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Abstract

In the paper we present a macroscopic continuum model of adsorption in

porous materials consisting of three components. We consider the �ow of a

�uid component through channels of the skeleton. It serves as carrier for an

adsorbate whose mass balance equation contains a source term. The source

consists of two parts: a Langmuir contribution connected with bare sides on

internal surfaces which becomes in equilibrium the Langmuir isotherm, and

changes of the internal surface driven by the source of porosity. The model

for the latter contribution is new. Parameters of this model are analyzed by

means of an example of solution of a boundary value problem for the full set

of �eld equations which describes the transport of pollutants in soils.

1 Introduction

Adsorption processes where particles from a liquid solvent attach to the surface of

a solid material appear quite often in nature. Examples are the pollution transport

with rainwater in soil (organic materials like pesticides in agriculture, heavy metals in

the subsoil of �lling stations), tips through which salts of industry and of households

are transported, the storage of atomic waste in salt layers or the penetration of

moisture in plaster and concrete.

A look into history shows that the good capability for adsorption of porous materials

was known very early. Already in 1777 Fontana examined adsorption processes of

gases on coal (see: [1]). One of the �rst attempts to use one single formula to describe

such processes was undertaken by H. Freundlich in 1909. He found empirically

an expression which is a relation between the amount of gas adsorbed on a �at

surface to the partial pressure in the adsorbate. Since 1914 I. Langmuir studied

the foundations of adsorption and developed his own theory which he gradually

improved by experiments. Incidentally for this work he was awarded in 1932 with the

Nobel Prize for chemistry. This theory is based on the assumption that the transfer

of particles from the �uid/ gaseous phase to the surface of the solid depends on the

number of bare sides on this surface. From this assumption he derived the well-

known Langmuir-isotherm for the fraction of occupied sides in phase equilibrium. It

is used in the adsorption model which will be presented in Chapter 2 of this paper

(see also: [2], [3]).

It is common to describe adsorption processes by means of scalar equations which

follow by a closure of partial mass balance equations. This leads to so-called reaction-

di�usion equations. There exists an extensive literature of such a model concerning
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particularly its mathematical properties. Much less extensive are discussed physical

�aws of the scalar model which, for instance, neglects entirely processes in skeleton.

This is the main reason for the construction of the present continuous model based

on the concepts of the modern theory of porous media. Under special assumptions

this model can be reduced to the reaction-di�usion-equation as we show in Section

2.3.

In this work the model will be illustrated by a one-dimensional example. In Chapter

3 the problem is formulated, Chapter 4 contains the presentation of balance equa-

tions and constitutive relations. In Chapter 5 the initial and boundary conditions

are speci�ed. They are, as usual for porous materials, of third type. In Chapter 6

the problem is solved by application of a regular perturbation method and a Laplace

transform. The last chapter illustrates the results of this example.

2 Adsorption/Di�usion Model

2.1 Microscopic level of description

We investigate a �ow of a �uid-adsorbate mixture through channels of a porous

medium. Particles of adsorbate settle down on the surface of the skeleton so that

their kinematics changes from that of the �uid to that of the skeleton. The extent

of adsorption depends on various factors but the surface area of the solid is most

important of them if particles of adsorbate stick to the skeleton due to weak van

der Waals forces. In such a mechanism we neglect the in�uence of capillary e�ects

and chemical reactions. Certainly this limits the applicability of the model. There

exist numerous methods for quantitative evaluation of this area, e.g. through mea-

surements of adsorption itself (on the modelling of adsorption see the forthcoming

paper [2]). For the purpose of the present work, where the skeleton is considered to

be a soil, we lean on a value of the internal surface mentioned by J. Bear in [4].

Another quantity which in�uences the adsorbed amount is the number of bare and

occupied sides on the surface of the solid, which I. Langmuir introduced in his

classical works on adsorption (e.g. [5], [6], [7]) .

2.2 Macroscopic level of description

On the macroscopic level of description we denote by � the normalized fraction of

occupied sides per unit volume, i.e. the fraction of bare sides is 1 � �. This �eld

is interpreted as a number of occupied sides in a representative elementary volume

(REV ). REV is small in comparison with the volume of the whole �ow regime but

big against volumes of single pores of the skeleton. If we denote the internal surface

area of the pores in the REV by fint and the mass of adsorbate per unit area of this

surface by mA then the rate of transfer of mass from the liquid to the solid phase

2



per unit time determining the mass source is given by the relation

�̂A = �
mA

V

d (� fint)

dt
= �

mA

V

�
fint

d�

dt
+ �

d fint

dt

�
; (2.2.1)

where V is the REV -volume.

