
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Regularity of weak solutions of Maxwell's equations

with mixed boundary conditions

Frank Jochmann1

submitted: 6th May 1999

1 Humboldt-Universität zu Berlin

Institut für angewandte Mathematik

Unter den Linden 6, 10099 Berlin,

Germany

und

Weiersraÿ-Institut für Angewandte Analysis und Stochastik

Mohrenstraÿe 39

D-10117 Berlin

Germany

E-Mail: jochmann@wias-berlin.de

Preprint No. 488

Berlin 1999

WIAS
1991 Mathematics Subject Classi�cation. 35Q60, 35L50.

Key words and phrases. Maxwell's equations, regularity of weak solutions, mixed boundarycon-

ditions.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

In this paper global H
s
and L

p
-regularity-results for the stationary and

transient Maxwell-equations with mixed boundary-conditions in a bounded

spatial domain are proved. First it is shown that certain elements belonging

to the fractional-order domain of the Maxwell-operator belong to Hs(
) for

su�ciently small s > 0. It follows from this regularity result that Hs(
) is

an invariant subspace of the unitary group corresponding to the homogeneous

Maxwell-equations with mixed boundary-conditions. In the case that a possi-

bly nonlinear conductivity is present a Lp-regularity-theorem for the transient

equations is proved.

1 Introduction

The subject of this paper are global Hs- and Lp-regularity theorems for the station-

ary and transient Maxwell equations in a bounded domain with mixed boundary-

conditions describing the electromagnetic �eld, [10].

Let 
 � IR3 be a bounded domain with piecewise smooth boundary @
, �1 � @


and �2
def
= @
 n �1. The initial-boundary-value problem

"@tE = curl H; and �@tH = � curl E; (1.1)

supplemented by the initial-boundary-conditions

~n ^ E = 0 on (0;1) � �1; ~n ^H = 0 on (0;1)� �2; (1.2)

E(0; x) = E0(x);H(0; x) = H0(x): (1.3)

with E0;H0 2 L
2(
) is considered. Such boundary value problems arise for example

in semiconductor modelling, see [6], [7], where �2 is the insulating boundary and �1

represents the electric contacts.

In (1.1) the variable matrices "; � 2 L1(
; CI3�3) are assumed to be uniformly posi-

tive.

The following Hs-regularity-result will be proved.

There exist �s 2 (0; s0) depending only on 
;�1; " and �, such that for all s 2 [0; �s]

and E0;H0 2 H
s(
) one has

(E;H) 2 C([0;1);Hs(G)) (1.4)
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Here Hs(
) denotes the L2-Sobolev space of fractional order s, see [18].

For this purpose it is assumed that "; � have the multiplier property

"F 2 Hs0(
) and �F 2 Hs0(
) for all vector-�elds F 2 Hs0(
)

for some s0 2 (0; 1=2).

This condition is ful�lled for s0 2 (0; 1=2) in the case that the coe�cients are

piecewise smooth, that means "; � may have jump discontinuities on �nitely many

2 dimensional surfaces. In particular a piecewise constant "; � is admissible, which

is important for many applications.

In general 1.4 does not hold for s � 1=2 under these general assumptions on 
;�1

and the coe�cients.

The proof of 1.4 relies on the followingHs-regularity-result for the stationary Maxwell-

equations.

There exist �s 2 (0; s0) depending only on 
;�1 and ", such that for all s 2 [0; �s] and
e 2 W s(
;�1) with "e 2 X

s(
;�1) one has

e 2 Hs(
): (1.5)

HereW s(
;�1) and X
s(
;�1) denote for s 2 [0; 1] the complex interpolation spaces

[L2(
);W (
;�1)]s and [L2(
);X(
;�1)]s, where W (
;�1) denotes the space of all
E 2 L2(
) with curl E 2 L2(
) and ~n ^ E = 0 on �1 and X(
;�1) denotes the
space of all D 2 L2(
) with div D 2 L2(
) and ~n �D = 0 on �2.

The regularity-results 1.4 and 1.5 have already been obtained in [7] for the case

that the spatial domain 
 is two-dimensional using a H1+s-regularity-result for

mixed second-order elliptic boundary-value-problems similar to the W 1;p- result in

[5]. However, in this paper the general three-dimensional case is considered.

1.5 implies that the solution u 2 H1(
) of the mixed elliptic boundary-value-problem

div ("ru) = F 2 L2(
); u = 0 on �1; and @nu = 0 on �2;

satis�es ru 2 Hs(
) for all s 2 [0; �s], see [2], [4], [5], [15], [16] and [17]. This follows

from 1.5 using the fact that ru 2 W (
;�1) and "ru 2 X(
;�1)

A further consequence of 1.5 is thatW (
;�1)\"
�1(X(
;�1)) is compactly imbedded

in L2(
). This has already been proved in [8] and in [14], [19] without mixed

boundary-conditions.

In section 6 a Lp-regularity-theorem for Maxwell's equations with conductivity

"@tE = curl H� �E; and �@tH = � curl E; (1.6)

supplemented by the same initial-boundary-conditions as in1.1-1.3 is proved.

Here � 2 L1(
) represents the electrical conductivity. It is shown that there exists

some ~p 2 (2;1) depending only on 
;�1; " and �, such that
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(E;H) 2 C([0;1); Lp(
)) for all p 2 [2; ~p] and initial-states (E0;H0) 2 L
p(
) with

curl E0 2 L
2(
), curl H0 2 L

2(
), ~n ^E0 = 0 on �1 and ~n ^H0 = 0 on �2.

Here the Hs-regularity result 1.5 and the W 1;p-result in [5] are used. The term �E

in 1.6 can also be replaced by certain nonlinear operators modelling for example a

nonlinear resistor, see section 6.

2 Notation, assumptions and auxiliary lemmata

Suppose that 
 � IR3 is a bounded domain, �1 � @
 and let �2
def
= @
 n �1.

Then the following function-spaces are intrduced.

For s 2 [0; 1] the fractional-order Sobolev-space is denoted by Hs(
). It coincides

with the complex interpolation space [L2(
);H1(
)]s between L
2(
) and H1(
).

