singularly perturbed boundary value problem (E") "
2�u =

f(u; x; ") for x 2 D; @u

@n
� �(x)u = 0 for x 2 � where D � R2

is an

open bounded simply connected region with smooth boundary �, " is a small

positive parameter and @=@n is the derivative along the inner normal of �. We

assume that the degenerate problem (E0) f(u; x; 0) = 0 has two solutions

'1(x) and '2(x) intersecting in an smooth Jordan curve C located in D such

that fu('i(x); x; 0) changes its sign on C for i = 1; 2 (exchange of stabilities).

By means of the method of asymptotic lower and upper solutions we prove

that for su�ciently small ", problem (E") has at least one solution u(x; ")

satisfying �(x; ") � u(x; ") � �(x; ") where the upper and lower solutions

�(x; ") and �(x; ") respectively ful�l �(x; ") � �(x; ") = O(
p
") for x in a

�-neighborhood of C where � is any �xed positive number su�ciently small,

while �(x; ")��(x; ") = O(") for x 2 DnD�. Applying this result to a special

reaction system in a nonhomogeneous medium we prove that the reaction rate

exhibits a spatial jumping behavior.

Key words. Singular perturbation, asymptotic methods, upper and lower solutions,

jumping behavior of reaction rates

1 Introduction.

This paper is devoted to the study of a boundary value problem for the scalar

singularly perturbed elliptic equation

"
2�u = f(u; x; ") (1.1)

where � := @
2

@x2
1

+ @
2

@x2
2

, f is a su�ciently smooth function, x belongs to some bounded

region D in R2, and " is a small positive parameter. We assume that the degenerate

equation

f(u; x; 0) = 0 (1.2)

has two intersecting solutions u = '1(x) and u = '2(x) de�ned for x 2 D. This

assumption which is related to the phenomenon of exchange of stabilities implies

that the standard theory of singularly perturbed systems cannot be applied. A

similar problem for an ordinary di�erential equation has been considered in [1], for

systems of ordinary di�erential equations - in [2, 4], and for a parabolic equation -

in [3].

A motivating example to study such problems comes from reaction kinetics [5]. The

problem to model the steady state behavior of a fast pure bimolecular reaction

in a nonhomogeneous medium leads to the following system of elliptic di�erential

equations



�u = �Ia(x) + r(u; v)="2;

�v = �Ib(x) + r(u; v)="2:
(1.3)

Here, u and v denote the concentrations of the reacting substances, Ia(x) and Ib(x)

are nonnegative inputs, r(u; v)="2 is the reaction rate where the small parameter

" > 0 is used to express that the reactions are very fast. Additionally we have some

boundary conditions.

Multiplying the equations in (1.3) by "
2 we obtain a singular singularly perturbed

system. By means of the transformation u = u; w = u � v we get from (1.3) the

(regular) singularly perturbed system

"
2�u = �"2Ia(x) + r(u; u� w) � ~f(u; w; x; ");

�w = Ib(x)� Ia(x):
(1.4)

If we assume that the second equation in (1.4) and the corresponding boundary

conditions determine a solution w(x), then by substituting w(x) into the �rst equa-

tion we get an equation of type (1.1). The case that the corresponding degenerate

equation has intersecting solutions is typical for reaction kinetics.

By means of the intersecting solutions u = '1(x) and u = '2(x) we de�ne the so-

called composed stable solution. This solution is used to construct ordered lower

and upper solutions for the boundary value problem under consideration which im-

ply the existence of at least one solution u(x; ") of our problem, at the same time

they can be used to characterize the asymptotic behavior of u(x; ") in ". Finally, we

apply our results to the fast pure bimolecular reaction mentioned above in order to

give a mathematical explanation of the jumping behavior of the fast reaction rate.

2 Formulation of the problem. Assumptions.

Let D � R
2 be an open bounded simply connected region with a smooth boundary

�, let I1 be the interval I1 := f" 2 R : 0 < " � "1g with "1 << 1: We consider the

singularly perturbed nonlinear boundary value problem

"
2�u = f(u; x; ") for x � D;

@u

@n
� �(x)u = 0 for x 2 �

(2.1)

where @=@n denotes the derivative along the inner normal of �. To investigate

existence and asymptotic behavior in " of a solution to (2.1) we use the following

equations closely related to (2.1), namely the degenerate equation

f(u; x; 0) = 0; (2.2)
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and the so-called associated equation

d
2
u

d�2
= f(u; x; 0) (2.3)

in which x is considered as parameter.

We study the boundary value problem (2.1) under the following assumptions.

(A0). f 2 C
2(R �D � I1; R); � 2 C

2(�; R+).

(A1). The degenerate equation (2.2) has two solutions u = '1(x) and u = '2(x) with

'1; '2 2 C
2(D;R), and there exists a smooth closed Jordan curve C located in

D such that

'1(x) = '2(x) for x 2 C;
'1(x) > '2(x) for x 2 D1 [ �;

'1(x) < '2(x) for x 2 D2

where D2 � D is the simply connected region bounded by C, and D1 := D nD2

(see Fig. 1).

