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Abstract

We calculate some definite integrals which (up to now) computer algebra systems
like Maple or Mathematica are unable to evaluate. The first one is a simply looking
integral involving cos and log , the others are some integrals containing polyloga-
rithmic functions. It is shown that they can be evaluated by rational combinations
of (—functions and products of (—functions at positive integers.
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1. Introduction

To justify our doing, we quote J.J. SYLVESTER (1814-1897):

"It seems to be expected of every pilgrim up the slopes of the mathematical
Parnassus, that he will at some point or other of his journey sit down

and invent a definite integral or two towards the increase of the common
stock.” ([S])

The first integral we consider is

I(a) = / (14 cosz)log(a + cosz)dz, a>1.
0

We show that
I(a) :ﬂ{a—m—i—log (”—*/2“27_1)} (1.1)

The other integrals contain polylogarithmic functions. The polylogarithmic function L,
is defined for any complex p and any complex |z| < 1 by the power series

L) =3 = (1.2)

We show that

can be expressed for m =1,2,... in terms of (—functions at positive integers by

[m/2]
I = (1)t {(m +1)¢2m+1)—2 > ((2k)¢2m+1— 2k)} (1.3)
and
Jm= (=)™ H(@-27")¢@m+1)
[m/2]
=227 NPl 4 22 _JC(2k)C(2m+ 1 — 2k) }. (1.4)

2. The proof of the identity (1.1)
Already Euler knew that

= w/2

/logsinxdm = 2/ logsinz dz = —mlog 2.
0

0



Consider

w/2 w/2
A= /cost logsinzdz, B = /sin2x logsinz dz.
0 0

The preceding line shows that

w/2
A+ B = /logsinxdm = —glog2,
0

and obviously holds
w/2

A—B= / cos 2z logsinz dz.

(=)

Integration by parts

w/2 /2
w/2
| @) do = f@)g(@)|  ~ [ 1@)g(@)de
0 0 0
with
f'=cos2x, g=logsinz, f=—sin2z, ¢ = o8 T
sin x
gives
s _ 1. AR s _ cos T
/ cos2z logsinzdr = —sin2z logsinz — = / sin 2x
J 2 0 2 / sin x
w/2
= - / cos’z dr = —I,
4
0
and, consequently,
A= —g (1+log4), B= g (1 - log4).

Next consider .
C = / (14 cosz) log(1 + cosz) dz.
0

Using 1+ cosz = 2 cos? B and some obvious substitutions we get

w/2

C =

2/ cos? = log (2 cos? E) dr =4 / cos’z log (2 cos2z) dz
0 2 2

w/2 w/2

4 / sin?y log (2 sinzy) dy =4 / siny [log 2 + 2 logsin y]dy
0 0
w/2 w/2

410g2/sin2ydy—|—8/sin2y logsiny dy = wlog2 + 8B,
0 0
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hence
C =m(l—log2).

This result is known to Maple and Mathematica. To evaluate
I(a) = / (14 cosz)log(a + cosz)dz, a>1,
0

differentiate with respect to a and obtain

™

I'(a) /7r1+cosxd 1/
a)= | ———de=mn—(a—
/ a -+ cosx ; a+cosz

The classical substitution ¢ = tan(z/2) (or computer algebra, or a classical table of
integrals like [RG]) shows that

/7r dr T

) a+cosz CVar—1

a—1
a+1

So we have

I'a)=m—m

Integration yields

I(a)—m):ﬂ“l’(s)ds:w(a—1)—7r/a,/z:ds.

The remark that I(1) = C and the elementary integral

r[s—1

/ s+1d82\/a2— —log(a + va? — 1)
s

1

(simply checked by differentiating both sides) proves (1.1).

3. The proof of the identities (1.3), (1.4)

A standard reference for the properties of polylogarithmic functions is the book of L.
Lewin ([L]). According to A.B. Goncharov ([G]) the history of these functions can be
traced back to Leibniz and J.Bernoulli. In the last time there seems to be an growing
interest in these functions (|G],[M],|Z]). For the index m =1 obviously holds

Li(z) = —log(1 — 2).

