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Abstract

Consider the �nite measure-valued continuous super-Brownian motion X on Rd

corresponding to the evolution equation ut =
1
2
�u + �u � u2; where � 2 C


(R
d
)

with 
 2 (0; 1] is bounded from above. We prove criteria for (�nite time) extinction

and local extinction of X in terms of �. It turns out that for d � 2, local extinction

is equivalent with extinction. For general d, we show that if � has a suitable decay

rate at in�nity then it can be changed on a compact set in order to guarantee local

extinction. On the other hand, if � is above this decay rate, the process does not

exhibit local extinction. If d � 6, then extinction has the same threshold rate as local

extinction, while for d > 6 one observes a phase transition. Last, we show that in

dimension 1, if � is no longer bounded from above and, in fact, degenerates to a single

point source, then X does not exhibit local extinction, and the expectation of the

rescaled process t 7! e
�t=2Xt has a limit as t!1. In the proofs pde techniques and

Laplace transforms are used together with h-transforms for measure-valued processes.

1 Introduction and statement of results

1.1 Motivation

In [Pin96, Theorem 6] an abstract (spectral theoretical) criterion has been pre-

sented for the local extinction of supercritical superdi�usions with spatially con-

stant branching mechanism. In [EP99] this criterion has been generalized for a

spatially dependent branching mechanism resulting into so-called (L; �; �;D)-

superdi�usions, and also abstract conditions have been derived for extinction

and for the compact support property. Here L is a di�usion operator on a do-

main D � R
d ; and, loosely speaking, �(x)v � �(x)v2 refers to the branching

mechanism. These abstract theorems however do not give a straightforward way

to decide whether a given superdi�usion becomes (locally) extinct or possesses

the compact support property. (Note nevertheless that a su�cient condition

has already been given for having the compact support property by Theorem

3.5 in [EP99]; see also Theorem 3.6 there.) Recently ([Eng99]) this gap has been

partially �lled by giving concrete criteria for the compact support property in a

simple setting, namely, when the underlying migration process is a time-changed

Brownian motion (that is L = %(x)� with % > 0) and the spatially constant

branching mechanism is critical (that is �(x) � 0).

In this paper we are going to derive similar concrete criteria for (�nite time)

extinction and local extinction, again in a relatively simple setup. In fact,

we consider a continuous super-Brownian motion (L =
1
2
�) in D = R

d
with

constant �; but with additional spatially dependent mass �production� �: See

Theorems 1 and 2 below.

A second purpose is to begin studying what happens if this mass production

coe�cient � varies in space in an irregular way. Here we restrict our attention to

the simplest case, namely, if it degenerates to a single point source �0 (Theorems

3 and 4). Our inspiration comes from the so-called catalytic branching models

(see [Fle94], [DFL95], or [Kle99] for surveys).
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1.2 Preparation

Let Mf = Mf (R
d
) denote the set of �nite measures � on R

d
, and Mc =

Mc(R
d
) the subset of all compactly supported �. Write C


= C

(R

d
) and

Ck;

= Ck;


(R
d
); 
 2 (0; 1]; k = 1; 2; for the usual Hölder spaces.

Let L be an elliptic operator on R
d
of the form

L =
1

2
r � ar+ b � r on R

d ; (1)

where ai;j ; bi 2 C1;
 ; i; j = 1; :::; d; for some 
 2 (0; 1] and the symmetric matrix

a = fai;jg satis�es
Pd

i;j=1 aij(x)vivj > 0; for all v 2 Rdnf0g and all x 2 Rd . In
addition, let �; � 2 C


denote functions satisfying � > 0 and supx2Rd �(x) <1:

Notation 1 (superdi�usion) Let (X;P� ; � 2 Mf ) denote the (L; �; �;Rd )-

superdi�usion. That is, X is the uniqueMf -valued (time-homogeneous) contin-

uous Markov process which satis�es, for any bounded continuous g : R
d 7! R+ ,

E� exp hXt ;�gi = exp

�
�
Z
Rd

�(dx) u(x; t)

�
; (2)

where u is the minimal non-negative solution to

ut = Lu+ �u� �u2 on R
d � (0;1);

lim
t!0+

u(�; t) = g(�)

9=; (3)

(see [EP99]). Here h�; fi denotes the integral
R
Rd �(dx) f(x): 3

De�nition 2 (extinction) A measure-valued path X becomes extinct (in �-

nite time) if Xt = 0 for all su�ciently large t. It exhibits local extinction if

Xt(B) = 0 for all su�ciently large t; for each ball B � R
d . The measure-valued

process X corresponding to P� is said to possess any one of these properties if

that property is true with P�-probability one. 3

Remark 3 (process properties) In [EP99] it is shown that, for �xed L; �

and �, if any one of the properties in De�nition 2 holds for some P� ; � 2 Mc

with � 6= 0, then it in fact holds for every P� ; � 2Mc . 3

1.3 Criteria for extinction

Local extinction can be characterized in terms of L and � (see [Pin96] and

[EP99]):

Lemma 4 (local extinction) The (L; �; �;Rd )-superdi�usion X exhibits lo-

cal extinction if and only if there exists a (strictly) positive solution u to the

equation (L+ �)u = 0 on Rd .

