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Abstract

We consider a simple microscopic model for a solid body and study the prob-

lematic nature of micro/macro transitions. The microscopic model describes

the solid body by a many particle system that develops according to Newtons

equations of motion.

We discuss various initial value problems that lead to the propagation of waves.

The initial value problems are solved directly from the microscopic equations

of motion. Additionally these equations serve to establish macroscopic �eld

equations.

The macroscopic �eld equations consist of conservation laws, which follow

rigorously from the microscopic equations, and of closure relations which are

completely determined by the distributions of the microscopic motion. In

particular we consider three kinds of closure relations which correspond to

three di�erent kinds of equilibrium.

It turns out that closure relations cannot be given appropriately without re-

lating them to the initial conditions, and that closure relations might change

during the temporal development of the initial data, because the body under-

goes several transitions between di�erent states of local equilibrium. In those

examples that we have considered, the macroscopic variables mass density and

temperature do not constitute an unique kind of microscopic motion.

1 Introduction

A thermodynamic process in a given body is described in thermodynamics by means

of an initial- and boundary value problem for a system of partial di�erential equa-

tions. Usually such a system is established as follows: There are equations of uni-

versal character, i.e. they are valid for any material. Among these equations the

conservation laws of mass, momentum and energy are particularly important. The

universal equations are supplemented by so called constitutive equations, which re-

late the basic variables to those quantities which appear in the universal equations

but are no basic variables.

The constitutive equations represent the closure of the open scheme of universal

equations and therefore these are often called closure relations. Usually the closure

relations are not related to the initial and boundary data, but are exclusively related

to the considered material. The name constitutive equations is due to this reason.

In this study we show by means of a simple example that the choice of the appro-

priate closure relations might be intimately in�uenced by the initial and boundary
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data, a fact, which is in contrast to common belief. Furthermore it may even happen

that the temporal development of the initial data requires a change of the adequate

closure relations during the thermodynamic process.

For the demonstration of this statement we consider an atomic chain in one di-

mension as a simple model for a solid body. On the micro scale we describe the

microscopic motion of the individual atoms by Newtons equations of motion. We

solve these equations exclusively for macroscopic initial data, these are those that

e�ect only macroscopic portions of the chain. How these data can be used for the

microscopic preparation in order to solve Newtons equations will be explained in

sections 8.1, 9.2 and 9.5. We restrict our interest to initial data that lead to the

propagation of waves. Initial data which initiate di�usion like motion will be studied

in a forthcoming paper.

In order to derive the �eld equations we start from Newtons equations and show

that they imply macroscopic equations of balance. All appearing quantities can

be represented by microscopic representations. In these representations the macro-

scopic quantities like the mass-, momentum-, energy density, pressure and heat �ux

are written as mean values in time and space in terms of the so called window func-

tion. From the macroscopic point of view the window function should be so small

that its support is concentrated around the point (t; x), where we want to compute

the macroscopic �elds, whereas from the microscopic point of view the support of the

window function should contain enough particle trajectories in order to guarantee

stochastical convergence to the macroscopic �elds and to obtain closure relations.

Thus the equations of balance become �eld equations by closure relations that result

from a macroscopic limit. The macroscopic state of the solid body will be described

by three �elds in time and space, viz. mass density � (t; x), velocity v (t; x) and

temperature T (t; x), and we consider these quantities as the basic variables. We

study pure initial value problems for � (0; x), v (0; x) and T (0; x).

The closure relations that we are interested in may be classi�ed as follows:

(i) Cold Closure: The thermal motion, i.e. stochastic vibrations of the atoms, is

completely ignored here.

(ii) Thermal Closure: There is thermal motion of displacements and velocities of

the atoms, which are both completely uncorrelated. This case is well known to

thermodynamicists. Their closure relations rely often on the assumption of a unique

local thermal equilibrium.

(iii) Oscillator Closure: There is thermal motion of displacements of two particle os-

cillators. The corresponding velocities are determined by the microscopic equations

of motion and are thus correlated to the displacements. This kind of closure serves

to illustrate that in general there is no unique thermal equilibrium. The oscillator

closure is by no means arti�cial. The described oscillator motion can be created by

quite usual macroscopic initial data.

All three closure relations lead on the macroscopic scale to symmetric hyperbolic

systems. To each system we indicate an entropy function that is also de�ned in
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terms of microscopic quantities. However, the entropy is not calculated here from

Boltzmanns famous formula which relates the entropy to the number of micro

states that can realize a given macro state. Instead we ground the entropy on

the Pfaffian form between energy, pressure, density and temperature. All these

quantities have simple uniquely determined microscopic representations and induce

uniquely a microscopic representation of the entropy.

In particular the oscillator closure will thus lead to an entropy that is a rigorous

consequence of Newtons microscopic equations of motion.

The study is organized as follows: The sections 2 to 6 deal with a many particle

system which consists of N structureless atoms whose dynamics is described by

Newtons equations of motion. These are supplemented by pairwise interaction

potentials.

The microscale is related to the macro scale by the so called window function which

is de�ned in section 3. The window function maps the microscopic trajectories to

a macroscopic point in time and space, and it is the central quantity that enables

the calculation of marcoscopic mean values of microscopic observables with respect

to time and space.

In section 4 and 5 we de�ne a general class of mean values and in particular the basic

quantities mass-, momentum- and energy density. General equations of balance and

especially the conservation laws will then be established and in turn we may identify

the corresponding �uxes.

In section 6 we formulate the general closure problem and additionally we identify

the velocity dependent parts of the constitutive quantities.

In sections 7.1 and 7.2 we reduce the obtained results to the one dimensional atomic

chain as a simple model for a one dimensional solid body.

The section 7.3 is of great importance. Here we introduce di�erent time and space

scales for the microscale and the macroscale, respectively. The microscopic time and

space units are related to properties of the pair potentials. The units of macroscopic

time and space regions result from a given scaling parameter which is the same for

time and space and is proportional to the particle number N. This guarantees that

wave speeds become independent of N and restricts the study to pure wave prpa-

gation. Furthermore this kind of scaling induces macroscopic �elds which become

also independent of N if only N is su�ciently large.

In the last three sections we introduce the three di�erent closure assumptions and

study their appropriateness. In section 8 we start with the cold closure that ignores

complety thermal motion. We show that one can formulate Riemannian initial

data so that the resulting macroscopic system, which considers only the mass den-

sity and the velocity as variables, agrees in some sense with the direct solution of

the microscopic equations. However, it will also turn out that a temperature �eld

develops and must thus be taken into account.

At the beginning of section 9 we introduce the temperature as the mean kinetic
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energy of the thermal motion. Hereafter we de�ne global thermal equilibrium, and

prepare the atomic chain according to that de�nition. The resulting distribution

function will then be used to establish the thermal closure, which assumes in ad-

dition local thermal equilbrium. Then we consider in section 9.5 and 9.6 an other

Riemannian initial value problem in order to demonstrate that the assumption of

local thermal equilibrium is in general not realized by the microscopic motion. In-

stead we observe that the distances and velocities of the atoms are distributed by

the so called oscillator motion, which is discussed in detail in section 10.

In section 10 we verify that it is possible to generate by quite natural initial data

a kind of oscillator motion, where the N atoms move with the same frequency in

N/2 oscillators. This kind of motion constitutes a second equilibrium which can be

realized by the same values of mass density and temperature that we used to create

thermal motion. The corresponding distribution functions then serve to establish

the oscillator closure.

Next we consider a further Riemannian initial value problem which deviates only

slightly from the one that has served to motivate the oscillator closure, and in fact

the temporal development of the macroscopic �elds looks similar as before. However,

from the known microscopic data we obtain new distribution functions which are

neither pure thermal nor pure oscillator functions. Instead we observe a transition

of pure thermal motion to some kind of oscillator motion. Nevertheless all these

kind of motions constitute local equilibria.

This result is in contrast to the case of the Boltzmann gas, which has a unique

equilibrium distribution, viz. the Maxwellian. The analogue closure problem

leads to the hyperbolic system of Euler equations. This system was studied and

solved in [1] and [2].

It is due to the presence of permanent strong interaction forces between the atoms

that the solid behaves di�erent and cannot be described macroscopically by a sin-

gle hyperbolic system. The thermal- and the oscillator motion yield two possible

examples.

In a series of papers, [3], [4], [5] and [6], Masaru Sugiyama and collaborators report

on a serious and careful study on the same subject. However, their procedure and

intention is quite di�erent from ours. Sugiyama starts also fromNewtons equations

for the one dimensional atomic chain and their pairwise interaction potential is

qualitatively the same as that we have used. But the closure problem is solved in

Sugiyamas studies in a completely di�erent way.

Note that we derive rigorously from Newtons equations the macroscopic conserva-

tion laws and the corresponding microscopic representations of macroscopic quanti-

ties. In the next step we introduce the various closure relations. On the contrary,

Sugiyama and collaborators considered one single closure relation, which was given

by a distribution function of Gaussian type for N independent atoms. This func-

tion is used to reduce the problem of dealing with N coupled Newton equations

to a system of only �ve coupled equations for those �ve unknowns that appear in
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the Gaussian type distribution function as macroscopic parameters.