The computer algebra systems Maple and Mathematica know that

[1 = /01 7061(8))2 ds = /01 —(log(l — S))2 ds = 2C(3)

S S
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and

Jy = /_11 C10) /_11 (log(1 = 5))* ZC(?)).

s s
The corresponding integrals for polylogarithmic functions of higher indices are unknown

to these computer algebra systems. We evaluate these integrals using formulas proved in
[BBG] (some of them go back to Euler [E]).

For Re(p) > 1 the Riemann zeta function is defined by
_y L
—
Since the series (1.2) for Re(p) > 1 converges still on |z| =1 we have

L,(1) =C¢(p), Lp(—1)= ("7 —1)¢(p) for Re(p)>1

Moreover, Li(—1) = —log2 and differentiation of (1.2) with respect to z yields the
well-known relation

L, 1(z
L (z) = 71”;( )
For positive integers | > 2 define
* 1 (X2 1 (&1 X 1 (& (—1)*
56 -5 (S5) A= L (1) m-Y i |

Obviously A; = S;(1), B; = S;(—1) , and differentiation gives for |z| <1

n

: 1-2z
S)(z) Z nl <Z Pa 1) and with Z == =15

follows

1—2

, © 1 /1—2" 1 1 1 X 2"
S’(z):nz::_( >:(1—z)§ﬁ_(1_z)z_
. ) L)
Si2) = (1-—2) (1—2)'

By integration over [0,z] for real z =z, || <1 we obtain with S;(0) =0
Li(s)
(1—s)
Correspondingly, integration over [—1,z| gives with S;(—1) = B;

Si(z) = By — ¢(1){log(1 — z) — log 2} — /_1 (flfsi)

ds.

Si(z) = =¢()log(1 =) — [

ds.

Integration by parts

/Oz f,(S)g(S)ds = f(s)g(s) g — /Oz f(S)g'(s)ds



on the right hand side with

J'(s) = : g(s) = Li(s), f(s)=—log(l—3s), g'(s)=Li(s)= L1-1(s)

1—s’ S

shows that

ds

Si(z) = {Li(x) — ¢(1)} log(1 — z) — /z L 1(s)log(1 —s)

0 S

Elfl(S)ﬁl(S)

or

Si(z) = {Li(x) — ¢(D)} log(1 — o) + /0 ds.

The same manipulation on the interval [—1,z] gives

Si(z) = B+ {Li(z) — (1)} log(1 — z) +log 2{¢() — Li(—1)} + /wl w ds.

For [ > 2, we have
lim {£;(z) — {(I)}log(1l — z) = 0.

r—1—

This can be seen using I’Hopital’s rule

L) =D 210
Jlim gl —2) tim (1 —z) (log(1 — z))"£;(z) = 0.

So we obtain

A= /01 Mds (3.1)
and
A = By +log 2{C(1) — Li(~1)} + /_11 M ds (3.2)

Repeating integration by parts for [ > 3

/01 f'(s)g(s)ds = f(s)g(s)]s — /1 £(s)d(5)ds

0
with )
f'= . g=Li1(s), f=Ly(s) g = ﬁ;_l(s) — 1—2(s)

) S

gives

/01 El_l(ss)ﬁl(s) Qs — £2(3)£11(3)|(1)—/01 £2(s)§l—2(s) s

— (@ - [ el

0 S

ds.

In the same way we obtain by partial integration on the interval [—1, 1]

[ ARG 4o ) ca-1) - La(-nza(-) - [ BEA20)

-1 S -1 )

ds
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We use this in (3.1) and find

Az:c(2)c(z—1)_/1M

0 S

ds,

With (3.2) we get, respectively,

Ar=B; + log 2{¢(l) — Li(—1)}
+ C(2)CU—1) = Liy(—1)Ly(—1) — /1 Ls(5)L1-2(5)

-1 S

ds.

