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ABSTRACT. We show the convergence· of a certain family of Markov chains, defined 
on the state space of a N -particle system (as the Bird's method), to the solutions 
of the (regularized) Boltzmann equation. 

1. INTRODUCTION 

1 

Particle methods are widely used to simulate the Boltzmann dynamics of a rarefied 
gas (cf. [9], [5], [1], [10]). Among them, Bird's method [2], and many of its variants, 
is based on the implementation of a Markov chain, defined on the state space of a 
particle system. The convergence of such a scheme was proved by one of the authors 
of the present paper by using martingale techniques [11]. However this approach, 
based on compactness arguments, is not constructive and cannot provide an explicit 
rate of convergence. 

In this paper we prove the convergence of a class of Markov chains, with state space 
given by a particle system, in the limit as the number of particles tends to infinity, 
by an explicit control of the marginal distributions of the process. This method is 
inspired by previous results (see in [6], [7] the analysis of the Kac model, and also 
[3], [8]), where problems of propagation of chaos were approached. 
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2. PRELIMINARY CONSIDERATIONS 

We consider the Boltzmann equation in JR.d (cf. [4]) 
a 
at J ( t, x, v) + ( v, v x) J ( t, x, v) = Q ( f) ( x, v) , (2.1) 

where f(t, x, v), x E JR.d, v E JR.d is the distribution function which will be normalized 
to one: 

j dx j dv f(t,x,v) = 1. (2.2) 

We could also consider bounded domains with reasonable boundary conditions with 
minor modifications in what follows. 

The collision operator is given by 

Q(f)(x,v) = f dw f deq(v,w,e)x 11.a. lsd-1 
x [i(t,x,v*)f(t,x,w*)- f(t,x,v)f(t,x,w)], (2.3) 

where 

v*=v+e(e,w-v), w*=w+e(e,v-w) (2.4) 
are the postcollisional velocities, and q(v,w, e) is the collision kernel which, for hard 
spheres, takes the form 

(e,w -v) x((e,w -v) 2:: 0)' (2.5) 
where x(A) is the indicator of the set A and (., .) denotes the scalar product. 

Together with Eq. (2.1) we consider also a regularized version of it: 
a 
atf(t, x, v) + (v, \! x)f(t, x, v) = Qo(f)(x, v). (2.6) 

To define Q6 we partition JR.d into a union of identical, disjoint square cells of side 8. 
The generic cell will be denoted by /j.. Consider the function 

1 
ho(x,y) = L x(x E !j.) x(y E !j.) Sd. (2.7) 

!:!.. 

Then J h0(x,y)dx = J h6(x,y)dy = 1. Finally, setting 
1 

q5(v, w, e) = x(I v - w I< 6) q(v, w, e) 

we define 

Q6(f)(x,v)= f dy f dw f deh0(x,y)q0(v,w,e)x 11.a. 11.a. lsa.-1 

(2.8) 

x [f(t,x,v*)f(t,y,w*)- f(t,x,v)f(t,y,w)]. (2.9) 
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Eq. (2.9) is much better, from a mathematical point of view, than Eq. (2.1). Indeed 
it is easy to prove the following Lipschitz condition in L 1 ( dx, dv ): 

II Qs(f) - Qs(g) 111::; Cs II f + g 111 II f - g 111' (2.10) 
which allows us to formulate an L1-theory for the initial value problem associated 
with Eq. (2.6). 

On the other hand it is rather straightforward to prove that "if one assumes" the 
existence of a sufficiently smooth solution of Eq. (2.1), this can be approximated, in 
the limit 5 ~ 0, by solutions f 8 of Eq. (2.6) with the same initial datum. Therefore, 
for our approximation problem we shall consider solutions to Eq. (2.6). 