Assumption (A1) says that the surfaces u = '1(x) and u = '2(x) intersect in a curve

whose projection into the region D is the curve C. This property implies that the

standard theory of singularly perturbed systems cannot be applied, at least near C.
To describe the behavior of a solution of (2.1) near C it is convenient to introduce

local coordinates near C. To this end we �xe some point P on C and introduce

the coordinate s as the arclength on C measured from P in mathematically positive

direction. The coordinate r is introduced in such a way that jrj is the distance on
the normal to C where r � 0 describes the curve C, r < 0 characterizes points in D1,

and r > 0 represent points in D2 (see Fig.1). By a �-neighborhood of C we mean

the set of all points satisfying jrj � �. It is obvious that if � is su�ciently small then

(s; r) represents a local coordinate system in a �-neighborhood of C.

C

D1 := D\D2

D2 := {x ∈ R2 : ϕ2(x) > ϕ1(x)}

r > 0
s

P

�

Fig. 1: Intersection of u = '1(x) and u = '2(x) at C in D
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From (A1) we get

@'2(x)

@r
� @'1(x)

@r
� 0 for x 2 C: (2.4)

Note that the surfaces u = '1(x) and u = '2(x) are families of equilibria of the

associated equation (2.3). An equilibrium point u = ~u(x) of (2.3) is called condi-

tionally stable if the relation fu(~u(x); x; 0) > 0 holds. Assumption (A2) describes an

exchange of stabilities of the families '1(x) and '2(x) of equilibria at the curve C.

(A2).

fu('1(x); x; 0) > 0; fu('2(x); x; 0) < 0 for x 2 D1 [ �;

fu('1(x); x; 0) < 0; fu('2(x); x; 0) > 0 for x 2 D2:

Now we de�ne the function û(x) by

û(x) =

(
'1(x) for x 2 D1;

'2(x) for x 2 D2:
(2.5)

It follows from assumption (A1) that

f̂(x) � f(û(x); x; 0) � 0 for x 2 D; (2.6)

according to assumption (A2) we have

f̂u(x) � fu(û(x); x; 0) > 0 for x 2 DnC;
f̂u(x) � 0 for x 2 C: (2.7)

De�nition 2.1 Under assumptions (A1), (A2), the function û de�ned by (2.5) is

referred to as the composed stable solution to the degenerate equation (2.2).

We will prove below that under some assumptions including (A1) and (A2) problem

(2.1) has a solution u(x; ") which satis�es the relation

lim
"!0

u(x; ") = û(x) for x 2 D: (2.8)

For this purpose we need assumption

(A3).

f̂uu(x) � fuu(û(x); x; 0) > 0 for x 2 C:
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The following assumption concerns the dependence of the function f on the param-

eter ". The cases that f depends on " and f is independent of " require a separate

treatment. In section 3.1 we consider the case that f depends on ". In that case the

sign of the derivative f̂"(x) for x 2 C plays an important role. We assume

(A4)

f̂"(x) � f"(û(x); x; 0) < 0 for x 2 C:

If instead of (A4) the inequality f̂"(x) > 0 holds then the relation (2.8) may not be

valid (see the example in the one-dimensional case in [1]).

In section 3.2 we investigate the case that f is independet of ". Then hypothesis

(A4) does not hold and we use the following assumption

(A5).

f̂u(x) � �jrj for x 2 D�

where � is some positive number, and (s; r) are local coordinate in D�.

Note that assumption (A5) corresponds to the relations in (2.7) which follow from

assumption (A2).

The concept of lower and upper solutions of problem (2.1) plays a central role in

our approach.

De�nition 2.2 The functions �(x; ") and �(x; ") which are de�ned in D�I where I

is some subset of I1 are called lower and upper solutions respectively to the boundary

value problem (2.1) if for all " 2 I they satisfy the following conditions

(i) � and � are continuously di�erentiable with respect to x in D1 and twice

continuously di�erentiable with respect to x in D1 [ C and in D2:

(ii)
@�

@r
(x)

���
+0
� @�

@r
(x)

���
�0
� 0;

@�

@r
(x)

���
+0
� @�

@r
(x)

���
�0
� 0 for x 2 C

where @=@r denotes the di�erentiation with respect to the inner normal of C:
(iii) L"�(x; ") := ��(x; ")� f(�(x; "); x; ") � 0; L"�(x; ") � 0 for x 2 D1 [ C and

for x 2 D2;

(iv)
@�

@n
� �(x)� � 0;

@�

@n
� �(x)� � 0 for x 2 �:

It is known (see, for example, [6] ) that if there exist ordered lower and upper

solutions to (2.1) i.e., they satisfy the inequality

�(x; ") � �(x; ") for (x; ") 2 D � I; (2.9)

then problem (2.1) has a solution u(x; ") satisfying

�(x; ") � u(x; ") � �(x; ") for (x; ") 2 D � I:

The goal of the following investigations is to prove the limit behavior (2.8) by con-

structing lower and upper solutions to the boundary value problem (2.1).
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3 Existence and asymptotic behavior of the solu-

tion.

We consider the boundary value problem (2.1) and distinguish the cases that f

depends on " or not.