The following su�cient condition for extinction will be proved in Subsection

4.2:
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Proposition 5 (extinction via local extinction) Assume the (L; �; �;Rd )-

superdi�usion X exhibits local extinction. If there exists a function h 2 C2;


and an (non-empty) open ball B � R
d such that infRd h > 0 and (L+ �)h � 0

on RdnB , then X becomes extinct. 1)

In the remaining part of this section, we specialize to L =
1
2
� and to �(x) �

1; that is, X is the superdi�usion (super-Brownian motion) corresponding to

the quadruple
�
1
2
�; �; 1;Rd

�
:

It is well-known that if � is constant, this super-Brownian motionX becomes

extinct if and only if � � 0. Using Lemma 4 one can show that for constant � > 0

there is even no local extinction. If however � is spatially dependent, then the

local branching mechanism may be supercritical (that is �(x) > 0) in certain

regions and critical or subcritical (�(x) � 0) in others. We are interested in

obtaining more speci�c criteria for extinction and local extinction of X in terms

of � 2 C

. In the following subsection we will consider a non-regular � as well.

First, we will show that for our � 2 C

there exists a threshold decay rate

Kd=jxj2 concerning local extinction. We will use the notation r >> 1 for the

phrase �r large enough�, and r << �1 is de�ned similarly.

Theorem 1 (threshold decay rate for local extinction) Consider the

(
1
2
�; �; 1;Rd )-superdi�usion X:

(a) If

�(x) �
Kd

jxj2
for jxj >> 1; where Kd :=

(d� 2)
2

8
; (4)

then there exists a �� 2 C
 satisfying �� = � outside some compact set

such that X exhibits local extinction.

(b) On the other hand, if

�(x) �
K

jxj2
for jxj >> 1 and some K > Kd ; (5)

then X does not exhibit local extinction.

Remark 6 (one-dimensional case) In one dimension, Theorem 1 (b) can be

replaced by a stronger statement: If

�(x) �
K

x2
for x >> 1 or x << �1; and some K > K1 =

1

8
; (6)

then X does not exhibit local extinction. See Subsection 4.2 for a proof. 3

1)
B denotes the closure of B:
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It is well-known that for any given ball B � R
d
(with positive radius), �

can be chosen large enough on B in order to guarantee non-existence of positive

solutions to the equation (L + �)u = 0 on B (or, equivalently, the positivity

of the principal eigenvalue for L + � on B (see [Pin95, Chapter 4] for more

elaboration). Then, a fortiori, there is no positive solution u to the equation

(L + �)u = 0 on R
d
. By Lemma 4 then, X does not exhibit local extinction.

This shows that a small `tail' for � alone will never guarantee local extinction.

Since, by Lemma 4, local extinction is completely determined by a property

of the linear operator L + �, it is relatively easy to get conditions on local

extinction using techniques from linear pde. Characterizing extinction of the

superdi�usion however is a subtler question. We will show that if d � 2 or if �

is below a threshold decay rate kd=jxj2 then local extinction implies extinction,

while, on the other hand, extinction does not hold for any � above this threshold.

If d � 6, then kd = Kd where Kd is de�ned in (5). However, if d > 6, a phase

transition occurs: kd < Kd : In fact, our �rst main result reads as follows.

Theorem 2 (extinction versus local extinction)The ( 1
2
�; �; 1;Rd)-super-

process X has the following properties:

(a) Let d � 2. Then local extinction implies extinction.

(b) If

�(x) �
kd

jxj2
for jxj >> 1; where kd :=

(
Kd if d � 6;

d� 4 if d > 6;
(7)

then local extinction implies extinction.

(c) However, if

�(x) �
k

jxj2
for jxj >> 1 and some k > kd ; (8)

then extinction does not hold.

Remark 7 (generalization) The claim in Theorem 2 (a) remains true for any

(L; �; �;Rd )-superdi�usion whenever L corresponds to a recurrent di�usion on

R
d
, and � is bounded away from zero. This can easily be seen from the proof

in Subsection 4.3. 3

Remark 8 (non-negative �) In the case � � 0 but �(x) 6� 0, one can show

using Lemma 4, that X does not exhibit local extinction (and consequently

extinction does not hold for X) if d � 2, while extinction will hold for d � 3 in

some cases. See the end of Subsection 4.3 for a proof. In particular, if d � 2

and � has the maximal tail in Theorem 1 (a), then �� must change the sign.3
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1.4 A single point source

In the light of the previous remark, it seems to be interesting to ask what hap-

pens in the one-dimensional case when � degenerates to a single point source,

that is, when the additional mass production is zero everywhere except at a sin-

gle point (the origin, say) where the mass production is in�nite (in a �-function

sense). In other words, we drop now our requirement that � is bounded from

above and even consider the superdi�usion X corresponding to the quadruple�
1
2
�; �0; 1;R

�
; where �0 denotes the Dirac �-function at zero. More precisely,

from the partial di�erential equation (3) we pass to the integral equation

u(� ; t) =
Z 1

�1
dy p(t; � ; y)g(y) +

Z t

0

ds p(t� s; � ; 0)u(s; 0)

�
Z t

0

ds

Z 1

�1
dy p(t� s; � ; y)u2(s; y); t > 0; (9)

where fp(t; x; y) = p(t; x� y); t > 0; x; y 2 Rg denote the Brownian transition

densities. The construction of this continuous Mf -valued process X having

again the Laplace transition functionals (2) [but with the new u from (9)] goes

along standard lines via regularization of �0; in particular, the limiting log-

Laplace equation (9) makes sense and enjoys the needed continuity properties.

