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Abstract

We investigate a general control problem for a class of nonlinear parabolic evolu-

tion equations. Applications are related to solid�solid and solid�liquid phase tran-

sitions.

We prove compactness of the solution operator, existence of optimal controls

and show convergence of the �nite�dimensional approximate control problem to the

original one.

1 Introduction

We consider the following distributed optimal control problem:

(P ) Minimize J(u) =

TZ
0

�
 1(u) +  2(y)

�
dt+  3[y](T );

subject to the state equation

�(y) 0 +Ay + F [y] = �(y)Bu; in (0; T ) (1.1a)

y(0) = y0; (1.1b)

and the control constraint

u 2 Uad: (1.2)

Here, U andH are real Hilbert spaces, V is a real re�exive Banach space densely embedded

in H and we assume that V � H � V �, where the inclusion from V into H is compact

and H is identi�ed with its dual space. We shall denote by (:; :) the inner product in H

and also the duality pairing between V � and V . The norms will be denoted by k:k with

adequate subscripts. Uad is a closed, convex and bounded subset of U = L2(0; T ;U).

A : V �! V � is a monotone, hemicontinous, coercive and bounded operator. Moreover,

we assume A = @� is the subdi�erential of the l.s.c. proper convex function � : V �!

(�1;+1]. The realization of A in H, de�ned by A
H
y = Ay \H will also be denoted by

A. Then A
H
is maximal monotone in H. We also assume that y0 2 D(�) \ V .

F : L2(0; T ;H) �! L2(0; T ;H) is a Lipschitz continuous, causal operator, B : U �!

H is linear and continuous. For � and � we assume � 2 C0;1(IR) and bounded, and

� 2 C1(IR) satis�es for all x 2 IR

�0(x) � �0 > 0; j�(x)j � c1jxj+ c2:
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Finally, we assume that  1 : U �! IR+ and  2 : H �! IR+ are continuous, convex map-

pings and  3 : L2(0; T ;H) �! C(0; T ;H) is a continuous and bounded causal operator.

Moreover,  1 shall be bounded from below by a quadratic, i.e.

 1(u) � ckuk2U ; with a constantc > 0: (1.3)

Remark 1.1

(1)  3 describes a nonlinear, causal observation operator related to the application dis-

cussed in the next section.

(2) The boundedness assumption for Uad is also motivated from this application. How-

ever, one can do without this assumption by using (1.3) and assuming that  3[y](T )

is uniformly bounded by a constant independent of y, which indeed is the case in the

application.

Convergence results for discretized parabolic control problems have been considered e.g.

in [12], [13].

Optimality systems for problems related to (P) have been investigated in [3] and [7].

The aim of the present paper is to investigate convergence properties of the discretized

version of our optimization problem (P).

In the next section, we discuss applications of the abstract control problem, with special

emphasis on solid�solid phase transitions. In Section 3 we demonstrate the compactness

of the solution operator � : Uad �! L2(0; T ;H) to (1.1a,b) and prove that (P) admits

a solution u� 2 Uad. Section 4 is devoted to the investigation of the discretized control

problem.

Numerical simulations for the applied control problem presented in Section 2 will be

discussed in detail in a forthcoming paper [2].

2 An example: surface hardening of steel

In [3], [5], [7], a model for the surface hardening of steel has been investigated. It consists

of a system of ODEs to describe the volume fractions of the occuring solid phases in steel

coupled with the following nonlinear heat transfer equation:

�cp(�)�t � div (k(�) grad �) = ��L1(�)F1(�; a)

+�L2(�)F2(�; a;m) + �(�)u; in Q; (2.1a)

k(�)
@�

@�
+ 
� = 0; in �; (2.1b)

�(0) = �0; in 
; (2.1c)
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where 
 � IR3 with smooth boundary, Q = 
 � (0; T ) and � = @
 � (0; T ). Here,

� is a positive constant, and cp; k; L1; L2; �; 
 are assumed to be positive, bounded and

Lipschitz continuous data functions. In addition, cp shall be bounded from below by

a positive constant. The �rst two terms on the right-hand side of (2.1a) describe the

recalescence e�ects caused by the phase transitions, the last one models a volumetric heat

source, e.g. heating by a laser beam (cf. Mazhukin and Samarskii, [8]).

