
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Singularly perturbed reaction - di�usion systems in

case of exchange of stabilities

Valentin F. Butuzov1, Nikolai N. Nefedov1 , Klaus R. Schneider2

submitted: 10th June 1999

1 Moscow State University

Department of Physics

Vorob'jovy Gory

119899 Moscow

RUSSIA

E-Mail: butuzov@mt384.phys.msu.su

E-Mail: nefedov@mt384.phys.msu.su

2 Weierstrass Institute

for Applied

Analysis and Stochastics,

Mohrenstr. 39,

D�10117 Berlin

GERMANY

E-Mail: schneider@wias-berlin.de

Preprint No. 495

Berlin 1999

WIAS
1991 Mathematics Subject Classi�cation. 34D15, 34E05, 92E20.

Key words and phrases. Singular perturbation, asymptotic methods, upper and lower solutions,

jumping behavior of reaction rates.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

We study singularly perturbed elliptic and parabolic di�erential equations

under the assumption that the associated equation has intersecting families

of equilibria (exchange of stabilities). We prove by means of the method of

asymptotic lower and upper solutions that the asymptotic behavior with re-

spect to the small parameter changes near the curve of exchange of stabilities.

The application of that result to systems modelling fast bimolecular reactions

in a heterogeneous environment implies a transition layer (jumping behavior)

of the reaction rate. This behavior has to be taken into account for identi�-

cation problems in reaction systems.

1 Introduction

Mathematical models of reaction�di�usion processes are of increasing interest in dif-

ferent �elds of applications, for example in reaction kinetics, biology, astrophysics.

There are important classes of processes where boundary layers as well as internal

layers of di�erent structures arise. In these cases the corresponding mathematical

models represent systems of singularly perturbed di�erential equations. The motiva-

tion for our investigations comes from the papers [4, 5] where spatially homogeneous

bimolecular reaction systems of the form

A ! C1 (g1(u));

B ! C2 (g2(v)); (1.1)

A+B ! C (�r(u; v))

have been studied. Here, g1; g2 and �r are the reaction rates depending on the

concentrations u and v of the species A and B respectively. The reaction rate

�r(u; v) is assumed to be fast. To express this fact we represent �r(u; v) in the form

�r(u; v) = r(u; v)=" where " is a small positive parameter. According to the mass-

action kinetics, the time evolution of the concentrations u and v of the reaction

system (1.1) is governed by the system of ordinary di�erential equations

du

dt
= Ia(t)� g1(u)�

r(u; v)

"
;

dv

dt
= Ib(t)� g2(v)�

r(u; v)

"
;

(1.2)

where Ia(t) and Ib(t) are the input �ows of the species A and B respectively, g1 and

g2 are reaction rates of normally existing slow reactions. In [4, 5] it has been shown

that under certain assumptions the reaction rate �r(u(t); v(t)) jumps at some time
points. In what follows we exhibit a corresponding phenomenon for systems in a

heterogeneous environment.

If we add in (1.2) the Laplacian and replace the time-depending inputs Ia(t) and Ib(t)
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by space-depending ones, then we get the following system of parabolic di�erential

equations (for convenience we have replaced " by "2)

@�u

@t
= ��u+ Ia(x)� g1(�u)�

r(�u; �v)

"2
;

@�v

@t
= ��v + Ib(x)� g2(�v)�

r(�u; �v)

"2
:

(1.3)

A stationary solution of (1.3) satis�es

��u = �Ia(x) + g1(�u) +
r(�u; �v)

"2
;

��v = �Ib(x) + g2(�v) +
r(�u; �v)

"2
:

(1.4)

After the coordinate transformation u = �u; v = �u� �v and multiplying by "2 system

(1.3) and (1.4) can be rewritten as

"2
�@u
@t
��u

�
= "2(Ia(x)� g1(u))� r(u; u� v);

@v

@t
��v = Ia(x)� Ib(x)� g1(u) + g2(u� v);

(1.5)

and

"2 �u = �"2(Ia(x)� g1(u)) + r(u; u� v);

�v = Ib(x)� Ia(x)� g2(u� v) + g1(u)
(1.6)

respectively. In case when g1 � g2 � 0 (pure bimolecular reactions) we assume that
v can be determined from the second equation in (1.5) and the corresponding initial

and boundary conditions or from (1.6) and the corresponding boundary conditions

such that we arrive at the equations

"2
�@u
@t
��u

�
= "2Ia(x)� r(u; u� v(x; t)) (1.7)

or

"2 �u = �"2Ia(x) + r(u; u� v(x)) (1.8)

respectively.