3. THE BASIC MARKOV CHAIN 

We first introduce the following quantities: 

a(z,i,j,e) = hs(Xi,Xj)qs(vi,Vj,e), 

a(e) = supa(z,i,j,e)' 
z,i,j 

a= f de a(e). lsd-1 

(3.1) 

(3.2) 

(3.3) 

We consider a time discretization ( Tn), n = 0, 1, ... ,where To= G, Tn = Tn-1 +LJ.r, and 
2 

LJ.r = a (N - 1) · (3.4) 

The simulation of our random particle system 

z(t) = {(xi(t),vi(t))}:
1

, (xi(t),vi(t)) E Rd x Rd, 

in the time interval [rn-1' Tn) is splitted into free flow simulation and collision simu-
lation. The system resulting from the free flow simulation is the starting point for 
the collision simulation. We define the collision simulation according to the following 
rules: 

i) the indices i and j of the colliding particles are generated according to the 
uniform distribution among all indices; 

ii) an element e E §d-l is generated according to the probability density a-1 a(e); 
iii) a random number T/ is sampled in [O, 1] with the uniform distribution; 
iv) if 

a(z,i,j,e) 
T/ < a( e) (3.5) 
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the new state is obtained from the old one by replacing Vi and Vj by 

vf =Vi+ e(e,vj -vi), vj = Vj + e(e,vi - Vj). 
If (3.5) is not fulfilled, then the system does not change and the collision is called 
fictitious. 

Notice that, if Xi and Xj are not in the same cell the collision is always fictitious. 
Let us now consider the time evolution of the probability density µ = µ( Tn, z) 

defined on the state space of our particle system, which is symmetric in the exchange 
of any pair of particles. It is easy to realize that 

(3.6) 
where 

(S µ)(Xi, Vi, ... , XN, VN) = µ( X1 -V1 D,.r, V1, .•. , XN-VN D,.r, VN) (3. 7) 
is the free-stream operator and 

(Tµ)(z)=Nl" 2::: fd_ 1de f
1

d,,,a(e)µ(z+'tf;(z,i,j,e,T/)), (3.8) 
LJ.T I<i< "<N ls lo - J_ 

where 

"'·( .. ) {((z,i,j,e) 
'f' z,i,J,e,T/ = 

0 

"f < &(z,i,j,e) 
' 

1 'Tl a(e) ' 
, otherwise . 

and 

r ( . . ) { ( 0, 0) , if m # i, j , 
I:, z, i, J, e m = * ) . . . . (0, Vm - Vm , 1f m = i, J . 

In what follows it will be convenient to write Eq. (3.6) in the form 

µ(rn) = S µ(Tn-1) + D,.rANS µ(Tn-1) 
where 

(3.9) 

(3.10) 

(3.11) 

(ANµ)(z)= Nl 2::: fd_1de f
1

dTJii(e){µ(z+'l/;(z,·i,j,e,'T/))-µ(z)}. (3.12) 
l~i<j~N ls lo . 

The advantage of the formulation (3.11) is to make more transparent the meaning of 
our Markov chain. Indeed we have 

. 1 N .. 
(AN µ)(z) = N ,~ fs._, de h5(x;, x;) q5( v;, v;, e){µ(z + ((z, i, J, e)) - µ(z)}. (3.13) 

i<i 

Notice that AN is the generator of a (continuous in time) Markov process for which 
the particles are moving freely and collide (whenever they are in the same cell, with 
random impact parameter e) with an intensity depending on the state of the system. 
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The introduction of the formulation (3.12) (and hence the concept of fictitious col-
lisions) allows us to consider the same process with a constant intensity given by 
N~l a= (.6.T)-1. Therefore Eq. (3.11) can .be interpreted as the time discretization 
of this process (with fictitious collisions) in which the exponential waiting time is 
replaced by its expectation. 

Now define the marginal distributions of the densityµ: 

J:' = J µdzs+l ... dzN, s = 1, ... , N. (3.14) 

Starting from Eq. (3.11), one can show that J;-1 satisfies the following hierarchy of 
equations 

N N s N N-s N fs (Tn) = S fs (Tn-1) +~TN As S fs (Tn-1) + .6.T ~CtJ,s+l S fs+l(Tn_i), (3.15) 

where 

C5 5+i S f:'+1 ( Tn_i) = t { { fl a( e) (3.16) 
' i=l 11.dxrll.d lsd-1 lo . 

