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Abstract

Consider the finite measure-valued continuous super-Brownian motion X on R?
corresponding to the evolution equation u; = %Au + Bu — u?, where B € C7 (]Rd)
with v € (0, 1] is bounded from above. We prove criteria for (finite time) extinction
and local extinction of X in terms of 8. It turns out that for d < 2, local extinction
is equivalent with extinction. For general d, we show that if 3 has a suitable decay
rate at infinity then it can be changed on a compact set in order to guarantee local
extinction. On the other hand, if 0 is above this decay rate, the process does not
exhibit local extinction. If d < 6, then extinction has the same threshold rate as local
extinction, while for d > 6 one observes a phase transition. Last, we show that in
dimension 1, if 8 is no longer bounded from above and, in fact, degenerates to a single
point source, then X does not exhibit local extinction, and the expectation of the
rescaled process t — e_t/ZXt has a limit as £ — 0o. In the proofs pde techniques and
Laplace transforms are used together with h-transforms for measure-valued processes.

1 Introduction and statement of results

1.1 Motivation

In [Pin96, Theorem 6] an abstract (spectral theoretical) criterion has been pre-
sented for the local extinction of supercritical superdiffusions with spatially con-
stant branching mechanism. In [EP99] this criterion has been generalized for a
spatially dependent branching mechanism resulting into so-called (L, 8, a; D)-
superdiffusions, and also abstract conditions have been derived for extinction
and for the compact support property. Here L is a diffusion operator on a do-
main D C R?, and, loosely speaking, 3(z)v — a(z)v? refers to the branching
mechanism. These abstract theorems however do not give a straightforward way
to decide whether a given superdiffusion becomes (locally) extinct or possesses
the compact support property. (Note nevertheless that a sufficient condition
has already been given for having the compact support property by Theorem
3.5 in [EP99]; see also Theorem 3.6 there.) Recently ([Eng99]) this gap has been
partially filled by giving concrete criteria for the compact support property in a
simple setting, namely, when the underlying migration process is a time-changed
Brownian motion (that is L = p(z)A with ¢ > 0) and the spatially constant
branching mechanism is critical (that is 8(z) = 0).

In this paper we are going to derive similar concrete criteria for (finite time)
extinction and local extinction, again in a relatively simple setup. In fact,
we consider a continuous super-Brownian motion (L = %A) in D = R? with
constant «, but with additional spatially dependent mass “production” 3. See
Theorems 1 and 2 below.

A second purpose is to begin studying what happens if this mass production
coefficient 3 varies in space in an irregular way. Here we restrict our attention to
the simplest case, namely, if it degenerates to a single point source §y (Theorems
3 and 4). Our inspiration comes from the so-called catalytic branching models
(see [Fle94], [DFL95], or [Kle99] for surveys).



1.2 Preparation

Let M; = M;(R?) denote the set of finite measures p on R?, and M, =
M. (R?) the subset of all compactly supported pu. Write C7¥ = C7(R¢) and
Cckr = CPY(R?), v € (0,1], k = 1,2, for the usual Holder spaces.

Let L be an elliptic operator on R? of the form

1
L=3V-aV+b-V on R?, (1)

where a; j, b; € C7, 4,5 = 1,...,d, for some v € (0, 1] and the symmetric matrix
a = {a;,;} satisfies 4 a;j(z)v;v; > 0, for all v € R4\{0} and all z € R¢. In

i,j=1
addition, let , 8 € C7 denote functions satisfying a > 0 and sup,cp« B(z) < 0.

Notation 1 (superdiffusion) Let (X, P,, 4 € M;) denote the (L, 3, a; R?)-
superdiffusion. That is, X is the unique M s-valued (time-homogeneous) contin-
uous Markov process which satisfies, for any bounded continuous g : R* — R, ,

Boxp (Xe,~g) =exp (= [ n(d) u(a,1)) )
Rd
where u is the minimal non-negative solution to
us = Lu+ Bu — au? on R?* x (0,00),
li ) = .
Jim u(,6) = g()

(see [EP99]). Here (v, f) denotes the integral [,,v(dz) f(z). &

(3)

Definition 2 (extinction) A measure-valued path X becomes eztinct (in fi-
nite time) if X; = 0 for all sufficiently large t. It ezhibits local extinction if
X:(B) = 0 for all sufficiently large ¢, for each ball B C R?. The measure-valued
process X corresponding to P, is said to possess any one of these properties if
that property is true with P,-probability one. <

Remark 3 (process properties) In [EP99| it is shown that, for fixed L,
and o, if any one of the properties in Definition 2 holds for some P,, p € M,
with p # 0, then it in fact holds for every P,, p € M.. o

1.3 Criteria for extinction

Local extinction can be characterized in terms of L and (3 (see [Pin96] and

[EP99]):

Lemma 4 (local extinction) The (L, 3, a; R?)-superdiffusion X ezhibits lo-
cal extinction if and only if there exists a (strictly) positive solution u to the
equation (L + B)u =0 on R?.