2 Newtonian Dynamics of Structureless Particles

We consider a body consisting of N structureless atoms. These are called parti-

cles from now on. All particles have the same mass m, and they are indexed by

small greek letters �; �; ::: 2 f1; 2; ::; Ng: At time t � 0 the particles are located at

positions x� (t) and they have velocities _x� (t).

At any time t the microstate of the body, 
N ; is completely described by the 6N
positions and velocities


N (t) =
�
x
1 (t) ; _x1 (t) ; ::::;xN (t) ; _xN (t)

�
: (1)

The dynamics of the microstate is determined by NEWTONs equations of motion

m�x�
i
= G�

i
+

NX
�=1

K
��

i
(2)

A particle � is subjected to a total force K�

i
which is decomposed into the external

force G�

i
and the interaction force K

��

i
between � and any other particles �. The

external force may include the inertial forces. In this study we consider only inter-

action forces that can be derived from a pair potential ' : R
+
0 ! R. In particular

we choose a potential function of the so called Lennard-Jones type, which will be

used for numerical examples later on:

' (r) =
1

8

1

r4
� 1

4

1

r2
: (3)

Thus the interaction force has for � 6= � the explicit form

K
��

i
= �@'

�
jr��j

�
@x�

i

= '0(jx� � x�j) x
�

i
� x�

i

jx� � x�j ; (4)

where r�� = x
��x�. Obviously (4) satis�es NEWTONs third law, actio = reactio:

K
��

i
= �K��

i
: (5)

Therefore we de�ne in addition K��

i
= 0.

3 The Window Function

We shall introduce now the window function � (t;x), which relates the microscale

to the macroscale. The function � opens in space time by its �nite support a

window to the microscopic positions and velocities of the particles. Later on we
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shall establish the micro macro transition, where we choose the supp(�) so that the

window contains in�nitely many particle worldlines from a microscopic viewpoint.

However, from a macroscopic viewpoint supp(�) shrinks to a single point in space

time. In the next section the window function will be used to de�ne macroscopic

quantities at time t and space point x.

We provide the window function with the following properties:

(i) � : R4 ! R is continuous di�erentiable with � (t;x) � 0.

(ii) supp(�) � (0;1)� R
3 .

(iii)
+1R
�1

� (t;x) dt d3x = 1.

We shall choose the support of the window function macroscopically small, but mi-

croscopically very large so that the window contains still an enormous number of

microscopic trajectories. This is necessary in order to pass to the three thermody-

namic limits which will be considered in sections 8, 9 and 10.

For each particle index � we de�ne

�� (#; t;x) = � (#� t;x� (#)� x) (6)

in order to formulate the following Lemma, which yields the complete information

for the derivation of the conservation and balance laws:

Lemma:

(i) The partial derivative of �� with respect to t can be written as

@��

@t
(#; t;x) = �@��

@#
(#; t;x)� @��

@xk
(#; t;x) _x�

k
(#); (7)

(ii) The di�erence of two window functions with di�erent particle index has the

divergence form

�� (#; t;x)� �� (#; t;x) =

@

@xk

0
@�x�

k
� x�

k

� 1Z
0

�
�
#� t;x� (#)� x+ �

�
x
� � x�

��
d�

1
A (8)

The proof of (i) follows immediately from the given de�nition of �� (#; t;x), and
the proof of (ii) starts with the identity

� (#� t;x� (#)� x)� �
�
#� t;x� (#)� x

�
=

�
1Z

0

@

@�
�
�
#� t;x� (#)� x+ �

�
x
� � x�

��
d�:

(9)

According to the chain rule we can transform the � derivative into the divergence

derivative that occurs in (ii). �
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4 The General Equations of Balance

Recall that the micro state of a body is given by the list 
N of 6N positions and

velocities. For the description of the macro state of the body we need a reduced list

�NM of variables, with NM � N . The most important case is the list �5 which

contains the �ve macroscopic variables mass density �, momentum density �v and

energy density �e. These are formed at time t and at the space point x by the

de�nitions

� (t;x) =

1Z
0

NX
�=1

m�� (#; t;x) d#;

�vi (t;x) =

1Z
0

NX
�=1

m _x�
i
(#)�� (#; t;x) d#; (10)

�e (t;x) =

1Z
0

NX
�=1

 
m

2
_x�
i
(#) _x�

i
(#) +

1

2

NX
�=1

'
�
jr�� (#) j

�!
�� (#; t;x) d#:

The right hand sides of (10) de�ne volume densities of additive quantities, i.e. the

total mass, the total momentum and the total energy of the body can be represented

by volume integrals of the mass density, the momentum density and the energy den-

sity, respectively. The de�nitions of these densities are very natural: A window,

which is located at (t;x), is considered, and the number density of particle trajec-

tories within this window is multiplied with the mass m, the momentum m _x�
i
and

the energy m

2
_x�
i
_x�
i
+ 1

2
'
�
jr��j

�
of a single particle, respectively.

Field equations for volume densities as variables rely on equations of balance which

we shall derive next. In order to exhibit the general structure and the microscopic

origin of the equations of balance, it is useful to generalize �rst the de�nition (10)

and to formulate their generic structure. From (10) we read o� the generic form

uA (t;x) = (11)
1Z
0

NX
�=1

 
O�

A
(#) +

NX
�=1

O
��

A
(#)

!
�� (#; t;x) d#; (A = 0; 1; 2::::; NM � 1) :

The quantities O�

A
and O

��

A
denote microscopic one- and two- particle observables,

respectively.

O�

A
O
��

A

A = 0, Mass m 0
A = 1; 2; 3, Momentum m _x�

i
0

A = 4, Energy m

2
_x�
i
_x�
i

1
2
'��

(12)

7



We have introduced the abbreviation '�� = ' (jr��j) for � 6= � and '�� = 0 in

this table. We shall now use the generic form (11) to establish general equations of

balance for the quantities uA. In this study we consider only microscopic observables

that may have the following dependencies

O�

A
(#) = ~O�

A
( _x� (#)) ; O

��

A
(#) = ~O��

A

�
r
�� (#) ; _x� (#) ; _x� (#)

�
; (13)

i.e. the one particle observable O�

A
can at most depend on the velocity, while the

two particle observable O
��

A
may depend on the velocities of the particles � and �

and on their relative distance.

Next we show that to each volume density uA (A = 0; 1; 2:::; NM � 1) there corre-

spond �uxes fAk, productions SA and supplies ZA, so that among them the following

equations of balance hold:

@uA

@t
+
@fAk

@xk
= SA + ZA: (14)

We start from (11), and di�erentiate uA(t;x) at constant x with respect to time t

to obtain

@uA(t;x)

@t
=

1Z
0

NX
�=1

 
O�

A
(#) +

NX
�=1

O
��

A
(#)

!
@�� (#; t;x)

@t
d#: (15)

The derivative of the window function is replaced by (7). Hereafter a partial inte-

gration with respect to time # is carried out, and after some rearrangements there

results

@uA(t;x)

@t
+

@

@xk

0
@ 1Z

0

NX
�=1

 
O�

A
(#) +

NX
�=1

O
��

A
(#)

!
_x�
k
(#)�� (#; t;x) d#

1
A =

1Z
0

NX
�=1

 
dO�

A
(#)

d #
+

NX
�=1

dO
��

A
(#)

d #

!
�� (#; t;x) d#: (16)

The expression under the divergence gives already the �rst contribution to the �ux

fAk we are looking for. Next we apply, according to (13), the chain rule to the #

derivatives on the right hand side. For this purpose we de�ne to each volume density

uA (A = 0; 1; 2:::; NM � 1) a corresponding N � N matrix MA with components

((M��

A
)) which are formed by the microscopic observables according to

M
��

A
=
@ ~O��

A

@r
��

j

_r��
j

+
1

m

@ ~O�

A

@ _x�
j

K
��

j
+

1

m

NX

=1

 
@ ~O��

A

@ _x�
j

K
�


j
+
@ ~O��

A

@ _x�
j

K
�


j

!
: (17)

The de�nition ofMA is only unique in those cases which have zero productions. We

have de�ned MA so that the observables O�

A
(#) +

NP
�=1

O
��

A
(#) remain as a whole.
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By M
[��]

A
and M

(��)

A
we denote the antisymmetric and symmetric part of MA, re-

spectively. We obtain from (16):

@uA(t;x)

@t
+

@

@xk

0
@ 1Z

0

NX
�=1

 
O�

A
(#) +

NX
�=1

O
��

A
(#)

!
_x�
k
(#)�� (#; t;x) d#

1
A =

1Z
0

NX
�=1

X
�=1

M
[��]

A
(#)�� (#; t;x) d#+

1Z
0

NX
�=1

NX
�=1

M
(��)

A
(#)�� (#; t;x) d# (18)

+

1Z
0

1

m

NX
�=1

 
@ ~O�

A

@ _x�
j

G�

j
+

NX
�=1

 
@ ~O��

A

@ _x�
j

G�

j
+
@ ~O��

A

@ _x�
j

G
�

j

!!
�� (#; t;x) d#:

The �rst expression on the right hand side contains the antisymmetric part of the

matrix MA and can be written as a divergence, because we can apply the second

part of the Lemma from section 3 to the identity

NX
�=1

NX
�=1

M
[��]