Let Z(
;�1) be the closure of C
1

0 (IR3 n �1) in H
1(
). Next, Hcurl(
) denotes the

space of all E 2 L2(
) with curl E 2 L2(
). The space of all E 2 Hcurl(
) with
~n ^E = 0 on �1 in the sense that

Z


(E curl h� h curl E)dx = 0 for all h 2 C10 (IR3 n �2) (2.7)

in denoted by W (
;�1).
Let X(
;�1) be the space of all D 2 L2(
) with div D 2 L2(
) and ~nD = 0 on �2

in the sense that
Z


Dr'dx = �

Z


div D'dx for all ' 2 Z(
;�1):

Next,W s(
;�1) and X
s(
;�1) denote for s 2 [0; 1] the complex interpolation spaces

[L2(
);W (
;�1)]s and [L2(
);X(
;�1)]s.
Finally, let W0(
;�1) and X0(
;�1) be the space of all E 2 W (
;�1) and D 2

X(
;�1) with curl E = 0 and div D = 0 respectively.

In the sequel the following lemma will be used frequently, which says that piecewise

smooth functions are Hs-multipliers for s < 1=2.

Lemma 1 Let U � IRN be a Lipschitz-domain and s 2 [0; 1=2).

Assume further that the function f : IRN ! CI has the form g =
P

n

k=1 �Ckfk,

where the bounded functions fk 2 C�(IRN ), are Hölder-continuous for some � > s

and �Ck are the characteristic functions of Lipschitz-domains Ck � IRN .

Then gf 2 Hs(U) for all f 2 Hs(U).

Proof:

For each Lipschitz-domain G � IRN and s < 1=2 one has

�GF 2 Hs(IRN ) with jj�GF jjHs � cG;sjjF jjHs for all F 2 Hs(IRN ) (2.8)
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with some cG;s 2 (0;1) independent of F . This follows from the well-known fact

that the extension ~' 2 L2(IRN ) of a function ' 2 Hs(U) by zero outside U belongs

to Hs(IRN ), provided s < 1=2, see [11], chapter 11.3. Let u 2 Hs(U). Since U is

a Lipschitz-domain and s < 1=2, the extension ~u of u de�ned by ~u(x) = u(x) if

x 2 U and ~u(x) = 0 if x 2 IRN n U belongs to Hs(IRN ). Moreover, (2.8) yields

�Cj ~u 2 H
s(IRN ). Next,

fj�Cj ~u 2 H
s(IRN ) for all j 2 f1; ::; ng: (2.9)

Here the well known fact is used that bounded functions in C�(IRN ) are Hs-

multipliers, provided that � > s0. This follows for example easily from the rep-

resentatation

jjf jj2
Hs = jjf jj2

L2 + s

Z
1

0
t�(1+2s)

NX
k=1

jjf(tek + �)� f jj2
L2dt

of the Hs-norm for s 2 (0; 1); f 2 Hs, where ek is the unit-vector in the xk direction,

see [11], ch.1.10.2.

Finally, (2.9) yields gu =
P

n

j=1

�
fj�Cj ~u

�
jU 2 H

s(U).

Lemma 2 Let U; V � IR3 be open sets, p 2 [1;1), w 2 L
p

loc
(U) with curl w 2

L
p

loc
(U). Moreover, let T : V ! U be a Bi-Lipschitz transformation.

De�ne

f(y)
def
= DT (y)�w(T (y)) for y 2 V:

Then f 2 Lp
loc
(V ) with curl f 2 Lp

loc
(V ) and

( curl f)(y) =MT (y)( curl w)(T (y)) for y 2 V; (2.10)

where MT 2 L
1

loc
(V; IR3�3) is de�ned by MT (y)

def
= [det DT (y)]DT (y)�1.

This can be found in the appendix of [9]. The main idea is to approximate w and

T by smooth functions.

3 The regularity-theorem for a rectangle

Througout this section let G � IR3 be a rectangle, i.e. G
def
= (0; a)� (0; b) � (0; c)

with a; b; c 2 (0;1). Let

f(x1; x2; 0) : x1 2 (0; a); x2 2 (0; b)g � S2 � f(x1; x2; 0) : x1 2 [0; a]; x2 2 [0; b]g;

i. e. S2 � @G is one side of the boundary of G, and S1
def
= @G n S2.

Recall that Z(G;S1) is the closure of C
1

0 (IR3 n S1) in H
1(G). It has been shown in

[8], lemma 5i) that W (G;S1), which consists of all E 2 Hcurl(G) with ~n ^ E = 0
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on S1 in the sense described in the previous section, coincides with the closure of

C10 (IR3 n S1) in Hcurl(G). Since G is a rectangle and S2 is one side of it, this can

also be shown directly by re�ection at S2 as in the proof of the subsequent lemma

3.

Next, let A 2 L1(G;CI3�3) is assumed to be uniformly positve de�nite, i. e.

re (�A(y)��) � c0j�j
2 for all y 2 G; � 2 CIN with some c0 > 0 independent of y; �. It

is assumed that A has in addition the multiplier property

Af 2 Hs0(
) for all f 2 Hs0(
) with some s0 2 (0; 1=2): (3.11)

For example this assumption is ful�lled int he case that A is pieceiwse Hölder con-

tinuous, i.e. if it has the form A =
P

n

k=1 �Uk
fk, where fk 2 C�(G), that means fk

is Hölder-continuous for some � > s0. Here �Uk
are the characteristic functions of

Lipschitz-domains Uk � IR3.

The aim of this section is to prove the following theorem.

Theorem 1 There exist �s 2 (0; s0); c0 2 (0;1) depending only on A, such that for

all s 2 [0; �s] and E 2 W s(G;S1) with AE 2 Xs(G;S1) one has

E 2 Hs(G) and jjEjjHs(G) � c0
�
jjAEjjXs(G;S1) + jjEjjW s(G;S1)

�

For E 2 L2(G) we de�ne PEE
def
= E�r' 2 X0(G;S1), where ' 2 Z(G;S1) satis�es

Z
G

r'r dx =
Z
G

Er dx for all  2 Z(G;S1): (3.12)

Lemma 3 i) X(G;S1) \W (G;S1) � H1(G).

ii) PE (W s(G;S1)) � Hs(G).

iii) (1� PE) (X
s(G;S1)) � Hs(G).