3.1 The case that f depends on ".

Theorem 3.1. Assume hypotheses (A0)�(A4) to be valid. Then, for su�ciently

small ", the boundary value problem (2.1) has a solution u(x; ") satisfying

lim
"!0

u(x; ") = û(x) for x 2 D: (3.1)

Moreover, it holds

u(x; ")� û(x) =

(
O(
p
") for x 2 D�;

O(") for x 2 DnD�;
(3.2)

where D� is a �-neighborhoud of the curve C, and � is any �xed positive number

su�ciently small.

Proof. To prove our theorem we apply the technique of lower and upper solutions.

For the construction of lower and upper solutions we use the composed stable solu-

tion û(x) de�ned in (2.5).

It follows from (2.4) that û(x) ful�lls on C the condition (ii) of De�nition 2.2 for

the lower solution �(x; "). But in case

@'2

@r
(x)� @'1

@r
(x) > 0 for x 2 C

û(x) does not ful�ll condition (ii) for �(x; "). Therefore, we construct an upper

solution by using a smoothing procedure for û(x) as follows.

Let ! 2 C
2(R; [0; 1]) be such that

!(%) =

8><
>:

0 for % � �1;
2 (0; 1) for �1 < % < 1;

1 for % � 1:

(3.3)

By means of !(%) we de�ne the function ~u(x; ") for (x; ") 2 D � I1 as follows:

~u(x; ") :=

8><
>:

'1(x) + !( r
"
)('2(x)� '1(x)) for x 2 D�;

'1(x) for x 2 D1nD�;

'2(x) for x 2 D2nD�;

(3.4)

where (s; r) are local coordinates in D�. It is obvious that ~u(x; ") is twice continu-

ously di�erentiable in x. If we represent ~u(x; ") in the form

~u(x; ") = û(x) + v(x; ") (3.5)
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then, taking into account '2(x) � '1(x) = O(jrj) in D�, it is easy to show that

v(x; ") satis�es

v(x; ") =

(
O(") for x 2 D" := fx 2 R

2 : jrj < "g;
0 for x 2 DnD";

(3.6)

moreover we have

"
2�~u(x; ") =

(
O(") for x 2 D";

O("2) for x 2 DnD":
(3.7)

In the sequel we construct an upper solution �(x; ") to (2.1) by using the smooth

function ~u(x; "). To this end we introduce a local coordinate system (�; n) in a

su�ciently small �-neighborhood �� of �, �� � D;�� \D� = ;, in the same way as

we have introduced local coordinates (s; r) near C. We use the twice continuously

di�erentiable cut-o� function �a : R! [0; 1]; a > 0, satisfying

�a(%) :=

8><
>:

1 for j%j � a=2;

2 (0; 1) for a=2 < j%j < a;

0 for j%j � a

(3.8)

to de�ne the following functions we need to construct upper and lower solutions to

(2.1):

h(x; ") :=

(
(
p
"� ")��(r) + " for x = (s; r) 2 D�;

" for x 2 DnD�;
(3.9)

z(x; "; k) :=

(
" exp

�
�kn

"

�
��(n) for x = (�; n) 2 ��;

0 for x 2 Dn��
(3.10)

where k is some positive constant. From (3.9) we get

"
2�h(x; ") = o("2) for x 2 D; (3.11)

and from (3.10)

0 � z(x; "; k) � "; "
2j�z(x; ")j � c1" for x 2 D: (3.12)

Here and in what follows we denote by ci; i = 1; 2::: some appropriate positive

constants which do not depend on ".

Now we construct an upper solution �(x; ") to (2.1) as

�(x; ") := ~u(x; ") + b�h(x; ") + z(x; "; k�) (3.13)

where b� and k� are some positive numbers to be chosen in an appropriate way later.

Since ~u; h and z are twice continuously di�erentiable with respect to x it follows

from (3.13) that �(x; ") has the same smoothness property and therefore satis�es
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conditions (i) and (ii) in De�nition 2.2 for an upper solution.

Now we check that �(x; ") satis�es the inequality (iii) in De�nition 2.2. Using (3.13),

(3.5), (2.6) we get

L"�(x; ") � "
2��(x; ")� f(�(x; "); x; ") = "

2�
�
~u(x; ") + b�h(x; ") + z(x; "; k�)

�
�f̂u(x)

�
b�h(x; ") + z(x; "; k�) + v(x; ")

�

�1

2
f̂uu(x)

�
b�h(x; ") + z(x; "; k�) + v(x; ")

�2
�f̂"(x)"+ o("):

(3.14)

Our aim is to prove L"�(x; ") � 0 for x 2 D and for su�ciently small ".