A
(#)�� (#; t;x) =

1

2

NX
�=1

NX
�=1

M
[��]

A
(#) (�� (#; t;x)� �� (#; t;x)) : (19)

Thus �nally we end up with the following

Proposition:

(i) If we de�ne the �uxes, productions and supplies according to

fAk (t;x) =

1Z
0

 
NX
�=1

 
O�

A
(#) +

NX
�=1

O
��

A
(#)

!
_x�
k
(#)�� (#; t;x) �

1

2

NX
�;�=1

M
[��]

A
(#) r��

k
(#)

1Z
0

�
�
#� t;x� (#)� x + �r�� (#)

�
d�

1
A d#;

SA (t;x) =

1Z
0

NX
�=1

X
�

M
(��)

A
(#)�� (#; t;x) d#; (20)

ZA (t;x) =

1Z
0

1

m

NX
�=1

 
@ ~O�

A

@ _x�
j

G�

j
+

NX
�=1

 
@ ~O��

A

@ _x�
j

G�

j
+
@ ~O��

A

@ _x�
j

G
�

j

!!
�� (#; t;x) d#;

then the following equations of balance are satis�ed:

@uA

@t
+
@fAk

@xk
= SA + ZA: (21)

(ii) The macroscopic in�uence of the external forcesG� is represented by the supplies

ZA; while the interaction forces K�� contribute to the �uxes fA as well as to the

productions SA.
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(iii)The antisymmetric partM
[��]

A
of the matrixMA, which is given in (17), will con-

tribute to the �uxes, while the productions are exclusively formed by the symmetric

part M
(��)

A
. �

Note that the �elds uA (t;x) and fAk (t;x), and also SA (t;x) and ZA (t;x) ; are
continuous di�erentiable according to their de�nition via the window function. For

that reason we can also establish global equations of balance. We consider a �xed

volume V and obtain from (21) by integration and a subsequent application of

Gausss Theorem

d

dt

Z
V

uA (t;x) d3x = �
I
@V

fAk (t;x) dak +

Z
V

(SA (t;x) + ZA (t;x)) d3x: (22)

Later on, after having carried out the closure of the system (21), the �elds uA (t;x) ;
fAk (t;x) ; SA (t;x) and ZA (t;x) will be equipped with additional thermodynamic

properties and consequently may become discontinuous. When this happens we

shall assume that the global equation (22) is more fundamental than the system

(21). Thus we shall still rely on the global equations of balance (22) and seek for

weak solutions.

5 The Conservation Laws of Mass, Momentum and

Energy

In the last section we started with the microscopic representations of the macroscopic

volume densities of mass, momentum and energy. After that we generalized these

representations to a general class of volume densities and derived the corresponding

equations of balance. This procedure allowed the identi�cation of general �uxes,

productions and supplies.

In this section we write down the special microscopic representations which are

necessary in order to describe the conservation of mass, momentum and energy. To

this end we read o� from Table (12) the generating microscopic observables ~O�

A
and

~O��

A
for A = 0; 1; 2; 3; 4 and insert these into the expressions (20).

All productions SA turn out to be zero. For that reason mass, momentum and energy

are called conserved quantities and their equations of balance are called conservation

laws.

As it was mentioned before, the external forces may include the gravitational force

and the inertial forces like centrifugal force and Coriolis force. After having un-

derstood their appearance in the general equations of balance. We will not study

these forces in detail. Thus we assume G� = 0, which implies vanishing momentum

and energy supplies. Furthermore there is obviously no mass supply.

The mass �ux f0k is equal to the momentum densitiy �vk. The momentum �ux fik
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and the energy �ux f4k are denoted by Pik and Qk, respectively. They read

Pik (t;x) =

1Z
0

d#

� NX
�=1

m _x�
i
(#) _x�

k
(#)�� (#; t;x)�

1

2

NX
�;�=1

K
��

i
(#) r��

k
(#)

1Z
0

�
�
#� t;x� (#)� x+ �r�� (#)

�
d�

�
; (23)

Qk (t;x) =

1Z
0

d#

� NX
�=1

�m
2
_x�
j
(#) _x�

j
(#) +

1

2

NX
�=1

'
�
jr��(#)j

� �
_x�
k
(#)�� (#; t;x)�

(24)

1

4

NX
�;�=1

K
��

j
(#)
�
_x�
j
(#) + _x�

j
(#)
�
r
��

k
(#)

1Z
0

�

�
#� t;x� (#)� x+ �r�� (#)

�
d�

�
:

With these representations the conservation laws read

@�

@t
+
@�vk

@xk
= 0;

@�vi

@t
+
@Pik

@xk
= 0;

@�e

@t
+
@Qk

@xk
= 0: (25)

In this study we do not consider more general cases than the �ve conservation laws,

for which we shall discuss now the closure problem.

6 The General Closure Problem

We describe the macro state of a body by the �rst �ve volume densities �, �v and �e.

These quantities are considered as the basic variables of the macroscopic continuum

theory, and we seek for a closed set of �ve �eld equations. These rely on the �ve

conservation laws (25).

The general closure problem consists of �nding relations that relate the �uxes Pik
and Qk in a material dependent manner to the basic variables. However, these

relations include also universal parts, namely those that depend on the velocity v.

We can identify these parts by replacing the microscopic velocities _x� by so called

excess (or thermal) velocities C�, which are de�ned as

C�

i
(#; t;x) = _x�

i
(#)� vi (t;x) : (26)

Hereby the energy density and the �uxes decompose into velocity dependent parts

and into parts which are invariant with respect to Galileiian transformations:

�e =
�

2
v
2 + �u; Pik = �vivk + pik; Qk =

���
2
v
2 + �u

�
�ik + pik

�
vi + qk:

(27)
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The newly introduced quantities �u, pik and qk are called internal energy density,

pressure tensor and heat �ux, respectively. They are de�ned as follows

�u (t;x) =

1Z
0

NX
�=1

 
m

2
C�

i
(#; t;x)C�

i
(#; t;x) + (28)

1

2

NX
�=1

'
�
jr��(#)j

�!
�� (#; t;x) d#;

pik (t;x) =

1Z
0

 
NX
�=1

mC�

i
(#; t;x)C�

k
(#; t;x)�� (#; t;x)� (29)

1

2

NX
�;�=1

K
��

i
(#) r��

k
(#)

1Z
0

�
�
#� t;x� (#)� x + �r�� (#)

�
d�

1
A d#;

qk (t;x) =
1Z
0

 
NX
�=1

 
m

2
C�

j
(#; t;x)C�

j
(#; t;x) +

1

2

NX
�=1

'
�
jr��(#)j

�!
C�

k
(#; t;x)�� (#; t;x)

(30)

� 1

4

NX
�;�=1

K
��

j
(#)
�
C�

j
(#; t;x) + C

�

j
(#; t;x)

�
r
��

k
(#)�

1Z
0

�
�
#� t;x� (#)� x + �r�� (#)

�
d�

!
d# :

Now we can reformulate the general closure problem as follows: Instead of �, �v and

�e we consider �, v and u as basic variables and the new closure problem consists of

�nding relations that relate the pressure tensor pik and the heat �ux qk in a material

dependent manner to the new basic variables.

The main objective of the next sections will be a comprehensive study of the closure

problem for a simple body: The one dimensional atomic chain. This example serves

to illustrate that there is a very close relation of the closure problem to the initial

value problem of the resulting �eld equations. It will turn out that one cannot solve

the closure problem appropriately without paying attention to the kind of initial

data for which the �eld equations are intended to be solved.
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7 The One Dimensional Atomic Chain

7.1 Newtons Dynamics

The one dimensional atomic chain consists of N atoms with mass m = 1 and with

positions at time #,

fx1 (#) ; x2 (#) ; ::::; xN�1 (#) ; xN (#)g; (31)

along one single direction. The positions of the 1th and of the N th atom are �xed

and given by

x1 (#) = 0; xN (#) = L: (32)

The other atoms move according to pairwise nearest neighbour interaction. We

recall the pair potential given in (3):

' (r�) =
1

8

1

r4
�

� 1

4

1

r2
�

; with r� = x�+1 � x�; � = 1; 2; 3; :::; N � 1: (33)

The numbers in the pair potential are choosen so that '0 (1) = 0 and '00(1) = 1:

We do not consider external forces, and Newtons equations of motion thus read

�x� (#) = '0 (r� (#))� '0 (r��1 (#)) ; � = 2; 3; :::; N � 1: (34)

From a microscopic viewpoint the initial conditions for the system (34) are given by

the initial locations

fx1 (0) = 0; x2 (0) = x20; ::::; x
N�1 (0) = xN�10 ; xN (0) = Lg; (35)

and by the initial velocities

f _x1 (0) = 0; _x2 (0) = _x20; ::::; _x
N�1 (0) = _xN�10 ; _xN (0) = 0g: (36)

of all atoms.

From a macroscopic viewpoint, however, such a detailed description is not possible.

Macroscopically we can only prescribe initial values for the macroscopic variables,

viz. � (0; x), v (0; x) and u (0; x) : The relations between the microscopic and the

macroscopic initial value problem will be discussed in detail in sections 8.1, 9.2 and

9.5.