Motivated by the equations (1.7) and (1.8) we investigate in what follows the equa-

tions

"2
�@u
@t
��u

�
= f(u; x; t; "); (1.9)
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and

"2 �u = f(u; x; ") (1.10)

under the assumption that the corresponding degenerate equation f = 0 has two

solutions with respect to u which intersect. This property implies an exchange of

stabilities of these solutions considered as equilibria of the corresponding associated

equation. Such situation is typical for reaction kinetics. In section 2 we study a

Neumann problem for the singularly perturbed equation (1.10) for dim x = 2. The
case dim x = 1 has been studied in [1] for a scalar equation, and in [2] for singularly

perturbed systems. In section 3 we consider the singularly perturbed parabolic

equation (1.9) for dim x = 1. In the elliptic as well as in the parabolic case we

are able to prove a change of the asymptotic behavior of the solution with respect

to " near the curve of exchange of stabilities. The method to establish our results

is the method of asymptotic lower and upper solutions. The obtained results are

illustrated by means of examples from the reaction kinetics with fast reaction rates.

2 The steady state problem

2.1 Formulation of the problem. Assumptions.

Let D be a bounded open simply connected region in R2 with smooth boundary

�. By @=@n we denote the derivative along the inner normal of �. Let I"1 be the

interval (0; "1) where "1 � 1.
We consider the singularly perturbed nonlinear boundary value problem

"2�u = f(u; x; ") for x 2 D;
@u

@n
� �(x)u = 0 for x 2 �;

(2.1)

where f and � are assumed to obey

(A0). f : R� �D � �I"1 ! R and � : �! R are su�ciently smooth.

To investigate existence and asymptotic behavior of a solution to (2.1) we use the

following equations closely related to (2.1), namely the degenerate equation

f(u; x; 0) = 0 (2.2)

and the associated equation

d2u

d�2
= f(u; x; 0) (2.3)

in which x = (x1; x2) is considered as a parameter.

Concerning the degenerate equation we suppose
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(A1). The degenerate equation (2.2) has two smooth solutions u = '1(x) and u =
'2(x) de�ned for x 2 �D, and there exists a smooth closed Jordan curve C
located in D such that

'1(x) = '2(x) for x 2 C;
'1(x) > '2(x) for x 2 D1 [ �;

'1(x) < '2(x) for x 2 D2;

where D2 is the simply connected region bounded by C, and D1 = D n D2

(see Fig 1).

Assumption (A1) says that the surfaces u = '1(x) and u = '2(x) intersect at a

curve whose projection into the region D is the curve C. This property implies that
the standard theory of singularly perturbed systems cannot be applied, at least near

C. To describe the behavior of a solution of (2.1) near C it is convenient to introduce

local coordinates near C. To this end we �xe some point P on C, and introduce

the coordinate s as the arclength on C measured from P in mathematically positive

direction. The coordinate r is introduced in such a way that jrj is the distance on
the normal to C where r � 0 characterizes the curve C, r > 0 represents points in

the interior of the region bounded by C, and r < 0 represents points in the exterior

of C (see Fig 1). By a �-neighborhood of C we mean the set of all points satisfying

jrj � �. It is obvious that there is a �� > 0 such that (s; r) represents a local

coordinate system in any �-neighborhood of C with � � ��:

C

D1 := D\D2

D2 := {x ∈ R2 : ϕ2(x) > ϕ1(x)}

r > 0
s

P

�

Fig. 1: Intersection of u = '1(x) and u = '2(x) at C in D

From (A1) we get

@'2(x)

@r
� @'1(x)

@r
� 0 for x 2 C: (2.4)

Note that the surfaces u = '1(x) and u = '2(x) are families of equilibria of the

associated equation (2.3). An equilibrium point �u(x) of (2.3) is called conditionally
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stable if the relation fu(�u(x); x; 0) > 0 holds. The following assumption describes

an exchange of stabilities of the families '1(x) and '2(x) of equilibria of (2.3) at the
curve C.

(A2).

fu('1(x); x; 0) > 0; fu('2(x); x; 0) < 0 for x 2 D1 [ �;

fu('1(x); x; 0) < 0; fu('2(x); x; 0) > 0 for x 2 D2:

Now we de�ne the function û(x) by

û(x) :=

(
'1(x) for x 2 D1;

'2(x) for x 2 D2:
(2.5)

It follows from assumption (A1) that

f̂(x) � f(û(x); x; 0) � 0 for x 2 D; (2.6)

according to assumption (A2) we have

f̂u(x) � fu(û(x); x; 0) > 0 for x 2 DnC;
f̂u(x) � 0 for x 2 C: (2.7)

De�nition 1. Under the assumptions (A1), (A2), the function û de�ned by (2.5) is
referred to as the composed stable solution to the degenerate equation (2.2).