{ S f :'+ 1 ( T n-1 , z + 'lj; ( z, i, s + 1, e, ry)) - S f :'+ 1 ( T n-1 , Z)} dry de dz s+ 1 . 

The hierarchy is derived from the evolution equation for densities (3.11) by integrating 
with respect to the last (N - s) variables Zs+i ... ZN: 

(3.17) 

(Here we used the identity JSµ dzs+l ... dzN == S J µ dzs+1 ... dzN ). The last term of 
(3.17) can be considerably simplified and expressed in terms of J;-1 by making the 
following distinctions among the terms of the sum (3.12): 

i) case i > s: these terms do not contribute to the integral; 
ii) case i ~ s and j ~ s: these terms form the s-particle operator As; 
iii) case i ~ s and j > s: these terms form the following sum 

~ L r r1a(e)[Sµ(z+'lf;(z,i,j,e,ry))-Sµ(z)]dryde. 
N . lsd-1 lo i=l, ... ,a 

j=a+1, ... ,N 

Because of the symmetry of µ, each term in the sum over j makes the same contribu-
tion. Hence we have ( N - s) terms equal to the term with j = s + 1. By integrating 
we find 

J N - s !J ls la1 . --E a(e){S µ(z + 'lf;(z, i, s + 1, e, ry)) - S µ(z)} dry dedz!J+i ... dzN 
N . Sd-1 o i=l 
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4. CONVERGENCE 

Let us come back now to the regularized Boltzmann equation (2.6). We formulate 
the following time discretization: 

gN ( Tn) == S gN ( Tn-1) + /j.7 Qo(S gN ( Tn-1)). 
Notice that gN ( Tn) is positive, if gN (To) == g0 ~ 0. Indeed, 

gN ( T n) ~ S gN ( T n-l) - /:). T Cl. S gN ( T n-l) , 

( 4.1) 

( 4.2) 

and since /:). T a < 1 if N ~ 4 , under such hypothesis we prove the non-neg a ti vi ty by 
induction. 

We want to compare l:V introduced in the previous section with the products 
s 

g;'(Tn,Zs) == ITgN(Tn,Xi,vi), Zs== (x1,V1, ... Xs,vs)· ( 4.3) 
i=l 

To this end we derive a recursive formula from (4.1) and (4.3): 
s 

g;'(Tn, Zs)== Il[S gN(Tn-1)(xi,vi) + /j.7 Qo(S gN(Tn-1))(xi,vi)] == 
i=l 

s 

S g;'(Tn-i)(zs) + L.": /j.TQo(S gN(Tn-1))(xk,vk) II S gN(rn-1)(xi,vi) 
k=l i#k 

+Rs(Tn-1), (4.4) 
where Rs( Tn-l) denotes the remaining terms. From (3.16) and (2.9) we obtain 

g1/(Tn) == S g1/(Tn-l) + /:).TCs,s+l S 9~1(Tn-1) + Rs(Tn-1) · (4.5) 

Comparing (3.15) and ( 4.5) one obtains 

l:' ( Tn) - g;' ( Tn) == ( 4.6) 
S [l,:V(Tn-1) - g;'(Tn-1)] + /j.TCs,s+l S [f~1(Tn-1) - 9~1(Tn-1)] 

S N S N ( ) 8 ( ) +/:).TN As S ls (Tn-1) - /j.7 N Cs,s+l S ls+l Tn-l - R Tn-l · 

Let us now establish some preliminary estimates which will be useful in the con-
vergence proof. We have 

2 II QaU) Iii~ 2 a 11l111, 

II s ls 111:::; II ls 111' 

II As ls Iii:::; (s-1) Cl. II la Iii' 

(4.7) 

( 4.8) 

( 4.9) 

(4.10) 
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( 4.11) 