7.2 Conservation Laws For The One Dimensional Atomic Chain

The general results regarding the conservation laws will now be reduced to the

one-dimensional atomic chain. We start from the general results (25) and (24) and

specialize to one space dimension. Hereafter we incorporate the restriction to nearest

13



neighbour interaction to the microscopic representations (28), (29) and (24) and end

up with the result:

(i) The conservation laws for mass, momentum and energy in one space dimension

read

@�

@t
+
@�v

@x
= 0;

@�v

@t
+

@

@x

�
�v2 + p

�
= 0; (37)

@�
�
1
2
v2 + u

�
@t

+
@

@x

�
�

�
1

2
v2 + u+

p

�

�
v + q

�
= 0:

(ii) For nearest neighbour interaction the microscopic representations are given by

� (t; x) =

1Z
0

NX
�=1

�� (#; t; x) d#;

�v (t;x) =

1Z
0

NX
�=1

_x� (#)�� (#; t;x) d#; (38)

�u (t;x) =

1Z
0

NX
�=1

�
1

2
C� (#; t;x)2 + ' (r� (#))

�
�� (#; t;x) d#;

for the basic variables, and by

p (t; x) =

1Z
0

NX
�=1

 
C� (#; t; x)2 �� (#; t;x)�

'0 (r� (#)) r� (#)

1Z
0

� (#� t; x� (#)� x+ �r� (#)) d�

!
d#;

(39)

q (t; x) =

1Z
0

NX
�=1

 �
1

2
C� (#; t; x)2 + ' (r� (#))

�
C� (#; t; x)�� (#; t; x)�

1

2
'0 (r� (#)) r� (#)C

� (#; t; x)

1Z
0

� (#� t; x� (#)� x+ �r� (#)) d�

!
d#:

for the pressure and the heat �ux.

7.3 Macroscopic versus Microscopic Scaling of Time and Space

All microscopic calculations use space and time units as follows: The microscopic

space unit is choosen so that '0(1) = 0 and the microscopic time unit is choosen so

that '00(1) = 1.

14



In these units the total length L of the chain is thus proportional to the particle

number N , and due to '00(1) = 1 the duration of the microscopic process under

consideration, tF , must also be a large number.

In order to avoid these large numbers in the representations of the macroscopic

�elds, where many particles are involved, we use macroscopic time and space units

and introduce a positive scaling factor according to

tF = �~tF ; L = �~L: (40)

In macroscopic units the total length of the chain and the duration of the process

are denoted ~L and ~tF , respectively. For convenience we choose in the numerical

examples ~tF = 1.

This scaling corresponds to a coordinate transformation. Let t and x denote the

microscopic time and space coordinates and ~t and ~x the corresponding macroscopic

coordinates. Then we write

~t =
1

�
t ; ~x =

1

�
x : (41)

However, later on we shall suppress the tilde symbol above the macroscopic quanti-

ties.

Regarding the visualization the advantage of this convention of the results is obvious.

In addition there is a fundamental reason for this type of scaling, which in fact relies

on the following observation:

Later on we shall consider various macroscopic Riemann initial value problems with

a single jump at, say x = 0. These will be solved on the microscale subsequently

for an increasing number N of particles. The given kind of scaling leads then to

convergence to the macroscopic �elds in the limitN !1, i.e. the macroscopic �elds

become independent of N for su�ciently large N . In addition the macroscopic �elds

turn out to be invariant with respect to the scaling transformation (41):

uA(t; x) = uA(�t; �x): (42)

We conclude that the macroscopic �elds depend only on the ratio x

t
.

In section 10.5 we shall discuss the consequences of this important observation.

Note that time and space are scaled here with the same factor �. This implies, that

microscopic wave speeds do not depend on the particle number N . Actually this

restricts us to consider only wave phenomena but no di�usion in the macroscopic

limitN !1. Di�usion phenomena would require di�erent time and space scalings.
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8 The Cold Closure

8.1 Macroscopic Initial Data and Preparation of the Atomic

Chain

In the �rst example we study the following macroscopic initial value problem: We

describe the macrostate of a chain with N particles and with �xed length L by only

two variables, viz. the mass density � (t; x) and the velocity v (t; x). The initial data
are

� (0; x) =

8<
:

�l x � L

2

for

�r x > L

2

; v (0; x) =

8<
:

vl x � L

2

for

vr x > L

2

. (43)

Obviously these data are not su�cient to solve an initial value problem for the N�2
equations of motion (34). Thus there arises the question how to prepare the initial

data of the atomic chain.

Let be Nl and Nr the number of atoms which are initially left and right from L=2,
respectively. We may calculate these quantities for given N , �l and �r according to

the simple equations

L = 2
N � 1

�l + �r
; Nl +Nr = N � 1;

Nl

�l
+
Nr

�r
= L: (44)

The �rst equation, (44)1, represents the length of the chain by (N � 1) intervals �
the mean lenght 2= (�l + �r) of an interval. (44)2 decomposes the number of intervals,

and (44)3 decomposes the lenght L into its left and right part, where L

2
= Nl

�l
= Nr

�r
.

Assumption: The initial data for the atomic chain are given as follows:

x�0 =

( 1
�l
(�� 1) � = 1; 2; :::; Nl

for
1
�l
Nl +

1
�r
(��Nl � 1) � = Nl + 1; :::; N;

(45)

_x�0 =

8<
:

vl � = 1; 2; :::; Nl

for

vr � = Nl + 1; :::; N :

We have thus assumed that the atoms have initially constant distances on the left

and on the right part of the chain. In addition they have constant velocities on each

side. This corresponds to zero temperature of the chain at time t = 0.

8.2 Calculation of the Macroscopic Fields by Solving New-

tons Equations

We solve now the N � 2 equations of motion (34) with N = 35000 and use the

obtained data to calculate the macroscopic �elds mass densitiy � (t; x) and velocity
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v (t; x) according to the microscopic representations (38)1;2 . The Figure 1 depicts

the space time diagramm of the mass density for 0 � t � 1 and 0 � x � 4 with the

scaling factor � = 7413.

TIME

P
O
S
I
T
I
O
N

MASS DENSITY

Fig. 1: Space time diagram of the

mass density according to New-

tons equations.

The initial data are �l = 1:36, �r = 1:00,
vl = 0:53, vr = 0:00. These data re-

sults from the evaluation of macroscopic

Rankine-Hugoniot conditions which will

be discussed in section 8.5.

We observe that the initial discontinuity

at x = 2 initiates a propagating shock like
structure right up to the right boundary,

where a re�ection took place.

A more detailed description of the tempo-

ral development of this shock like struc-

ture will be given in section 8.4.

The rarefaction wave that enters the

diagram from below will not interest us

here. It results from the interaction of

the chain with the lower boundary.

8.3 Cold Closure and Field Equations

In the last section we have calculated the �elds of mass density and velocity for

a macroscopic initial value problem from the solution of the N � 2 microscopic

equations of motion. In this section we are interested in the same initial value

problem, but we use now a macroscopic system of two �eld equations for the mass

density and for the velocity.

This system relies on the two conservation laws (37)1;2. If 
 is any convex set in space

time with piecewise smooth, positive oriented boundary @
, then the conservation

law for mass and momentum may be written down in integral formI
@


(�dx� �vdt) = 0;

I
@


�
�vdx�

�
�v2 + p

�
dt
�
= 0 ;

(46)

and must be supplemented by a constitutive law that relates the pressure in (46)2
to the variables. This is achieved by the assumption:

Within the support of the window function at the space time point (t; x) we calculate
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the pressure from the microscopic representation (39) by setting

r� =
1

� (t; x)
; and _x� = v (t; x) for x� 2 supp (�(t; x)) : (47)

We call the assumption (47) the cold closure, because thermal vibrations of the

atoms are completely ignored here.

The evaluation of (39)1 for the cold closure assumption implies

p = �'0
�
1

�

�
: (48)

If we replace the pressure p in (46) by �'0
�
1
�

�
, we obtain the weak form of a closed

macroscopic system, which leads in regular points to the di�erential form

@�

@t
+
@�v

@x
= 0;

@�v

@t
+

@

@x

�
�v2 � '0

�
1

�

��
= 0; (49)

and across a shock front to the Rankine Hugoniot jump conditions

�VS [[�]] + [[�v]] = 0; �VS [[�v]] +
��
�v2 � '0

�
1

�

���
= 0: (50)

In equation (50) [[a]] = ar�al denotes the jump of any �eld a = a(x), and VS is the

shock velocity.

Note that the �elds in (37)1;2, which depend on the window function and the micro

trajectories x�(t), are continuous di�erentiable. However, after having replaced the

exact microscopic representation of the pressure by the constitutive law (48), the

resulting �eld equations may have regular as well as discontinuous solutions, and

both are described by (46).

In order to obtain the condition for hyperbolicity and the characteristic speeds of

the system (49), we write it in the form

@�

@t
+ v

@�

@x
+ �

@v

@x
= 0 ;

@v

@t
+

1

�3
'00(

1

�
)
@�

@x
+ v

@v

@x
= 0: (51)

There results immediately the characteristic speeds

�1;2 = v � 1

�

r
'00(

1

�
); (52)

and the condition for hyperbolicity is '00(1
�
) > 0, i.e. � >

q
3
5
for the function '

given in (3). Note that this function satis�es '00(1) = 1, a condition which leads for

� = 1 and v = 0 to the characteristic speeds �1;2 = �1.
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8.4 Properties of the Field Equations

The system (49) and (50) represents a closed system of �eld equations for weak

solutions of the initial value problem from the above. This sytem is obviously of

hyperbolic type in the region '00 > 0.