Now, we introduce the Kirchho� transform

y =

Z �

�0

k(x)dx =: K[�]: (2.2)

Note that K and K�1 are strictly increasing functions. For any data function f , we de�ne

~f(y) =
�
f �K�1

�
(y):

Then (2.1 a-c) is replaced by

�
~cp(y)

~k(y)
yt ��y = ��~L1(y)F1(K

�1(y); ~a)

+�~L2(y)F2(K
�1(y); ~a; ~m) + ~�(y)u; in Q; (2.3a)

@y

@�
+ 
K�1(y) = 0; in �; (2.3b)

y(0) = 0; in 
: (2.3c)

We de�ne V = H1(
);H = L2(
) = U , and

F [y] = ��~L1(y)F1(K
�1(y); ~a) + �~L2(y)F2(K

�1(y); ~a; ~m): (2.4)

From Lemma 2.1 below we can infer that F : L2(0; T ;H) ! L2(0; T ;H) is Lipschitz

continuous and bounded. For � we take the primitive of �~cp(y)=~k(y), i.e.

�(y) = �

yZ
0

cp(K
�1(x))

k(K�1(x))
dx: (2.5)

Testing (2.3a) with v 2 V and using Green's formula, we obtain �nally the system (1.1a,b),

where A : V ! V � is de�ned by

< Ay; v >=

Z



ry � rv dx+ 


Z
@


K�1[y] v dx
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It is easy to check that A is monotone and continuous. Moreover, A is the subdi�erential

(Gâteaux derivate) of the l.s.c. proper convex function

�(y) =
1

2

Z



jryj2 dx+ 


Z
@


j(y) dx;

where j is the primitive of the monotone function K�1 (cf. Brezis [4]).

Remark 2.1

(1) Adding a functional F (v) =
R
@


g v dx to the right-hand side of (1.1a), one could also

allow for an inhomogenity in the boundary condition (2.3b).

(2) The choice of � can also interpreted as a regularization of the classical enthalpy

formulation of the Stefan-Problem. Using the same approximation procedure as in

Shi et al. [11], we could extend our results to the Stefan Problem.

In the simplest case, the phase transitions can be described by a system of two ODEs:

at = F1(�; a); in Q; (2.6a)

mt = F2(�; a;m); in Q; (2.6b)

a(�; 0) = m(�; 0) = 0; in 
; (2.6c)

where

F1(�; a) =
1

�1(�)

�
��(�)� a

�
H(��(�) � a);

F2(�; a;m) =
1

�2(�)

�
a � �m(�)�m

�
H(a � �m(�)�m)H(Ms � �):

Here, a and m are the volume fractions of the occuring phases, �1; �2; �� and �m are positive,

Lipschitz continuous data functions, H is a regularization of the Heaviside graph, and Ms

is a threshold temperature.

In view of these assumptions, it is an easy application of Gronwall's lemma to prove (cf.

[7], Lemma 3.1)

Lemma 2.1

(1) For � 2 L2(Q); (2.6 a-c) has an unique solution (a;m) 2
h
W 1;1

�
0; T ; L1(
)

�i2
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(2) Let �1; �2 2 L2(Q) and (ai;mi) be the corresponding solution to (2.6a-c), then there

exists a constant L > 0 such that

ka1 � a2k
2
H1(0;T ;L2(
)) + km1 �m2k

2
H1(0;T ;L2(
)) � Lk�1 � �2k

2
L2(Q):

As an easy corollary we can infer the Lipschitz continuity and boundedness of the operator

F de�ned in (2.4).

