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Abstract

In this paper global H® and LP-regularity-results for the stationary and
transient Maxwell-equations with mixed boundary-conditions in a bounded
spatial domain are proved. First it is shown that certain elements belonging
to the fractional-order domain of the Maxwell-operator belong to H*(§1) for
sufficiently small s > 0. It follows from this regularity result that H*(Q) is
an invariant subspace of the unitary group corresponding to the homogeneous
Maxwell-equations with mixed boundary-conditions. In the case that a possi-
bly nonlinear conductivity is present a LP-regularity-theorem for the transient
equations is proved.

1 Introduction

The subject of this paper are global H*- and LP-regularity theorems for the station-
ary and transient Maxwell equations in a bounded domain with mixed boundary-
conditions describing the electromagnetic field, [10].

Let Q C IR® be a bounded domain with piecewise smooth boundary 9, I'; C 90

and T, & 60 \ T';. The initial-boundary-value problem

eE = curl H, and p0;H = — curl E, (1.1)
supplemented by the initial-boundary-conditions
nAE=0on (0,00) xI'1, 7AH=0o0n (0,00) x I, (1.2)

E(0,z) = Eo(z), H(0,z) = Ho(z). (1.3)

with Eg, Hg € L?(Q) is considered. Such boundary value problems arise for example
in semiconductor modelling, see [6], [7], where I'; is the insulating boundary and T’y
represents the electric contacts.

In (1.1) the variable matrices ¢, u € L°(£2, €®*3) are assumed to be uniformly posi-
tive.

The following H*-regularity-result will be proved.
There exist § € (0, s0) depending only on ©,T'1,e and g, such that for all s € [0, 5]
and Eq, Hy € H*(Q) one has

(E,H) € C([0,), H*(@)) (1.4)



Here H*(Q2) denotes the L*-Sobolev space of fractional order s, see [18].
For this purpose it is assumed that ¢, u have the multiplier property

eF € H*(Q) and pF € H*(Q) for all vector-fields F € H*(Q)

for some so € (0,1/2).

This condition is fulfilled for sg € (0,1/2) in the case that the coefficients are
piecewise smooth, that means €, 4 may have jump discontinuities on finitely many
2 dimensional surfaces. In particular a piecewise constant €, u is admissible, which
is important for many applications.

In general 1.4 does not hold for s > 1/2 under these general assumptions on Q, T
and the coefficients.

The proof of 1.4 relies on the following H*-regularity-result for the stationary Maxwell-
equations.

There exist § € (0, s¢) depending only on Q,T'; and e, such that for all s € [0, 5] and
e € W*(Q,T1) with ee € X*(Q,I'1) one has

e € H(Q). (1.5)

Here W*(,T'1) and X*(Q2,I'1) denote for s € [0, 1] the complex interpolation spaces
[L3(Q), W(Q,T4)]s and [L*(R), X(Q,T1)]s, where W(,T;) denotes the space of all
E € L*(Q) with curl E € L?(Q) and s AE = 0 on I'; and X(Q,T';) denotes the
space of all D € L?(Q) with div D € L*(Q) and 77- D = 0 on T's.

The regularity-results 1.4 and 1.5 have already been obtained in [7] for the case
that the spatial domain Q is two-dimensional using a H!'*-regularity-result for
mixed second-order elliptic boundary-value-problems similar to the WP- result in
[5]. However, in this paper the general three-dimensional case is considered.

1.5 implies that the solution u € H*() of the mixed elliptic boundary-value-problem
div (eVu) = F € L*(Q), uw=0onT;, and ,u =0 on Ty,
satisfies Vu € H*(Q) for all s € [0, 3], see [2], [4], [5], [15], [16] and [17]. This follows

from 1.5 using the fact that Vu € W(Q,I'1) and eVu € X(Q,T)

(
A further consequence of 1.5 is that W(€,T1)Ne 1(X(,T1)) is compactly imbedded
in L?(Q). This has already been proved in [8] and in |1
boundary-conditions.

4], [19] without mixed

In section 6 a LP-regularity-theorem for Maxwell’s equations with conductivity
e E = curl H— ¢E, and p0;H = — curl E, (1.6)

supplemented by the same initial-boundary-conditions as inl.1-1.3 is proved.

Here o € L*(f) represents the electrical conductivity. It is shown that there exists
some p € (2,00) depending only on ©,T'1,¢ and g, such that
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(E,H) € C(]0,00), LP(Q)) for all p € [2,p] and initial-states (Eq, Ho) € LP(Q?) with
curl Eg € L*(Q), curl Hy € L*(Q), 7 AE;=00onT; and 7 A Hg = 0 on Ts.

Here the H*-regularity result 1.5 and the W'P-result in [5] are used. The term oE
in 1.6 can also be replaced by certain nonlinear operators modelling for example a
nonlinear resistor, see section 6.

2 Notation, assumptions and auxiliary lemmata

Suppose that Q C IR? is a bounded domain, I'; C 8 and let T, f 590 \Ty.
Then the following function-spaces are intrduced.

For s € [0,1] the fractional-order Sobolev-space is denoted by H*(2). It coincides
with the complex interpolation space [L*(Q), H'(Q)], between L*(Q2) and H'(Q).