Next we study the role of the conservation law (37)3 of the energy. In particular we

have to answer the important question, whether the cold closure eventually contra-

dicts the energy conservation, because, due to (47) the energy density �e and the

energy �ux Q become also functions of � and v, so that the conservation law (37)3
yields a third equation for the two unknown �elds � (t; x) and v (t; x), viz.

@�ê (�; �v)

@t
+
@Q̂ (�; �v)

@x
= 0; with

(53)

ê (�; �v) =

�
v2

2
+ '

�
1

�

��
; Q̂ (�; �v) =

�
�ê (�; �v)� '0

�
1

�

��
v:

However, this establishes by no means a contradiction, because there is the following

Proposition: (i) There exist so called Lagrange multipiers �� and ��v so that

the conservation law of the energy can be written as a linear combination of the two

other conservation laws:

@ê (�; �v)

@t
+
@Q̂ (�; �v)

@x
= ��

�
@�

@t
+
@�v

@x

�
+ ��v

�
@�v

@t
+

@

@x

�
�v2 � '0

�
1

�

���
:

(54)

In regular points the right hand side of (54) vanishes and thus any solution of (49),

(50) satis�es in addition the energy equation (53).

(ii) If '00
�
1
�

�
> 0 holds, the matrix of second derivatives of the function �ê (�; �v)

is positive de�nite.

(iii) Consequently, the system (49) is of symmetric hyperbolic type and has the

energy as a convex extension.

Proof: We start from (53)2;3 and form the left hand side of equation (54). After

some rearrangements we obtain (54) with the identi�cations

�� = �1

2
v2 + '

�
1

�

�
� 1

�
'0
�
1

�

�
; ��v = v: (55)

Next we form the matrix of second derivatives of the function ê (�; �v). There results 
1
�3

�
�2v2 + '00

�
1
�

��
�1

�
v

�1
�
v 1

�

!
(56)

and this is positive de�nite if '00
�
1
�

�
> 0:
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The third part of the proposition relies on

�� =
@�ê (�; �v)

@�
; ��v =

@�ê (�; �v)

@�v
; (57)

and these relations follow immediately from (54). The convexity of ê (�; �v) guaran-
tees that we may change the variables from uA = (�; �v) to u0

A
= (��;��v), A = 0; 1.

Let be

e0 = �e� ���� ��v�v; Q0 = Q� ���v � ��v

�
�v2 � '0

�
1

�

��
; (58)

which implies

� = � @e0

@��
; �v = � @e0

@��v
; �v = �@Q0

@��
; �v2 � '0

�
1

�

�
= � @Q0

@��v
: (59)

From these equations we conclude that the system of �eld equations (49) can be

written as

1X
B=0

�
@2e0

@u0
A
@u0

B

@u0
B

@t
+

@2Q0

@u0
A
@u0

B

@u0
B

@x

�
= 0: (60)

The convexity of ê (�; �v) implies the convexity of its Legendre transform e0 (��;��v),
which proves that (60) is the symmetric hyperbolic form of the original system (49).

The reader is refered to the poineering work by Friedrichs and Lax [FL]. �

This last result motivates the introduction of the entropy even for the cold closure

which is properly a purely mechanical case. We choose the entropy density �h =
��e; which is in agreement with modern thermodynamics, where the negative of

the convex extension of the system of �eld equations is always called entropy. For

details we refer the reader to the interesting study of this subject [8] by G. Boillat

and T. Ruggeri.

8.5 Rankine Hugoniot Conditions and Shock Selection Cri-

terium

The purpose of this section is the evaluation of the Rankine Hugoniot conditions

for the Riemannian initial data (43). Furthermore we shall establish the entropy

balance across the initial discontinuity as a shock selection criterium.

We �x the �elds right from the shock to be �r = 1 and vr = 0. The �elds on the

left hand side are denoted as �l = � and vl = v; and we choose the density � as the

shock parameter. Then the Rankine Hugoniot conditions (50) yield

V 2
S
= �

'0
�
1
�

�
�
1� 1

�

� > 0 for � > 0; and v =

�
1� 1

�

�
VS: (61)
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In order to single out the unphysical solutions of (61) we consider the entropy con-

dition. It requires a positive entropy production �S across a discontinuity. From

the observation that here the entropy density is equal to the negative of the energy

density we conclude from the known energy jump that the entropy production is

given by

�S = VS[[�

�
v2

2
+ '

�
1

�

��
]]� [[

�
�ê (�; �v)� '0

�
1

�

��
v]] � 0: (62)

It can be shown from (62) that only compressive shocks, i.e. � > 1, are allowed.

In the next subsection we will compare the prediction of a single shock due to (61),

(62) with the solution of the Riemann problem due to Newtons equations.

8.6 Comparison of the Results

A solution of (61), that satis�es the entropy condition (62), is given by

�l = 1:36; �r = 1:00; vl = 0:53; vr = 0:0 and VS = 2:0 (63)

This predicts a single shock, starting at t = 0, x = L

2
, which should properly end up

in the upper right corner from Figure 1. Recall that Figure 1 in section 8.2, which

was solved from the microscopic equations of motion, relies on the same initial data

for � and v.

We conclude that the cold closure exhibits some shortcomings:

(i) The microscopic equations of motion predicts for the Riemann problem no sin-

gle shock solution, and furthermore the shock like structure, which results from

Newtons equations reaches the boundary earlier as it is predicted by VS = 2.

(ii) The macroscopic cold closure equations predicts energy production across the

shock, which is in contrast to the microscopic equations of motion.

The reason for these shortcomings might be the neglection of the development of

thermal motion in the cold closure assumption.

9 The Thermal Closure

9.1 Thermal Motion, Temperature and Distribution Func-

tion

In the last section we have identi�ed one reason for failure of the applicability of the

cold closure to the considered initial value problem: We ignored the development of

the stochastic thermal motion. These will be taken into account now.
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We start with the introduction of the macroscopic temperature �eld T (t; x) and

de�ne this quantity by the kinetic energy of the excess motion of the particles:

�

2
T (t; x) =

1Z
0

NX
�=1

1

2
C� (#; t;x)2 �� (#; t;x) d#: (64)

Note that the cold closure assumes C� (#; t;x) = _x� (#) � v (t; x) � 0, and thus

forbids the generation of thermal motion. This is obviously an arti�cial assumption

and explains the di�erence of the microscopic result to the Rankine Hugoniot pre-

diction of the last section. From now on we include the temperature in the list of

macroscopic variables.

We de�ne thermal motion by two assumptions:

(i) The distribution of distances and velocities are completey uncorrelated, so that

their common distribution has the probability density G : R
+
0 � R ! R

+
0 where

G (r; c) � 0 is the product of two propability densities F : R+
0 ! R

+
0 and f : R !

R
+
0 :

G (r; c) = F (r) f (c) ;

1Z
0

F (r) dr = 1;

1Z
�1

f (c) dc = 1 : (65)

(ii) The velocities c are assumed to be distributed by the Gaussian density

fG (�; c) =

r
�

2�
exp

�
�� c

2

2

�
: (66)

Later on we will see by solving Newtons equations in equilibrium that for a �xed

temperature T , the function f is realized by f(c) = fG(�; c), where � is the inverse

temperature 1
T
. This notation is often used in thermodynamics.

(iii) The distances r are assumed to be distributed by the function

F̂ (�; �; r) =
1

z (�; �)
exp (��r � �' (r)) ; with

(67)

z (�; �) =

1Z
0

exp (��r � �' (r)) dr:

The quantity � is determined by the mean distance of two neighbouring particles

1

�
= �r (�; �) =

1Z
0

rF̂ (�; �; r) dr: (68)

Later on we will see by solving Newtons equations in equilibrium that for �xed

density � and temperature T the function F̂ is realized by F (r) = F̂ (�; 1
T
; r).
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In addition to (68) we also de�ne the mean potential energy, which will be used

next:

�' (�; �) =

1Z
0

' (r) F̂ (�; �; r) dr: (69)

The assumptions (i),(ii) and (iii) are in accordance with the Maximum Entropy

Principle and hold when the atomic chain is in thermal equilibrium. Regarding the

Maximum Entropy Principle we refer the reader to the detailed discussions by W.

Dreyer [9] and G. Boillat & T. Ruggeri [10].

9.2 Preparation of the Atomic Chain in Thermal Equilibrium

In thermal equilibrium the macrostate of the atomic chain is completely determined

by three constant values of mass density � > 0, velocity v and temperature T . Now

we prepare microscopic initial data for an atomic chain, consisting of N particles,

for given values of �, v and T . The length of the chain is L = (N � 1)=�.