(See e.g. [DF97] and references therein.) The corresponding probabilities will

be denoted by fP sin
� ; � 2Mfg.

It turns out that the (additional) mass production at this single point is

enough to guarantee that the process does not exhibit local extinction (and

consequently extinction does not hold):

Theorem 3 (single point source) For any � 2 Mfnf0g, the superdi�usion

X corresponding to P sin
� does not exhibit local extinction.

We mention that for the case when � = 0 and � = �0 instead, it is known,

that

P�

�
kXtk > 0; 8t > 0; but kXtk ! 0 as t!1

�
= 1 (10)

for all � 2Mfnf0g; see [FL95] or [DFL95, Corollary 5]. (Here k�k denotes the
total mass of a measure �:) Furthermore, Xt(B) ! 0 in probability for any ball

B � R , even if the starting measure � is Lebesgue (see [DF94]).

Next, we will show that the total mass of the superdi�usion corresponding to

P sin
�0

grows exponentially in expectation. For this aim, for simplicity we assume

that the process starts with a unit mass situated at the origin.

Theorem 4 (exponential growth)

(a) For all t � 0;

Esin
�0
kXtk =

2p
�
e
t=2

Z 1

�
p
t=2

dx e
�x2 : (11)
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Thus,

Esin
�0
kXtk � 2e

t=2 as t!1: (12)

(b) For all bounded continuous g : R 7! R+ ;

lim
t!1

e
�t=2Esin

�0
hXt ; gi =

Z
R

dx g(x) e�jxj: (13)

In particular,

lim
t!1

1

t
logEsin

�0
hXt ; gi = �

1

2
; (14)

provided that g 6= 0:

Remark 9 (generalizations) Our results on the model with a single point

source suggest to deal with the following further questions (we will address in a

forthcoming paper):

(i) Extend the model to more general non-regular coe�cients �:

(ii) Verify that the rescaled process e
�t=2Xt itself has a limit in law as t!1

(instead of considering only its expectation). 3

1.5 Outline

The remainder of this paper is organized as follows. In Section 2 we present some

auxiliary material. Section 3 gives a pde interpretation of some of the results

stated in Subsection 1.3. Finally, the last section is devoted to the proofs.

For standard facts on superprocesses in general, we refer to [Daw93] and

[Dyn93].

2 Auxiliary de�nitions and tools

First we give a short review of some de�nitions and results for (L; �; �;Rd )-

superdi�usions which we will need and which can be found in [EP99].

De�nition 10 Consider the (L; �; �;Rd)-superdi�usionX corresponding to P�
with � 2Mcnf0g:

(a) (compact support property) X possesses the compact support prop-

erty if

P�

0@ [
0�s�t

supp (Xs) is bounded

1A = 1 for all t � 0: (15)
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(b) (recurrence) X is said to be recurrent if

P�
�
Xt(B) > 0 for some t � 0

�� Ec
�
= 1 (16)

for every (non-empty) open ball B � R
d . Here Ec

denotes the complement

of the event that X becomes extinct. (Roughly speaking, each ball is

charged given survival.)

(c) (transience) X is called transient if

P�
�
Xt(B) > 0 for some t � 0

�� Ec
�
< 1 (17)

(if d � 2) for all open balls B � R
d
such that B \ supp(�) = ;;

(if d = 1) for all �nite intervals B � R satisfying supB < inf supp(�);

or for all �nite intervals B � R satisfying inf B > sup supp(�): 3

In [EP99] it is shown that X is either recurrent or transient, and that if any

one of the properties in De�nition 10 holds for some P� ; � 2 Mcnf0g, then it

in fact holds for every P� ; � 2Mcnf0g.
We mention that recurrence and transience for superdi�usions were �rst

de�ned and studied in [Pin96] in the case when � and � are positive con-

stants. (In [Pin96], [EP99], and [Eng99] the terminology is actually slightly

di�erent: Instead of calling X recurrent/transient, the support of X is called

recurrent/transient respectively.)

De�nition 11 (h-transformed superdi�usion Xh) Let 0 < h 2 C2;

and

consider the (L; �; �;Rd )-superdi�usion X: De�ne

Xh
t := hXt

�
that is

dXh
t

dXt

= h

�
; t � 0: (18)

Then Xh
is the (Lh0 ; �

h; �h;Rd )-superdi�usion, where

Lh0 := L+ a
rh
h
� r; �h :=

(L+ �)h

h
; and �h := �h: (19)

Xh
makes sense even if �h is unbounded from above (see [EP99, Section 2] for

more elaboration). Xh
is called the h-transformed superdi�usion. 3

Remark 12 (h-transforms) (i) Lh0 is just the di�usion part of the usual lin-

ear h-transformed operator Lh (see [Pin95, Chapter 4]).