Let Z(Q,T;) be the closure of CP(IR®\ Ty) in H*(Q). Next, Ham(Q) denotes the
space of all E € L?(Q) with curl E € L*(Q). The space of all E € H,y(Q) with
77 AE =0 on I'; in the sense that

/Q(E curl h — h curl E)dz = 0 for all h € C°(IR*\ Ty) (2.7)

in denoted by W(,T';).
Let X(Q,T1) be the space of all D € L?() with div D € L*(Q) and ZD =0 on I,

in the sense that

/ DVpdz = —/ div Dedz for all ¢ € Z(Q,T').
Q Q

Next, W*(Q,T'1) and X*(Q,T'1) denote for s € [0, 1] the complex interpolation spaces
[22(2), W(9, T2, and [L(Q), X(9,T4)].

Finally, let W5(Q,T1) and Xo(2,T'1) be the space of all E € W(Q,I';) and D €
X(Q,T'1) with curl E =0 and div D = 0 respectively.

In the sequel the following lemma will be used frequently, which says that piecewise
smooth functions are H*-multipliers for s < 1/2.

Lemma 1 Let U C RN be a Lipschitz-domain and s € [0,1/2).

Assume further that the function f: RN — @ has the form g = Y7_1 Xc, fx;

where the bounded functions fi, € C*(IRY), are Hélder-continuous for some a > s
and xc, are the characteristic functions of Lipschitz-domains Cy C RN .

Then gf € H*(U) for all f € H*(U).

Proof:
For each Lipschitz-domain G C IRY and s < 1/2 one has

xcF € H°(IRY) with ||xcF| s for all F ¢ H*(RRY) (2.8)

e < cg sl | F




with some cgs € (0,00) independent of F. This follows from the well-known fact
that the extension ¢ € L2(IRN) of a function ¢ € H*(U) by zero outside U belongs
to H*(IRY), provided s < 1/2, see [11], chapter 11.3. Let u € H*(U). Since U is
a Lipschitz-domain and s < 1/2, the extension @ of u defined by 4(z) = u(z) if
z € U and i(z) = 0 if z € RN \ U belongs to H*(IRY). Moreover, (2.8) yields
xc;u € H*(RY). Next,

fixe; € H*(RY) for all j € {1,..,n}. (2.9)

Here the well known fact is used that bounded functions in Ca(RN) are H°*-
multipliers, provided that a > sg. This follows for example easily from the rep-
resentatation

171

oo N
e = 11 +s [ 4709 S| f(ten + ) — [fpd
k=1

of the H*-norm for s € (0,1), f € H®, where e is the unit-vector in the zj direction,
see [11], ch.1.10.2.

Finally, (2.9) yields gu = >%_, (ijcjﬂ) lv € H*(U).

Lemma 2 Let U,V C IR® be open sets, p € [1,00), w € L} _(U) with curlw €

loc
LY (U). Moreover, let T : V — U be a Bi-Lipschitz transformation.

Define
f(y) ¥ DT(y)*w(T(y)) fory € V.
Then £ € LY (V) with curl £ € LT (V) and

loc

( curl £)(y) = Mz(y)( curl w)(T'(y)) fory €V, (2.10)

where Mz € L2 (V, IR®*3) is defined by Mr(y) & [det DT(y)|DT(y)™*.

loc

This can be found in the appendix of [9]. The main idea is to approximate w and
T by smooth functions.

3 The regularity-theorem for a rectangle
Througout this section let G C IR® be a rectangle, i.e. G & (0,a) x (0,b) x (0,¢)
with a,b,c € (0,00). Let

{(z1,%2,0) : &1 € (0,a),z2 € (0,0)} C Sy C {(z1,22,0) : &1 € [0,a],z2 € [0, ]},

i. e. S, C OG is one side of the boundary of G, and S; el Te! \ Ss.

Recall that Z(G, S;) is the closure of C°(JR*\ S7) in H*(G). It has been shown in
[8], lemma 5i) that W(@G, S1), which consists of all E € Heyi(G) with A E =0
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on S; in the sense described in the previous section, coincides with the closure of
CS(IR?\ S1) in Heyri(G). Since G is a rectangle and Sy is one side of it, this can
also be shown directly by reflection at S, as in the proof of the subsequent lemma

3.

Next, let A € L>=(@G, @%*3) is assumed to be uniformly positve definite, i. e.
re (EA(y)E) > colé]? for all y € G, ¢ € @V with some ¢ > 0 independent of y, &. Tt
is assumed that A has in addition the multiplier property

Af € H*(Q) for all f € H* () with some s € (0,1/2). (3.11)

For example this assumption is fulfilled int he case that A is pieceiwse Holder con-
tinuous, i.e. if it has the form A = Y7, xv, fx, where fi € C*(G), that means f
is Holder-continuous for some a > sqo. Here xy, are the characteristic functions of
Lipschitz-domains U, C IR3.

The aim of this section is to prove the following theorem.

Theorem 1 There exist 5 € (0,50),co € (0,00) depending only on A, such that for
all s €10,5] and E € W*(G, 51) with AE € X*(G, S1) one has
E € H*(G) and ||E||mc) < co (||AE|

x%(G,8,) + ||E||WS(G,51))

For E € L*(G) we define PgE efp Vo € Xo(G, 51), where ¢ € Z(G, Sy) satisfies

/G VoVids = /G EVydz for all 4 € Z(G, Sy). (3.12)

Lemma 3 i) X(G,S;)NW(G,S,) C HY(G).
i) Pg (W*(G, S1)) C H*(G).
i) (1 — Pg)(X*(G, S1)) C H*(G).

Proof:
In order to prove i) assume E € W(G, 51) N X(G, S1).