The preparation procedure is devided into three steps:

(i) We start with a con�guration where all positions of the atoms are distributed

equidistantly according to the given density � and where the mean velocity v of the

particles is zero:

y



0 = (
 � 1)=� ; _y
0 = C
 ; 
 = 1; 2; :::; N: (70)

Here the stochastic excess velocities C
 are Gaussian distributed for 1 < 
 < N

with mean velocity < C
 >= 0 and mean square T 0 =< (C
)2 >. T 0 is determined

by the obvious equation that uses the mean potential energy given in (69):

1

2
T 0 + '(

1

�
) =

1

2
T + �'(�;

1

T
) : (71)

The parameter � has to be determined here by (68) for given � and T . The atoms

at y00 = 0 and yN0 = 0 are constrained to zero velocities.

(ii) In a second step we solve the microscopic equations of motion for these initial

data. The condition (71) are choosen so that after some time t0 > 0 the positions

of the atoms are additionally distributed according to the thermal distribution of

distances (67). There result new positions y
(t0) and velocities _y
(t0), 
 = 1; :::; N .

(iii) In a third step we de�ne the desired initial data by

x



0 = y
(t0) ; _x
0 = _y
(t0) + v : (72)
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9.3 Calculation of Distribution Functions by Solving New-

tons Equations and Comparison with the Analytical For-

mulae

By solving Newtons equations for the global data � = 17:12 and � = 0:94, so
that �(�; �) = 2:0 and T = 1:06, we may determine the distributions of velocities

and distances. These are depicted in Figure 2 by the dots. The solid lines in

Figure 2 represent the analytical functions (66) and (67), respectively. We observe a

perfect agreement between the empirical microscopic distributions and the analytical

functions.
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Fig. 2 Distribution of velocities and distances, comparison of microscopic data and

analytical results.

9.4 Thermal Closure and Field Equations

The agreement that we have found in the last section serves as a motivation to

replace the cold closure by the thermal closure. We shall assume now that the

distribution functions of global equilibrium are also realized locally at any space

time point. Thus we describe the macrostate of the atomic chain by the three

variables �, v and T .

The system of �eld equations relies on the three conservation laws (37), which we

write down in the one dimensional integral formI
@


(�dx� �vdt) = 0;

I
@


�
�vdx�

�
�v2 + p

�
dt
�
= 0;

I
@


��
�

2
v2 + �u

�
dx�

�
�

2
v2 + �u+ p

�
vdt

�
= 0 :

(73)

Here 
 is a convex set in space time with piecewise smooth, positive oriented bound-

ary @
.
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These equations must be supplemented by constitutive laws that relate the pressure,

the internal energy and the heat �ux to the variables. This is achieved by the ansatz:

1

�
=

1Z
0

rF̂ (�; �; r) dr = r̂ (�; �) ;

T =

1Z
�1

c2fG (�; c) dc =
1

�
;

p = �T � �

1Z
0

r'0 (r) F̂ (�; �; r) dr =
�

�
; (74)

u =
1

2
T +

1Z
0

' (r) F̂ (�; �; r) dr =
1

2
T + �' (�; �) = û (�; �) ;

q = 0:

The list (74) de�nes the thermal closure with fG (�; c) and F̂ (�; �; r) given by (66)

and (67), respectively. In each line the �rst equality results from the evaluation of

the microscopic representations (38) and (39). The nonconvective part of the energy

�ux q is zero because the used distribution functions assumes local equilibrium.

The second equality in each line introduces some useful abbreviations that will be

used in the following. Furthermore the pressure integral was subjected to a partial

integration. The remaining integrals must be evaluated numerically.

We have thus established a closed system of �eld equations for the variables �, v

and T or alternatively for the variables �; � and v. The system consists of the

conservation laws (73) and of the constitutive equations (74).

After having closed the system of conservation laws, the integral form (73) takes

care of discontinuous shock solutions. This is in analogy to the cold closure. The

system of di�erential equations (37) result from its weak form (73), that additionally

yields the shock conditions: Let be (�; v; T ) and (�0; v0; T 0) the constant states left
and right, respectively, to a shock front with velocity VS. By applying a Galileiian

transformation it is always possible to assume v0 = 0 without loss of generality.

Then we obtain after some rearrangements the followingRankine Hugoniot shock

conditions:

VS =
v

1� �0

�

;

v2 =

�
1

�0
� 1

�

�
(p� p0) ;

0 = 2 (u0 � u) +

�
1

�0
� 1

�

�
(p+ p0) :

(75)

We proceed to establish the properties of the �eld equations and to �nd a shock

selection criterion. To this end we shall prove �rst that it is possible to de�ne a
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speci�c entropy h (�; T ), which satis�es the so called Gibbs relation between u (�; T ),
p (�; T ) and T > 0 :

dh =
1

T
du+

1

T
pd

�
1

�

�
; (76)

The Gibbs relation imply an integrability condition which guarantees that the right

hand side of (76) is indeed an integrable di�erential form:

@u

@

�
1
�

� = T
@p

@T
� p; (77)

In order to check (76) we write down the following relations for the mass density and

the internal energy, and use the function z (�; �) =
1R
0

exp (��r � �' (r)) dr which

was introduced in (67):

1

�
= �

@ ln
�
z(�;�)p

�

�
@�

and u = �
@ ln

�
z(�;�)p

�

�
@�

: (78)

Consequently with p = �=� we may form the following di�erential form, which

depends on � and �;

�

�
du+ pd

�
1

�

��
= d

�
�u+

�

�
+ ln

�
z (�; �)p

�

��
: (79)

This proves (76) and identi�es the speci�c entropy:

h = �u+
�

�
+ ln

�
z (�; �)p

�

�
: (80)

Note that it is possible to prove the integrability condition (77) directly from the

thermal closure assumption (74) without any knowledge about the entropy density

h in (80).

Finally we determine the condition which leads to a hyperbolic system that can be

brought additionally into the symmetric hyperbolic form.

This can be achieved by replacing the speci�c internal energy density u by the energy

density e = � (u+ v2=2) and after some simple rearrangements we obtain:

d (�h) = ��d�+ ��vd (�v) + �ede; with
(81)

�� = �
�
u� Th+

p

�
� v2

2

�
; ��v = � v

T
; �e =

1

T
:

Hereafter we prove the identity

d (�hv) = ��d (�v) + ��vd
�
�v2 + p

�
+ �ed

�
�
�
u+ v2=2

�
v + pv

�
: (82)
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Finally we establish the conditions for convexity of ��h (�; �v; �e), i.e. with uA =

(�; �v; �e). Convexity means that the matrix
@
2(�h)

@uA@uB
is negative de�nit. Let 
 �

R
+
0 � R

+
0 be any convex region in the (�; �) state space. If the Legendre transform

h0(�; �) = ln
�
z(�; �)=

p
�
�
of the entropy density is concave in 
, then to each

(�; �) 2 
 there corresponds a unique pair (�; T ) that satis�es � = 1
T
and the

equation (68), and guarantees additionally the negative de�niteness of the matrix
@
2(�h)

@uA@uB
.

These results have the important consequence that

@�h

@t
+
@�hv

@x
=��

�
@�

@t
+
@�v

@x

�
+ ��v

�
@�v

@t
+

@

@x

�
�v2 + p

��
+

(83)

�e

�
@e

@t
+

@

@x

�
�
�
u+ v2=2

�
v + pv

��
holds, so that the �eld equations have a convex extension and can be brought into

the symmetric hyperbolic form.

9.5 Riemannian Initial Data and Preparation of the Atomic

Chain

In the next example we study the following macroscopic initial value problem: We

describe the macrostate of the chain with N particles and with �xed length L by

three variables, viz. the mass density � (t; x) ; the velocity v (t; x) and the temperaure

T (t; x). The initial data are

� (0; x) =

8<
:

�l

�r

; v (0; x) =

8<
:

vl

vr

, T (0; x) =

8<
:

Tl

Tr

;

x � L

2

for

x > L

2
.

(84)

These data are also not su�cient to solve an initial value problem for the N � 2
equations of motion (34). Thus again there arises the question how to prepare the

initial data of the atomic chain:

At �rst we consider the atomic chain to be composed of two half chains of length

L=2 with Nl and Nr particles, respectively, where Nl, Nr and L are given by (44).

Each half chain is assumed to be in thermal equilibrium at its individual densities

�l, �r and at its individual temperatures Tl, Tr. The independent preparation of

thermal equilibrium for each half chain was already described in detail in section

9.2.

Finally we bring both half chains in contact.

9.6 Failure of the Thermal Closure

We choose the initial data �l = 1:5, �r = 1:0, vl = vr = 0, Tl = Tr = 0, i.e. we

start with two cold chains, and solve Newtons equations for N = 35000 particles.
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We choose the scaling factor � = 2800 and calulate from the obtained data at time

t = 1:0 the �elds of density and temperature. The results are depicted in Figure 3.
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Fig. 3 Density and temperature according to Newtons equations for Riemannian

initial data.

The density exhibits the development of a shock like structure and of two weak

discontinuities. Furthermore we observe that at the position where the density

forms the shock like structure, the temperatures apparently develops a shock which

is accompanied by a tail. In the region of the weak discontinuities there is no

development of the temperature, i.e. the atomic chain remains cold and is thus

completely determined by the cold closure in that region.

Next we ask whether the chain has established local thermal equilibrium, at least in

the vicinity of the shock. We answer this question by using the data that we have

obtained from the solution of Newtons equations, and we calculate the distribution

of distances.