To demonstrate the utilization of this model, we present some numerical simulations for

laser surface hardening. In addition to the two phases austenite and martensite described

in (2.6a-c), another phase called bainite has been included in these simulations. For

details concerning the algorithm and the physical data as well as for further results we

refer to [5].

Let the part of the workpiece surface to be hardened lie in the plane z = 0. Then the

laser radiation penetrates into the workpiece according to the radiation transfer equation

(cf. [8])

G = �1Gfe
�2z; z � 0:

Here, G is the radiation intensity of the laser beam, Gf the radiation intensity in the

focal plane, �2 the absorption coe�cient and �1 the absorptivity of the surface, depending

on the angle of incidence, the surface constitution (smoothness, cleanliness) and on the

temperature.
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Figure 1: Time evolution of temperature, austenite, bainite and martensite fraction for

x = (0:0; 5:0;�0:01) 2 
.
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Figure 2: Temperature distribution inside 
 (above) and the resulting hardening pro�le

(below).

In applications, the laser beam moves along the workpiece surface according to a curve

t �! r(t) 2 IR2; t 2 [0; T ], hence we have

Gf (x; y; t) = G0e
�

(x�r1(t))
2+(y�r2(t))

2

2R2 ;

where R is the radius of the focusing spot and G0 its intensity in the spot center. The

heat source then takes the form

�(�)u = �1G:

We simulate the hardening along a strip around the y�axis on the upper face (z = 0) of

the cube �
 = [�2:5; 2:5]� [0; 10:0]� [�1:0; 0].

Figure 1 shows the time evolution at the point x = (0:0; 5:0;�0:01) 2 
. Owing to the

oscillations of the laser beam, the point is heated by steps. Austenite is formed, and

during cooling this austenite is transformed to martensite and a fairly small amount of

bainite. In the course of martensite growth, the cooling process is slowed down by the

release of latent heat. Finally, Fig. 2 depicts the temperature distribution inside the

workpiece during the heating process and the resulting hardening pro�le.
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Now we pass to the optimal control problem. The idea of surface hardening is to increase

the volume fraction of martensite (m). To this end we introduce Uad, a closed convex

subset of L2(0; T ;U) and the cost functional

J(u) =
�1

2

Z
Q

u2 dxdt+
�2

2

Z
Q

(�m � �)2H(�m � �) dxdt+
�3

2

Z



(m(x; T )�mf)
2 dx

(2.7)

where �1; �2; �3 > 0 are given weights and mf is a given smooth function (the desired

volume fraction of martensite). The second term in (2.7) penalizes temperatures below

melting temperature �m, since this would destroy the quality of the workpiece surface.

Owing to Lemma 2.1, this choice for the cost functional �ts in the framework of Section

1.

3 Existence of optimal controls

We are concerned �rst with the state system (1.1). Let us recall it as

�0 (y(t)) y0(t) +Ay(t) + F [y](t) = �(y(t))Bu(t) a.e. t 2 (0; T ); (3.1a)

y(0) = y0: (3.1b)

We introduce the solution operator � : L2(0; T ;U) ! L2(0; T ;H) de�ned by �u = y

where u is the control in the right-hand side of Eqn. (3.1) and y the corresponding

solution.

Lemma 3.1

The operator � de�ned above is compact from L2(0; T ;U) to L2(0; T ;H) in the sense that

for any sequence

un ! u weakly in L2(0; T ;U)

the corresponding sequence yn = �un satis�es

yn ! y strongly in C(0; T ;H) and

weakly star in L1(0; T; V );

where y = �u:

7



Proof.