Let G % {z € R®: (21,25, —x3) € Gorz € G} = (0,a) x (0,b) x (—c, c) and define
E ¢ Lz(é) by reflection at the plane {z3 = 0}, i.e. E(m) & E(z) if z € G and
E(IE) dZEf (El(azl, Ta, —1113), Eg(fEl, Ta, —1113), —Eg(IEl, Ta, —1113)) iz S é with T3 < 0.

Next it is shown that E Efcl)fcurl (é)

Suppose f € C°(IR?) and set g(z) def (fi(z1, 22, —23), f2(z1, 22, —23), —f3(21, 22, —23)).

Then 7 A (f — g) = 0 on S, and since E belongs to the closure of C(IR®\ S;) in
Hewri(G) it follows easily that
/ (f—g) cwrl E — E curl (f — g))de = 0. (3.13)
e
Now,

/~ E curl fdz = / E curl (f — g)dz = / (f —g) curl Edz = / hfdz
é ¢ ¢ é
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where l}(az) def (curl E)(z)ifz € G and (hy(z), ha(z), —hs(z)) def —( curl E)(z1, 22, —3)
if £ € G with z3 < 0. This means

E € Hewt (G) wth curl E = h. (3.14)
From quite similar arguments it follows
divE = p € L¥(G) (3.15)

where p(z) e div E(z) if z € G and p(=) e div E(z1, 25, —z3) if ¢ € G with
x3 < 0.

Now, 3.14 and 3.15 imply E € Hl(é), which can be shown for example by developing
E in Fourier-series on the rectangle G.

Since W (G, S1) is the closure of C°(IR*\'S}) in Heyri(G) and Z(G, S;) is the closure
of C&(IR*\ S1) in HY(G), it follows easily that Vo € Wy(G, S1) for all p € Z(G, S;)
and hence

(1 — Pg)E € Wo(G, Sy) for all E € L*(G). (3.16)

Suppose E € W(G@G, S1). Then 3.16 yields

PrE € XO(G, 51) N W(G, Sl) C Hl(G) by 1)

Now, assertion ii) follows from interpolation.

Next, suppose E € X(G, S1). By the definition of Pg it follows from 3.12 that

/G (1 — Pp)E]Vepde = /G EVids = — /G (div E)pdz for all 4 € Z(G, S,),

which implies (1 — Pg)E € X(G, S1). By 3.16 and i) this yields
(1 - PR)E € W(G,5) N X(G,S:) C HY(G). Finally, assertion iii) follows for

s € [0, 1] from interpolation.

Lemma 4 Pg(H*(G)) C H*(G) for all s € (0,1/2) and
s—0

||PE||B(H5(G),H5(G)) — ]_ .

Proof: .
Suppose E €eH' (G) C W(G, S1). Then lemma 3 ii) yields

PsE C H'(G). (3.17)
For all s; € [0,1/2) one has

H(C) = [1(C), B (C)), (3.18)

see [11]. Since || Pg||B(z2(e),r2(¢)) < 1, it follows from 3.17 and 3.18 by interpolation

that
0

PgE € [Pg(L*(G)), Pa(H" (G))]. C [L*(G), H'(G)], = H*(G)
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and || PgE|
for all s € [0,s1],E € H*(G).

ms(e) < 6 ||El|zs(e)

Now, the main result of this section can be proved.

Proof of theorem 1:

Choose A > 0 with Lo & ||l = AAl|z < 1. Then it follows from 3.11 that there

exists some C; > 0 with
11— AA™H[Bar«(e),me(c)) < CiLo for all s € [0, so]. (3.19)
By lemma 4 and 3.19 there exists 5 > 0, such that for all s € [0, 3]
|| Pg||Beae(a),meopl|l — AA™|Bare(o).rc)) < L2 < 1 (3.20)
Now, assume s € [0,5] and E € W*(G, S;) with AE € X°(G, S1). Then it follows

from lemma 3 iii) that

(1 — Pg)AE € H*(G) (3.21)

and therefore
PsE — PgA'PgAE = PgA~(1 — Pg)AE € H*(G) (3.22)
by 3.11 and lemma 4. Lemma 3 ii) yields PsE € H*(G) and hence by 3.22
t 4 PpA~'PRAE € H*(G) N Xo(G, 1) (3.23)
Let U, & Xo(G, 81) N H*(G) and Q : U, — X, by
Que Pg(1 —AA u+ M =u— APgA 'u + M (3.24)

Suppose u € U,. By assumption 3.11 and lemma 4 one has PgrA~'u € H*(G).
Together with 3.23 this yields Qu € U,. From 3.20 it follows that ¢ is Lipschitz-
continuous on U, (with respect to the H*-topology) with Lipschitz-constant Ly < 1.
Hence @ has a unique fixed-point ugy € U,, i.e.

g = Qllo = Ug — )\PEA_lllo + )\PEA_lpEAE

and thus PgA™'[ug — PgAE] = 0.
Since ug — PR AE € Xo(G, S1), this yields

0= <PEA_1[110 — PEAE], g — PEAE>L2(G)

= <A—1[u0 — PEAE], Ug — PEAE>L2(G) Z Co||llo - PEAEH%Z(G),

which implies

PgAE =, € U, C H*(G) (3.25)
Finally, 3.21, 3.25 yield AE € H*(G) and therefore E € H*(G) by 3.11.



4 Regularity-theorem for general domains

def

Let Q C IR? be a bounded Lipschitz-domain, I’y C 9Q and T'y = 9Q \ T;.
Moreover, let A € L*()) be a uniformly positive variable matrix with the H?®-
multiplier-property for some sq € (0,1/2), i.e.