First we estimate L"�(x; ") in the region D�=2. According to (3.8) �(3.10) we have

h(x; ") � p
"; z(x; "; k�) � 0 in D�=2. Thus, we get from (3.14) for x 2 D�=2

L"�(x; ") � "
2�~u(x; ")� f̂u(x)

�
b�

p
"+ v(x; ")

�
� 1

2
f̂uu(x)

�
b�

p
"+ v(x; ")

�2
�f̂"(x)"+ o("):

(3.15)

From (3.7) it follows that

j"2�~u(x; ")j � c2" for x 2 D�=2: (3.16)

Since b� is positive we have by (3.6) for su�ciently small "

b�

p
"+ v(x; ") � 0; (b�

p
"+ v(x; "))2 = b

2

�
"+ o("): (3.17)

and hence, by (2.7) we obtain

�f̂u(x)(b�
p
"+ v(x; ")) � 0:

From hypothesis (A3) and from our smoothness asumption (A0) it follows

f̂uu(x) � c3 for x 2 D�; � su�ciently small,

jf̂"(x)j � c4 for x 2 D:
(3.18)

By (3.16) � (3.18) we obtain from (3.15)

L"�(x; ") � (c2 �
1

2
c3b

2

�
+ c4)"+ o("):

Therefore, for su�ciently large b� we have L"�(x; ") � 0 for x 2 D�=2.

8



Next, we estimate L"�(x; ") in DnD�=2. According to (3.6) we have v(x; ") � 0 in

DnD�=2. Therfore, "
2�~u(x; ") = "

2�û(x) = o(").

Taking into account (3.11) we get from (3.14) for x 2 DnD�=2

L"�(x; ") = "
2�z(x; "; k�)� f̂u(x)

�
b�h(x; ") + z(x; "; k�)

�

� 1

2
f̂uu(x)

�
b�h(x; ") + z(x; "; k�)

�2 � f̂"(x)"+ o("):
(3.19)

From (2.7) it follows that

f̂u(x) � c5 > 0 for x 2 DnD�=2: (3.20)

Applying (3.12), (3.18) and the obvious inequality

j1
2
f̂uu(x)j � c6

we get from (3.19)

L"�(x; ") � �c5b�h(x; ") + c6b
2

�
h
2(x; ") + (c1 + c4)"+ o("): (3.21)

Note that from (3.9) it follows

" � h(x; ") �
p
" in DnD�=2:

Hence,
1

2
c5b�h(x; ") > (c1 + c4)"

for su�ciently large b� and

1

2
c5b�h(x; ") > c6b

2

�
h
2(x; ")

for any �xed b� and su�ciently small ".

Therefore, from (3.21) we get for su�ciently large b� and su�ciently small "

L"�(x; ") < 0 fot x 2 DnD�=2:

Consequently, the function �(x; ") satis�es condition (iii) in De�nition 2.2 for an

upper solution.

Taking into account that �(x); '1(x) and
@'1

@x
(x) are bounded on C we get by (3.5),

(3.6) (2.5) and (3.10) from (3.13) for x 2 � and for su�ciently large k�

@�

@n
(x; ")� �(x)�(x; ") =

@'1

@n
(x)� k� � �(x)

�
'1(x) + b�"+ "

�
< 0;

i.e. �(x; ") satis�es condition (iv) in De�nition 2.2.

Consequently, the function �(x; ") de�ned in (3.13) satis�es the conditions (i) � (iv)

9



in De�nition 2.2 and thus represents an upper solution to the boundary value prob-

lem (2.1).

Now we construct a lower solution �(x; ") in the form

�(x; ") : = û(x)� b�"� z(x; "; k�) (3.22)

where the positive constants b� and k� have to be chosen in an appropriate way.

Note that �(x; ") may be non-smooth on the curve C, but according to (2.4) it

satis�es the condition (ii) in De�nition 2.2. It is also obvious that �(x; ") satis�es

condition (i) in De�nition 2.2.

For L"�(x; ") we get analogously to (3.14)

L"�(x; ") � "
2��(x; ")� f(�(x; "); x; ") =

= "
2�

�
û(x)� z(x; "; k�)

�
+ f̂u(x)

�
b�"+ z(x; "; k�)

�
� f̂"(x)" + o("):

(3.23)

First, we consider L"�(x; ") in the region D� for su�ciently small �. Taking into

account (3.10), (2.7) and the boundedness of �û(x) we get from (3.23)

L"�(x; ") = "
2�û(x) + f̂u(x)b�"� f̂"(x)"+ o(") � �f̂"(x)"+ o("): (3.24)

By assumption (A4) it holds for su�ciently small �

�f̂"(x) � c7 for x 2 D�: (3.25)

Thus, from (3.24) and (3.25) we get

L"�(x; ") � 0 for x 2 D�:

Finally, we study L"�(x; ") in D nD�. By (3.12), (3.18), and (3.20) we get from

(3.23)

L"�(x; ") � (�c1 + c5b� � c4)"+ o("):

Therefore, for su�ciently large b� we obtain

L"�(x; ") � 0 for x 2 D nD�:

Thus, the function �(x; ") satis�es condition (iii) in De�nition 2.2.

From (3.22), (2.5), and (3.10) we obtain for x 2 � and for su�ciently large k�

@�

@n
(x; ")� �(x)�(x; ") =

@'1

@n
(x) + k� � �(x)

�
'1(x)� b�"� "

�
> 0

i.e. �(x; ") satis�es condition (iv) in De�nition 2.2. Consequently, the function

�(x; ") de�ned in (3.22) is a lower solution to the boundary value problem (2.1).