Let fung � L2(0; T ;U) such that

un ! u weakly in L2(0; T ;U);

and fyng � L2(0; T ;H) de�ned by yn = �un. We write the corresponding Eqn. (3.1), we

multiply it by y
0

n(t) and we integrate from 0 to t to obtain

tZ
0

�0(y(s)) ky0n(s)k
2
Hds + �(yn(t))� �(y0) + (3.2)

tZ
0

�
y0n(s); F [yn](s)

�
ds =

tZ
0

�
y0n(s); �(yn(s) )Bun(s)

�
ds;

and therefore

�0

tZ
0

ky0n(s)k
2
H ds+ �(yn(t)) �M1 +M2

tZ
0

ky0n(s)kH � kun (s)kUds +

+

tZ
0

�
M3 +M4kyn(s)kH

�
ky0n(s)kH ds:

We shall denote byMi several positive constants independent of indices like n; h, etc. Let

� > 0 be an arbitrary constant, then we get from Young's inequality and the inequality

above

�0

tZ
0

ky0n(s)k
2
H ds+ �(yn(t)) � M1 +M2

�
�

tZ
0

ky0n(s)k
2
H ds+

��1
tZ

0

kun(s)k
2
U ds

�
+ �

tZ
0

ky0n(s)k
2
H ds+

��1
TZ

0

�
2M2

3 + 2M2
4kyn(s)k

2
H

�
ds;

which yields

h
�0 � (M2 + 1)�

i tZ
0

ky0n(s)k
2
H ds �M5;� +M6;�

tZ
0

kun(s)k
2
U ds+M7;�

tZ
0

kyn(s)k
2
H ds:

We now choose � > 0 such that �0 > (M2+1)� and apply Gronwall's lemma to infer that

fy0ng is bounded in L2(0; T ;H) and fyng is equally uniformly continuous in C(0; T ;H):
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Moreover, the above estimate yields

�(yn(t)) �M8:

Hence f�(yn(t))g is uniformly bounded and since the coerciveness of the operator A implies

the one of �, we infer that fyng is uniformly bounded in L1(0; T ;V ). By Corollary 4 in

[10], we have, extracting a subsequence

yn �! y

(
strongly in C(0; T ;H) and

weakly star in L1(0; T ;V ):
(3.3)

Using Lebesgue's convergence theorem we obtain

F (yn) ! F (y) strongly in L2(0; T ;H) ;

�(yn) ! �(y) strongly in L2(0; T ;H):

Now from (3.1) it follows that

Ayn = @�(yn)! w weakly in L2(0; T ;H):

Since the operator @� from L2(0; T ;H) into itself is strongly-weakly closed, using (3.3)

we may conclude that w = @�(y).

Finally, we also have, extracting a subsequence

Bun ! Bu weakly in L2(0; T ;H);

and hence y = �u.

The convergence holds for the whole sequence fung, since the solution to (1.1) is uniquely

de�ned. �

We can now give

Theorem 3.2 Under the above assumptions, Problem (P ) has at least one optimal pair

h
u�; y�

i
2 L2(0; T ;U)� L2(0; T ;H):

Proof.

Problem (P ) may be written as inf
n
J(u) ;u 2 Uad

o
:

Let us denote by l the in�mum above and let fung � Uad be a minimizing sequence, that

is

J(un)! l in IR: (3.4)
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Since the set Uad is bounded (cf. Remark 1.1), it follows that fung is bounded and,

extracting a subsequence, we have

un ! u� weakly in U = L2(0; T ;U):

The set Uad is convex and closed and therefore it is weakly closed. Hence u� 2 Uad.

Since  1 is a convex integrand it follows that it is weakly l.s.c. Using Lemma 3.1 and the

properties of  2 and  3 we get that J is also weakly l.s.c. and from (3.4) we obtain that

J(u�) � l; which means that u� is a solution of Problem (P ). �

4 Finite Element approximation

Let h > 0 be the discretization parameter destined to converge to 0. For any h > 0 we

introduce the �nite dimensional linear subspace Vh � V and the linear and continuous

operator rh : H ! Vh (some interpolation or projection operator), the �nite dimen-

sional linear subspace Uh � U and the corresponding linear and continuous operator

sh : U ! Uh. We make the following assumption:

(H1)

(i) There exist constants c1; c2 > 0 independent of h such that

krhkL(H;V ) � c1 for any h > 0;

kshkL(U;U) � c2 for any h > 0:

(ii) rhv ! v strongly in H, for any v 2 H;

shu! u strongly in U , for any u 2 U:

The approximation of (3.1) is

�0h(yh(t))y
0

h(t) +Ahyh(t) + Fh[yh](t) = �h(yh(t))Bhuh(t) a.e. t 2 (0; T ); (4.1a)

yh(0) = rhy0: (4.1b)

The operator Ah : Vh ! Vh is de�ned by (Ahyh; vh) = (Ayh; vh) for any yh; vh 2 Vh.