Note that û(x) is continuous in �D and smooth in D1 and D2 but not necessarily

smooth on C.

To be able to investigate the behavior of u(x; ") as " tends to zero we need the

assumption

(A3).
f̂uu(x) � fuu(û(x); x; 0) > 0 for x 2 C:

The concept of lower and upper solutions to the boundary value problem (2.1) plays

a central role in our approach.

De�nition 2. The functions �(x; "); �(x; ") which are continuous in �D� I"2; ("2 �
"1); are called lower and upper solutions respectively to the boundary value problem
(2.1) if for all " 2 I"2 they satisfy the following conditions

(i) � and � are continuously di�erentiable with respect to x 2 D1 and twice

continuously di�erentiable with respect to x 2 D1 [ Cand x 2 D2;

5



(ii)
@�

@r
(x; ")

���
+0
� @�

@r
(x; ")

���
�0
� 0;

@�

@r
(x; ")

���
+0
� @�

@r
(x; ")

���
�0
� 0 for x 2 C;

where @=@r denotes the di�erentiation along the inner normal of C:
(iii) L"�(x; y) := "2��(x; ")� f(�; x; ") � 0; L"�(x; ") � 0

for x 2 D1 [ C and for x 2 D2:

(iv)
@�

@n
(x; ")� �(x)�(x; ") � 0;

@�

@n
(x; ")� �(x)�(x; ") � 0 for x 2 �;

where @=@n denotes the di�erentiation along the inner normal of �:

Note that �(x; ") and �(x; ") may be non-smooth in x on the curve C.
It is known (see, for example, [6]) that if there exist ordered lower and upper solutions

to (2.1) i.e., they satisfy the inequality

�(x; ") � �(x; ") for (x; ") 2 D � I"2; (2.8)

then problem (2.1) has a solution u(x; ") satisfying

�(x; ") � u(x; ") � �(x; ") for (x; ") 2 D � I"2 :

2.2 Existence and asymptotic behavior of a solution to (2.1).

We distinguish the cases that f depends on " and that f does not depend on ". In

what follows we study the case that f depends on ".

Additionally to the assumptions (A0)�(A3) we suppose

(A4)
f̂"(x) � f"(û(x); x; 0) < 0 for x 2 C:

Theorem 1. Assume hypotheses (A0)�(A4) to be valid. Then, for su�ciently small
", the boundary value problem (2.1) has a solution u(x; ") satisfying

lim
"!0

u(x; ") = û(x) for x 2 D: (2.9)

Moreover, it holds

u(x; ")� û(x) =

(
O(
p
") for x 2 D�;

O(") for x 2 DnD�;
(2.10)

where D� is a �-neighborhoud of the curve C, and � is any �xed positive number
su�ciently small.

Proof. To prove our theorem we apply the technique of lower and upper solutions.

For the construction of lower and upper solutions we use the composed stable solu-

tion û(x) de�ned in (2.5).
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It follows from (2.4) that û(x) ful�lls on C the condition (ii) of De�nition 2 for the

lower solution �(x; "). But in case

@'2

@r
(x)� @'1

@r
(x) > 0 for x 2 C

û(x) cannot be used as an upper solution since it does not ful�ll condition (ii) for
�(x; "). Therefore, we construct an upper solution by smoothing û(x) as follows.

Let ! 2 C2(R; [0; 1]) be such that

!(%) =

8><
>:

0 for % � �1;
2 (0; 1) for �1 < % < 1;
1 for % � 1:

(2.11)

By means of !(%) we de�ne the function ~u(x; ") for (x; ") 2 D � I"1 as follows:

~u(x; ") :=

8><
>:
'1(x) + !( r

"
)('2(x)� '1(x)) for x 2 D�;

'1(x) for x 2 D1nD�;

'2(x) for x 2 D2nD�;

(2.12)

where (s; r) are local coordinates in D�. It is obvious that ~u(x; ") is twice continu-
ously di�erentiable in x. If we represent ~u(x; ") in the form

~u(x; ") = û(x) + v(x; ") (2.13)

then, taking into account '2(x) � '1(x) = O(jrj) in D�, it is easy to show that

v(x; ") satis�es

v(x; ") =

(
O(") for x 2 D�;

0 for x 2 DnD�;
(2.14)

moreover we have

"2�~u(x; ") =

(
O(") for x 2 D�;

O("2) for x 2 DnD�:
(2.15)

By (2.14) and (2.15) there exists positive constants c1 and c2 such that for su�ciently

small " the inequalities

jv(x; ")j � c1"; "2j�~u(x; ")j � c2" for x 2 D� (2.16)

hold.