The following sufficient condition for extinction will be proved in Subsection
4.2:



Proposition 5 (extinction via local extinction) Assume the (L, 3, a; R?)-
superdiffusion X exhibits local extinction. If there exists a function h € C%*Y
and an (non-empty) open ball B C R? such that infgah > 0 and (L + B)h < 0
on R4\ B | then X becomes extinct. 1)

In the remaining part of this section, we specialize to L = %A and to a(z) =
1; that is, X is the superdiffusion (super-Brownian motion) corresponding to
the quadruple (%A,ﬂ, 1;]Rd) .

It is well-known that if 8 is constant, this super-Brownian motion X becomes
extinct if and only if 8 < 0. Using Lemma 4 one can show that for constant § > 0
there is even no local extinction. If however 8 is spatially dependent, then the
local branching mechanism may be supercritical (that is S(z) > 0) in certain
regions and critical or subcritical (8(z) < 0) in others. We are interested in
obtaining more specific criteria for extinction and local extinction of X in terms
of B € C7. In the following subsection we will consider a non-regular 8 as well.

First, we will show that for our 8 € C7 there exists a threshold decay rate
K4/|z|? concerning local extinction. We will use the notation r >> 1 for the
phrase “r large enough”, and r << —1 is defined similarly.

Theorem 1 (threshold decay rate for local extinction) Consider the
(%Aa B, 1; ]Rd)-superdiﬁusion X.
(a) If
K d—2)2
B(z) < d for |z| >> 1, where K4 := u (4)

= W ] )

then there exists a B* € C7 satisfying B* = B outside some compact set
such that X ezhibits local extinction.

(b) On the other hand, if

K
B(z) > W for |z| >> 1 and some K > K4, (5)
then X does not exhibit local extinction.

Remark 6 (one-dimensional case) In one dimension, Theorem 1 (b) can be
replaced by a stronger statement: If

K 1
B(z) > — for z>>1or << -1, and someK>K1:g, (6)
x
then X does not exhibit local extinction. See Subsection 4.2 for a proof. &

1) B denotes the closure of B.



It is well-known that for any given ball B C R¢ (with positive radius), 3
can be chosen large enough on B in order to guarantee non-existence of positive
solutions to the equation (L + 8)u = 0 on B (or, equivalently, the positivity
of the principal eigenvalue for L + 8 on B (see [Pin95, Chapter 4] for more
elaboration). Then, a fortiori, there is no positive solution u to the equation
(L + B)u = 0 on R¢. By Lemma 4 then, X does not exhibit local extinction.
This shows that a small ‘tail’ for 8 alone will never guarantee local extinction.

Since, by Lemma 4, local extinction is completely determined by a property
of the linear operator L + (3, it is relatively easy to get conditions on local
extinction using techniques from linear pde. Characterizing extinction of the
superdiffusion however is a subtler question. We will show that if d < 2 or if 8
is below a threshold decay rate kq/|z|? then local extinction implies extinction,
while, on the other hand, extinction does not hold for any 8 above this threshold.
If d < 6, then kg = K; where K, is defined in (5). However, if d > 6, a phase
transition occurs: kg < Kg4. In fact, our first main result reads as follows.

Theorem 2 (extinction versus local extinction) The (%A,ﬂ, 1; RY)-super-
process X has the following properties:

(a) Let d <2. Then local extinction implies extinction.
(b) If

Ki if d<8,

kq
< 1, where kg := 7
B(z) < P for |z| >> 1, where kq { d—4 if d>6, (7)

then local extinction implies extinction.
(c) However, if

k
B(z) > EH for |z| >> 1 and some k > kq, (8)

then extinction does not hold.