The operator Fh : L
2(0; T ;Vh)! L2(0; T ;H) is de�ned as the restriction of F to L2(0; T ;Vh),

�h is just � restricted to Vh. The same is valid for �h and �0h.

The operator Bh : Uh ! H is the restriction of B to Uh, i.e.

(Bhuh; v) = (Buh; v) for any uh 2 Uh and any v 2 H:

10



Remark 4.1 In the applications discussed in Section 2, we have H = U = L2(
). In the

FE approximation we can then even take Vh = Uh � L2(
) and rh = sh. In such a case

Bh = B is of course the identity operator and B(Vh) = Vh.

Now, (4.1) takes the form

�0(yh(t))y
0

h(t) +Ayh(t) + F [yh](t) = �(yh(t))Buh(t) a.e. t 2 (0; T ); (4.2a)

yh(0) = rhy0: (4.2b)

For any h > 0 �xed, we introduce the operator �h : L2(0; T ;Uh) ! L2(0; T ;Vh) de�ned

by �huh = yh, where uh is the control in the right-hand side of (4.2) and yh is the

corresponding solution.

The equivalent of Lemma 3.1 is given by

Lemma 4.1

The operator �h de�ned above is compact from L2(0; T ;Uh) to L
2(0; T ;Vh).

Now, we pass to the approximate optimal control problem, which is

(Ph) Minimize Jh(uh)

over the set of all functions uh 2 Uh = L2(0; T ;Uh) subject to the state equation (4.2)

and to the control constraint

uh 2 U
h
ad: (4.3)

The cost functional Jh is de�ned by

Jh(uh) =

TZ
0

�
 1(uh) +  2(yh)

�
dt+  3[yh](T );

where yh = �huh is the corresponding solution to (4.2).

Here Uh
ad � Uh should be an adequate approximation of Uad. To this end, let us recall the

concept of convergence in the sense of Mosco ([9], p. 595, see also [6], p. 41).

De�nition 4.1

We say that lim
h!0

Uh
ad = Uad (in the sense of Mosco), if and only if the following conditions

are satis�ed :

(i) For any u 2 Uad there exists a sequence fuhg such that uh 2 Uh
ad for any h > 0 and

uh ! u strongly in U .

(ii) If fuhg is a sequence such that uh ! u weakly in U and uh 2 U
h
ad for any h > 0, then

u 2 Uad.

11



One obvious way to de�ne Uh
ad is to take

Uh
ad = sh Uad (4.4)

It is easy to see that in such a case Uh
ad is a closed, convex and bounded set. We make

the following hypothesis to be satis�ed by the FE approximation:

(H2) Uh
ad � Uad for any h > 0:

Lemma 4.2

If the hypotheses (H1) and (H2) are valid, together with (4.4), then lim
h!0

Uh
ad = Uad in the

sense of De�nition 4.1.

Proof.

(i) For any u 2 Uad, we consider the sequence fuhg; where uh = sh u: According to (4.4)

uh 2 U
h
ad for any h and (H1)(ii) ensures that uh ! u strongly in U .