(ii) The operators A(u) := Lu+�u��u2 and Ah
(u) := Lh0u+�hu��hu2 are

related by Ah
(u) = 1

h
A(hu): 3

An obvious but important property of the h-transform is that it leaves the

support process t 7! supp (Xt) invariant. It is also important to point out

that extinction, local extinction, recurrence/transience, as well as the compact

support property are in fact properties of the support process, and that these

properties are therefore invariant under h-transforms.
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Remark 13 In the particular case when h satis�es the equation (L+ �)h = 0

on R
d ; the superdi�usion Xh

coincides with Overbeck's [Ove94] additive h-

transform in a time-independent case. 3

The following lemma collects some more detailed facts taken from [EP99].

Lemma 14 (details) Consider the (L; �; �;Rd)-superdi�usion X:

(a) (w-function and extinction) There exists a function w : R
d 7! R+ which

solves the `stationary' equation

Lu+ �u� �u2 = 0 on Rd ; (20)

and for which

P�(X becomes extinct) = e
�h�;wi; � 2Mc : (21)

If infRd � > 0 and � � 0 then w = 0. On the other hand, if w 6= 0; then

w is actually positive. Also, if L corresponds to a conservative di�usion

on Rd and � and � are constants then w = (� _ 0) =�:

(b) (wmax and the compact support property) There exists a maximal

non-negative solution wmax to (20). Furthermore, wmax = w with w from

(a) if X has the compact support property. If w = 0, then wmax = 0 if and

only if X has the compact support property.

(c) ('min and recurrence/transience) Take an open ball B � R
d . There

exists a minimal positive solution 'min to

Lu+ �u� �u2 = 0 on RdnB;

limx!@B u(x) =1:

)
(22)

Moreover, exactly one of the following two possibilities occurs:

(c1) 'min > w on RdnB for any open ball B; and X is recurrent.

(c2) lim inf jxj!1
'min
w

(x) = infx2RdnB
'min
w

(x) = 0 for any open ball B;

and X is transient.

Remark 15 (construction of 'min) Take balls Bn � B centered at the ori-

gin and with (su�ciently large) radius n; where B is from (c). Moreover, let 'n
be the unique solution to

Lu+ �u� �u2 = 0 on BnnB

u = n on @B;

u = 0 on @Bn :

9>>=>>; (23)

Then 'min = limn!1 'n (see [Pin95, p.250]). 3

For relations between extinction and the compactness of the range of super-

Brownian motions with constant � but otherwise general branching mechanism,

see [She97].
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3 A pde interpretation of some of our results

Recall that � 2 C

is assumed to be bounded from above. Consider the following

two possibilities.

(I) There is no positive solution to (
1
2
�+ �)u = 0 on R

d
.

(II) There exists a positive solution to
1
2
�u+ �u� u2 = 0 on R

d
.

By Lemma 4, case (I) is equivalent to exhibiting no local extinction for the

(
1
2
�; �; 1;Rd )-superdi�usion X . In the light of this correspondence we point out

that conditions for (I) like the ones appearing in Theorem 1 and Remark 6 are, of

course, well-known from standard pde literature. By [EP99, Theorem 3.5], the

compact support property holds for X , and thus, by Lemma 14 (b), w = wmax,

where w and wmax are de�ned in (a) and (b) of Lemma 14 respectively. Putting

this together with the �rst sentence in Lemma 14 (a), it follows that (II) is

satis�ed if and only if extinction does not hold for X . Using this together with

Theorem 2, we immediately obtain the following relations between (I) and (II),

and condition on (II); we omit the trivial proof.

Corollary 16 (relations between (I) and (II))

(a) (I) implies (II).

(b) (I) and (II) are equivalent if d � 2; or if �(x) � kd=jxj2 for jxj >> 1 [with

kd from (7)].

(c) (II) holds, if �(x) � k=jxj2 for jxj >> 1 and some k > kd :

4 Proofs

4.1 Preparation

We will utilize the following two lemmata.

Lemma 17 (condition for extinction) X becomes extinct if all of the fol-

lowing conditions are true:

(i) the (L; �; �;Rd)-superdi�usion X exhibits local extinction,

(ii) � � 0 outside a compact set, and

(iii) infRd � > 0.

Lemma 18 (condition for non-extinction) Let X i be the (Li; �i; �i;R
d
)-

superdi�usions, i = 1; 2; and assume that, outside a compact set, �1, �1 ; and

the coe�cients of L1 coincide with �2, �2 ; and the coe�cients of L2 respectively.

Furthermore, assume that

(i) X1 exhibits local extinction,

(ii) X2 does not become extinct, and

(iii) X2 is transient.

Then X1 does not become extinct either.

9



For the proofs of the Lemmas 17 and 18, we refer to [Eng99, Theorem 1.1],

more precisely, to the proof of part a) and to the end of the proof of part b)

there respectively.

4.2 Proof of Proposition 5 and Theorem 1

Proof of Proposition 5 Take h and B as in the proposition, and consider

the h-transformed superdi�usion Xh
according to De�nition 11. Then, by as-

sumption, �h � 0 on R
dnB. Note that �h = h; and thus �h is bounded away

from 0; also by assumption. Since X exhibits local extinction, also Xh
does,

and from Lemma 17 it follows that Xh
becomes extinct. Then the same is true

for X .