Inequalities ( 4. 7)-( 4.10) are obvious consequences of the definitions of the correspon-
ding operators. To prove ( 4.11) we observe that by the positivity of gN we have 
llg;'lli = 1. Therefore, from (4.4) and (4.7) we obtain 

s ( s - 1) ( 4 ) s-
2 

( 4 ) 2 s2 16 
< 2 l + N - 1 N - 1 ~ 2 (N - 1)2 e

4
' 

where (3.4) has been used. 
With the notation 

~ 1/ ( T n) = 11 J :' ( T n) - gl/ ( T n) I I 1 ' 

we obtain from ( 4.6), ( 4.8)-( 4.11 ), 

~ 1/ ( T n+l) ~ ~ 1/ ( T n) + ~ T 2 S a ~ ~l ( T n) ( 4 .12) 
· s · s · s2 

+~TN (s - l)a +~TN 2sa + co:nst N 2 • 

Using (3.4) we derive from ( 4.12) the following basic inequality 

( 4.13) 

where c1 and c2 are appropriate constants. 
Iterating the first term on the right-hand side of ( 4.13) we obtain 

( 4.14) 

where 

( 4.15) 
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Now we iterate the term under the sum on the right-hand side of ( 4.14) with respect 
to s and obtain 

k-1 
N ) C1 ~ 

f:j._s ( 'Tn+k :::; es,k + N s 1--t Cs+l,i1 + ... 
J1=0 

( 4.16) 

(cl) l-1 k-1 ii-2-l 
+ N s ( s + 1) ... ( s + l - 2) ~ .... L cs+l-l,ii-1 

J1=0 Ji-1=0 

( )

l k-1 ii-1-l . 

+ ; S ( S + 1) ... ( S + [ - 1) ~ · · · ~ f:j._ ~l ( T n+ii) • 
J1=0 Ji=O 

Notice that cs,k increases with k and f:j._1:°( Tn) ~ 2. Hence, one derives from ( 4.16) 
N C1 

f:j._s ( 'Tn+k) :::; Cs,k + N s cs+l,k ak,1 + .... ( 4.17) 

+ (; y-l S (s + 1) ... ( S + l - 2) C•+l-1,k O"k,1-1 
. . 

+ 2 (; )' S ( S + 1 )_- .. ( S + l - 1) O"k,I , 

where 
k-1 ii-1-l 

ak,l = I: . . . :E 1-. 
i1=0 ii=O 

Using the estimate ak,l:::; 7~ we obtain from (4.17) 

N kc1 S 
f:j._s ( 'Tn+k) :::; cs,k + N. lI ~s+l,k + · · · ( 4.18) 

+ (
kc1 )l-l s(s+l) ... (s+l-2) 
N (l - l) ! cs+l-1,k 

+ ( 
k C1 ) l S ( S + 1) ... ( S + [ - 1) 

2 [I . • N . 

With the estimate 

S ( S + 1) ... ( S + l - 1) < 2s+l-1 

l! - ' 
( 4.18) implies 

( 4.19) 



9 

Using the explicit form ( 4.15) of es,k, we derive from ( 4.19) 

fl.~(Tn+k) :<; ~ fl.~-;(rn) 2•-l (2 ~Cl r + ( 4.20) 

+~c2 k(s;fl
2 

2.-1 (2~C1y +2• (2~C1Y 

Consider a number ~N E ( 4~1 - 1, 4~1 ] and introduce moments of time ti = Ti D.N. 

Notice that limN-oo ti = i ~t, with ~t = -2 
1 

. 
ac1 

It follows from ( 4.20) that 

11.~(t;+i):::; ~ll.~;(t;)2•-l (ff+ ~4c; (s~j)2 2•-1 (i)j +2s (i)l (4.21) 
J=O J=O 1 

Now we suppose that 

( 4.22) 

and show that 

~~(ti+i) ~ f3r+ 1 , Vs~ rr+i, (4.23) 

for some appropriately defined bounds f3f and rf such that limN-oo f3f = 0 and 
limN-oo rf == 00 . 