(ii) Let fuhg be a sequence such that uh 2 U
h
ad for every h and uh ! u weakly in U . Since,

by (H2), Uh
ad � Uad for any h, it follows that fuhg � Uad. But Uad is a closed convex

subset of U and therefore Uad is weakly closed in U and we infer that u 2 Uad. �

In view of the FE convergence established in Theorem 4.2 below, we make also the fol-

lowing hypothesis (see also (3.4)):

(H3)  1(shu) �!  1(u) in L1(0; T ), for any u 2 L2(0; T ;U):

Coming back to Problem (Ph), we have as in the case of Problem (P ) the existence result

Theorem 4.1 Problem (Ph) has at least one optimal pair [u�h; y
�

h] 2 L
2(0; T ;Uh)�L

2(0; T ;Vh).

We pass now to the convergence result for a sequence of solutions to Problems (Ph).

Theorem 4.2 For any h > 0 let [u�h; y
�

h] be an optimal pair for Problem (Ph). Under the

above assumptions, for h! 0, we have

u�h ! u weakly in L2(0; T ;U);

y�h ! y strongly in C(0; T ;H);

where [u; y] is an optimal pair for Problem (P).

Proof.

The proof will be done in 3 steps:

12



Step 1 � The sequences fu�hg and fy
�

hg are convergent to u and y respectively.

Step 2 � [u; y] is an admissible pair for Probelm (P).

Step 3 � [u; y] is an optimal pair for Problem (P).

We begin with

Step 1. Let u�h be an optimal control for (Ph). Since u�h 2 Uh
ad for any h > 0, using

also the hypothesis (H2), we �nd that fu�hg � Uad which is a bounded set in L2(0; T ;U).

Hence fu�hg is bounded in L2(0; T ;U) (cf. Remark 1.1) and, extracting a subsequence, we

have

u�h ! u weakly in L2(0; T ;U): (4.5)

Moreover Uad is a convex closed set and therefore it is weakly closed. Hence u 2 Uad, that

is u satis�es the control contraint (1.2) of Problem (P).

We multiply now Eqn. (4.2) by y�h
0; we integrate from 0 to t 2 (0; T ] and we obtain (we

omit the optimality upper index �)

tZ
0

�0(yh(s))ky
0

h(s)k
2
Hds+ �(yh(t))� �(rhy0)

=

tZ
0

(�(yh(s))Buh(s); y
0

h(s))ds�

tZ
0

(F [yh](s); y
0

h(s))ds;

and therefore

�0

tZ
0

ky0h(s)k
2
H + �(yh(t))

� M1 +M2

tZ
0

ky0h(s)kH � kuh(s)kU +

tZ
0

�
M3 +M4kyh(s)kH

�
� ky0h(s)kHds

� M1 +M2

�
�

tZ
0

ky0h(s)k
2
Hds+ ��1

tZ
0

kuh(s)k
2
Uds

�

+�

tZ
0

ky0h(s)k
2
hds+ ��1

tZ
0

(2M2
3 + 2M2

4 kyh(s)k
2
Hds): (4.6)

Finally this leads to

[�0 � (M2 + 1)�]

tZ
0

ky0h(s)k
2
Hds �M5;� +M6;�

tZ
0

kuh(s)k
2
Uds+M7;�

tZ
0

kyh(s)k
2
Hds:

13



If we choose � > 0 such that �0 > (M2 + 1)� and if we take also into account the

boundedness of fu�hg in L2(0; T ;U), applying Gronwall's lemma we get that f(y�h)
0g is

bounded in L2(0; T ;H):

Inequality (4.6) also implies

�(y�h(t)) �M8 for any t 2 [0; T ]:

Since � is coercive we infer that fy�hg is bounded in L
1(0; F ;V ). Applying again Corollary

4 of [10], we obtain

y�h ! y strongly in C(0; T ;H) and weakly star in L1(0; T ;V ); (4.7)

which �nishes the proof of Step 1.