Aw € H*(Q) for all s € [0, s0] and w € H*(Q). (4.26)

The aim of this section is to prove the following regularity-theorem

Theorem 2 There exist 3 € (0,80),c0 € (0,00) depending only on Q,T'1 and A,
such that for all s € [0,3] and E € W*(Q,T'1) with AE € X*(Q,T'1) one has

E € H*(Q) and ||E|

H(@) < o (||E||Ws(n,r1) + |[AE] XS(n,Fl))
For this purpose some technical but mild regularity-assumptions are imposed on {}
and the decomposition of its boundary.

It is assumed that there are open sets Ui, ..,Usr C IR® and bi-Lipschitz mappings
Ty : Q@ = (—1,1)® — Uy (i.e. Ty is bijective, Ty, Ty, ' are globally Lipschitz-continuous
and det DT}, is uniformly positive), such that @ C UM, Uy and Uy N Q is a Lipschitz-
domain.

The sets Uy fall into four categories. In the first case k € {1,.., M1} Ui does not
intersect I'y, 1.e.

G T (UNQ)={z€Q:zs>0}
and U, NTy = U, N O = T({z € Q@ : z3 = 0})
In the second case k € {M; + 1, .., My} the same holds with T'; replaced by T’y and

vice versa, that means that Uy intersects only T's.

The third category k& € {M, + 1,.., M3} consists of those sets, which intersect T’y
and I'y. Here T, ' maps the two parts of the boundary onto orthogonal planes, more
precisely

{z€Q:2y=0,23> 0} C T (UpNTy) C{z € Q : 2y = 0,23 > 0},

{z€Q:2y>0,23=0}C T, (U NTy) C{z € Q:zy>0,23 =0}

and

Gr=T; " (UpNQ)={z€Q: 25> 0,23 > 0}.

For the sake of generality it is not assumed that any part I'; of the boundary is
closed.

In the last case k € {M3 +1,.., M} Ui does not intersect 0 and Gy = Q.

In the sequel the following mild additional regularity-property will be imposed on
09 and its decomposition into I'; and T's.

For each k € {1,.., M} there are bounded Lipschitz-domains Kl(k), .., K¥) € R® and



K1(k); ey j{,(f) C IR? and Hélder-continuous functions fl(k)7 e fy“) c C’1/2(ﬂ-237 IR3%3)
and ]Z:l(k)7 7]?7&]6) € 01/2(R3)7 SuCh that

n

DTi(y)™ = 32 ;7 @)y (v) (4.27)

=1

n

det DTy(y) = Zf,gk)(y)xkgk)(y) forally € @

i=1
This means in particular that these functions may be discontinuous on finitely many

two-dimensional manifolds. The main purpose of this assumption is that the func-
tions in 4.27 are H*-multipliers for s € (0,1/2).

In the sequel let Sz def T (UgNTy) and S 4 def (0Gk) \ Sa -
Next, Ay € L*®(Gg,C%*®) denotes for k € {1,.., M} the matrix-valued function
defined by

Ar(y) = [detDTi(y)] DTi(y) ™ A(Te(y))(DTi(y)") ™" for y € Gi (4.28)
Let xx € CP(U®), k € {1,.., M} be a partition of unity subordinate to the covering

UR ke {l,., M} of Q.
For F € L*(Q) define TkF € L*(Gy) and SgF € L*(Gy) by

(TeF)(y) = xa(Te(y)) DT(y) F(Ti(y))

and

(StF)(y) = xe(Tu(y))[detDTw(y)| DTe(y) " F(Tu(y)) for y € Gy
Lemma 5 Suppose s € [0,1]. Then
TE € W*(Gg, S1x) for all E € W*(Q,T). (4.29)

and

and S§gD € X*(Gg, S1x) for all D € X*°(Q,T4). (4.30)

Proof:
Suppose f € CP(IR®\ Sk ) and define F def D(T; ) - (foTyt) € L*°(Ug). Then
lemma 2 yields F € H .y (Ug) with

curl F = [ det D(T; )] [(DTy) - curl flo Tyt € L®(Uy) C L*(Ug). (4.31)

Since (supp )N T, ' (supp X&) is a compact subset of @ and
supp f C IR®\ Sk, it follows that the sets
T(Q@Nsupp )N supp xx and Tx(Sk2) = Ux N T’y have positive distance. Hence

supp (xxF) C T%(Q Nsupp f) Nsupp xx C Uk \ T, (4.32)



After extending xiF by zero outside supp xx it follows from 4.31 and 4.32 using the
usual mollifying-argument that

xxF belongs to the closure of CP(IR?* \ Ty), in Heu(IR?). (4.33)

Now suppose E € W(,T'1). Then 4.31 yield by the substution-formula

[, (TB) curl tdy = | u(Telu)[DTu(w) E(Tuw)] curl f(w)dy (434

- Xk(z) [det D(T)(z)| E(z) - [(DTe) (T (2)) - ( curl £)(T5 ()] da

UpNQ

= xxE curl Fdz = / E curl [xF]dz — / E-(Vxe)ANFdz
Q

UpnQ) UpnQ)
Since E € W(Q,T'1), it follows from 4.33 that

/ (TtE) curl fdy = / F curl [x:E]dz (4.35)
G

UpNQ

= [ [detDTy(y)]F(Ti(y)) - [( curl (xE))(Te(y))] dy

G

= [ [detDTy(y)] (DTk(y)™ - [( curl (xeB))(Te(y))]) - £(y)dy

G

for all f € C(IR® \ Sk,2), which implies TE € W(Gkg, Sk.1) with
curl (T4E) = (det DTy)(DTx(-))™' [ curl (xxE) o Ty]. (4.36)

Hence, 4.29 follows from interpolation.