Proof:

In order to prove i) assume E 2 W (G;S1) \X(G;S1).

Let ~G
def
= fx 2 IR3 : (x1; x2;�x3) 2 G or x 2 Gg = (0; a)� (0; b)� (�c; c) and de�ne

~E 2 L2( ~G) by re�ection at the plane fx3 = 0g, i.e. ~E(x)
def
= E(x) if x 2 G and

~E(x)
def
= (E1(x1; x2;�x3);E2(x1; x2;�x3);�E3(x1; x2;�x3)) if x 2 ~G with x3 < 0.

Next it is shown that ~E 2
0

Hcurl ( ~G).

Suppose f 2 C10 (IR3) and set g(x)
def
= (f1(x1; x2;�x3); f2(x1; x2;�x3);�f3(x1; x2;�x3)).

Then ~n ^ (f � g) = 0 on S2 and since E belongs to the closure of C10 (IR3 n S1) in

Hcurl(G) it follows easily that

Z
G

((f � g) curl E�E curl (f � g)) dx = 0: (3.13)

Now,
Z
~G

~E curl fdx =
Z
G

E curl (f � g)dx =
Z
G

(f � g) curl Edx =
Z
~G
hfdx
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where h(x)
def
= ( curl E)(x) if x 2 G and (h1(x);h2(x);�h3(x))

def
= �( curl E)(x1; x2;�x3)

if x 2 ~G with x3 < 0. This means

~E 2
0

H curl ( ~G) wth curl ~E = h: (3.14)

From quite similar arguments it follows

div ~E = � 2 L2( ~G) (3.15)

where �(x)
def
= div E(x) if x 2 G and �(x)

def
= div E(x1; x2;�x3) if x 2 ~G with

x3 < 0.

Now, 3.14 and 3.15 imply ~E 2 H1( ~G), which can be shown for example by developing
~E in Fourier-series on the rectangle ~G.

SinceW (G;S1) is the closure of C
1

0 (IR3nS1) in Hcurl(G) and Z(G;S1) is the closure

of C10 (IR3 nS1) in H
1(G), it follows easily that r' 2 W0(G;S1) for all ' 2 Z(G;S1)

and hence

(1� PE)E 2 W0(G;S1) for all E 2 L2(G): (3.16)

Suppose E 2 W (G;S1). Then 3.16 yields

PEE 2 X0(G;S1) \W (G;S1) � H1(G) by i).

Now, assertion ii) follows from interpolation.

Next, suppose E 2 X(G;S1). By the de�nition of PE it follows from 3.12 that

Z
G

[(1� PE)E]r dx =
Z
G

Er dx = �

Z
G

( div E) dx for all  2 Z(G;S1);

which implies (1 � PE)E 2 X(G;S1). By 3.16 and i) this yields

(1 � PE)E 2 W (G;S1) \ X(G;S1) � H1(G). Finally, assertion iii) follows for

s 2 [0; 1] from interpolation.

Lemma 4 PE(H
s(G)) � Hs(G) for all s 2 (0; 1=2) and

jjPEjjB(Hs(G);Hs(G))
s!0
�! 1 .

Proof:

Suppose E 2
0

H1 (G) � W (G;S1). Then lemma 3 ii) yields

PEE � H1(G): (3.17)

For all s1 2 [0; 1=2) one has

Hs(G) = [L2(G);
0

H1 (G)]s; (3.18)

see [11]. Since jjPEjjB(L2(G);L2(G)) � 1, it follows from 3.17 and 3.18 by interpolation

that

PEE 2 [PE(L
2(G)); PE(

0

H1 (G))]s � [L2(G);H1(G)]s = Hs(G)
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and jjPEEjjHs(G) � cs2jjEjjHs(G)

for all s 2 [0; s1];E 2 Hs(G).

Now, the main result of this section can be proved.

Proof of theorem 1:

Choose � > 0 with L0
def
= jj1 � �AjjL1 < 1. Then it follows from 3.11 that there

exists some C1 > 0 with

jj1� �A�1jjB(Hs(G);Hs(G)) � Cs

1L0 for all s 2 [0; s0]: (3.19)

By lemma 4 and 3.19 there exists �s > 0, such that for all s 2 [0; �s]

jjPEjjB(Hs(G);Hs(G))jj1 � �A�1jjB(Hs(G);Hs(G)) � L2 < 1 (3.20)

Now, assume s 2 [0; �s] and E 2 W s(G;S1) with AE 2 Xs(G;S1). Then it follows

from lemma 3 iii) that

(1 � PE)AE 2 Hs(G) (3.21)

and therefore

PEE� PEA
�1PEAE = PEA

�1(1� PE)AE 2 Hs(G) (3.22)

by 3.11 and lemma 4. Lemma 3 ii) yields PEE 2 Hs(G) and hence by 3.22

f
def
= PEA

�1PEAE 2 Hs(G) \X0(G;S1) (3.23)

Let Us
def
= X0(G;S1) \H

s(G) and Q : Us ! X0 by

Qu
def
= PE(1� �A�1)u+ �f = u� �PEA

�1u+ �f (3.24)

Suppose u 2 Us. By assumption 3.11 and lemma 4 one has PEA
�1u 2 Hs(G).

Together with 3.23 this yields Qu 2 Us. From 3.20 it follows that Q is Lipschitz-

continuous on Us (with respect to the Hs-topology) with Lipschitz-constant L2 < 1.
Hence Q has a unique �xed-point u0 2 Us, i.e.

u0 = Qu0 = u0 � �PEA
�1u0 + �PEA

�1PEAE

and thus PEA
�1[u0 � PEAE] = 0.

Since u0 � PEAE 2 X0(G;S1), this yields

0 = hPEA
�1[u0 � PEAE];u0 � PEAEiL2(G)

= hA�1[u0 � PEAE];u0 � PEAEiL2(G) � c0jju0 � PEAEjj
2
L2(G);

which implies

PEAE = u0 2 Us � Hs(G) (3.25)

Finally, 3.21, 3.25 yield AE 2 Hs(G) and therefore E 2 Hs(G) by 3.11.
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4 Regularity-theorem for general domains

Let 
 � IR3 be a bounded Lipschitz-domain, �1 � @
 and �2
def
= @
 n �1.