The Figure 4 shows the surprising result.
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Fig. 4 Distribution of distances according to Newtons equations at time t = 1:0
and at position x = 6:1.
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The distribution which is depicted in Figure 4 results at time t = 1 and at position

x = 6:1. Properly we should expect a graph which has qualitatively the shape of the
equilibrium distribution from Figure 2. However, there results a distribution with a

complete di�erent behaviour.

We conclude that the thermal closure fails to describe the macroscopic behaviour

of the atomic chain. Next we shall explain this fact and the indication oscillator

distribution in detail.

10 The Oscillator Closure

10.1 Oscillator Motion, Temperature and Distribution Func-

tion

A careful study of the microscopic motion of the atomic chain has revealed that the

thermal closure cannot predict appropriately the development of the Riemannian

initial data of the last example. Recall that thermal motion as it was de�ned in

section 9.1. is indicated by a stochastic change of postions and velocities, so that

both quantities are uncorrelated.

In the current case a detailed study of the microscopic motion shows that the thermal

motion of the N atoms is generated by N=2 oscillators of the following type:

In general the atomic chain consists at any time t ofN�1 di�erent distances between
the particles, i.e. for �xed particle number � we have

f:::; r��3 (t) ; r��2 (t) ; r��1 (t) ; r� (t) ; r�+1 (t) ; r�+2 (t) ; r�+3 (t) ; :::g : (85)

However, at the considered temperatures only two di�erent distances r (t) and s (t)
have appeared alternatively, so that the microscopic motion is of the kind

f:::; s (t) ; r (t) ; s (t) ; r (t) ; s (t) ; r (t) ; s (t) ; :::g : (86)

Furthermore r (t) and s (t) are restricted by the condition

r (t) + s (t) =
2

�
: (87)

We conclude that there is only one representative equation of motion for the oscil-

lator motion, viz.

�r (t) = 2

�
'0
�
2

�
� r (t)

�
� '0 (r (t))

�
: (88)

Instead of r we use sometimes for convenience the quantity x = (1=�� r) =2 which

measures the displacement from the mean distance. Note that the mass density is a
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constant on the atomic scale, i.e. within the support of the window function. Thus

we can write

�x (t) = '0
�
1

�
� 2x (t)

�
� '0

�
1

�
+ 2x (t)

�
: (89)

Without loss of generality we solve this equation for the initial displacement x (0) = 0
and for a given positive initial velocity _x (0).

Before we proceed, we note that the equations (87), (88) and (89) imply that the

velocities of the two particles which constitute the oscillator, say _x�+1 (t) and _x� (t),
are restricted according to _x�+1 (t) = � _x� (t) : This fact will become important

when we evaluate the microscopic representations of the macroscopic �elds.

The �rst integral of (89) reads _x (t) = �
r
e0 � '

�
1
�
� 2x (t)

�
� '

�
1
�
+ 2x (t)

�
;where

e0 is the integration constant. The oscillator moves between its minimal and maxi-

mal distances r� and r+, which are restricted by

r� + r+ =
2

�
: (90)

Finally we choose the integration constant e0 = ' (r�)+' (r+) : The representation
of _x (t) that we shall use further on is now given by

_x (t) = �
s
' (r+) + ' (r�)� ' (r (t))� '

�
2

�
� r (t)

�
: (91)

Due to (91) the mean value of _x(t) in time is zero, and we shall de�ne the r-dependent

positive part of the excess velocity:

C(r�; r+; r) =
p
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r): (92)

It is important to recognize that the only microscopic variable which is left, is the

distance r. Thus we can construct now a distribution function that only takes care

for the distribution of possible values of r.

To this we de�ne the duration of a half period of the oscillator motion where

_x (t) � 0:

t� (r�; r+) =

r+Z
r�

drp
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r)

> 0: (93)

The integral exists in the convex region of ', because there the integrand approaches

1=
p

(r � r�)('0(r+)� '0(r�)) and 1=
p

(r+ � r)('0(r+)� '0(r�)), respectively, in

the limits r! r� and r! r+.
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Next we de�ne a function w (r�; r+; r) on the interval (r�; r+) according to

w (r�; r+; r) =
1

t� (r�; r+)
p
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r)

;

(94)

with

r+Z
r�

w (r�; r+; r)dr = 1

Note that w (r�; r+; r) dr gives the the probabilty to �nd at any time t the distance

r within the in�nitesimal interval [r; r + dr]. From (94) there results the important

symmetry condition

w (r�; r+; r) = w (r�; r+; r� + r+ � r) ; (95)

The distribution function w (r�; r+; r) will be used in section 10.3 to establish the

oscillator closure. However, already here we shall introduce the temperature of the

oscillator motion as follows

T =
1

t�(r�; r+)

t�(r�;r+)Z
0

_x(t)2 dt =
1

t�(r�; r+)

r+Z
r�

dr

w(r�; r+; r)
: (96)

This de�nition is analogue to the corresponding de�nition (74)2 for the thermal

closure.

10.2 Realization of the Oscillator Distribution by Newtons

Equations

In section 9.6 we considered Riemannian initial data with zero temperature which

lead for later times in some region to a temperature �eld. The distribution function

in that region is called oscillator distribution and is displayed in Figure 4.

The statistical parameters to that curve are �(t = 1; x = 6:1) = 1:25 and

T (t = 1; x = 6:1) = 0:033. Now we may use these data in order to calculate

r� = 0:70 and r+ = 0:90 from (90) and (96). The solid line in Figure 5 represents the

analytical expression (94), and for a comparison with the corresponding distribution

that was calculated from Newtons equations, we have put the data from Figure 4

once more as dots.
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Fig. 5 Distribution of distances, comparison of microscopic data and analytical

results.

We state complete agreement between both procedures.

Consequently we conclude that a given pair (�; T ) does not constitute a unique

equillibrium, because we know from section 9.2 that a pair (�; T ) may be realized by

the classical thermal motion, while here we have learned that the same pair could

also be realized by the oscillator motion.

10.3 Oscillator Closure and Field Equations

We consider again the macroscopic system of the three conservation lawsI
@


(�dx� �vdt) = 0;

I
@


�
�vdx�

�
�v2 + p

�
dt
�
= 0;

I
@


���
2
v2 + �u

�
dx�

��
2
v2 + �u+ p

�
vdt

�
= 0 :

(97)

which must be supplemented by constitutive laws that relate the pressure, the in-

ternal energy and the heat �ux to the basic variables � and T . Note that the

constitutive laws cannot depend on the other basic variable v.

In the list of variables we replace now � and T by r� and r+ , because these latter

quantities appear explicitely in the distribution function w (r�; r+; r). Consequently
we write down the mass density, the pressure, the internal energy, the temperature

and the heat �ux as functions of r� and r+:
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This is achieved by the closure ansatz:

1

�
=

r+Z
r�

rw (r�; r+; r) dr =
1

2
(r� + r+) ;

T =

r+Z
r�

C2w (r�; r+; r) dr =
1

t�

r+Z
r�

p
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r) dr;

p = �

r+Z
r�

�
C2 � r'0 (r)

�
w (r�; r+; r) dr (98)

= � 1

t�

r+Z
r�

'0 (r) drp
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r)

;

u =

r+Z
r�

�
1

2
C2 + ' (r)

�
w (r�; r+; r) dr =

1

2
(' (r�) + ' (r+)) ;

q = 0:

The list (98) de�nes the oscillator closure with t�(r�; r+); w (r�; r+; r) andC (r�; r+; r)
given by (93), (94) and (92), respectively. In each line the �rst equality results from

the evaluation of the microscopic representations (38) and (39) with the oscillator

distribution function. The nonconvective part of the energy �ux, q, is zero because

the individual particle velocities of an oscillator cancel each other. The second

equality in each line results from some simple manipulations of the integrals. The

remaining integrals must be evaluated numerically.

We have thus established a closed system of �eld equations for the variables �, v

and T or alternatively for the variables r�; r+ and v. The system consists of the

conservation laws (97) and of the constitutive equations (98). Using the closure

conditions (98) we are able to derive from (97) the di�erential form (37) of the

conservation laws as well as the Rankine Hugoniot conditions (75), which are also

valid here.

10.4 Properties of the Field Equations

Recall that the oscillator closure assumes randomly distributed distances between

the particles of the chain. However, in contrast to the thermal closure, their velocities

are determined from Newton s law for given distances. Nevertheless, even in this

case there holds the Gibbs equation

Tdh = du+ pd

�
1

�

�
: (99)
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This fact will be proved in the following, and an explicit expression for the speci�c

entropy h will be given. The subsequent reasoning that leads to the symmetric

hyperbolic form of the system (97) and (98) runs along the same lines as it was

carried out for the thermal closure and will therefore be skipped.

Proposition: (i) In the convex region '00(r) > 0 there holds the integrability

condition between the functions density � (r�; r+), temperature T (r�; r+), pressure
p (r�; r+) and internal energy u (r�; r+), which are de�ned in (98), viz.