To prove ii) suppose D € X(Q,T'1).

Let ¢ € C(IR?\ Six) and ¥ o T e HY(Uy).

As in the proof of i) (supp )N Ty " (supp xx) is a compact subset of @ and

supp ¢ C IR®\ Sk1. Hence Tx(QN supp )N supp xx has positive distance to
Te(Q N Sk1) and therefore also to the set U, NIy = (U, N ON) \ (Ux N Ty) C
Ti(Q N OGk) \ Ti(Sk,2) C Ti(Q N Sk,1). Thus,

supp (xx¥) C Tr(Q N supp @) Nsupp xx C Ux \ Ty, (4.37)

After extending xx1 by zero outside supp x it follows from 4.37 that

Xk 611(;1 (R*\T,), (4.38)

With 4.38 and D € X(,T'1) one obtains

|, (SD)Vedy = | 3(Tilw)det DTL(w)][DTe(y) " DITU(w))| Volu)dy  (4:39)

= | [detDTo(y)Ixx(Te(y))D(Th(y)) - (V)(Tk(y))dy

G
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= xsDVdz = /QDV[Xdem—/ (Vxx)Dydz

QMU QNUy

= [, div CaDyde = = [ [detDTL(y)] div (xD)(Tly)le(v)dy
Now, 4.39 yields gD € X(Gg, S1x) with
div (§pD) = [det DTy ][( div (xxD)) o T§]
Finally, 4.30 follows for all s € [0, 1] by interpolation

Lemma 6 The Ay are H® -multipliers, i.e. Af € H®(Gy) for all £ € H*(Gy).

Proof:
By the assumption 4.27 the functions |det DTk ()| and DTy (-)~! are H*-multipliers
for s € (0,1/2). Hence, it remains to show that A o Ty is a H*-multiplier, i.e.

(Ao T)f € H*(Gy) for all f € H*(Gy). (4.40)

For f € H'(G},) we have f o Ty ' € H(Uy N ), since Ty, is a bi-Lipschitz mapping.
Therefore it follows from interpolation

foT,' € H*(UyNQ) for all s € [0,1] and f € H*(Gy) (4.41)
Now, it follows from 4.26 and 4.41 that
foT,'Ac H*(U,N Q) for all f € H*(Gy). (4.42)
In anologogy to 4.41 one has
goT, € H(G) for all s € [0,1] and g € H*(Up, N Q) (4.43)

Finally 4.40 follows from 4.42 and 4.43.

Now, the proof of theorem 2 can be completed.

Proof of theorem 2:
By theorem 1 and lemma 6 there exists some 3§ € (0,1/2),¢0 € (0,00) depending
only on Q,T';, such that for all s € [0,5] and &k € {1,.., M} one has

F € H*(G) for all F € W*(Gk, S1.4) with A,F € X*(Gy, S1.4) (4.44)

This follows from theorem 1 directly in the case & € {M, + 1,.., M3}. Obvious
modifications of the proof of theorem 1 shows that assertion 4.44 also holds in the
remaining, even easier cases.

Now, suppose E € W*(Q,T';) with AE € X*(Q,T;) for s € [0, 3].

Then lemma 5 yields TE € W*(Gg, S1) and A TE = Si(AE) € X*(Gg, 51). With
4.44 one obtains TLE € H*(Gy) and hence

(xkE) 0 T = (DTu(y)*) ™" (TkE) € H*(Gy), (4.45)

since (DTk(-)*)_l is a H*-mulitiplier by the assumptions 4.27 on Tj.
Finally 4.45 and 4.41 yield E € H*(Q), since 2, xx = 1 on Q.
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5 H°’-regularity-results for ME

Let ,I'; C 09 as in the previous section. Suppose € € L*®(Q) and p € L*(Q) are
uniformly positive variable matrices in the sense that

(yTe(z)y) > mly|? for all z € Q and all vectors y € @ with some m > 0.

In the sequel the operator B is defined by

B(E,h) & (e7' curl h, —p~" curl E)
def

for (E,h) € D(B) = W(Q,T;) x W(Q,T5).

Here W(Q, T';) is defined as the closure of C(IR®\ T3) in Hewri ().
Therefore B has the form D(B) = D(A*) x D(A) and

B(E,h) = (¢ "Ah, —u ' A*E) for all E € D(A*) and h € D(A),

where D(A) is the closure of CZ°(IR*\ T3) in Hepri(Q) and Ah 4l curl h. Since A
is densely defined and closed, it follows that B is a densely defined skew self-adjoint

operator in the Hilbert-space Xy & L?(Q, @°) endowed with the scalar-product

< (E,h),(F,g) >%= [o(¢EF + phg)dz .

Hence, —B? is a positive, self-adjoint operator, and by the spectral-theorem
|B|* & (_ B2y« :/ IX|*dEs (5.46)
R

can be defined as a positive self-adjoint operator in Xy for s € [0,1]. Here (E))iecr de-
notes the spectral-family of the self-adjoint operator ¢B in Xp. The domain D(|B|*)
of |B|® can be characterized as the interpolation space [ Xy, D(B)]s, see [18], and will
be denoted by X, in the sequel.