Remark 19 (monotonicity) We will use the following comparison, for sim-

plicity we refer to this as �monotonicity�: If �1 � �2 and there is no positive

solution for the equation (
1
2
� + �1)v = 0 on R

d , then there is no positive so-

lution to (
1
2
� + �2)v = 0 on R

d
either. In fact, similarly to the discussion

following Remark 6, the non-existence of positive solutions for (
1
2
� + �)u = 0

on R
d
is equivalent to �

(�)
c > 0; where �

(�)
c denotes the so-called generalized

principal eigenvalue of
1
2
�+� on R

d : Using the well-known probabilistic charac-

terization of �
(�)
c ([Pin95, Theorem 6.4.4]) it is immediate that �

(�)
c is monotone

non-decreasing in �: This implies the mentioned monotonicity. 3

Proof of Remark 6 Let d = 1: By Lemma 4 it is su�cient to show that

there is no positive solution to the equation (
1
2
� + �)u = 0 on R. We may

assume, that �(x) � K=x2; x >> 1, where K > 1
8
. By monotonicity (Remark

19), it is enough to verify the statement for �(x) = K=x2; x >> 1. Suppose

on the contrary that there exists a function f > 0 satisfying
1
2
f 00 + �f = 0.

Then
1
2
f 00 + K

x2
f = 0 for x >> 1. But the two-dimensional space of complex

solutions to this equation is spanned by the power functions x%+ and x%� , where

%� =
1
2
(1�

p
1� 8K). Since Im(%�) 6= 0, there is no positive solution, getting

a contradiction. This already �nishes the proof.

Proof of Theorem 1 (b) Because of the previous proof, we could assume

that d � 2: Recall that it su�ces to show that there is no positive solution to

the equation (
1
2
� + �)u = 0 on R

d
. Again, by monotonicity, it is enough to

verify the statement for �(x) = K=jxj2; x >> 1. Suppose that there exists a

function f > 0 satisfying
1
2
�f +�f = 0 in R

d
. Then

1
2
�f +

K
jxj2 f = 0 on some

annulus of the form fx 2 R
d
: jxj > cg; c > 0. Using a scaling argument, it

then follows that there exists a positive solution to
1
2
�f +

K
jxj2 f = 0 on any

annulus of the above form. Then, by a compactness argument, there exists a

positive solution on R
dnf0g as well. (For compactness arguments see [Pin95,

Chapter 4].) But this is known to be false (see [Pin95, Example 3.12 on p.153]).

Consequently, part (b) of Theorem 1 is proved.
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(a) Assume that �(x)jxj2 � Kd
for jxj >> 1, and let h be a positive C2;


-

function satisfying h(x) = jxj�(d�2)=2 for jxj >> 1. Note that

1
2
�h

h
= �Kd 1

jxj2
for jxj >> 1: (24)

Moreover, let b� � 0 be a C

-function satisfying

b�(x) = �(x)�Kd=jxj2; jxj >> 1: (25)

(The existence of such a b� is guaranteed by the growth rate assumption on �:)

De�ne �� := b� � 1
2
�h
h
: It is easy to see that �� belongs to C
 ; and moreover,

using (24) and (25) we have ��(x) = �(x) for jxj >> 1: Taking the linear

h-transform (see [Pin95, Chapter 4]) of the operator

1

2
� + ��; (26)

we get

1

2
� +

rh
h
� r+ b�: (27)

Since b� � 0, it is well-known (see e.g. [Pin95, Theorem 4.3.3 (iii)]) that there

exists a positive solution for�
1

2
� +

rh
h
� r+ b��u = 0 on R

d : (28)

Therefore, �
1

2
�+ ��

�
(hu) = 0 (29)

[recall Remark 12 (ii)], and thus, by Lemma 4, the (
1
2
�; ��; 1;Rd)-superdi�usion

exhibits local extinction, �nishing the proof.

4.3 Proof of Theorem 2

(a) Let d � 2; and suppose to the contrary that X does not become extinct

but exhibits local extinction. Since � is bounded from above, using the recur-

rence of the Brownian motion and Theorem 4.5 (a) of [EP99], it follows that

X is recurrent. But this contradicts the local extinction (see the remark after

Theorem 4.2 in [EP99]), giving the claim (a).

(b) If d � 2, then the statement follows from (a).

Assume now that 3 � d � 6 and that X exhibits local extinction. Similarly

to the argument in part (a) of the proof of Theorem 1, X can be h-transformed

into the
�
1
2
�+

rh
h
� r; �h; h;Rd

�
-superdi�usion Xh

, where �h = b� for jxj >> 1

11



with b� as in (25). Recall that �h � 0 for jxj >> 1: According to [EP99,

Theorem 3.5], the compact support property holds for X , thus the same is true

for Xh
. Therefore, using Lemma 14 (b), it follows that the extinction of Xh

is

equivalent to the non-existence of positive solutions for the corresponding semi-

linear elliptic equation. Dividing through by h, we see that Xh
(and also X)

becomes extinct if and only if there is no positive solution to

1

2h
�u+

rh
h2

� ru+
�h

h
u� u2 = 0 on R

d ; (30)

that is, if and only if the corresponding maximal solution wmax is zero. In order

to prove that wmax = 0; let X�
denote the superdi�usion corresponding to the

quadruple �
1

2h
�+

rh
h2

� r;
�h

h
; 1;Rd

�
: (31)

We will show that X�
becomes extinct (the w-function of Lemma 14 (a) is zero),

and that w = wmax : For the �rst statement, note that by the local extinction

assumption on X and Lemma 4, (
1
2
� + �)u = 0 with some u > 0: By Remark

12 (ii) then �
1

2h
�u+

rh
h2

� r+
�h

h

�
u

h
= 0; (32)

and therefore by Lemma 4, also X�
exhibits local extinction. Since �h � 0 for

jxj >> 1; and � = 1, Lemma 17 yields that X�
becomes extinct.