The �rst contribution on the right-hand side describes the change of the fraction of

occupied sides and is speci�ed by the Langmuir evolution equation

d�

dt
= a (1� �) pA � b�e�

Eb
kT ; (2.2.2)

where pA is the partial pressure of the adsorbate in the �uid phase and a and b are

material parameters. The energy barrier Eb for particles adsorbed on the skeleton

is assumed to be constant. Furthermore k denotes the Boltzmann constant and T

is the absolute temperature.

In full phase equilibrium the adsorption rate (�rst term of the right hand side of

(2.2.2)) is equal to the desorption rate (second term) so that the time change of

occupied sides is equal to zero. Then we get from (2.2.2) the well-known Langmuir

isotherm of occupied sides

�L =

pA

p0

1 + pA

p0

; with p0 :=
b

a
e�

Eb
kT : (2.2.3)

The other part of (2.2.1) is the change of the internal surface. We assume that

this change is coupled with relaxation of the porosity n; which is described by the

balance equation of porosity (For detailed information about the new model for

porous bodies with the balance equation of porosity see: Wilmanski [9], [10]).

This means that there are two mechanisms due to which the mass source is unequal

to zero: An isothermal equilibrium change of � can be produced by a change of

partial pressure pA: This yields a new phase equilibrium, i.e. another point on the

Langmuir isotherm. Secondly, changes of the internal surface are driven by the

source of porosity n̂.

This source n̂ describes the intensity of the dissipative changes of porosity per unit

time and volume of the porous material. Motivated by elementary considerations

about changes of the internal surface and of the porosity in a porous medium yielding

�lm adsorption1 we assume

1As an example let us consider a porous body with spherical holes connected with each other

by negligibly small channels (one of the holes is shown in the picture). A �lm adsorption process

takes place if the adsorbate settles down on the internal surface in an almost homogeneous manner.

This yields small changes of the radius R of the pores, say �R. If N is the number of holes in REV

then the total volume of holes V F and the internal surface fint in REV

are satisfying the relations

V F
= N �

4

3
�R3; �V F

= N � 4�R2�R )
�n
n
= 3

�R
R

fint = N � 4�R2; �fint = N � 8�R�R )

�fint
fint

= 2
�R
R

)
�n
n
/

�fint
fint

:
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1

fint

d fint

dt
/

n̂

n
: (2.2.4)

In the following we proceed to formulate the continuum model of adsorption.

2.3 Three-dimensional continuum model

In the �ow process under consideration the �uid and the adsorbate �ow with a

common velocity vF through the skeleton which has the velocity vS: Fluid, adsorbate

and skeleton have the current mass densities �F ; �A and �S, respectively. Then the

mass balance equations have the form

@�S

@t
+ div

�
�SvS

�
= ��̂A;

@�F

@t
+ div

�
�FvF

�
= 0; (2.3.1)

@�A

@t
+ div

�
�AvF

�
= �̂A;

where �̂A denotes the intensity of the mass source.

Using the de�nitions

�L := �F + �A; c :=
�A

�F + �A
; ĉ :=

�̂A

�F + �A
: (2.3.2)

we transform the balances (2.3.1) into the following ones

@�S

@t
+ div

�
�SvS

�
= ��Lĉ;

@�L

@t
+ div

�
�LvF

�
= �Lĉ; (2.3.3)

@c

@t
+ vF � gradc = (1� c) ĉ:

The momentum balance equations have the form

@�SvS

@t
+ div

�
�SvS 
 vS �TS

�
= p̂S; (2.3.4)

@�LvF

@t
+ div

�
�LvF 
 vF + pL1

�
= p̂F ;
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where the partial stress tensors of �uid components are spherical. The partial pres-

sure in the liquid phase (i.e. in the �uid and adsorbate phases together) is the sum of

the partial pressures in the �uid pF , and in the adsorbate pA. We expect according

to Dalton's law that pA �= cpL and the concentration of the adsorbate in the �uid is

assumed to be small. Furthermore TS denotes the partial Cauchy stress tensor in

the skeleton, p̂F= ��
�
vF � vS

�
+�LĉvF is the momentum source in the liquid and

p̂S=�
�
vF � vS

�
� �LĉvS is the momentum source in the skeleton where � denotes

the permeability coe�cient.