With D(B) = W(Q,T4) x W(Q,T3) it follows easily by interpolation that

X, = W2 (Q,T1) x W*(Q,Ty), (5.47)

where W*(Q,T¢) & [L2(Q), W(, Tk)..
Since CP(IR* \ T3) C W(Q,T;), one has

We(Q,Ty) C W*(Q,T,). (5.48)

Remark 1 It has been shown in [8], lemma 5i) that under the present assumptions
on Q and the partition of its boundary the space W(Q,T'y) coincides with the closure
of CE(IR3\T3) in Hem(), i.c.

WS(Q, ]__‘2) - WS(Q, ]__‘2)

But this fact is not necessary for the following considerations.
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Recall that Z(Q,T%) is defined as the closure of C(IR®\ T}) in H*(Q).
Let o € Z(Q,T1) and ¢ € Z(Q,T,).

Then Vi € Wo(Q,T1) and Vi € W(Q,T;), see [6], and thus
(Vp, Vi) € kerB. (5.49)

In the sequel P denotes the orthogonal-projecor on (ker B)* = ranB in Xj.
Let (exp (¢tB))icr be the unitary group generated by B.

Then (E(t),h(t)) = w(t) e exp (tB)wy solves the homogeneous Maxwell equations
eE = curl h, and p0h = — curl E, (5.50)

supplemented by the initial-boundary-conditions
nAE =0o0n (0,00) xI';, ©Ah=0o0n (0,00) x Iy, (5.51)

E(0,z) = Eo(z),h(0,2) = ho(z). (5.52)

for wo = (Eg, hg) € Xp. The aim of this section is to prove a H*-regularity-theorem
for Maxwell’s equations. For this purpose it is assumed that e,z have the H®°-
multiplier-property 4.26 for some sq € (0,1/2).

The following theorem will be proved in this section.

Theorem 3 (exp (¢B))icr 1s a strongly continuous group in H*(QY) for all s € [0, 5),
1.€.
exp(-B)w € C(R,H*(Q)) N L>(R, H*(Q)) for all w € H*(). Here 5 > 0 as in

theorem 2.

This theorem says that the initial-boundary-value-problem 5.50-5.52 is well-posed
in H*(Q) for all s € [0,3]. In the case that © is two-dimensional this result can be
found in [7].

Lemma 7 Let s € [0,3] with 3 > 0 as in theorem 2.
i) X, N (kerB): C H*(Q), in particular P(X,) C H*(Q).

@) P(H*(Q)) C H(Q).
#i) H*(Q) C X..
Proof: Let w & (E,h) € X, N (kerB)*. For ¢ € Z(Q,T1) one has by 5.49
0=<w,(Ve,0) >x= / eEVoda,
Q

l.e.

eE € Xo(Q,T1) C X*(Q,Ty) (5.53)
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Now, 5.47, 5.53 and theorem 2 yield E € W*(Q,T1) N e (X*(Q,I'1)) C H*(Q). By
replacing I'; by I'y the same argument using 5.48 yields h € H*(Q), which completes
the proof of 1).

Proof of ii) and iii): As in the proof of theorem 4 one has

0 .
H' (2,0%) Cc X(Q,Te)NW(Q,Tx) C X(Q,T%) N W(Q,T) and therefore by inter-

polation

H*(Q, ) = [L*(9, @B),I;l (Q,0*)], C X*(Q,T1)NW*(Q,T,)

and
0 ~
H*(Q,0%) = [L*(Q,0%),H" (Q,0%)], C X*(Q,T3) N W*(Q,T,)
By 5.47 this implies iii). Moreover, it follows from i) and iii) that

P(H*(Q,@%)) C P(X,) = X,N (kerB)*: C H*(Q),C°).

Now, theorem 3 can be proved.

Proof of theorem 3: Let w € H*(Q). Since ran (1 — P) = ker B, one has
exp(tB)w = (1 — P)w + Pexp (¢tB)w (5.54)
Now, lemma 7 ii) yields

(1 - P)w € H*(Q) and ||(1 — P)w]|

s < G| w]

e (5.55)

It follows from lemma 7 iii) that w € X, and thus exp(-B)w € C(R,X;) N
L>*(R,X,). Next, lemma 7 i) yields

Pexp(-B)w € C(R, X, N (kerB)*) C C(IR, H*()) (5.56)

and ||Pexp (tB)wW||g: < Ca||W||gs with some C1,C, € (0,00) independent of ¢, w.
Finally, the desired result follows from 5.54 - 5.56.

6 LP-regularity for solutions of ME

Let 2,11, e and g as in the previous section. Only the H*-multiplier-property 4.26
of the coefficients e, u € L*(Q) is not necessary now.

In this section Maxwell’s equations with nonlinear conductivity are considered.

e0:E = curl h — S(E), (6.57)
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pOth = — curl E, (6.58)

supplemented by the initial-boundary-conditions
nAE =0o0n (0,00) xI';, ©Ah=0o0n (0,00) x Iy, (6.59)

E(0,z) = Eo(z),h(0,2) = ho(z). (6.60)
Here S : L?(Q, R®) — L*(Q, IR?) is a generally nonlinear operator, which represent
the electric current caused by the electric field. It is assumed that
1S(u) — S(v)||z> < L|ju — u|z2 for all u,v € L*(Q) (6.61)
and
S(E) € L*(2) and [[S(u)||z» < K (1 + |[u]|z) (6.62)

for all p € [2,00) and u € LP(Q) with constants L € (0,00) and K € (0, 00).
In particular the linear case S(E) = ¢E with an electric conductivity o € L>(Q) is
possible.