10



From (3.13) and (3.22) it follows for su�ciently small " that �(x; ") > û(x) and

�(x; ") < û(x) inD. Hence, �(x; ") and �(x; ") are ordered lower and upper solutions

to (2.1). Therefore, we can conclude that for su�ciently small " there exists a

solution u(x; ") of (2.1) satisfying

�(x; ") � u(x; ") � �(x; ") for x 2 D:

The relations (3.13), (3.9), (3.10), and (3.22) show that the relations (3.2) and

consequently (3.1) for u(x; ") are ful�lled. This completes the proof of Theorem 3.1.

Remark 3.1. In case of system (1.4) which models a fast pure bimolecular reaction

we have f̂"(x) � 0. That means assumption (A4) is not valid. In such cases we may

replace hypothesis (A4) by the following condition:

( ~A4): The composed stable solution û(x) of the degenerate equation (2.2) is a lower

solution for (2.1), i.e.

(i) L"û(x) � 0 for x 2 D1 [ C; x 2 D2; " 2 I2 � I1;

(ii)
@û

@n
(x)� �(x)û(x) � 0 for x 2 �:

It is easy to verify that under the assumptions (A0) - (A3) and ( ~A4) Theorem 3.1

remains true.

Remark 3.2. In the subsets D1nD� and D2nD� we can derive an asymptotic ex-

pansion of any order in " for the solution u(x; ") by means of standard theory for

singularly perturbed problems provided the function f is su�ciently smooth [7].

In D1nD� the asymptotic expansion of u(x; ") reads

u(x; ") = '1(x) + "u1(x) + : : :+ "
m
um(x) + "�1

�
�;
n

"

�
+ : : :+ "

m�m

�
�;
n

"

�
+

+O("m+1)
(3.26)

where

u1(x) = �f̂�1
u

(x)f̂"(x);

u2(x) = f̂
�1

u
(x)

�
�'1(x)�

1

2
f̂""(x)� f̂u"(x)u1(x)�

1

2
f̂uu(x)u

2

1(x)

�
;

: : : :

(3.27)

�i(�;
n

"
); i = 1; 2; : : : ; are boundary layer functions which can be constructed by

means of the standard theory and which satisfy

�����i

�
�;
n

"

����� � c exp

�
��n

"

�
; i = 0; 1; : : : ; m; (3.28)
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where c and � are some positive constants, � and n are local coordinates near �.

In D2 nD� the asymptotic expansion of u(x; ") has the form

u(x; ") = '2(x) + "u1(x) + : : :+ "
m
um(x) +O("m+1): (3.29)

Here, the functions ui(x) (i = 1; : : : ; m) are de�ned as in (3.27) if we replace there

'1(x) by '2(x):

From (3.26) and (3.29) we obtain the following corollary which we need to estimate

the jumping behavior of the reaction rates (see example 4.2).

Corollary 3.1. Under the assumptions of Theorem 3.1 or under the asumptions

(A0)��(A3) and ( ~A4) we have

�u(x; ") = �û(x) +O(") for x 2 D n (�� [D�): (3.30)

Proof. We prove (3.30) for x 2 D1 n (�� [D�). From (3.26) and (3.28) we get for

m = 2

u(x; ") = '1(x) + "u1(x) + "
2
u2(x) +O("3) � U2(x; ") +O("3):

Consequently,

�(u(x; ")� U2(x; ")) =
1

"2
f(U2(x; ") +O("3); x; ")��U2(x; ")

= ff(U2(x; ") +O("3); x; ")� f(U2(x; "); x; ") + f(U2(x; "); x; ")� "
2�U2(x; ")g="2:

(3.31)

Obviously we have

f(U2(x; ") +O("3); x; ")� f(U2(x; "); x; ") = O("3):

By means of (3.27) we get

f(U2(x; "); x; ")� "
2�U2(x; ") = O("3):

Therefore, we obtain from (3.31)

�(u(x; ")� U2(x; ")) = O("):

By using the obvious relation

�U2(x; ") = �'1(x) +O(")

we get �u(x; ") = �'1(x)+O("), i.e. the relation (3.30) holds for x 2 D1n(��[D�).

For x 2 D2nD�, relation (3.30) can be proved in a similar way.

12



3.2 The case that f does not depend of ".

Consider now the boundary value problem (2.1) when f is independent of ", i.e. f =

f(u; x). In this case, we preserve assumptions (A0) - (A3) and replace assumption

(A4) by assumption (A5) (see section 2).

Theorem 3.2 Assume hypotheses (A0) - (A3) and (A5) to be valid. Then, for

su�ciently small " the boundary value problem (2.1) has a solution u(x; ") satisfying

lim
"!0

u(x; ") = û(x) for x 2 D: (3.32)

Moreover, it holds

u(x; ")� û(x) =

8><
>:

O("2=3) for x 2 D�;

O(") for x 2 ��;

O("2) for x 2 Dn(D� [ ��);

(3.33)

where D� and �� are �-neighborhood of C and � respectively, � is any �xed positive

number su�ciently small.

Proof. As in proof of Theorem 3.1 we use the technique of lower and upper solutions.