Now we construct an upper solution �(x; ") to (2.1) by using the smooth function

~u(x; "). To this end we introduce a local coordinate system (�; n) in a su�ciently
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small �-neighborhood �� of �, �� � D;�� \D� = ;, in the same way as we have in-

troduced local coordinates (s; r) near C. We use the twice continuously di�erentiable

cut-o� function �a : R! [0; 1]; a > 0, satisfying

�a(%) :=

8><
>:

1 for j%j � a=2;
2 (0; 1) for a=2 < j%j < a;

0 for j%j � a

(2.17)

to de�ne the following functions we need to construct upper and lower solutions to

(2.1):

h(x; ") :=

(
(
p
"� ")��(r) + " for x = (s; r) 2 D�;

" for x 2 DnD�;
(2.18)

z(x; "; k) :=

(
" exp

�
�kn

"

�
��(n) for x = (�; n) 2 ��;

0 for x 2 Dn��:
(2.19)

Now we de�ne an upper solution �(x; ") to (2.1) as

�(x; ") := ~u(x; ") + b�h(x; ") + z(x; "; k�) (2.20)

where b� and k� are some positive numbers to be chosen in an appropriate way later.

Since ~u(x; ") is smooth it follows from (2.18) - (2.20) that �(x; ") is also smooth and
satis�es condition (ii) in De�nition 2 for an upper solution.

From (2.18) and (2.19) we get the existence of positive numbers �c1; �c2 such that for

su�ciently small "

j�h(x; ")j � �c1
p
"; "2j�z(x; ")j � �c2" for x 2 D;

0 � z(x; ") � " for x 2 D: (2.21)

Now we check that �(x; ") satis�es the inequality (iii) in De�nition 2. From (2.20),

(2.13), and (2.6) it follows

L"�(x; ") � "2��(x; ")� f(�; x; ") = "2�
�
~u(x; ") + b�h(x; ") + z(x; "; k�)

�
�f̂u(x)

�
b�h(x; ") + z(x; "; k�) + v(x; ")

�

�1

2
f̂uu(x)

�
b�h(x; ") + z(x; "; k�) + v(x; ")

�2
�f̂"(x)"+ o("):

(2.22)

Our aim is to prove L"�(x; ") � 0 for x 2 D and for su�ciently small ".

First we estimate L"�(x; ") in the regionD�=2. According to (2.18), (2.19) and (2.14)

we have for x 2 D�=2

8



L"�(x; ") � "2�~u(x; ")� f̂u(x)
�
b�
p
"+ v(x; ")

�
� 1

2
f̂uu(x)

�
b�
p
"+ v(x; ")

�2
�f̂"(x)"+ o("):

(2.23)

By (2.16) we have for x 2 D�=2 and for su�ciently small "

b�
p
"+ v(x; ") � 0:

Thus, according to (2.7), we may omit the second term in (2.23) in order to estimate

�(x; ") from above.

From hypothesis (A3) and from our smoothness properties it follows the existence

of positive constants c3 and c4 such that

f̂uu(x) � c3 for x 2 D�=2; � su�ciently small,

jf̂"(x)j � c4 for x 2 D:
(2.24)

From (2.23), (2.16), (2.14), (2.24) we obtain

L"�(x; ") � (c2 �
c3

2
b2
�
+ c4)"+ o("):

Therefore, for su�ciently large b� we have L"�(x; ") � 0 for x 2 D�=2.

Next, we estimate L"�(x; ") in D
(2)
�

:= D�nD�=2. From (2.7) it follows that there

exists a positive constant c5 such that

f̂u(x) � c5 > 0 for x 2 D(2)
�
: (2.25)

By (2.19), (2.22) we have for x 2 D(2)
�

L"�(x; ") � "2
�
�~u(x; ") + b��h(x; ")

�
� f̂u(x)

�
b�h(x; ") + v(x; ")

�

� 1

2
f̂uu(x)

�
b�h(x; ") + v(x; ")

�2 � f̂"(x)"+ o("):
(2.26)

Let � be so small that we have f̂uu(x) � 0 for x 2 D�. From (2.26), (2.16), (2.21),

(2.25), and (2.24) it follows

L"�(x; ") � (c2 � c5b� + c5c1 + c4)"+ o("):

Therefore, for su�ciently large b� we have L"�(x; ") � 0 for x 2 D(2)
�
.