For the definition of the notion of weak solutions of 6.57-6.60 see [6].
Setting u & (E,h) 6.57-6.60 reads as

du = Bu+ F,(u), u(0)=wo % (Eo,hy) (6.63)
where F, : L2(Q, R®) — L*(Q, IR®) C X, is defined by
(Fy(w)) & —e71(S(E),0) for w = (E,h) € L*(Q, RR%).
A function u € C([0, 00), Xo) is called a weak solution to 6.63, if for all a € D(B)

d
7 < u(t),a >y,= — < u(t),Ba>y + < F,(u(t)),a >z (6.64)

This is equivalent to the variation of constant formula
t
u(t) = exp (tB)wo + / exp ((t — s)B)F,(u(s))ds, (6.65)
0

where B is defined as in the previous section and exp(¢B),t € IR is the unitary
group generated by B. Since F, is Lipschitz-continuous with respect to E € L*(Q)
by assumption 6.61, it follows from a standard result that this integral equation has
a unique solution u = (E,h) € C([0, ), X)), see [6], chapter 6.

The main result of this section is the following LP-regularity-theorem.

Theorem 4 There exists some p > 2 depending only on Q,I'1,€ and u, such that

for all p € [2,p] and wo € D(B) N LP(Q) one has
w e 1210, 00), /() N C([0, 60), 7(82)) for all v € [2,7).
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In the sequel Y, denotes for p € [2, 00) the set of all w = (E, h) € Xy, such that the

semi-norm

def
wllx, % sup{| | cEVedalip € Z(Q,T), ligllwr o < 1}

+sup{| [ phVydol: € Z(,T), [l lwio(oy < 1}

is finite. Here
[l lwra) = [[9]zo) + [V |zoq) for g € [1,00),9 € WH(Q)
Obviously Hélder’s inequality yields

L*(Q) C Yy and ||wl|y, < max {||¢||ze, ||p]|ze}||W]||ze for all w € LP(Q). (6.66)

It follows from 5.49 that for wo = (Eq, ho) € Ab, (E(t),h(¢)) def exp (tB)wg and

v € Z(Q,T1) and ¢ € Z(Q,T'5) one has
| HE(®)Veda+ | uh(t)Vydo = (exp (LB)wo, (Vi, Vi)

= <W07 exXp (—tB)(V(p, V’l,b»/’[’ = <W07 (V(p, V’l,b»/’l’
= / pEoVdz —I—/ phoVipde
Q Q

This implies
exp (tB)(Yp) C Yp and ||exp (tB)wl|ly, = ||w]||y, for all w € Y. (6.67)

Next, a LP-regularity-theorem for elements belonging to X3/5_3/, N Y} is proved.

Theorem 5 There exists p € (2,6/(3 — 23)), such that for all p € [2,5] and
w € X3/p_3/, N Y, one has w € LP(2) and

[wllze < Cs ([[Wl|2, /2y, + l1wlly, )

with some C3 € (0,00) independent of w. Here 3 > 0 as in theorem 2 in the case

A=1.

Proof:

Let p € (2,6/(3 — 25)) and w = (E,h) € X3/5_3/,N Y, and define f € Z(Q,I'1) and
g € Z(Q,T,) by

/ VfVedz = / EVdz for all ¢ € Z(Q,T) (6.68)
Q Q

and / VgVids = / hV+dz for all ¢ € Z(Q, )
0 0
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Then E — Vf € Xo(Q,T4) and also E — Vf € W?3/2-3/P(Q T;) by 5.47, since
Vf e Wo(Q,Ty) C W¥23/p(Q,T). With 3/2 —3/p < 5 we have by Sobolev’s
embedding-theorem for fractional-order spaces and the H*-regularity-theorem 2 (in
the case A =1)

E — Vf e H¥?*7%/7(Q) C LP(Q) with (6.69)

1E =V llze < CLlE =V fllwarz-sp < Cof[Wl|20s,

with Cz > 0 independent of w. By the definition of || - ||y, Holder’s inequality yields
for all ¢ € Z(Q,T1) the estimate

| [ 9 590dal < ||e(E = VAol Vel +| [ eEVgdal  (6.70)

< 02(||W||X3/2—3/p + ||W||Yp)||(P||Wl'p*
It follows from 6.70 and the W'P-result in [5] that

feW(Q) ,ie Vfe LP(Q) with (6.71)

IV Fllze < Ca(l[wlly oy + [[Wllv;)

provided that p is sufficiently close to 2, that means p < p where p > 2 depends
on ,I'; and €. Now, 6.69 and 6.71 yield E € LP(2). Analogously one obtains

h € LP(Q)) and the lemma is proved with p 4 min {6/(3 — 23),p}.

Remark 2 The previous theorem does not follow immediately from the H®-reqularity-
theorem 2, since the coefficients are not assumed to be H*-multipliers in this section.

Corollary 1 For all p € [2,p] and E € L*(Q) with
curl E € Lp*(Q) and tANE =0 on T4 (6.72)

and

sup{| [ eEVepdal:p € Z(9,T1), lpllwsrm) < 1} < 00 (6.73)

one has E € LP(Q).
6.72 1s understood in the sense that

/(E curlh — h curl E)de = 0 for all h € LP(Q) N W(£, T)
0

Proof:
Let E € L*(Q) satisfy 6.72 and 6.73.
Then
(E,0) € Y, (6.74)

The aim of the following considerations is to show that (E,0) € D((1 + |B|)/?) =
Xl/g.