For the present 3 � d � 6 part, it remains to show that w = wmax : By

Lemma 14 (b), it is enough to verify that the compact support property holds

for X�
. Since in particular d � 6, for the di�usion coe�cient in (31) we have

1

2h(x)
= O(jxj2) as jxj ! 1: (33)

Using this, the fact that the drift term
rh
h2

(x) is negative for jxj >> 1; and that

�h=h is bounded from above (non-positive outside a compact set), the compact

support property is implied by [EP99, Theorem 3.5].

Assume now that d > 6. Take an h 2 C2;

satisfying h(x) = jxj�2 for

jxj >> 1: Resolving the Laplacian in radial form, an elementary computation

shows that if �(x)jxj2 � d� 4 is satis�ed for jxj >> 1; then

(i) (
1
2
�+ �)h (x) � 0 and

(ii) rh(x) � 0

for jxj >> 1: Then the rest of the proof works similarly as in the case 3 � d � 6:

In fact, reading carefully the proof, one can see that it relies only on the fact

that the h chosen there satis�es (i) and (ii) of the present case as well as (33).

Indeed, we replaced the previous h by the present one in order to guarantee (33)

for d > 6: This completes the proof of (b).
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(c) Obviously, we can assume that d > 6, otherwise the assertion follows from

Theorem 1 (b). Also, by comparison, we can set �(x)jxj2 = d � 4 + "0 for

jxj >> 1, with some 0 < "0 � 1. In fact, for the comparison one has to check

that for larger � we have a larger w-function, that is, less chance for extinction.

This can easily be seen from the construction of the w-function and the parabolic

maximum principle (see [EP99], Theorem 3.1 and Proposition 7.2 respectively).

Last, we will assume that the process exhibits local extinction (otherwise the

assertion is trivial).

Let h be a radially symmetric positive C2;

-function satisfying

h(x) = jxj�2 for jxj >> 1: (34)

Making the h-transform and dividing by h in the quadruple corresponding to

X , we obtain the quadruple (31) [but now with h as in (34)]. Let X1
denote the

corresponding superdi�usion. Note, that by a simple computation, �h=h = "0
outside a large closed ball B � R

d
. The same argument as in part (b) shows

that X1
exhibits local extinction.

Similarly to the argument preceding (30), the extinction of X is equivalent

to the non-existence of a positive solution to (30) [but now with h as in (34)].

Our goal is to prove that extinction does not hold for X1
. In fact, then by

Lemma 14 (a), the corresponding w-function is a positive solution to (30).

Using (34) and Feller's test for explosion (see e.g. [Pin95, Theorem 5.1.5]), we

conclude that the operator
1
2h

�+
rh
h2
�r corresponds to a conservative di�usion

on R
d
. Thus, by the last part of Lemma 14 (a) applied to X2

, which denotes

the superdi�usion corresponding to the quadruple�
1

2h
�+

rh
h2

� r; "0; 1;Rd
�
; (35)

we obtain w(x) � "0 . In particular, X2
does not become extinct.

Applying Lemma 18 to X1
and X2

it will su�ce to show that the latter

process is transient. Then non-extinction of X1
will follow.

Consider the 'min-function according to Lemma 14 (c) applied to X and

with B; the ball introduced above. Resolving the Laplacian in radial form, and

using "0 � 1; a simple computation reveals that if

0 < " �
1

2

�
d� 6 +

p
(d� 6)2 + 8(1� "0)

�
; (36)

then u(x) = jxj�2�" satis�es
1
2
�u + �u � u2 � 0 for jxj >> 1. Thus, by

the elliptic maximum principle ([EP99, Proposition 7.1]) and Remark 15, there

exists a constant c > 0 such that

'min(x) � c u(x); jxj >> 1: (37)

(Cf. the end of the proof of Theorem 4.2 in [EP99].) Since 'hmin = 'min=h by

Remark 12 (ii), the 'min-function for X1
(and also for X2

) on R
dnB is 'min=h.

Putting this together with (34) and (37), the 'min-function for X2
tends to zero

13



as jxj ! 1. Therefore limjxj!1
'min(x)
w(x)

= 0 for X2
. Thus, X2

is transient, by

Lemma 14 (c2).

This completes the proof of (c) and of Theorem 2 altogether.

Proof of Remark 8 First, let d � 2. By [Pin95, Theorem 6.3 (i)], there is

no positive solution to the equation (
1
2
�+�)u = 0 on R

d
. Thus, the statement

is true by Lemma 4. On the other hand, if d � 3; � � 0, � 6= 0; and � is

compactly supported, then by [Pin95, Theorem 4.6.2], there exists an " > 0 and

a function u > 0 such that (
1
2
� + "�)u = 0 on R

d
. Then, by Lemma 4, the

(
1
2
�; "�; 1;Rd)-superdi�usion X exhibits local extinction, hence by Lemma 17

it even becomes extinct.