Moreover, let A 2 L1(
) be a uniformly positive variable matrix with the Hs0 -

multiplier-property for some s0 2 (0; 1=2), i.e.

Aw 2 Hs(
) for all s 2 [0; s0] and w 2 Hs(
): (4.26)

The aim of this section is to prove the following regularity-theorem

Theorem 2 There exist �s 2 (0; s0); c0 2 (0;1) depending only on 
;�1 and A,

such that for all s 2 [0; �s] and E 2 W s(
;�1) with AE 2 Xs(
;�1) one has

E 2 Hs(
) and jjEjjHs(
) � c0
�
jjEjjW s(
;�1) + jjAEjjXs(
;�1)

�

For this purpose some technical but mild regularity-assumptions are imposed on 


and the decomposition of its boundary.

It is assumed that there are open sets U1; ::; UM � IR3 and bi-Lipschitz mappings

Tk : Q = (�1; 1)3 ! Uk (i.e. Tk is bijective, Tk; T
�1
k

are globally Lipschitz-continuous

and detDTk is uniformly positive), such that �
 � [M
k=1Uk and Uk \
 is a Lipschitz-

domain.

The sets Uk fall into four categories. In the �rst case k 2 f1; ::;M1g Uk does not

intersect �2, i.e.

Gk

def
= T�1

k
(Uk \ 
) = fx 2 Q : x3 > 0g

and Uk \ �1 = Uk \ @
 = Tk(fx 2 Q : x3 = 0g)

In the second case k 2 fM1 + 1; ::;M2g the same holds with �1 replaced by �2 and

vice versa, that means that Uk intersects only �2.

The third category k 2 fM2 + 1; ::;M3g consists of those sets, which intersect �1

and �2. Here T
�1
k

maps the two parts of the boundary onto orthogonal planes, more

precisely

fx 2 Q : x2 = 0; x3 > 0g � T�1
k

(Uk \ �1) � fx 2 Q : x2 = 0; x3 � 0g;

fx 2 Q : x2 > 0; x3 = 0g � T�1
k

(Uk \ �2) � fx 2 Q : x2 � 0; x3 = 0g

and

Gk = T�1
k

(Uk \ 
) = fx 2 Q : x2 > 0; x3 > 0g:

For the sake of generality it is not assumed that any part �j of the boundary is

closed.

In the last case k 2 fM3 + 1; ::;Mg Uk does not intersect @
 and Gk = Q.

In the sequel the following mild additional regularity-property will be imposed on

@
 and its decomposition into �1 and �2.

For each k 2 f1; ::;Mg there are bounded Lipschitz-domainsK
(k)
1 ; :::;K(k)

n
� IR3 and

8



~K
(k)
1 ; :::; ~K(k)

n
� IR3 and Hölder-continuous functions f

(k)
1 ; :::; f (k)

n
2 C1=2(IR3; IR3�3)

and ~f
(k)
1 ; :::; ~f (k)

n
2 C1=2(IR3), such that

DTk(y)
�1 =

nX
j=1

f
(k)
j

(y)�
K

(k)

j

(y) (4.27)

det DTk(y) =
nX
j=1

~f (k)
n

(y)� ~K
(k)

j

(y) for all y 2 Q

This means in particular that these functions may be discontinuous on �nitely many

two-dimensional manifolds. The main purpose of this assumption is that the func-

tions in 4.27 are Hs-multipliers for s 2 (0; 1=2).

In the sequel let S2;k
def
= T�1

k
(Uk \ �2) and S1;k

def
= (@Gk) n S2;k.

Next, Ak 2 L1(Gk; CI
3�3) denotes for k 2 f1; ::;Mg the matrix-valued function

de�ned by

Ak(y) = [detDTk(y)]DTk(y)
�1A(Tk(y))(DTk(y)

�)�1 for y 2 Gk (4.28)

Let �k 2 C
1

0 (U (k)), k 2 f1; ::;Mg be a partition of unity subordinate to the covering

U (k); k 2 f1; ::;Mg of 
.
For F 2 L2(
) de�ne TkF 2 L2(Gk) and SkF 2 L2(Gk) by

(TkF)(y)
def
= �k(Tk(y))DTk(y)

�F(Tk(y))

and

(SkF)(y)
def
= �k(Tk(y))[detDTk(y)]DTk(y)

�1F(Tk(y)) for y 2 Gk:

Lemma 5 Suppose s 2 [0; 1]. Then

TkE 2 W s(Gk; S1;k) for all E 2 W s(
;�1): (4.29)

and

and SkD 2 Xs(Gk; S1;k) for all D 2 Xs(
;�1): (4.30)

Proof:

Suppose f 2 C10 (IR3 n Sk;2) and de�ne F
def
= D(T�1

k
)� � (f � T�1

k
) 2 L1(Uk). Then

lemma 2 yields F 2 Hcurl(Uk) with

curl F = [ det D(T�1
k

)] [(DTk) � curl f ] � T
�1
k

2 L1(Uk) � L2(Uk): (4.31)

Since (supp f)\ T�1
k

(supp �k) is a compact subset of Q and

supp f � IR3 n Sk;2, it follows that the sets

Tk(Q\supp f)\ supp �k and Tk(Sk;2) = Uk \ �2 have positive distance. Hence

supp (�kF) � Tk(Q \ supp f) \ supp �k � Uk n �2; (4.32)
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After extending �kF by zero outside supp �k it follows from 4.31 and 4.32 using the

usual mollifying-argument that

�kF belongs to the closure of C10 (IR3 n �2); in Hcurl(IR
3): (4.33)

Now suppose E 2 W (
;�1). Then 4.31 yield by the substution-formula

Z
Gk

(TkE) curl fdy =
Z
Gk

�k(Tk(y))[DTk(y)
�E(Tk(y))] curl f(y)dy (4.34)

=
Z
Uk\


�k(x)
h
detD(T�1

k
)(x)

i
E(x) �

h
(DTk)(T

�1
k

(x)) � ( curl f)(T�1
k

(x))
i
dx

=
Z
Uk\


�kE curl Fdx =
Z


E curl [�kF] dx�

Z
Uk\


E � (r�k) ^ Fdx

Since E 2 W (
;�1), it follows from 4.33 that

Z
Gk

(TkE) curl fdy =
Z
Uk\


F curl [�kE] dx (4.35)

=
Z
Gk

[detDTk(y)]F(Tk(y)) � [( curl (�kE))(Tk(y))]dy

=
Z
Gk

[detDTk(y)]
�
DTk(y)

�1 � [( curl (�kE))(Tk(y))]
�
� f(y)dy

for all f 2 C10 (IR3 n Sk;2), which implies TkE 2 W (Gk; Sk;1) with

curl (TkE) = ( det DTk)(DTk(�))
�1 [ curl (�kE) � Tk] : (4.36)

Hence, 4.29 follows from interpolation.