Step 2. Using (4.7) and the properties of � we get readily

�(y�h)! �(y) in L2(0; T ;H): (4.8)

Since fu�hg is bounded in L2(0; T ;U) it follows that fBu�hg is bounded in L2(0; T ;H) and

using also (4.5) we get that

Bu�h ! Bu weakly in L2(0; T ;H): (4.9)

Owing to the Lipschitz continuity of F , we have in the norm of L2(0; T ;H)

kF [y�h]� F [y]k �M9ky
�

h � yk: (4.10)

In view of (4.7) we conclude that

F (y�h)! F (y) strongly in L2(0; T ;H): (4.11)

By comparison in (4.2) we see that fAy�hg is bounded in L2(0; T ;H). Hence

Ay�h ! � weakly in L2(0; T ;H): (4.12)

By the monotonicity of A we have

TZ
0

(Ay�h(t)�Av; y�h(t)� v)dt � 0 for any v 2 V:

Passing to the limit in the above inequality with h! 0, using (4.7) and (4.12), we get

TZ
0

(�(t)�Av; y(t)� v)dt � 0 for any v 2 V:
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Since A is maximal monotone it follows that �(t) = Ay(t) a.e. t 2 (0; T ) and therefore

Ay�h ! Ay weakly in L2(0; T ;H): (4.13)

From the convergence properties already established ((4.8), (4.9), (4.11), (4.13)), it follows

that y = �u.

Since we have also demonstrated (see Step 1) that u 2 Uad, it is clear that [u; y] is an

admissible pair for Problem (P).

Step 3. Let u� be an optimal control for Problem (P). We consider equation (4.2) in

which the control is taken to be shu
�, i.e.

�0(yh(t))y
0

h(t) +Ayh(t) + F [yh](t) = �(yh(t))B(shu
�(t)) a.e. t 2 (0; T ); (4.14a)

yh(0) = rhy0: (4.14b)

According to (H1) we have

shu
�(t)! u�(t) strongly in U for any t 2 [0; T ]; (4.15)

and by Lebesgue's convergence theorem it follows that

shu
�
! u� strongly in L2(0; T ;U):

On the other hand we have in the L2(0; T ;U) norm

kshu
�k � kshu

� � u�k+ ku�k

and hence, for h su�ciently small, the following estimate is valid

kshu
�kL2(0;T ;U) �M9:

Since B 2 L(U;H), this yields

kBshu
�kL2(0;T ;H) �M10:

From (4.15) we also get

Bshu
�(t)! Bu�(t) strongly in H for any t 2 [0; T ];

and using again Lebesgue's theorem we have

Bshu
�
! Bu� strongly in L2(0; T ;H):
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Arguing as in the previous steps, we �nd that the sequence fyhg, where for every h �xed

yh is the solution of Eqn. (4.14a,b), satis�es

y0h ! y0 weakly in L2(0; T ;H);

yh ! y strongly in C(0; T ;H) and weakly star in L1(0; T ;V );

yh(t) ! y(t) strongly in H; a.e. t 2 (0; T );

Ayh ! Ay weakly in L2(0; T ;H);

F [yh] ! F [y] strongly in L2(0; T ;H);

�(yh) ! �(y) strongly in L2(0; T ;H):

Passing to the limit in (4.14) with h! 0 yields y = y�, where y� is the solution of Eqn.

(3.1) corresponding to u�, i.e. y� = �u�. Therefore

yh(t)! y�(t) strongly in H; a.e. t 2 (0; T )

and

yh ! y� strongly in C(0; T ;H) and weakly star in L1(0; T ;V ): (4.16)

Let [u�h; y
�

h] be an optimal pair for Problem (Ph). Then

J(u�h) � J(uh) for any uh 2 L
2(0; T ;Uh):

We take uh := shu
� and we get

J(u�h) � J(shu
�);

where the corresponding solutions to the state equation (4.2) are yh = �h(shu
�) and

y�h = �hu
�

h.

From Step 1 we have the converge properties (4.5) and (4.7). Using also (4.16) and (H3)

we pass to the limit in (4.18) with h! 0 and we obtain

J(u) � J(u�):

Since, by Step 2, [u; y] is an admissible pair for Problem (P), it follows now that it is also

an optimal pair, thereby completing the proof of the theorem. �
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