4.4 Proof of Theorem 3

We need a lemma. De�ne the �0-regularization

�"(x) :=
1

"
�
�x
"

�
; " > 0; x 2 R; (38)

where � � 0 is a compactly supported non-vanishing smooth symmetric function

with �0(x) � 0 for x � 0:

Lemma 20 (subsolutions for approximating equations) There is a num-

ber ` > 0 and there are functions v�" = v�";` ; " > 0; de�ned on the interval

D` := (�`; `); such that, for " su�ciently small,

(i) v�" � 0; and v�" = 0 on @D` := f�`g;
(ii)

1
2
(v�" )

00
+ �"v

�
" � (v�" )

2 � 0 on D` ;

(iii) supD`
v�" = v�" (0);

and that v�" (0) is bounded away from zero as " # 0.

Proof Denote by �`" the leading eigenvalue for
1
2
�+�" on D` with zero bound-

ary condition and with corresponding eigenfunction  `" > 0. Furthermore, de-

note by �` the leading eigenvalue for
1
2
� on D` with zero boundary condition

and with corresponding eigenfunction  ` > 0, where  ` has been normalized byR
D`

dx  2
` (x) = 1. In other words,

 `(x) =
1p
`
cos

��x
2`

�
and �` = �

�2

8`2
: (39)

De�ne

v�";` :=
�`"

supD`
 `"

 `" on D` : (40)

Then v�";` satis�es the boundary condition in (i), and a simple computation

shows that (ii) also holds. We are going to show that there exists an ` > 0

such that lim inf"#0 �
`
" > 0. This will prove that v�";` � 0 for " su�ciently small

14



and that supD`
v�";` is bounded away from zero as " # 0. In order to do this, we

invoke the following minimax representation of �`" (see [Pin95, Theorem 3.7.1]):

�`" = sup
�

inf
u>0 on D`

u2C2(D`)

Z
D`

�(dx)

�
1

2

u00

u
+ �"

�
(x); (41)

where the supremum is taken over all probability measures � on D` with den-

sities f satisfying
p
f 2 C1

(D`) and f(�`) � 0: (Of course, Cm; m � 1;

refers to the set of all m-times continuously di�erentiable functions.) Take

�(dx) =  2
` (x) dx in (41). Then,

�`" � inf
0<u2C2(D`)

Z
D`

dx
1

2

u00

u
 2
` +

Z
D`

dx �" 
2
` =: I + II (42)

(with the obvious correspondence). Using [Pin95, Theorem 3.7.1] again, we get

I = �`: Thus

�`" � �` +

Z
D`

dx �" 
2
` = �

�2

8`2
+

Z
D`

dx
1

`
cos

2
��x
2`

�
�"(x): (43)

Since �"(x)dx! �0(dx) weakly as " # 0, the latter inequality yields lim inf"#0 �
`
"

> 0, provided that ` is su�ciently large.

It remains to show that supD`
 `" =  `"(0) and consequently supD`

v�";` =

v�";`(0): For this purpose, we consider the equation

1

2
( `")

00
= (�`" � �") 

`
" : (44)

Clearly, ( `")
00
(x) � 0 if and only if �"(x) � �`" ; and consequently �`" �

supD`
�" = �"(0): Putting this together with the positivity, symmetry and

compact support of  `" , we conclude that supD`
 `" =  `"(0): This completes the

proof of the lemma.

Proof of Theorem 3 Step 1
�

Let ` > 0 and let v�" = v�";` be as in Lemma

20. By that lemma, one can pick a constant c > 0 such that

sup

D`

v�" = v�" (0) > c for all small " > 0: (45)

Fix a non-negative continuous function g satisfying

g = c on D` and g = 0 on RnD2` : (46)

Put

u�" :=
c � v�"

supD`
v�"

: (47)

15



Note, that u�" (0) = c by Lemma 20 (iii). Using (i)-(ii) of the same lemma and

the statement (45), an easy computation shows that, for " > 0 su�ciently small,

u�" satis�es

1

2
(u�" )

00
+ �"u

�
" � (u�" )

2 � 0 on D` ;

u�" (x) � g(x) on D` ;

u�" = 0 on @D` :

9>>>=>>>; (48)

Then, by the parabolic maximum principle ([EP99, Proposition 7.2]), for all

" > 0 small enough,

u�" (�) � ug"( � ; t); t � 0; (49)

where ug" denotes the minimal non-negative solution to the evolution equation

(3) with d = 1, L =
1
2
�, � replaced by �" , � = 1, and g from (46).

Step 2
�

First we verify the claim in the special case � = r�0 with r > 0: Let

E"
denote the expectations corresponding to the (

1
2
�; �"; 1;R)-superdi�usion.