To prove ii) suppose D 2 X(
;�1).

Let ' 2 C10 (IR3 n S1;k) and  
def
= ' � T�1

k
2 H1(Uk).

As in the proof of i) (supp ')\ T�1
k

(supp �k) is a compact subset of Q and

supp ' � IR3 n Sk;1. Hence Tk(Q\ supp ')\ supp �k has positive distance to

Tk(Q \ Sk;1) and therefore also to the set Uk \ �1 = (Uk \ @
) n (Uk \ �2) �

Tk(Q \ @Gk) n Tk(Sk;2) � Tk(Q \ Sk;1). Thus,

supp (�k ) � Tk(Q \ supp ') \ supp �k � Uk n �1; (4.37)

After extending �k by zero outside supp �k it follows from 4.37 that

�k 2
0

H1 (IR3
n �1); (4.38)

With 4.38 and D 2 X(
;�1) one obtains

Z
Gk

(SkD)r'dy =
Z
Gk

�k(Tk(y))[detDTk(y)][DTk(y)
�1D(Tk(y))]r'(y)dy (4.39)

=
Z
Gk

[detDTk(y)]�k(Tk(y))D(Tk(y)) � (r )(Tk(y))dy

10



=
Z

\Uk

�kDr dx =
Z


Dr[�k ]dx�

Z

\Uk

(r�k)D dx

= �

Z

\Uk

div (�kD) dx = �

Z
Gk

[detDTk(y)][ div (�kD)(Tk(y))]'(y)dy

Now, 4.39 yields SkD 2 X(Gk; S1;k) with

div (SkD) = [detDTk][( div (�kD)) � Tk]

Finally, 4.30 follows for all s 2 [0; 1] by interpolation

Lemma 6 The Ak are Hs0-multipliers, i.e. Akf 2 H
s0(Gk) for all f 2 Hs0(Gk).

Proof:

By the assumption 4.27 the functions jdet DTk(�)j and DTk(�)
�1 are Hs-multipliers

for s 2 (0; 1=2). Hence, it remains to show that A � Tk is a H
s0 -multiplier, i.e.

(A � Tk)f 2 H
s0(Gk) for all f 2 H

s0(Gk): (4.40)

For f 2 H1(Gk) we have f � T
�1
k

2 H1(Uk \ 
), since Tk is a bi-Lipschitz mapping.

Therefore it follows from interpolation

f � T�1
k

2 Hs(Uk \ 
) for all s 2 [0; 1] and f 2 Hs(Gk) (4.41)

Now, it follows from 4.26 and 4.41 that

f � T�1
k
A 2 Hs0(Uk \ 
) for all f 2 Hs0(Gk): (4.42)

In anologogy to 4.41 one has

g � Tk 2 H
s(Gk) for all s 2 [0; 1] and g 2 Hs(Uk \ 
) (4.43)

Finally 4.40 follows from 4.42 and 4.43.

Now, the proof of theorem 2 can be completed.

Proof of theorem 2:

By theorem 1 and lemma 6 there exists some �s 2 (0; 1=2); c0 2 (0;1) depending
only on 
;�1, such that for all s 2 [0; �s] and k 2 f1; ::;Mg one has

F 2 Hs(Gk) for all F 2 W s(Gk; S1;k) with AkF 2 Xs(Gk; S1;k) (4.44)

This follows from theorem 1 directly in the case k 2 fM2 + 1; ::;M3g. Obvious

modi�cations of the proof of theorem 1 shows that assertion 4.44 also holds in the

remaining, even easier cases.

Now, suppose E 2 W s(
;�1) with AE 2 Xs(
;�1) for s 2 [0; �s].
Then lemma 5 yields T E 2 W s(Gk; S1) and AkTkE = Sk(AE) 2 Xs(Gk; S1). With

4.44 one obtains TkE 2 Hs(Gk) and hence

(�kE) � Tk = (DTk(y)
�)
�1

(TkE) 2 H
s(Gk); (4.45)

since (DTk(�)
�)
�1

is a Hs-mulitiplier by the assumptions 4.27 on Tk.

Finally 4.45 and 4.41 yield E 2 Hs(
), since
P

M

k=1 �k = 1 on 
.
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5 H
s-regularity-results for ME

Let 
;�1 � @
 as in the previous section. Suppose " 2 L1(
) and � 2 L1(
) are

uniformly positive variable matrices in the sense that

(yT"(x)y) � mjyj2 for all x 2 
 and all vectors y 2 CI3 with some m > 0:

In the sequel the operator B is de�ned by

B(E;h)
def
= ("�1 curl h;���1 curl E)

for (E;h) 2 D(B)
def
= W (
;�1)� ~W (
;�2).

Here ~W (
;�2) is de�ned as the closure of C10 (IR3 n �2) in Hcurl(
).

Therefore B has the form D(B) = D(A�)�D(A) and

B(E;h) = ("�1Ah;���1A�E) for all E 2 D(A�) and h 2 D(A);

where D(A) is the closure of C10 (IR3 n �2) in Hcurl(
) and Ah
def
= curl h. Since A

is densely de�ned and closed, it follows that B is a densely de�ned skew self-adjoint

operator in the Hilbert-space X0
def
= L2(
; CI6) endowed with the scalar-product

< (E;h); (F;g) >X0

def
=
R

("EF+ �hg)dx .

Hence, �B2 is a positive, self-adjoint operator, and by the spectral-theorem

jBjs
def
= (�B2)s=2 =

Z
IR

j�jsdE� (5.46)

can be de�ned as a positive self-adjoint operator in X0 for s 2 [0; 1]. Here (E�)t2IR de-

notes the spectral-family of the self-adjoint operator iB in X0. The domain D(jBjs)
of jBjs can be characterized as the interpolation space [X0;D(B)]s, see [18], and will

be denoted by Xs in the sequel.