Going on this way one shows by induction that for j=1,...,[l/2]

A= Y0k el R+ (cayt [ G g (3.3)

k=1 s

and, especially for [ =2m, 7 =m

Ao = 3 (¢l + 1)m k) + 1yt [ EnCD g (3.4)

Analogously we obtain for the interval [—1,1]
A= B + log 2{C(l) — Li(-1)}

+Z V(R +1)¢(1— k)

- Z ML (1)L k(1) + (1) /1 £i(s)rils) ds

-1 S

and, especially for [ =2m, 7 =m

Ay = Bay +105 2(C(2m) — La(~1))
+ 3 (1) + 1)¢2m — B)
s ' (Ln(s)”

— Y (D" L (1) Lomi(—1) + (—1)™ / ds

-1 )

The quantities A;, B; are related to the Euler sums
i 1 nX:I L 1,2 t=2,3
— s = =
— nt ks ) ) ) ) ) ) )
and
1

nt

("Zl (1)

k=1

-3

n=1

), s=1,2,..., t=2,3,..,



considered in [BBG]. Indeed, we have
Al :Uh(l,l)+C(l+1), Bl = —O'G(l,l)—i‘ﬁH_l(—l). (35)

We quote from [BBG| (p.278) (also proved in [N])

-2

204(1,0) = 1L +1) = 3 C(k +1)C(U — k)

k=1

and (p.290)
!

204(1,1) = 20(1) C(1) — LC(L+ 1) + Y n(k) n(l + 1 — k),

k=1
where

o) =% O — (127 ¢(p) for Re(p) > 1, n(1) = log 2.

With (3.5) we find

A= <%+1> C(l+1)—%i((k+1)§(l—k), (3.6)
and, using £;(—1) = —n(l),
Bi= —C()log 24+ L C(+1) — 2 Y n(k)n(l+1— k) —n(i +1).

Especially, after some transformation,

m—1

Ag = (m+ 1)C@m+ 1) — Y ((k+ 1) ((2m — k),

k=1

m—1

Bom = —{¢(2m) +n(2m)}log 2+ m{(2m + 1) — z_: n(k+1)n(2m — k) —n(2m + 1).

We use the expression for A,,, in (3.4) and find

m—1

(aymt [MEE gy g nycem 1)~ S+ (0 + 1) com k).

o k—1

In the sum the terms with &k even cancel and we obtain, changing the sense of the
summation index k

1 2 [m/2]
(—1)™t /0 (Lm(s))” ds=(m+1)¢(2m+1)—2 > ((2k)¢(2m + 1 — 2k).

s k=1

So the identity (1.3) for I,, is proved.



To prove (1.4), we use the expressions for Asy,, By in the identity containing J,,
Several terms cancel, and we obtain after some transformations the intermediate result

(ot [ ER o gy cam 1 1)

S (e + 1 Cam )
+ m_l[l + (=1)*n(k + 1) n(2m — k).

Again the terms with k even cancel and with 7(j) = (1 — 2179)((j) this identity
simplifies to

(—1)™ 1 /_11 7(%59))2 ds= (2—22™)((2m+1)
[m/2]
— 2~m Z {22771 4 222 _11(¢(2k) C(2m + 1 — 2k).
This is identity (1.4) for J,,

In the same way comparison of (3.6) and (3.3) yields the "mixed” integrals

1L. L
[j,l:/o Mdsa lZ2a j:l,[l/2]

I, = (—1)1'“{ (é + 1) ¢(l+1)

- :2231 ((—1)’“‘1 + %) (k+1)C(l—Fk) - % i((k +1)¢( - k)}.

k=j

as

We could also give formulas for the corresponding integrals

1 L. L .
Jj,l - / Mdsa l Z 2, .] - 1’ [l/2]

-1 S

over the interval [—1,1]. One gets the somewhat clumsy expression

Jji = (—1)j+1{(2 —27¢(+1)
_ ]2:: <(_1)k—1 + %) {27 2 — 2" (R + 1) C(L — k)
=

PO LR RN (R 0}

It is obvious that the identities for m = 1 mentioned in the introduction are included.
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