The above balance equations reduce to the reaction-di�usion-equation under sim-

plifying assumptions which we are due to present. This equation is often used by

mathematicians to describe processes in porous and granular materials (see: [8]).

First of all the motion of the skeleton is neglected which bears the consequence that

the equations for the skeleton are not required. Furthermore the form of the Cauchy

stress tensor for the �uid is restricted to the case that T F = �pF1: Admittedly we

use this form also in our continuum model but there it is not the only possibility.

Neglecting the acceleration terms in the momentum balance for the liquid we obtain

@pF

@x
= ��vF ;

which is the Darcy law. We insert this into the mass balance (2.3.1)2 and arrive at

@�F

@t
� div

�
�F

1

�
gradpF

�
= 0:

With the additional limitation that the entire mass density � is nearly constant and

that �F = cF� we are able to write the equation for the concentration

@cF

@t
= div

�
D
�
cF
�
gradcF

�
with D = cF

1

�

@pF

@cF
:

This is the required equation. Obviously, it is possible to describe solely highly

limited cases. Several characteristics of porous media cannot be described by this

equation even if it will be generalized by means of an additional scalar equation

which is supposed to account for capillary e�ects. The above procedure does not

account for mass exchange. However it is also possible to use mass balance (2.3.1)3
which contains a mass source instead of (2.3.12) to get such an equation which also

describes adsorption processes.

Let us return to the continuum model for adsorption. For the scalar �eld of poros-

ity we have an additional balance equation as introduced in [9], [10]. For small

deformations of the skeleton it has the form
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@n

@t
+ vS � gradn+ nEdiv

�
vF � vS

�
= n̂ = �

�

�
: (2.3.5)

Here nE denotes the equilibrium value of porosity, � = n � nE is the deviation of

the porosity from this value and � is the relaxation time of porosity. This form of

the source of porosity n̂ is based on assumptions on small deviations from thermo-

dynamic equilibrium.

For foundations of the model of adsorption see: [2], for the three dimensional model

in application to homogeneous adsorption in porous materials: [3]. In the following

we show a one-dimensional version of the model with mass exchange and di�usion.

3 One-dimensional example

We consider the above model of a porous body for a simple system in which the �uid

carries an adsorbate and �ows through channels in average in x-direction due to a

di�erence of the external pressure, with pl at x = 0 being larger than pr at x = l:

Fig. 3.1: A 1-D �ow of a �uid with adsorbate through porous body.

The isothermal process is described by the �elds

�
�S; �L; c; vF ; vS; eS;�; fint; �

	
: (3.1)

where vF and vS are x-components of vF and vS , respectively and eS denotes the

stretch in x-direction.

The �rst six quantities of this set are the customary �elds for a one-dimensional

�ow process in a threecomponent porous medium. However the last three arise due

to mass exchange processes which, in turn, are caused by changes of the internal

surface and changes of the partial pressure according to the Langmuir isotherm.
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For the purpose of this example we make some additional assumptions. We assume

that the skeleton does not move which means that the velocity of the skeleton is

identically zero. Also we assume that the inertial forces are small i.e. that the

acceleration terms in the momentum balances vanish. A third assumption is on

small changes in time of the velocity gradient. That means that the porosity balance

reduces to an algebraic relation in the following way

@�

@t
+

�

�
= �nE

@vF

@x
) � = �nE

tZ
0

@vF

@x
(�) e�

t��
� d�

' �nE
@vF

@x
(t)

tZ
0

e�
t��
� d� = �nE�

@vF

@x
: (3.2)

This follows from the fact that the relaxation time of porosity is very small. In the

above formal solution of the balance equation of porosity we have assumed that the

characteristic macroscopic time t is much larger than � . A further advantage of this

algebraic relation for � is that we need no additional boundary condition for the

porosity balance.