With D(B) = W (
;�1)� ~W (
;�2) it follows easily by interpolation that

Xs =W s(
;�1)� ~W s(
;�2); (5.47)

where ~W s(
;�k)
def
= [L2(
); ~W (
;�k)]s.

Since C10 (IR3 n �2) �W (
;�2), one has

~W s(
;�2) � W s(
;�2): (5.48)

Remark 1 It has been shown in [8], lemma 5i) that under the present assumptions

on 
 and the partition of its boundary the space W (
;�2) coincides with the closure

of C10 (IR3 n �2) in Hcurl(
), i.e.

~W s(
;�2) = W s(
;�2):

But this fact is not necessary for the following considerations.
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Recall that Z(
;�k) is de�ned as the closure of C10 (IR3 n �k) in H
1(
).

Let ' 2 Z(
;�1) and  2 Z(
;�2).

Then r' 2 W0(
;�1) and r 2 ~W (
;�2), see [6], and thus

(r';r ) 2 kerB: (5.49)

In the sequel P denotes the orthogonal-projecor on (kerB)? = ranB in X0.

Let (exp (tB))t2IR be the unitary group generated by B.

Then (E(t);h(t)) = w(t)
def
= exp (tB)w0 solves the homogeneous Maxwell equations

"@tE = curl h; and �@th = � curl E; (5.50)

supplemented by the initial-boundary-conditions

~n ^E = 0 on (0;1)� �1; ~n ^ h = 0 on (0;1)� �2; (5.51)

E(0; x) = E0(x);h(0; x) = h0(x): (5.52)

for w0 = (E0;h0) 2 X0. The aim of this section is to prove a Hs-regularity-theorem

for Maxwell's equations. For this purpose it is assumed that "; � have the Hs0 -

multiplier-property 4.26 for some s0 2 (0; 1=2).

The following theorem will be proved in this section.

Theorem 3 (exp (tB))t2IR is a strongly continuous group in Hs(
) for all s 2 [0; �s),

i.e.

exp (�B)w 2 C(IR;Hs(
)) \ L1(IR;Hs(
)) for all w 2 Hs(
). Here �s > 0 as in

theorem 2.

This theorem says that the initial-boundary-value-problem 5.50-5.52 is well-posed

in Hs(
) for all s 2 [0; �s]. In the case that 
 is two-dimensional this result can be

found in [7].

Lemma 7 Let s 2 [0; �s] with �s > 0 as in theorem 2.

i) Xs \ (kerB)? � Hs(
); in particular P (Xs) � Hs(
):

ii) P (Hs(
)) � Hs(
):

iii) Hs(
) � Xs:

Proof: Let w
def
= (E;h) 2 Xs \ (kerB)?. For ' 2 Z(
;�1) one has by 5.49

0 =< w; (r'; 0) >X0
=
Z


"Er'dx;

i.e.

"E 2 X0(
;�1) � Xs(
;�1) (5.53)
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Now, 5.47, 5.53 and theorem 2 yield E 2 W s(
;�1) \ "
�1(Xs(
;�1)) � Hs(
). By

replacing �1 by �2 the same argument using 5.48 yields h 2 Hs(
), which completes

the proof of i).

Proof of ii) and iii): As in the proof of theorem 4 one has
0

H1 (
; CI3) � X(
;�k) \ ~W (
;�k) � X(
;�k) \W (
;�k) and therefore by inter-

polation

Hs(
; CI3) = [L2(
; CI3);
0

H1 (
; CI3)]s � Xs(
;�1) \W
s(
;�1)

and

Hs(
; CI3) = [L2(
; CI3);
0

H1 (
; CI3)]s � Xs(
;�2) \ ~W s(
;�2)

By 5.47 this implies iii). Moreover, it follows from i) and iii) that

P (Hs(
; CI3)) � P (Xs) = Xs \ (kerB)? � Hs(
; CI6):

Now, theorem 3 can be proved.

Proof of theorem 3: Let w 2 Hs(
). Since ran (1� P ) = ker B, one has

exp (tB)w = (1 � P )w + P exp (tB)w (5.54)

Now, lemma 7 ii) yields

(1� P )w 2 Hs(
) and jj(1� P )wjjHs � C1jjwjjHs (5.55)

It follows from lemma 7 iii) that w 2 Xs and thus exp (�B)w 2 C(IR;Xs) \

L1(IR;Xs). Next, lemma 7 i) yields

P exp (�B)w 2 C(IR;Xs \ (kerB)?) � C(IR;Hs(
)) (5.56)

and jjP exp (tB)wjjHs � C2jjwjjHs with some C1; C2 2 (0;1) independent of t;w.

Finally, the desired result follows from 5.54 - 5.56.

6 L
p-regularity for solutions of ME

Let 
;�1; " and � as in the previous section. Only the Hs0 -multiplier-property 4.26

of the coe�cients "; � 2 L1(
) is not necessary now.

In this section Maxwell's equations with nonlinear conductivity are considered.

"@tE = curl h� S(E); (6.57)
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�@th = � curl E; (6.58)

supplemented by the initial-boundary-conditions

~n ^E = 0 on (0;1)� �1; ~n ^ h = 0 on (0;1)� �2; (6.59)

E(0; x) = E0(x);h(0; x) = h0(x): (6.60)

Here S : L2(
; IR3) ! L2(
; IR3) is a generally nonlinear operator, which represent

the electric current caused by the electric �eld. It is assumed that

jjS(u)� S(v)jjL2 � Ljju� ujjL2 for all u;v 2 L2(
) (6.61)

and

S(E) 2 Lp(
) and jjS(u)jjLp � K (1 + jjujjLp) (6.62)

for all p 2 [2;1) and u 2 Lp(
) with constants L 2 (0;1) and K 2 (0;1).

In particular the linear case S(E) = �E with an electric conductivity � 2 L1(
) is

possible.

For the de�nition of the notion of weak solutions of 6.57-6.60 see [6].