We introduce the smooth function ~u(x; ") as in (3.4) by means of the function !(�),

de�ned in (3.3) but di�erent to (3.4) we put now � = r="
2=3 such that we get

~u(x; ") :=

8><
>:

'1(x) + !( r

"2=3
)('2(x)� '1(x)) for x 2 D�;

'1(x) for x 2 D1nD�;

'2(x) for x 2 D2nD�:

(3.34)

Hence, we have the representation

~u(x; ") = û(x) + v(x; ") (3.35)

where

v(x; ") =

(
O("2=3) for x 2 D"2=3 ;

0 for x 2 DnD"2=3;
(3.36)

and

"
2�~u(x; ") =

(
O("4=3) for x 2 D"2=3 ;

O("2) for x 2 DnD"2=3:
(3.37)

We construct an upper solution �(x; ") to problem (2.1) in the form

�(x; ") := ~u(x; ") + 
h(x; ") + z(x; "; k�) (3.38)

13



where

h(x; ") =

8><
>:

("2=3 � "
2)��(r) + "

2 for x 2 D�;

("� "
2)��(n) + "

2 for x 2 ��;

"
2 for x 2 Dn(D� [ ��);

(3.39)

�a(%) and z(x; "; k) are the same functions as in (3.8) and (3.10), respectively, 
 and

k� in z(x; "; k�) are some positive numbers to be chosen later in an appropriate way.

Note that we have

h(x; ") = "
2=3 for x 2 D�=2;

h(x; ") = " for x 2 ��=2;

h(x; ") = "
2 for x 2 (Dn(D� [ ��);

"
2�h(x; ") = o("2) for x 2 D:

(3.40)

Since ~u; h and z are twice continuously di�erentiable with respect to x it follows

from (3.38) that �(x; ") has the same smoothness property and therefore satis�es

conditions (i) and (ii) in De�nition 2.2 for an upper solution.

As in the proof of Theorem 3.1 we can establish that for su�ciently large k� the

function �(x; ") satis�es the inequality (iv) in De�nition 2.2.

Now we check that �(x; ") satis�es inequality (iii) in De�nition 2.2. Analogously to

(3.14) we obtain by using (3.38)

L"�(x; ") � "
2��(x; ")� f(�(x; "); x) = "

2�(~u(x; ") + 
h(x; ") + z(x; "; k�))

�f̂u(x)(
h(x; ") + z(x; "; k�) + v(x; "))� 1

2
f̂uu(x)

�

h(x; ") +

+z(x; "; k�) + v(x; "))2 + o((
h(x; ") + z(x; "; k�) + v(x; "))2):

(3.41)

We want to prove L"�(x; ") � 0 for x 2 D and for su�ciently small ". First we

consider the neighborhood D�=2 of the curve C. Taking into account (3.10) and

(3.40), relation (3.41) reads in D�=2

L"�(x; ") = "
2�~u(x; ")� f̂u(x)(
"

2=3 + v(x; "))

�1

2
f̂uu(x)(
"

2=3 + v(x; "))2 + o((
"2=3 + v(x; "))2):
(3.42)

By (3.36) and (3.37) we have for x 2 D�=2

jv(x; ")j � c8"
2=3
; "

2j�û(x)j � c9"
4=3
: (3.43)

Thus, for x 2 D�=2 and su�ciently large 
 we have


"
2=3 + v(x; ") � 0: (3.44)
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Taking into account the relations (2.7), (3.18), (3.44) we obtain from (3.42) for

x 2 D�=2

L"�(x; ") � �1

2
c4(
 � c8)

2
"
4=3 + c9"

4=3 + o("4=3) < 0

for su�ciently large 
 and su�ciently small ".

Consider now the neighborhood ��=2 of the boundary �. By (3.40) and (3.36) the

expression (3.41) reads in ��=2

L"�(x; ") = "
2�(û(x; ") + z(x; "; k�))� f̂u(x)(
"+ z(x; "; k�))

�1

2
f̂uu(x)(
"+ z(x; "; k�))

2 + o((
"+ z(x; "; k�))
2):

(3.45)

By (3.12),(3.20) and by taking into account the boundedness of f̂uu(x) and �û(x)

we obtain from (3.45)

L"�(x; ") � (�c6
 + c1)"+ o(") < 0 (3.46)

for su�ciently large 
 and su�ciently small ".

To estimate L"�(x; ") in Dn(D�=2 [ ��=2) we note that by (3.36) v(x; ") vanishes

identically for x 2 Dn(D�=2 [ ��=2) and for � � "
2=3. Hence, we obtain from (3.41)

L"�(x; ") � "
2�(û(x) + 
h(x; ") + z(x; "; k�))� f̂u(x)(
h(x; ") + z(x; "; k�))

�1

2
f̂uu(x)(
h(x; ") + z(x; "; k�))

2 + o((
h(x; ") + z(x; "; k�))
2):

(3.47)

Taking into account (3.40) and (3.10), we get

"
2 � h(x; ") � "

2=3
; z(x; "; k) = o("N) and �z(x; "; k) = o("N) for any N;

and hence, by (3.20) and the inequalities j�ûj � c9;
1

2
jf̂uu(x)j � c10 we get from

(3.47)

L"�(x; ") � �c6
h(x; ") + c10

2
h
2(x; ") + c9"

2 + o("2) < 0

for su�ciently large 
 and su�ciently small ".