Let l E (rf-r~1 ,,f-r~1 +1] so that s+l-1 ~ rf ifs~ rfr-1 . Hence, we obtain 
from ( 4.21) that 

~1: ( ti+i) < f3f12s + ~ ( rf )2 2s + 2s-l 
4c1 N 

N C2 ("V!")2 
N N N < f3f 2'Yi+l + 4 C1 T 2'Yi+l + 2 2 "i+l _,,i . (4.24) 

We denote the terms on the right-hand side of ( 4.24) by Ti~~, Ti~~, and Ti~U, re-
spectively. In order to establish ( 4.23) it remains to assure 

T~1 ) + T~2) + r.<3
) < f3!V (4.25) i,N i,N i,N - i+l · 

To this end, we introduce the following explicit expressions for the bounds rf and 
{3 !'1 . 

1. • 

N i-z N ri =a r 092 , ( 4.26) 

( 4.27) 
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Using ( 4.26) and ( 4.27) we obtain 

(Here we used the estimate x 2 2-u :::; (~)2 , x ~ 0, e > 0), and 

Ti(~= 22ai+1 ;ylog2N-ai;ylog2N = 2-(1-2a)ai;ylog2N. 
, . 

Consequently, to assure ( 4.25), the following inequalities are sufficient: 

(b- ary) ai ~ bai+l, 

In order to simplify the above inequalities, we choose 

ei - e ai, e E (0, 1), 

and define 

P·=Po+i [::Gr +i] 
Thus, ( 4.31) is fulfilled, and ( 4.28)-( 4.30) reduce to 

b-ary~ba, 

1-e~(b+ry)a, 

(1- 2a)ry ~ ba. 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

( 4.34) 

( 4.35) 

After replacing the constants c1 and c2 by their maximum (cf. ( 4.13)) the correspon-
ding quotient in ( 4.32) disappears. 
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The parameters ;.y, ~o and b are determined by the assumption concerning the 
initial chaos. The parameter a _is an arbitrary positive number such that 

a< min (-b- 1 - £ ;.y ) 
- b+;.y'b+;.y'b+2;.y . 

Thus, we have proved the following theorem. 

Theorem 4.1. Suppose that 

N N - ( 1 )b llfs (to) - gs (to)ll1 '5: f3o N ' 

for some positive parameters ~o, 7 and b. 
Then, for i = 1, 2, ... , 

where 

0 < a < min -- --. ( b 1-£ 7 ) 
- b+;.y'b+;.y'b+2;.y 

and£ E (0, 1) is an arbitrary parameter. 

It is interesting to consider the special case, when the initial values factorize, i.e. 

f ;1 (to) = g'/ (to) . 
In this case, one can choose the parameters /Jo, ;.y and b arbitrarily. 

Example 4.2. First we look for the largest possible value a of the parameter a. It 
follows from ( 4.33) and ( 4.35) that 

< . ( b/;.y 1 ) a min . 
- b/;.y + 1 ' b/;.y + 2 

Thus, we find a= 3-(&, when b/;.y = v'\-1 . Choosing b = 1-£ and ;.y = (1-c:) ¥ 1 

one obtains the estimate 
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Example 4.3. Now we look for the best possible order of convergence after one time 
step. Thus, we want to maximize the value of the product ab. For this purpose, we 
choose a= e, b = 1~2 t:, 7 = 1 . Inequalities ( 4.33)-( 4.35) are fulfilled for sufficiently 
small e, and one obtains the estimate 

Thus, in this case the rate of convergence is arbitrarily close to 1 after one time step, 
but later it becomes much worse than in Example 4.2. 

From Theorem 4.1 we show that f:' converges, in the limit N ~ oo, to the product n:=l f ( t, Xi, Vi) ' where f ( t) solves Eq. (2.6). Indeed it is straightforward to prove the 
L1 convergence of gN(t) (given by Eq. (4.1)) to f(t) when N ~ oo (and hence 
~T ~ 0, according to (3.4)). 
Remark. In our scheme we alternate the free stream with a (maybe fictitious) 
collision. Obviously one can perform more than one collision for each time step. This 
is actually one variant of the Bird scheme (cf. [2]). It is clear that our convergence 
argument can work as well in that case. 
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