4 Governing set of equations and constitutive rela-

tions

Accounting for these assumptions and bearing in mind relations (2.2.1), (2.2.2) and

(2.2.4) the source of concentration ĉ can be speci�ed as follows

ĉ = �
�Aad
�L

��
(1� �)

cpL

p0
� �

�
1

�ad
� �

�

�
�

�
; (4.1)

where �ad denotes the characteristic time of adsorption, p0 is a reference pressure of

adsorption which is de�ned in (2.2.3) and it was measured by Langmuir (see: [7]),

� is a proportionality factor and �Aad :=
mAfint

V
� const:

Then the balance equations have the following form

@�L

@t
+

@�LvF

@x
= ��Aad

��
cpL

p0
�
�
1 +

cpL

p0

�
�

�
1

�ad
� �

�

�
�

�

@c

@t
+ vF

@c

@x
= � (1� c)

�Aad
�L

��
cpL

p0
�
�
1 +

cpL

p0

�
�

�
1

�ad
� �

�

�
�

�
(4.2)

@pL

@x
+ �vF = 0; nE

@vF

@x
= �

�

�
;

@�

@t
=

�
(1� �)

cpL

p0
� �

�
1

�ad
:
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The relations for the skeleton are not quoted, because they are not necessary to

solve the problem in this form.

The constitutive relation for the pressure in the liquid phase pL is assumed to be

pL = pL
0
+ �

�
�L � �L

0

�
+ �� (4.3)

where pL
0
and �L

0
are initial values of the pressure and of the mass density for the

liquid phase: � denotes the compressibility and � is a material parameter.

5 Initial and boundary conditions

We assume that the inial values of the �uid-/adsorbate velocity and the change of

porosity are equal to zero

vF (x; t = 0) = 0; �(x; t = 0) = 0; (5.1)

and the mass density in the liquid phase, the pressure in the liquid phase and the

concentration have the initial values

�L (x; t = 0) = �L
0
; pL (x; t = 0) = pL

0
� nEpext;

c (x; t = 0) = c0: (5.2)

The boundary conditions are, as usual for porous media, of third type (see: [11]).

They express the fact that the �ow through the boundary of the skeleton depends

on the di�erence of the partial pressure in the liquid and the part of the external

pressure which works on the �uid as well as on the permeability of the surface:

x = 0 : ��LvF = �
�
pL � npl

�
;

x = l : �LvF = �
�
pL � npr

�
: (5.3)

The boundary of the skeleton is identi�ed with the boundary of the whole three-

component body.
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6 Regular perturbation solution and Laplace trans-

form

In order to �nd an approximate solution of the problem we use a regular perturbation

method. Expansions with respect to a small parameter " shall be truncated after

�rst order contributions (linear approximation), vis.

�L = �L
0
+ "�L

1
; vF = "vF

1
; � = "�1;

c = c0 + "c1; � = �L + "�1: (6.1)

Under the assumption that the pressure di�erence between the left and the right

boundary is small, we de�ne the small parameter as follows

" =
pl � pr

pr
: (6.2)

It shall be seen that if the reference pressure in the denominator is the pressure

at the right boundary we deal with an adsorption process and with a desorption

process if it is the left one. However we mainly concentrate on the former case.

The zeroth step of the perturbation is trivial i.e. �L
0
; c0 and �L are constants. With

abbreviations for combinations of constants

�1 := 1 +
c0p

L
0

p0
; �2 := (1� �L)

pL
0

p0
; �3 := (1� �L)

c0�

p0
;

�4 := (1� �L)
c0�

p0
; �5 := �L

�

�
; �6 := �L �

(1� �L) c0p
L
0

p0
; (6.3)

�7 :=
(1� c0)

�L
0

�
�L �

(1� �L) c0p
L
0

p0

�

we obtain for the �rst step the following set of equations:

@�L
1

@t
+ �L

0

@vF
1

@x
= �Aad

��
�1�1 � �2c1 � �3�

L
1
� �4�1

� 1

�ad
+ �5�1

�

�L
0

�Aad

@c1

@t
=
�
��6c1 � �7�

L
1
+ (1� c0)

�
�1�1 � �2c1 � �3�

L
1
� �4�1

�	 1

�ad
+

+ (1� c0) �5�1; (6.4)

�
@�L

1

@x
+ �

@�1

@x
+ �vF

1
= 0; �1 = �nE�

@vF
1

@x
;

@�1

@t
= �

�
�1�1 � �2c1 � �3�

L
1
� �7�1

� 1

�ad
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We solve this linear problem analytically by means of the Laplace transform i.e.