By (2) specialized to the present case, (49), and using

u�" (0) � c > 0; (50)

we obtain for all " > 0 small enough and t > 0,

E"
r�0

exp hXt ;�gi = exp

�
� rug"(0; t)

�
� exp

�
�ru�" (0)

�
= e

�rc: (51)

Since this holds for all " > 0 small and t > 0, letting " # 0, we get

Esin
r�0

exp hXt ;�gi � e
�rc < 1; t > 0: (52)

Assume for the moment that

P sin
r�0

�
Xt(D2`) = 0 for all large t

�
= 1; (53)

then the left hand side of (52) tends to one as t ! 1, and this is a contradic-

tion. Consequently, the superdi�usion X with law P sin
r�0

does not exhibit local

extinction.

Step 3
�

Before turning to general starting measures, we need a slight general-

ization of (52). To this end, we modify the superdi�usion X with law P sin
r�0

a bit:

Instead of starting at time 0 with the measure r�0 ; we choose a starting time s

according to a non-vanishing �nite measure �(ds) on R+ : Then, by de�nition,

Esin
� exp hXt ;�gi = exp

"
�
Z
[0;t]

�(ds)u(0; t� s)

#
; t � 0; (54)
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with u satisfying the integral equation (9) with g from (46). Moreover, by (49)

and (50), instead of (52) we then get

Esin
� exp hXt ;�gi � exp

h
� �

�
[0; t]

�
c
i
< 1; t >> 1: (55)

Step 4
�

Finally, for our original superdi�usionX with general starting measure

� 2 Mfnf0g (at time 0); we use Dynkin's stopped (or exit) measures X� and

their so-called special Markov property (see [Dyn91a]). In our case, � is the

Brownian (�rst) hitting time of 0, where the additional mass source is sitting.

Having in mind a historical setting of the superdi�usion X (see, for instance

[DP91] or [Dyn91b]), then intuitively the present X� (ds) is a measure on R+

which describes the mass distribution of all superdi�usion's particles which hit 0

the �rst time in the moment � = s. Of course, the formal description of stopped

measures as X� along the historical setting and their special Markov property

requires some technicalities, but we skip such details here and in the sequel.

Now,

Esin
� exp hXt ;�gi = Esin

� Esin
�

�
exp hXt ;�gi

�� G�^t	 (56)

where G�^t denotes the pre-(� ^ t) �-�eld (concerning the stopped historical

superdi�usion and the Brownian stopping time � ^ t). By the special Markov

property and (55) we may continue with

= Esin
� Esin

X�^t
exp hXt ;�gi � Esin

� exp

h
�X�^t

�
[0; t]

�
c
i
: (57)

But, as t!1; the right hand side converges to

Esin
� exp

�
� kX�k c

�
� E� exp

�
� kX�k c

�
; (58)

where E� refers to the (
1
2
�; 0; 1;R)-superdi�usion. (Indeed, dropping the addi-

tional mass source �0 ; we may loose some population mass.) However,

P�
�
kX�k 6= 0

�
> 0 (59)

since by the expectation formula for X� -measures (see [Dyn91a, (1.50a)]),

E� kX�k = k�k > 0: (60)

Hence, E� exp
�
� kX�k c

�
< 1; and therefore altogether

lim sup
t!1

Esin
� exp hXt ;�gi < 1: (61)

Again arguments as in the end of step 2
�
will �nish the proof.
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4.5 Proof of Theorem 4

(a) Set u(x; t) := Esin
�x
kXtk. Then using the equation (9), it is standard to

verify the following integral equation for the expectations:

u(x; t) = 1 +

Z t

0

ds p(t� s; x)u(0; s); x 2 R; t � 0: (62)

(Symbolically, ut =
1
2
�u+ �0u with u(x; 0) � 1:) Setting x = 0 and exploiting

the notations f(t) := u(0; t) and px(t) := p(t; x), we realize that f satis�es

f(t) = 1 +

Z t

0

ds p0(t� s)f(s); t � 0: (63)

Taking Laplace transforms on both sides (where the Laplace transform of a

function g is denoted by bg ), the convolution on the right hand side transforms

into a product. Thus,

bf(�) = b1
1� bp0(�) =

1

�
�
1� 1p

2�

� ; � > 0: (64)

Statement (a) follows by an inverse Laplace transform.

(b) Fix a bounded continuous g: Set

u(x; t) := Esin
�x
hXt ; gi and f(t) := u(0; t): (65)

Put F (t) := e
�t=2f(t). Finally, let C(g) :=

R
R
dx g(x) e�jxj. Our goal is to

verify that F (t) ! C(g) as t ! 1. By a well-known Tauberian theorem

([Fel71, formula (13.5.22)]), it is enough to show that

bF (�) � C(g)
1

�
; as � # 0: (66)

Set k(t) :=
R
R
dx p(t; x)g(x) . By a similar computation as in (a), for the Laplace

transforms one obtains,

bF (�) = bf ��+
1

2

�
= bk��+

1

2

�
1

1�
1p

2�+ 1

; � > 0: (67)

Using Fubini's Theorem,

lim
�!0

bk��+
1

2

�
= bk�1

2

�
=

Z
R

dx cpx�1

2

�
g(x): (68)

Since cpx(1=2) = e
�jxj; we get

bk�1

2

�
= C(g): (69)

Furthermore, an elementary computation shows that

1

1� 1p
2�+1

�
1

�
as � # 0: (70)

This completes the proof of (b), hence of Theorem 4 altogether.
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