17



Suppose w = (w;,w,) € X3 = D(B) and define u ef w— (Vf,Vg),

where f € Z(Q,T1) and g € Z(Q,T'y) are defined by

/ eV fVpda — / ew, Vdz for all ¢ € Z(Q,T})
0 0

/ UV gVipda = / uw,Vepdz for all % € Z(Q,T,)
9] 9]

Then u € & by 5.49 and u € Y, with ||u|ly, = 0. With 3/2 —3/p <3/2 —-3/p <
5 < 1/2 one has by theorem 5

u € LP(Q) with [[ul|ze < C1[[W||2/5_), < CallWl,, (6.75)

with €7 > 0 independent of u. By 5.49 we obtain from 6.72 and 6.75

| < (E,0),Bw >y, | = | < (E,0),Bu >y | = |/ E curl u,dz|
0

ul|le < Cy| curl E||pe-

— |/( curl E)u,dz| < || curl E|[e-
0

W||X1/2

and hence

| < (E,0), Bw >y, | < Cy]| curl E||p*

for all w € D(B) = A}.
Now, let u € X;/, and w = (1 + |B|)"*/?u € X; = D(B).
Then 6.76 yields

W||X1/z (6'76)

| < (E70)7B(1 + |B|)_1/2ll > X | = | < (E70)7BW > X, |

< Cy|| curl El|pe+

Wi, < G| curl El[g

ll||;|{0

Hence, (E,0) € D(B(1 + |B|)~'/2) = D((1 + |B|)!/?) = X1/, which implies by 6.74
and theorem 5 that E € L?(Q).

Now, the LP-regularity-theorem for Maxwell’s equations 6.57-6.60 can be proved.

Proof of theorem 4:
Let p > 2 as in theorem 5. Define 7 : C([0,T], Xo) — C([0,T], Xp) by

¢
(Tu)(t) = exp (tB)wo + / exp ((t — s)B)F,(u(s))ds
0
Since wo € D(B) N LP() C X1 NY,, it follows from 6.67 and theorem 5 that
exp(tB)wo € D(B)NY, C X1 N LP(Q)

and

d
||£(6XP (tB)Wo)l||x, + || exp (tB)wol|rr < Ko for all t € IR. (6.77)
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Suppose u € Wh([0,T], Xp), i.e. u: [0,T] — Xp) is Lipschitz-continuous. Then
one has by assumption 6.61

I(Tu)(t + B) — (Tw)(®)lla, < ll(exp (7 B) — Dwoll,
+| /0t+h exp (rB)F,(u(t + h —7))dr — /Ot exp (rB)Fy(u(t — r))dr||x,

< Cuh + hawp | [Fo(u(r)llx, + [ 1Fo(ult +h =) = Fy(ult = )| dr

t
< Caf1 + sup | Fy(u(r)) [ )b+ L [ [[u(t+ b —r) = ut 1)l dr

and hence
T (u) € Wh([0,T], X;) and (6.78)
18T (w)(#)ll, < limsup [B7|[(Tu)(t + b) = (Tu)(t)] |
<C3+ L hmsup[ _1||u(s—|—h)—u(s)||;|go]ds
h—0
< 03+L/ 18,u(s) |z, ds
Set

def
luf1,0 = sup (exp(—2Lt)[|0:u(s)|x,)
te[0,T]

for u € Wh*°([0,T], Xo). Then 6.78 yields 7 (u) € Wh*([0, T], Xo) and
|Tul100 < C3+1/2Jul; 0 for all u € WH([0,T], Xo). (6.79)

Since E( (u

N(t) = B(T (u))(t) — F,(u(?)) Weakly, it follows easily from 6.79 that
( ) S L= [07 ar

T]; ( )) Loo([();T];Xl)
1T ul|zooz,2) < Ca (14 [|T0lwrco(0.1,15)) (6.80)

for all u € Wh>([0, T, Xo).

Now let ug € C([0,T], Xp) the unique solution of 6.65 and consider the Picard-
iteration u(™ & T™(wo) € C([0,T], Xp). Then

u(™ 22y uo in C([0,T], Xo) strongly. (6.81)

It follows inductively from 6.79 that u(™ € WbH((0,T), Xp) with [u™|, o, < 2Cs

and hence

sup ™|, 100 (0,T, %) < OO (6.82)
nelN
6.80 and 6.82 yield
sup |[ul™||ze(o,r,08)) = sup |[ul™||zeor,2) < 00 (6.83)
nelN nelN
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Next, it is shown inductively that u™(t) € D(B) N LP(Q) C X1 N Y.
Recall that

t
u™) = (T (u™)(t) = exp (tB)wo + / exp ((t — 8)B)F,(u™(s))ds. (6.84)
0
It follows from 6.62 and the induction-hypothesis that
Fy(u®(:)) € L=((0,T), L*(Q)) € L=((0,T), ¥;)

and hence 6.67, 6.77 and 6.84 yield u®*1)(¢) € Y.
By 6.83 and theorem 5 one has u®*1)(¢) € X, NY, C LP(Q) and

[ @) 3s < Co([[u (B [nga) + [0+ )] I5,) (6.85)
t
< Co(1 + (D)1, < Co (1 + lIwolly, + [ [1F(u®(s)llr,ds )

t
< C (1+/0 ||u(")(s)||Lpds).

Using a weighted L*((0,T'), LP(Q))-norm as in 6.79 one obtains
suppemv || UL (07,20(0)) < 00 and hence together with 6.81

uo € L®((0,T), LP()). (6.86)

Finally, the assertion follows from uy € C([0, T], L*(2)) and 6.86.
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