Thus, the function �(x; ") de�ned by (3.38) satis�es all the conditions for an upper

solution in De�nition 2.2.

A lower solution cannot be constructed in the form (3.22) (as it was done in section

3.1) in the case when f does not depend of " since that form of lower solution does

not imply a positive sign for L"� near C. Hence, in our case we construct a lower

solution in the form
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�(x; ") := û(x) + w(x; ")� 
1g(x; ")� z(x; "; k�) (3.48)

where

w(x; ") =

(
b1"

4=3
�
2 exp(�j%j)��(r) for x 2 D�;

0 for x 2 (DnD�);

g(x; ") =

8><
>:

("4=3 � "
2)��(r) + "

2 for x 2 D�;

("� "
2)��(n) + "

2 for x 2 ��;

"
2 for x 2 Dn(D� [ ��);

here we have % = r"
�2=3, 
1; b1 and k� in z are some positive numbers to be chosen

later, in particular we suppose 
1 > b1.

Note that

0 � w(x; ") < b1"
4=3 in D and w(x; ") = o("N) in DnD�=2 for any N;

g(x; ") = "
4=3 for x 2 D�=2;

g(x; ") = " for x 2 ��=2;

g(x; ") = "
2 for x 2 Dn(D� [ ��):

(3.49)

It can be easily checked that �(x; ") satis�es the conditions (i), (ii), and for su�-

ciently large k� condition (iv) in De�nition 2.2.

Now we verify that �(x; ") satis�es condition (iii) in De�nition 2.2. Using (3.48) we

get

L"�(x; ") � "
2��(x; ")� f(�(x; "); x) = "

2�
�
û(x) + w(x; ")� 
1g(x; ")� z(x; "; k�)

�
�f̂u(x)

�
w(x; ")� 
1g(x; ")� z(x; "; k�)

�

�1

2
f̂uu(x)(w(x; ")� 
1g(x; ")� z(x; "; z�))

2

+o((w(x; ")� 
1g(x; ")� z(x; "; z�))
2):

(3.50)

In the neighborhood D�=2 of the curve C we have

g(x; ") = "
4=3
; z(x; "; k�) � 0;

w(x; ")� 
1g(x; ") < (b1 � 
1)"
4=3

< 0 for b1 < 
1; j�û(x; ")j � c11:

If we express the Laplacian in D�=2 by means of the local coordinates (s; r) we get

�w(x; ") = b1[(2� 4j�j+ �
2) exp(�j�j) +O("2=3)]:
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Furthermore, we have f̂u(x) � 0 in D�=2, and hence it holds

�f̂u(x)(w(x; ")� 
1g(x; ")) � 0;
1

2
f̂uu(x)(w(x; ")� 
1g(x; "))

2 = O("8=3) = o("2):

For jrj < m"
2=3, i.e. j�j < m; where m be so small that we have

(2� 4j�j+ �
2) exp(�j�j) � c0 > 0 for j�j � m

we get from (3.50)

L"�(x; ") � "
2(b1c0 � c11) + o("2) > 0

for su�ciently large b1 and su�ciently small ".

For m"
2=3 � jrj < �=2, i.e. in D�=2nDm"2=3 we have

j�w(x; ")j � b1c12;

and according to (A5)

f̂u(x) � �jrj � �m"
2=3
:

Hence,

�f̂u(x)(w(x; ")� 
1g(x; ")) � �m(
1 � b1)"
2 in D�=2nDm"2=3

and from (3.50) we get

L"�(x; ") � �m(
1 � b1)"
2 � (b1c12 + c11)"

2 + o("2) > 0

for su�ciently large 
1 and su�ciently small ".

Consider now the neighborhood ��=2 of the boundary �. In this neighborhood we

have

w � 0; g(x; ") = "; z(x; "; k�) = " exp(�k�n

"
);

and analogously to (3.46) we get

L"�(x; ") � (c6
1 � c1)"+ o("): (3.51)

Thus, we have L"� > 0 in ��=2 for su�ciently large 
1 and su�ciently small ".

In Dn(D�=2 [ ��=2) it holds

w(x; ") = o("N); �w(x; ") = o("N); z(x; "; k�) = o("N);�z(x; "; k) = o("N) for anyN;

"
2 � g(x; ") � "

4=3
; j�û(x)j � c11;

"
2�
1g(x; ") = o("2); f̂u(x) � c6 > 0;

����12 f̂uu(x)
���� � c10

and hence, from (3.50) we get

L"�(x; ") � c6
1g(x; ")� c10

2

1g
2(x; ")� c11"

2 + o("2) > 0
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for su�ciently large 
1 and su�ciently small ".

Thus, the function �(x; ") de�ned by (3.48) satis�es all the conditions for a lower

solution in De�nition 2.2.