~�L
1
=

1Z
0

�L
1
e�stdt and analogous for ~vF

1
; ~�1; ~c1; ~�1: (6.5)

The transformed quantities are functions of two variables (x; s) : According to the

initial data we have

�L
1
e�st

��1
0

= 0 and analogous for ~vF
1
; ~�1; ~c1; ~�1; (6.6)

provided Sommerfeld conditions for t ! 1 are ful�lled. We eliminate the system

(6.4) in order to obtain a di�erential equation for ~vF
1
. We get

~�1 = �nE�
@~vF

1

@x
; ~c1 = z6

@~vF
1

@x
;

~�1 = z7
@~vF

1

@x
and ~�L

1
= z8

@~vF
1

@x
; (6.7)

where the coe�cients zi depend in a various way on the Laplace variable s :

z1 :=
��L

0
+ �AadnE� (�4 � �5)

s + �3�
A
ad

; z2 :=
�Aad�1

s+ �3�
A
ad

; z3 :=
�Aad�2

s+ �3�
A
ad

;

z4 :=
�3z1 � �4nE�

s+ �1 � �3z2
; z5 :=

�2 � �3z3

s+ �1 � �3z2
; (6.8)

z6 :=
��7(z1 + z2z4) + (1� c0) �1z4 � (1� c0) �3(z1 + z2z4) + (1� c0)nE� (�4 � �5)

�L
0

�A
ad

s + �6 + �7(z2z5 � z3)� (1� c0) �1z5 + (1� c0) �2 + (1� c0) �3(z2z5 � z3)
;

z7 := z4 + z5z6; z8 := z1 + z2z7 � z3z6:

Finally we arrive at

@2~vF
1

@x2
�

�

�nE� � �z8| {z }
a

~vF
1
= 0; a = a(s); (6.9)

from which we get the solution

10



~vF
1

= C1e
p
ax + C2e

�
p
ax;

~�L
1

= z8
p
a
�
C1e

p
ax � C2e

�
p
ax
�
;

~�1 = �nE�
p
a
�
C1e

p
ax � C2e

�
p
ax
�
; (6.10)

~c1 = z6
p
a
�
C1e

p
ax � C2e

�
p
ax
�
;

~�1 = z7
p
a
�
C1e

p
ax � C2e

�
p
ax
�
:

Next we formulate the boundary conditions for the �rst step. To describe an ad-

sorption (not a desorption) process we de�ne the pressure on the left hand side of

the channel pl with a given pressure on the right hand side pr

pl := pr + "pr; " > 0: (6.11)

We insert the constitutive relation (4.3) for pL into the boundary conditions (5.3).

It follows

��L
0
vF
1

= �
�
��L

1
+ ��1 � pr�1 � nEpr

���
x=0

;

�L
0
vF
1

= �
�
��L

1
+ ��1 � pr�1

���
x=l

: (6.12)

After applying the Laplace transform and inserting the solution (6.10) we have

��L
0
(C1 + C2) = z9 (C1 � C2)�

�nEpr

s
;

�L
0

�
C1e

p
al + C2e

�
p
al
�
= z9

�
C1e

p
al � C2e

�
p
al
�
; (6.13)

z9 = � [�z8 � nE� (� � pr)]
p
a:

and �nally for the integration constants

C1 = �
�nEpr

�
z9 + �L

0

�
s
h
(z9 � �L

0
)
2
e2
p
al � (z9 + �L

0
)
2

i ;

C2 = �
�nEpr

�
z9 � �L

0

�
e2
p
al

s
h
(z9 � �L

0
)
2
e2
p
al � (z9 + �L

0
)
2

i : (6.14)

We use a FORTRAN-solver to get numerical solutions for the inverse Laplace trans-

form.
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7 Results and conclusions