Finally, we estimate L"�(x; ") in DnD�. Taking into account (2.14), (2.18) we have

by (2.22)

9



L"�(x; ") � "2
�
�~u(x; ") + �z(x; "; k�)

�
� f̂u(x)

�
b�"+ z(x; "; k�)

�

� 1

2
f̂uu(x)

�
b�"+ z(x; "; k�)

�2 � f̂"(x)"+ o("):
(2.27)

From (2.27), (2.15), (2.21), (2.25), and (2.24) we get

L"�(x; ") � (c2 � c5b� + c4)"+ o("):

Thus, for su�ciently large b� we have L"�(x; ") � 0 for x 2 DnD�.

Taking into account that �(x); '1(x) and @'1

@x
(x) are bounded on C we get from

(2.20),(2.5) and (2.19) for x 2 � and for su�ciently large k�

@�

@n
(x; ")� �(x)�(x; ") =

@'1

@n
(x)� k� � �(x)

�
'1(x) + b�"+ "

�
< 0;

i.e. the inequality (iv) for the upper solution �(x; ") in De�nition 2 is ful�lled.

Consequently, the function �(x; ") de�ned in (2.20) satis�es the conditions (iii) and

(iv) in De�nition 2 for an upper solution.

Now we construct a lower solution �(x; ") in the form

�(x; ") : = û(x)� b�"� z(x; "; k�) (2.28)

where the positive constants b� and k� have to be chosen in an appropriate way.

Note that �(x; ") may be non-smooth on the curve C, but according to (2.4) it

satis�es the condition (ii) in De�nition 2.

For L"� we get analogously to (2.22)

L"� � "2��(x; ")� f(�(x; "); x; ") =

= "2�
�
û(x)� z(x; "; k�)

�
+ f̂u(x)

�
b�"+ z(x; "; k�)

�
� f̂"(x)"+ o("):

(2.29)

First, we consider L"� in the region D� for su�ciently small �. From (2.29), (2.19),

(2.7) and under our smoothness assumptions we get

L"�(x; ") = "2�û(x) + f̂u(x)b�"� f̂"(x)"+ o(") � �f̂"(x)"+ o("): (2.30)

By assumption (A4) there is a positive constant c6 such that

�f̂"(x) � c6 for x 2 D�: (2.31)

Thus, from (2.30) and (2.31) we get

L"�(x; ") � 0 for x 2 D�:
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Finally, we study L"�(x; ") in D nD�. By (2.28), (2.21), (2.24), and (2.25) we have

L"� � (��c2 + c5b� � c4)"+ o("):

Therefore, for su�ciently large b� we obtain

L"�(x; ") � 0 for x 2 D nD�:

From (2.28), (2.5), and (2.19) we get for x 2 �

@�

@n
(x; ")� �(x)�(x; ") =

@'1

@n
(x) + k� � �(x)

�
'1(x)� b�"� "

�
:

Thus, for su�ciently large k�, �(x; ") satis�es the inequality (iv) in De�nition 2 for

a lower solution.

Consequently, the function �(x; ") de�ned in (2.28) satis�es all conditions in De�-

nition 2 for a lower solution.

From (2.20) and (2.28) it follows for su�ciently small " that �(x; ") > û(x) and
�(x; ") < û(x) in D. Thus, �(x; ") and �(x; ") are ordered lower and upper solutions
to (2.1). Therefore, we can conclude that for su�ciently small " there exists a

solution u(x; ") of (2.1) satisfying

�(x; ") � u(x; ") � �(x; ") for x 2 D:

The relations (2.18) � (2.20) and (2.28) show that the relations (2.10) and conse-

quently (2.9) for u(x; ") are ful�lled. This completes the proof of Theorem 1.

Remark 1. In equation (1.7) which models a process in reaction kinetics we have
f̂"(x) � 0. That means assumption (A4) is not valid. In such cases we may replace
hypotheses (A4) by the following condition:

(A5). The composed stable solution û(x) of the degenerate equation (2.2) is a lower
solution for (2.1), i.e.

(i) L"û(x; ") � 0 for x 2 DnC and " 2 I"1;

(ii)
@û

@n
(x)� �(x)û(x) � 0 for x 2 �:

It is easy to verify that under the assumptions (A0) - (A3) and (A5) Theorem 1
remains true.