From (3.38) and (3.48) it follows that �(x; ") > û(x) and �(x; ") < û(x) in D and

hence the inequality (2.9) is ful�lled, i.e. �(x; ") and �(x; ") are ordered lower and

upper solutions to (2.1). Therefore, we can conclude that for su�ciently small "

there exists a solution u(x; ") to the boundary problem (2.1) satisfying

�(x; ") � u(x; ") � �(x; ") for x 2 D:

The formulae (3.38), (3.40),(3.10), (3.48) and (3.49) show that the relations (3.33)

and consequently (3.32) for u(x; ") are ful�lled. This completes the proof of Theorem

3.2.

4 Examples.

Example 4.1 We study the boundary value problem (2.1) with f � u(u � x
2
1 �

x
2
2 + 1) in D := fx 2 R

2 : x21 + x
2
2 < 4g:

The degenerate equation

u(u� x
2

1 � x
2

2 + 1) = 0

has two solutions u = '1(x) = x
2
1 + x

2
2 � 1 and u = '2(x) = 0: These solutions

intersect in the curve C de�ned by x
2
1 + x

2
2 = 1; i.e. the curve C is circle. The

inequality '1(x) < '2(x) holds in the subdomain D2 = fx : x21 + x
2
2 < 1g and the

inequality '1(x) > '2(x) holds in the subdomain D1 = DnD2 and on �, i.e. the

assumption (A1) is ful�lled.

Calculating fu we get

fu('1(x); x) = x
2

1 + x
2

2 � 1; fu('2(x); x) = 1� x
2

1 � x
2

2:

It is obviously that

fu('1(x); x) > 0; fu('2(x); x) < 0 in (D1 [ �);

fu('1(x); x) < 0; fu('2(x); x) > 0 in D2;

i.e. the assumption (A2) holds.

The composed stable solution in our example has the form

û(x) =

(
x
2
1 + x

2
2 � 1 for x 2 D1 = (DnD2);

0 for x 2 D2:
(4.1)

Since fuu(u; x) = 2 > 0 the assumption (A3) is ful�lled.

Finally, f̂u(x) can be written in the form

f̂u(x) = jx21 + x
2

2 � 1j = j(1 + r)2 � 1j = jrj � j2 + rj;
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where jrj is distance from point (x1; x2) to the curve C = fx : x21 + x
2
2 = 1g: Taking

into account that r � �1 (r = �1 for point (0; 0)) we get

f̂u(x) � jrj;

i.e. the assumption (A5) is satis�ed with � = 1.

Thus, all the assumptions (A1) - (A3) and (A5) of the Theorem 3.2 are ful�lled.

Therefore, problem (2.1) with f = u(u�x
2
1�x

2
2+1) has a solution u(x; ") satisfying

lim
"!0

u(x; ") = û(x)

where û(x) is de�ned by (4.1).

Example 4.2 The fast purely bimolecular reaction.

We consider system (1.3) describing fast pure bimolecular reaction assuming that

r(u; v) � kuv

where k is a positive constant. In this case the system (1.4) has the form

"
2�u = �"2Ia(x) + ku(u� w);

�w = Ib(x)� Ia(x); x 2 D:
(4.2)

Let boundary conditions for (4.2) have the form

@u

@n
� �u =

@w

@n
� �w = 0 for x 2 �: (4.3)

Recall that Ia(x); Ib(x) are nonnegative functions describing inputs. The function

w can be determined independently of u (w = w(x)) and therefore we have to solve

the �rst equation of (4.2) with w = w(x) and prescribed boundary condition (4.3).

Concerning w(x) we assume that

w(x) = 0 for x 2 C;
w(x) < 0 for x 2 D1;

w(x) > 0 for x 2 D2

where C is a closed smooth curve separating the domain D into two parts (D1

outside C and D2 inside C). The assumptions (A1) and (A2) are ful�lled with

'1(x) � 0; '2(x) � w(x), hence the composed stable solution for this case reads

û(x) =

(
0 for x 2 D1;

w(x) for x 2 D2

(4.4)

(see De�nition 2.1).

It is easily to check that û(x) is a lower solution of the problem for u. Indeed, we

have

"
2�û+ "

2
Ia(x)� kû(û� w(x)) =

(
"
2
Ia(x) � 0 in D1;

"
2
Ib(x) � 0 in D2;
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@û

@n
(x)� �û(x) = 0 for x 2 �;

i.e. assumption ( ~A4) is satis�ed.

The assumption (A3) also holds as f̂uu(x) = 2k > 0. Therefore by means of Theorem

3.1 (see Remark 3.1) we obtain that the problem for u has the solution u(x; ")

satisfying

lim
"!0

u(x; ") = û(x) for x 2 D:

In order to calculate important for application reaction rate

~r(x; ") = ku(x; ")(u(x; ")� w(x))="2 = �u(x; ") + Ia(x) (4.5)

we use the result of Corollary 3.1. According to (3.30) and (4.4) we have

�u(x; ") =

(
O(") for x 2 D1n(�� [D�);

�w(x) +O(") for x 2 D2nD�:

Therefore, using (4.2) and (4.5) we get

~r(x; ") =

(
Ia(x) +O(") for x 2 D1n(�� [D�);

Ib(x) +O(") for x 2 D2nD�:

Thus, taking into account that � is any small number we conclude that the reaction

rate ~r(x; ") has a jump (transition layer) near the curve C of exchange of stabilities.
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