In order to illustrate the above presented solution we choose the following values of

parameters

Initial mass density �L
0

2:3 � 102 kg
m3 Equilibrium porosity nE 0:23

Length of the body l 1 m Initial concentration c0 10�3

Langmuir pressure p0 10 kPa Initial pressure pL
0

23 kPa

Pressure on right h. s. pr 100 kPa Proportionality factor � 10

Coupling constant � 1 GPa Compressibility � 2:25 � 106 m2

s2

Permeability of solid � 109
kg
m3s Permeability of surface � 4 � 10�8 s

m
Relaxation time � 10�3 s Charact. time of adsorp. �ad 1 s

Fraction of occupied mass density of adsorbate

sides in equilibrium �L 2:3 � 10�2 on internal surface �Aad 40
kg
m3

For mass density and porosity we have chosen typical values for rocks and soils. The

values of material parameters � and � have been chosen on the basis of estimates of

the attenuation of acoustic waves. The in�uence of permeability is described by two

constants � and �. The �rst one re�ects the resistence of the skeleton to the �ow of

the �uid/adsorbate mixture. The second one describes the surface resistance to the

out�ow of the mixture from the solid. Its appearance is connected with a boundary

layer between the porous body and the external world.

The following results have to be multiplied by "; the normalized di�erence between

the pressures on the left and the right hand side of the body. For �ow processes in

soil we assume that " = 0:1: This means that the pressure di�erence between both

sides is one tenth of an atmosphere.

In the �gures below we present various �elds as functions of place x and time t.

The results are illustrated in a pointwise manner. We have chosen 100 points in the

x-direction and 100 points in the t-direction. For the value of characteristic time of

adsorption �ad of 1 second (see: table) we obtain a total time of app. 10 seconds for

the whole nonstationary adsorption process. However in reality the characteristic

time of adsorption is of order of hours or days. This means that the characteristic

time of adsorption should be chosen much larger than one second.

Figure 7.1 shows the change of the mass density of the liquid phase. Of course, for

every place of the body, it begins with the value zero at t = 0. The mass density

increases in all points of the body. However these increments are rapid and parabolic

at x = 0 (on the back of the diagram) and they are lower and nearly linear at x = l

(on the front side of the diagram): At the left hand side of the body (the highest

point) it reaches a maximum value of about 1.5�10�3 kg
m3 and on the other side it is

about a half of this value. Certainly these results depend on the pressure di�erence

between both sides.
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In Figure 7.2 we show the x-component of the common velocity of the �uid and

of the adsorbate vF . Also for this �eld the value is equal to zero at the beginning

of the process. The values of velocity reach rather fast a steady state, i.e. it is

nearly constant in time and linearly decreasing in place. The maximum value of the

velocity is about 4�10�6 m
s : This value is somewhat smaller than the value which

Vogelsang in [12] obtained in �ow experiments of the groundwater. He measured

how long some substances (e.g. paints or plants) needed to come from one place to

another. In this way he determined a �ow velocity of the ground water of about

10�4 m
s :

Fig. 7.1: Change of mass density of the liquid phase.

Fig. 7.2: Velocity of �uid and adsorbate.

The algebraic form of the porosity balance yields the change of porosity from its

equilibrium value proportional to the velocity gradient. Therefore this change is
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nearly constant after a short time. Whereas the increments according to the result

presented in Fig. 7.2 are very steep on the left side of the body they are almost

neglectigible on the right hand side.

As we can see in Fig. 7.4 the concentration of the adsorbate in the liquid phase

starts with a value of 10�3 and decreases for this adsorption process both in time

and over the length of the body. The maximum change is 4�10�5: If the concentration
decreases, of course, the fraction of occupied sides on the surface of the solid increases

as we show in Fig. 7.5. The largest deviation from the Langmuir value �L = 2:3�10�2

is app. 2 � 10�4:

Fig. 7.3: Change of porosity.

Fig. 7.4: Change of concentration.
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Fig. 7.5: Change of fraction of occupied sides.

The above presented results do not show clearly contributions to the rate of adsorp-

tion separated between two physical mechanisms: evolution of the number of bare

sides d�

dt
, and the change of the internal surface dfint

dt
. What we could not observe at

all is the in�uence of the explicit changes of porosity dn

dt
because these are driven by

a very short relaxation time � of porosity. Consequently the change of the internal

surface is solely related to the divergence of relative velocity � in our example, to
@vF

@x
. Under constant pressure di�erence this quantity is always di�erent from zero (a

constant in our example after some 10 s.). Hence the rate of adsorption cannot go to

zero as it would be the case with the Langmuir mechanism for steady-state processes

(� would reach a local equilibrium value �L corresponding to pA(x; t =1)).
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