Remark 2. In the subsets D1nD� and D2nD� we can derive an asymptotic ex-
pansion of any order in " for the solution u(x; ") by means of standard theory for
singularly perturbated problems provided the function f is su�ciently smooth.
In D1nD� the asymptotic expansion reads
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u(x; ") = '1(x) + "u1(x) + : : :+ "mum(x) + "�1

�
�;
n

"

�
+ : : :+ "m�m

�
�;
n

"

�
+

+O("m+1)
(2.32)

where

u1(x) = �f̂�1
u

(x)f̂"(x);

u2(x) = f̂�1
u

(x)
�
�'1(x)�

1

2
f̂""(x)� f̂u"(x)u1(x)�

1

2
f̂uu(x)u

2
1(x)

�
;

: : : :

(2.33)

�i(�;
n

"
); i = 1; 2; : : : ; are boundary layer functions which can be constructed by

means of the standard theory and which satisfy

�����i

�
�;
n

"

����� � c exp
�
��n
"

�
; i = 0; 1; : : : ; m; (2.34)

where c and � are some positive constants, � and n are local coordinates near �.
In D2 nD� the asymptotic expansion of u(x; ") has the form

u(x; ") = '2(x) + "u1(x) + : : :+ "mum(x) +O("m+1): (2.35)

Here, the functions ui(x) (i = 1; : : : ; m) are de�ned as in (2.33) if we replace there
'1(x) by '2(x):
From (2.32) and (2.35) we obtain the following corollary which we need to estimate

the jumping behavior of the reaction rates (see subsection 2.3).

Corollary 1. Under the assumptions of Theorem 1 we have

�u(x; ") = �û(x) +O(") for x 2 D n (�� [D�): (2.36)

Proof. We prove (2.36) for x 2 D1 n (�� [D�). From (2.32) and (2.34) we get for

m = 2

u(x; ") = '1(x) + "u1(x) + "2u2(x) +O("3) � U2(x; ") +O("3):

Consequently,

�(u(x; ")� U2(x; ")) =
1

"2
f(U2(x; ") +O("3); x; ")��U2(x; ")

= ff(U2(x; ") +O("3); x; ")� f(U2(x; "); x; ") + f(U2(x; "); x; ")� "2�U2(x; ")g="2:
(2.37)
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Obviously we have

f(U2(x; ") +O("3); x; ")� f(U2(x; "); x; ") = O("3):

By means of (2.33) we get

f(U2(x; "); x; ")� "2�U2(x; ") = O("3):

Therefore, we obtain from (2.37)

�(u(x; ")� U2(x; ")) = O("):

By using the obvious relation

�U2(x; ") = �'1(x) +O(")

we get �u(x; ") = �'1(x)+O("), i.e. the relation (2.36) holds for x 2 D1n(��[D�).
For x 2 D2nD�, relation (2.36) can be proved in a similar way.

2.3 Application: The purely bimolecular reaction.

We consider system (1.4) in case g1 � g2 � 0 (pure bimolecular reactions) in a

bounded open simply connected region D of R2 with a smooth boundary � and

assume

r(�u; �v) � k�u�v

where k is a positive constant. Hence, (1.8) reads

"2�u = �"2Ia(x) + ku(u� v(x)); x 2 D (2.38)

where v(x) is the solution of the equation

�v = Ib(x)� Ia(x) (2.39)

(see (1.6)) with corresponding boundary conditions. Concerning v(x) we suppose

v(x) = 0 for x 2 C;
v(x) < 0 for x 2 D1;

v(x) > 0 for x 2 D2:

As an example we consider the equation

13



�v = Ib(x)� Ia(x)

in the region D := fx 2 R2 : x21 + x22 < 4g under the condition Ib(x) � Ia(x) = 4
together with the boundary condition

@v

@n
(x)� v(x) = 7 for x21 + x22 = 4

where @

@n
denotes the di�erentiation in the direction of the inner normal. It easy to

verify that v(x) � 1 � x21 � x22 solves this boundary value problem. We note that

v(x) changes its sign on the circle C := x 2 R2 : x21 + x22 = 1.

Additionally we assume the boundary condition

@u

@n
� �(x)u = 0 for x 2 �: (2.40)

One can easily check that the assumptions (A1) and (A2) are fu�lled for equation

(2.38).