Setting u
def
= (E;h) 6.57-6.60 reads as

@tu = Bu+ F�(u); u(0) = w0
def
= (E0;h0) (6.63)

where F� : L2(
; IR6) ! L2(
; IR6) � X0 is de�ned by

(F�(w))
def
= �"�1 (S(E); 0) for w = (E;h) 2 L2(
; IR6):

A function u 2 C([0;1);X0) is called a weak solution to 6.63, if for all a 2 D(B)

d

dt
< u(t);a >X0

= � < u(t); Ba >X0
+ < F�(u(t));a >X0

(6.64)

This is equivalent to the variation of constant formula

u(t) = exp (tB)w0 +
Z
t

0
exp ((t� s)B)F�(u(s))ds; (6.65)

where B is de�ned as in the previous section and exp (tB); t 2 IR is the unitary

group generated by B. Since F� is Lipschitz-continuous with respect to E 2 L2(
)

by assumption 6.61, it follows from a standard result that this integral equation has

a unique solution u = (E;h) 2 C([0;1);X0), see [6], chapter 6.

The main result of this section is the following Lp-regularity-theorem.

Theorem 4 There exists some ~p > 2 depending only on 
;�1; " and �, such that

for all p 2 [2; ~p] and w0 2 D(B) \ Lp(
) one has

u 2 L1
loc
([0;1); Lp(
)) \ C([0;1); Lr(
)) for all r 2 [2; p).
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In the sequel Yp denotes for p 2 [2;1) the set of all w = (E;h) 2 X0, such that the

semi-norm

jjwjjYp
def
= supfj

Z


"Er'dxj:' 2 Z(
;�1); jj'jjW 1;p�(
) � 1g

+supfj
Z


�hr dxj: 2 Z(
;�2); jj jjW 1;p�(
) � 1g

is �nite. Here

jj jjW 1;q(
)
def
= jj jjLq(
) + jjr jjLq(
) for q 2 [1;1);  2 W 1;q(
)

Obviously Hölder's inequality yields

Lp(
) � Yp and jjwjjYp � max fjj"jjL1; jj�jjL1gjjwjjLp for all w 2 Lp(
): (6.66)

It follows from 5.49 that for w0 = (E0;h0) 2 X0, (E(t);h(t))
def
= exp (tB)w0 and

' 2 Z(
;�1) and  2 Z(
;�2) one has

Z


�E(t)r'dx+

Z


�h(t)r dx = hexp (tB)w0; (r';r )iX

= hw0; exp (�tB)(r';r )iX = hw0; (r';r )iX

=
Z


�E0r'dx+

Z


�h0r dx

This implies

exp (tB)(Yp) � Yp and jj exp (tB)wjjYp = jjwjjYp for all w 2 Yp: (6.67)

Next, a Lp-regularity-theorem for elements belonging to X3=2�3=p \ Yp is proved.

Theorem 5 There exists ~p 2 (2; 6=(3 � 2�s)), such that for all p 2 [2; ~p] and
w 2 X3=2�3=p \ Yp one has w 2 Lp(
) and

jjwjjLp � C3

�
jjwjjX3=2�3=p

+ jjwjjYp

�

with some C3 2 (0;1) independent of w. Here s > 0 as in theorem 2 in the case

A = 1.

Proof:

Let p 2 (2; 6=(3� 2�s)) and w = (E;h) 2 X3=2�3=p \ Yp and de�ne f 2 Z(
;�1) and
g 2 Z(
;�2) by

Z


rfr'dx =

Z


Er'dx for all ' 2 Z(
;�1) (6.68)

and
Z


rgr dx =

Z


hr dx for all  2 Z(
;�2)
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Then E � rf 2 X0(
;�1) and also E � rf 2 W 3=2�3=p(
;�1) by 5.47, since

rf 2 W0(
;�1) � W 3=2�3=p(
;�1). With 3=2 � 3=p � �s we have by Sobolev's

embedding-theorem for fractional-order spaces and the Hs-regularity-theorem 2 (in

the case A = 1)

E�rf 2 H3=2�3=p(
) � Lp(
) with (6.69)

jjE�rf jjLp � C1jjE�rf jj
W 3=2�3=p � C2jjwjjX3=2�3=p

with C2 > 0 independent of w. By the de�nition of jj � jjYp Hölder's inequality yields

for all ' 2 Z(
;�1) the estimate

j

Z


"rfr'dxj � jj"(E�rf)jjLpjjr'jj

Lp� + j

Z


"Er'dxj (6.70)

� C2(jjwjjX3=2�3=p
+ jjwjjYp)jj'jjW 1;p�

It follows from 6.70 and the W 1;p-result in [5] that

f 2 W 1;p(
) , i.e. rf 2 Lp(
) with (6.71)

jjrf jjLp � C3(jjwjjX3=2�3=p
+ jjwjjYp)

provided that p is su�ciently close to 2, that means p � �p where �p > 2 depends

on 
;�1 and ". Now, 6.69 and 6.71 yield E 2 Lp(
). Analogously one obtains

h 2 Lp(
) and the lemma is proved with ~p
def
= min f6=(3 � 2�s); �pg.

Remark 2 The previous theorem does not follow immediately from the Hs-regularity-

theorem 2, since the coe�cients are not assumed to be Hs-multipliers in this section.

Corollary 1 For all p 2 [2; ~p] and E 2 L2(
) with

curl E 2 Lp
�

(
) and ~n ^E = 0 on �1 (6.72)

and

supfj
Z


"Er'dxj:' 2 Z(
;�1); jj'jjW 1;p�(
) � 1g <1 (6.73)

one has E 2 Lp(
).

6.72 is understood in the sense thatZ


(E curl h� h curl E)dx = 0 for all h 2 Lp(
) \W (
;�2)

Proof:

Let E 2 L2(
) satisfy 6.72 and 6.73.