@

@r�

�
1

T

�
@u

@r+
+

1

2
p

��
=

@

@r+

�
1

T

�
@u

@r�
+

1

2
p

��
: (100)

(ii) The condition (100) implies the existence of the speci�c entropy function h (r�; r+)
according to

@h

@r�
=

1

T

�
@u

@r�
+

1

2
p

�
;

@h

@r+
=

1

T

�
@u

@r+
+

1

2
p

�
; (101)

which yields after integration

h (r�; r+) = ln

0
@ r+Z
r�

p
' (r+) + ' (r�)� ' (r)� ' (r� + r+ � r) dr

1
A : (102)

Proof: (100) is the integrabily condition for (99). By introducing the functions

p0 (r�; r+) = t� (r�; r+) p (r�; r+) and T0 (r�; r+) = t� (r�; r+)T (r�; r+), and with

(98) 4, we may write down (100) in its equivalent form

@p0

@r+
� @p0

@r�
= (103)

'0 (r+)
@t�
@r�

� '0 (r�)
@t�
@r+

+
1

T

�
('0 (r�) + p)

@T0

@r+
� ('0 (r+) + p)

@T0

@r�

�
:

Next we calculate the identities

@T0

@r�
=
t�
2
('0 (r�) + p) ;

@T0

@r+
=
t�
2
('0 (r+) + p) ; (104)

and introduce these in (103), which reduces to

@

@r+
(p0 + '0 (r�) t�) =

@

@r�
(p0 + '0 (r+) t�) : (105)

If we use again the identities (104), we can write down the condition (105) in the

form

@2 T0

@r�@r+
=

@2 T0

@r+@r�
: (106)

34



There remains to derive the not obvious existence and continuity of the t� and p0
derivatives. Here we shall present their explicit form which may also serve to check

the condition (105) by direct substitution:

@t�
@r+

=
+t�

r+ � r�
� 1

2

r+Z
r�

'0(r+)� '0(r) r�r�
r+�r� � '0(r� + r+ � r) r+�r

r+�r�

['(r�) + '(r+)� '(r)� '(r� + r+ � r)]
3

2

dr ;

@t�
@r�

=
�t�

r+ � r�
� 1

2

r+Z
r�

'0(r�)� '0(r) r+�r
r+�r� � '0(r� + r+ � r) r�r�

r+�r�

['(r�) + '(r+)� '(r)� '(r� + r+ � r)]
3

2

dr :

(107)

@p0

@r+
=� t�

r+ � r�
� '0(r+)

+
1

2

r+Z
r�

'0(r+)
h
'0(r) r+�r

r+�r� + '0(r� + r+ � r) r�r�
r+�r�

i
� '0(r)'0(r� + r+ � r)

['(r�) + '(r+)� '(r)� '(r� + r+ � r)]
3

2

dr ;

@p0

@r�
=+

t�
r+ � r�

� '0(r�)

+
1

2

r+Z
r�

'0(r�)
h
'0(r) r�r�
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� '0(r)'0(r� + r+ � r)
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3
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These integrals exist in the convex region '00(r) > 0, but they cannot be obtained

by a simple di�erentiation rule, because there appear singularities with exponent

�3=2 at r = r� and at r = r+. Here we have calculated the partial derivatives by

its de�nitions. For example (107)2 may be obtained as follows: We start with

@t�
@r�

= lim
�!0

1

�
[t�(r� + �; r+)� t�(r�; r+)] ; (109)

and substitute the integral representation for t�(r�+�; r+) with the lower integration
limit r� + � and the upper integration limit r+ by the transformation

r! r� + (r+ � r�)
r � r� � �

r+ � r� � �
: (110)

Then in (109) both representations for t�(r� + �; r+) and t�(r�; r+) have the same

integration limits r�, and we can combine them to a single integral in order to pass

to the limit �! 0. The other representations may be obtained in the same way.

10.5 Transition from the Thermal Motion to the Oscillator

Motion

Recall that we have considered in section 9.6 Riemannian initial data with zero

temperature. For later times these data imply the development of a temperature
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�eld that was not constituted by thermal motion but by oscillator motion.

Now we consider initial Riemannian data with nonzero temperature. In particular

we prepare both half chains so that they initially realize thermal motion with dif-

ferent temperatures. The data are �l = 1:5, �r = 1:0, vl = vr = 0, Tl = 0:01 and

Tr = 0:005. The total chain consists of N = 10000 particles, and for the macroscopic

representations we choose the scaling factor � = 800.

These data are used now to solve Newtons equations, and to calculate at time t = 1:0
subsequently the temperature �eld as well as the distributions of the velocities and

the distances at various positions. In the sequel we are going to discuss the surprising

results which are depicted in Figures 6 and 7.

The upper left graph in Figures 6 and 7 shows the temperature �eld at time t = 1:0.
The shape of the �eld is almost the same that we have obtained in Figure 3, where

we started with zero temperature in both half chains. However, the microscopic

motion behind the two temperature �elds is completely di�erent. The microscopic

motion that induces the temperature �eld in Figure 3 is pure oscillator motion.

On the contrary, the microscopic motion that induces the temperature �eld in this

section is neither pure oscillator motion nor pure thermal motion but a mixing of

both. This statement is exhibited by the other graphs of Figures 6 and 7. These

depict at time t = 1:0 the distributions of velocities and distances, respectively, for

�ve di�erent positions along the x coordinate.
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Fig. 6 Transition of the distributions of velocities for various positions within the

temperature pulse.
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Fig. 7 Transition of distribution of distances for various positions within the tem-

perature pulse.

We observe that the �rst and the last distribution functions, which are displayed in

Figures 6 and 7, represent the thermal motion which is due to the thermal prepa-

ration of both half chains. The intermediate distribution functions exhibit some

kind of transition between thermal and oscillator motion. In particular, the distri-

bution of distances at position x = 6:8 causes a reminiscence to the pure oscillator

distribution from Figure 5.

We conclude that in addition to the thermal and oscillator motion between the

positions from x = 5:5 up to x = 7:1 there appear new kinds of microscopic motions

that were not considered before. To all these di�erent motions there correspond

distribution functions, which represent di�erent kinds of local equilibria. We shall

illustrate now the consequences of this statement and start the discussion with a

de�nition:

A given distribution function describes a local equilibrium, if it is possible to prepare

the microstate of the chain so that the local distribution can also be realized globally

independent of time and space in a total chain with an arbitrary large number of

particles, and if this global solution is a stable equilibrium.

We pose and answer now two questions: Is this de�nition in accordance with conven-

tional de�nitions of local equilibrium? And secondly, do the distribution functions

from Figures 6 and 7 describe local equilbria?

Regarding the �rst question we point out that there is no unique de�nition of local

equilibrium in the literature.
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Often local equilibrium is de�ned by vanishing heat �ux and vanishing pressure

deviator. Sometimes this de�nition is replaced by the statement that a body is at

(t; x) in local equilibrium if it is su�ciently described by the prescription of density

and temperature at this point.

Regarding the second question we have observed that according to our de�nition

all the distribution functions which are depicted in Figures 6 and 7 describe local

equilibria. This relies on the observation, see section 7.3, that the local microscopic

motion as well as the macroscopic �elds depend on time and space only via the ratio
x

t
, if N is su�ciently large. This case will be considered now exclusively.

There is an interesting consequence of this observation which can be read o� from

Figure 8, which assumes without loss of generality the jump in the Riemannian

initial data at x = 0.

0

t   t  > 01 2 3t   = 2 t t   = 3 t1 1


1


2


3

...

Fig. 8: The scaling invariance of the microscopic Riemann solution

We consider the in�nite sequence of regions 
1, 
2, 
3, ..., of increasing size. If the

�elds uA(x=t) do not change signi�cantly in time and space within a small region,

say 
1, then the same is true in a macroscopically large region 
n, with large n.

We describe now how a chain must be prepared in order to establish globally the

local distributions at any point (t0; x0). Around this point we choose a region, say


1, su�ciently small so that the microscopic motion within 
1 does not change

signi�cantly.

Next we in�ate 
1 within the segment from Figure 8 in order to end up with a

large region 
n from where we use the global data for the global construction of the

distributions of velocities and distancies.

Recall that the microscopic motion in 
n is the same as in 
1.
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Finally we discuss an interesting

consequence. We calculate the

heat �ux �eld at time 1:0. The

result is shown in Figure 9. It is

important to recall that the heat

�ux is zero for the pure thermal

motion as well as for the pure os-

cillator motion. On the contrary,

those microscopic motions that

constitute the other local equilib-

ria induce a nonzero macroscopic

heat �ux. However this does not

mean, that the heat �ux is pro-

portional to the temperature gra-

dient.
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Fig. 9 Heat �ux �eld at time t = 1.

This can be immediately observed from a comparison of Figure 9 with the corre-

sponding temperature �eld from Figures 6 and 7. Moreover, obviously also the time

and space dependence of the heat �ux is given by the ratio x=t, and for that reason,

the heat �ux cannot be proportional to the temperature gradient.

Thus in the considered examples there is no accordance between our de�nition and

the conventional de�nition of local equilibrium.

The conventional de�nition of local equilibrium assumes implicitely that the micro-

scopic motion is uniquely determined by a �nite number of macroscopic parameters

like density and temperature.

This is not true in our examples, even then if we only consider pure thermal and

pure oscillator motion.

Thus generally the appropriate closure changes within a given Riemann solution.
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