The corresponding composed stable solution reads

û(x) =

(
0 for x 2 D1;

v(x) for x 2 D2
(2.41)

(see De�nition 1). Recalling that Ia(x) and Ib(x) are non-negative functions it is

easy to check that û(x) is a lower solution to (2.38), (2.40). Indeed, using (2.39) we

have

"2�û+ "2Ia(x)� kû(û� v(x)) =

(
"2Ia(x) � 0 in D1;

"2Ib(x) � 0 in D2;

and
@û

@n
� �(x)û = 0 for x 2 �;

i.e. assumption (A5) is satis�ed.

Assumption (A3) also holds as f̂uu(x) = 2k > 0. Therefore, by means of Theorem

1 (see Remark 1) we obtain that the boundary value problem (2.38), (2.40) has a

solution u(x; ") satisfying

lim
"!0

u(x; ") = û(x) for x 2 D:

For the reaction rate ~r(x; ") := r(u(x; "); u(x; ")� v(x))="2 we get from (1.8)

~r(x; ") = �u(x; ") + Ia(x): (2.42)

From (2.42),(2.36),(2.41), and (2.39) we obtain
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~r(x; ") =

(
Ia(x) +O(") for x 2 D1n(�� [D�);
Ib(x) +O(") for x 2 D2nD�:

Thus, taking into account that � is any small number we conclude that the reaction

rate ~r(x; ") has a jump (transition layer) near the curve C characterizing the exchange
of stabilities.

3 The nonstationary problem

3.1 Existence and asymptotic behavior of the solution.

Let D := f(x; t) 2 R2 : 0 < x < 1; 0 < t � Tg; I"1 := f" 2 R : 0 < " � "1g
where 0 < "1 � 1. We consider the the singularly perturbed initial-boundary value

problem

L"u � "2(ut � uxx)� f(u; x; t; ") = 0; (x; t) 2 D; (3.1)

u(x; 0) = u0(x) ; (3.2)

ux(0; t) = ux(1; t) = 0 ; (3.3)

under the following assumptions:

(V0) f : R� �D � �I"1 ! R and u0 : [0; 1]! R are su�ciently smooth.

(V1) The degenerate equation f(u; x; t; 0) = 0 has two smooth roots with respect to
u in �D

u = '1(x; t) and u = '2(x; t) :

There exists a smooth function  : [0; 1]! [�; T � �] where � satis�es 0 < � <

T such that

'1(x;  (x)) � '2(x;  (x)) for 0 � x � 1 ; (3.4)

'1(x; t) > '2(x; t) for 0 � t <  (x) ;

'1(x; t) < '2(x; t) for  (x) < t � T :
(3.5)

The relation (3.4) says that the surfaces u = '1(x; t) and u = '2(x; t) intersect in a

curve whose projection into �D has the representation t =  (x) .

(V2) For 0 � x � 1 it holds

fu('1(x; t); x; t; 0)
�
< 0 for 0 � t <  (x) ,
> 0 for  (x) < t � T ,

fu('2(x; t); x; t; 0)
�
> 0 for 0 � t <  (x) ,
< 0 for  (x) < t � T .
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We note that from (3.4) it follows

fu('i(x; t); x; t; 0)jt= (x) � 0 : (3.6)

Under assumption (V2) the family of equilibria v = '1(x; t)
�
v = '2(x; t)

�
of the

associated equation
dv

d�
= f(v; x; t; 0) ; � � 0 ; (3.7)

where x and t are considered as parameters is asymptotically stable (unstable) for

0 � t <  (x) and unstable (asymtotically stable) for  (x) < t � T . Thus, on the

curve t =  (x), the exchange of stabilities of the families of equilibria takes place .

A simple example of a function f(u; x; t; 0) satisfying the assumption (V1) and (V2)

is given by the quadratic function with respect to u

f(u; x; t; 0) = �(u� '1(x; t) )(u� '2(x; t) ) ; (3.8)

if '1 and '2 satisfy the conditions (3.4) and (3.5) .

(V3) The initial function u0(x) belongs to the basin of attraction of the rest point
v = '1(x; 0) of the associated equation (3.7) for t = 0 .

Assumption (V3) means that the solution �(x; �) of the initial problem (x is con-

sidered as parameter)

d�

d�
= f('1(x; 0) + �; x; 0; 0) ; � � 0 ; �(x; 0) = u0(x)� '1(x; 0) (3.9)

exists for � � 0 and �(x; �)! 0 as � !1 .

By assumption (V3) , for small " the solution u(x; t; ") of the problem (3.1) , (3.2) has

an exponentially fast change from the initial value u0(x) to values close to '1(x; t)
within a small time interval. After that the solution u(x; t; ") will be close to '1(x; t)
as long as the root '1(x; t) will be stable. But for t =  (x) the exchange of stability
of the roots '1 and '2 takes place. The question arises about behavior of the solution

u(x; t; ") near the curve t =  (x) and for  (x) < t � T .