Then

(E; 0) 2 Yp (6.74)

The aim of the following considerations is to show that (E; 0) 2 D((1 + jBj)1=2) =

X1=2.
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Suppose w = (w1;w2) 2 X1 = D(B) and de�ne u
def
= w � (rf;rg),

where f 2 Z(
;�1) and g 2 Z(
;�2) are de�ned by

Z


"rfr'dx =

Z


"w1r'dx for all  2 Z(
;�1)

Z


�rgr dx =

Z


�w2r dx for all  2 Z(
;�2)

Then u 2 X1 by 5.49 and u 2 Yp with jjujjYp = 0. With 3=2 � 3=p � 3=2 � 3=~p �
�s < 1=2 one has by theorem 5

u 2 Lp(
) with jjujjLp � C1jjwjjX3=2�3=p
� C1jjwjjX1=2

(6.75)

with C1 > 0 independent of u. By 5.49 we obtain from 6.72 and 6.75

j < (E; 0); Bw >X0
j = j < (E; 0); Bu >X0

j = j

Z


E curl u2dxj

= j

Z


( curl E)u2dxj � jj curl EjjLp� jjujjLp � C1jj curl EjjLp� jjwjjX1=2

and hence

j < (E; 0); Bw >X0
j � C1jj curl EjjLp� jjwjjX1=2

(6.76)

for all w 2 D(B) = X1.

Now, let u 2 X1=2 and w = (1 + jBj)�1=2u 2 X1 = D(B).

Then 6.76 yields

j < (E; 0); B(1 + jBj)�1=2u >X0
j = j < (E; 0); Bw >X0

j

� C1jj curl EjjLp� jjwjjX1=2
� C1jj curl EjjLp� jjujjX0

Hence, (E; 0) 2 D(B(1 + jBj)�1=2) = D((1 + jBj)1=2) = X1=2, which implies by 6.74

and theorem 5 that E 2 Lp(
).

Now, the Lp-regularity-theorem for Maxwell's equations 6.57-6.60 can be proved.

Proof of theorem 4:

Let ~p > 2 as in theorem 5. De�ne T : C([0; T ];X0)! C([0; T ];X0) by

(T u)(t) = exp (tB)w0 +
Z
t

0
exp ((t� s)B)F�(u(s))ds

Since w0 2 D(B) \ Lp(
) � X1 \ Yp, it follows from 6.67 and theorem 5 that

exp (tB)w0 2 D(B) \ Yp � X1 \ L
p(
)

and

jj
d

dt
(exp (tB)w0)jjX0

+ jj exp (tB)w0jjLp � K0 for all t 2 IR: (6.77)
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Suppose u 2 W 1;1([0; T ];X0), i.e. u : [0; T ] ! X0) is Lipschitz-continuous. Then

one has by assumption 6.61

jj(T u)(t+ h)� (T u)(t)jjX0
� jj(exp (�B)� 1)w0jjX0

+jj
Z
t+h

0
exp (rB)F�(u(t+ h� r))dr �

Z
t

0
exp (rB)F�(u(t� r))drjjX0

� C1h+ h sup
s�h

jjF�(u(r))jjX0
+
Z
t

0
jjF�(u(t+ h� r))� F�(u(t� r))jjX0

dr

� C2(1 + sup
s�h

jjF�(u(r))jjX0
)h+ L

Z
t

0
jju(t+ h� r) � u(t� r)jjX0

dr

and hence

T (u) 2 W 1;1([0; T ];X0) and (6.78)

jj@tT (u)(t)jjX0
� lim sup

h!0

h
h�1jj(T u)(t+ h)� (T u)(t)jjX0

i

� C3 + L

Z
t

0
lim sup
h!0

h
h�1jju(s+ h) � u(s)jjX0

i
ds

� C3 + L

Z
t

0
jj@tu(s)jjX0

ds

Set

juj1;1
def
= sup

t2[0;T ]

(exp (�2Lt)jj@tu(s)jjX0
)

for u 2 W 1;1([0; T ];X0). Then 6.78 yields T (u) 2 W 1;1([0; T ];X0) and

jT uj1;1 � C3 + 1=2juj1;1 for all u 2 W 1;1([0; T ];X0): (6.79)

Since d

dt
(T (u))(t) = B(T (u))(t)� F�(u(t)) weakly, it follows easily from 6.79 that

T (u) 2 L1([0; T ];D(B)) = L1([0; T ];X1) and

jjT ujjL1(0;T;X1) � C4

�
1 + jjT ujjW 1;1(0;T;X0)

�
(6.80)

for all u 2 W 1;1([0; T ];X0).

Now let u0 2 C([0; T ];X0) the unique solution of 6.65 and consider the Picard-

iteration u(n) def
= T n(w0) 2 C([0; T ];X0). Then

u(n) n!1
�! u0 in C([0; T ];X0) strongly. (6.81)

It follows inductively from 6.79 that u(n) 2 W 1;1((0; T );X0) with ju
(n)j1;1 � 2C3

and hence

sup
n2IN

jju(n)
jjW 1;1(0;T;X0) <1 (6.82)

6.80 and 6.82 yield

sup
n2IN

jju(n)jjL1(0;T;D(B)) = sup
n2IN

jju(n)jjL1(0;T;X1) <1 (6.83)
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Next, it is shown inductively that u(n)(t) 2 D(B) \ Lp(
) � X1 \ Yp.

Recall that

u(n+1) = (T (u(n))(t) = exp (tB)w0 +
Z
t

0
exp ((t� s)B)F�(u

(n)(s))ds: (6.84)

It follows from 6.62 and the induction-hypothesis that

F�(u
(n)(�)) 2 L1((0; T ); Lp(
)) � L1((0; T ); Yp)

and hence 6.67, 6.77 and 6.84 yield u(n+1)(t) 2 Yp.

By 6.83 and theorem 5 one has u(n+1)(t) 2 X1 \ Yp � Lp(
) and

jju(n+1)(t)jjLp � C5(jju
(n+1)(t)jjD(B) + jju(n+1)(t)jjYp) (6.85)

� C6(1 + jju(n+1)(t)jjYp) � C6

�
1 + jjw0jjYp +

Z
t

0
jjF�(u

(n)(s))jjYpds

�
:

� C7

�
1 +

Z
t

0
jju(n)(s)jjLpds

�
:

Using a weighted L1((0; T ); Lp(
))-norm as in 6.79 one obtains

supn2IN jju
(n)jjL1(0;T;Lp(
)) <1 and hence together with 6.81

u0 2 L
1((0; T ); Lp(
)): (6.86)

Finally, the assertion follows from u0 2 C([0; T ]; L2(
)) and 6.86.
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