Form the composed stable solution of the degenerate equation

û(x; t) =
�
'1(x; t) ; 0 � t �  (x) ;
'2(x; t) ;  (x) � t � T ;

0 � x � 1 :

We note that û(x; t) is a continuous function in �D , but not smooth on the curve

t =  (x) .

We introduce the notation

f̂uu(x; t) � fuu(û(x; t); x; t; 0) ; f̂"(x; t) � f"(û(x; t); x; t; 0)

and assume:
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(V4) f̂uu(x;  (x) ) < 0 for 0 � x � 1 :

Note that for the quadratic function (3.8) fuu = �2 , i. e. assumption (A4) holds.

Further we assume

(V5) f̂"(x;  (x) ) > 0 :

Theorem 2. Under assumptions (V0) � (V5) and for su�ciently small " , the initial-
boundary value problem (3.1) � (3.3) has a solution u(x; t; ") satisfying

u(x; t; ") = û(x; t) + �(x; t="2) + w(x; t; ") in �D ; (3.10)

where �(x; �) is de�ned by (3.9) , w(x; t; ") = O("1=2) in some small (but �xed
as " ! 0 ) � � neighborhood D� of the curve t =  (x), and w(x; t; ") = O(") for
(x; t) 2 D nD�:

The proof of this theorem can be found in [3].

3.2 Application: The nonstationary purely bimolecular re-

action.

We consider system (1.3) under the assumptions: dim x = 1; g1 � g2 � 0 (pure

bimolecular reaction), the inputs Ia and Ib depend on (x; t), r(�u; �v) � k�u�v where k
is a positive constant. In that case system (1.5) can be rewritten as

"2
�@2u
@x2

� @u

@t

�
= �"2Ia(x; t) + ku(u� v);

@2v

@x2
� @v

@t
= Ib(x; t)� Ia(x; t); (x; t) 2 D:

(3.11)

Additionally we suppose that the corresponding initial and boundary conditions are

such that the solution v(x; t) of the second equation in (3.11) satis�es

v(x; t) = 0 for t =  (x); 0 � x � 1;

v(x; t) < 0 for 0 � t <  (x);

v(x; t) > 0 for  (x) < t � T

where t =  (x) is a smooth curve having the properties as described in subsection

3.1. Hence, we have to solve an initial-boundary value problem for the equation

"2
�@2u
@x2

� @u

@t

�
= �"2Ia(x; t) + ku

�
u� v(x; t)

�
: (3.12)
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In this case the composed stable solution reads

û(x; t) =
�
0 ; 0 � t �  (x) ;
v(x; t) ;  (x) � t � T ;

0 � x � 1 : (3.13)

Note that assumption (V5) is not valid for the case under consideration. But Theo-

rem 2 can be extended such that it can be applied to (3.12) ( similar to the extension

of Theorem 1). Therefore by the extended Theorem 2 we obtain that the initial-

boundary value problem under consideration has a solution u(x; t; ") satisfying

lim
"!0

u(x; t; ") = û(x; t) for 0 � x � 1; 0 < t � T:

As in Corollary 1 we can prove that

@2u

@x2
� ut =

@2û

@x2
� ût +O(") for (x; t) 2 D n (�� [D�) (3.14)

where D� is a su�ciently small � - neighborhood of the curve t =  (x), �� denotes
the subset of D de�ned by 0 � t � � where � is a su�ciently small positive number

(see Fig. 2).

0

t

T

1 x

�δ

t = ψ(x) Dδ

Fig. 2: Location of the subsets D� and �� of D

For the reaction rate ~r(x; t; ") := r(u(x; t; "); u(x; t; ")�v(x; t))="2 we have by (3.12)

~r(x; t; ") = ku(x; t; ")(u(x; t; ")� v(x; t))="2 = @
2
u

@x2
� @u

@t
+ Ia(x; t): (3.15)

Now, by using (3.14),(3.13) and the second equation in (3.11) we obtain from (3.15)

~r(x; t; ") =

(
Ia(x; t) +O(") for (x; t) 2 D1 n (�� [D�);
Ib(x; t) +O(") for (x; t) 2 D2 nD�:

Since � is any small positive number we can conclude that the reaction rate ~r(x; t; ")
has a jump (transition layer) near the curve t =  (x) describing the exchange of

stabilities.
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