Remark 7 (generalization) The claim in Theorem 2 (a) remains true for any
(L, B, a; R?)-superdiffusion whenever L corresponds to a recurrent diffusion on
R¢, and o is bounded away from zero. This can easily be seen from the proof
in Subsection 4.3. <

Remark 8 (non-negative 3) In the case 8 > 0 but B(z) # 0, one can show
using Lemma 4, that X does not exhibit local extinction (and consequently
extinction does not hold for X) if d < 2, while extinction will hold for d > 3 in
some cases. See the end of Subsection 4.3 for a proof. In particular, if d < 2
and B has the maximal tail in Theorem 1 (a), then 8* must change the sign. <



1.4 A single point source

In the light of the previous remark, it seems to be interesting to ask what hap-
pens in the one-dimensional case when 8 degenerates to a single point source,
that is, when the additional mass production is zero everywhere except at a sin-
gle point (the origin, say) where the mass production is infinite (in a d-function
sense). In other words, we drop now our requirement that 8 is bounded from
above and even consider the superdiffusion X corresponding to the quadruple
(%A, do, 1; ]R) , where dy denotes the Dirac d-function at zero. More precisely,
from the partial differential equation (3) we pass to the integral equation

a0 = [ " dy plt, y)gly) + f ds p(t — s, -, 0)u(s, 0)
_Adsfw dyp(t_sa'ay)uz(say)a t > 07 (9)

where {p(t,z,y) =p(t,z —y); t >0, z,y € R} denote the Brownian transition
densities. The construction of this continuous M ¢-valued process X having
again the Laplace transition functionals (2) [but with the new u from (9)] goes
along standard lines via regularization of &p; in particular, the limiting log-
Laplace equation (9) makes sense and enjoys the needed continuity properties.
(See e.g. [DF97] and references therein.) The corresponding probabilities will
be denoted by {Pji“, weE Mgl

It turns out that the (additional) mass production at this single point is
enough to guarantee that the process does not exhibit local extinction (and
consequently extinction does not hold):

Theorem 3 (single point source) For any p € M;\{0}, the superdiffusion
X corresponding to P;" does not exhibit local extinction.

We mention that for the case when 8 = 0 and a = §; instead, it is known,
that

P, (||Xt|| >0, Vt> 0, but [|X|| - 0ast— oo) —1 (10)

for all p € My\{0}; see [FLI5] or [DFL95, Corollary 5]. (Here ||v|| denotes the
total mass of a measure v.) Furthermore, X;(B) — 0 in probability for any ball
B C R, even if the starting measure p is Lebesgue (see [DF94]).

Next, we will show that the total mass of the superdiffusion corresponding to
Pg;“ grows exponentially in expectation. For this aim, for simplicity we assume
that the process starts with a unit mass situated at the origin.

Theorem 4 (exponential growth)

(a) Forallt >0,

. 2 *° 2
Em Xy = —et/z/ dz e ™. (11)
§ t ﬁ 7\/1:/_2



Thus,

B3| Xy ~ 26%  as t — oo. (12)

(b) For all bounded continuous g : R — Ry,

Jim B (Xig) = [ do gla)e . (13)

In particular,
lim > log ES" (X, , g) = — & 14
Jim —log B (Xi,9) = —35, (14)

provided that g # 0.

Remark 9 (generalizations) Our results on the model with a single point
source suggest to deal with the following further questions (we will address in a
forthcoming paper):

(i) Extend the model to more general non-regular coeflicients S.

(ii) Verify that the rescaled process e t/2X, itself has a limit in law as t — oo
(instead of considering only its expectation). &

1.5 Outline

The remainder of this paper is organized as follows. In Section 2 we present some
auxiliary material. Section 3 gives a pde interpretation of some of the results
stated in Subsection 1.3. Finally, the last section is devoted to the proofs.

For standard facts on superprocesses in general, we refer to [Daw93] and
[Dyn93|.

2 Auxiliary definitions and tools

First we give a short review of some definitions and results for (L, 3, a; R?)-
superdiffusions which we will need and which can be found in [EP99].

Definition 10 Consider the (L, 8, a; R?)-superdiffusion X corresponding to P,
with p € M:\{0}.

(a) (compact support property) X possesses the compact support prop-
erty if

p, U supp (Xs) is bounded | =1 for all ¢ > 0. (15)
0<s<t



(b) (recurrence) X is said to be recurrent if
P, (X(B) > 0 for some t > 0 | E°) =1 (16)

for every (non-empty) open ball B C R?. Here E° denotes the complement
of the event that X becomes extinct. (Roughly speaking, each ball is
charged given survival.)

(c) (transience) X is called ¢ransient if
P, (X:(B) > 0 for some t >0 | E°) < 1 (17)

(if d > 2) for all open balls B C R? such that B Nsupp(u) = 0;

(if d=1) for all finite intervals B C R satisfying sup B < inf supp(p),
or for all finite intervals B C R satisfying inf B > sup supp(u). <

In [EP99] it is shown that X is either recurrent or transient, and that if any
one of the properties in Definition 10 holds for some P,, u € M/\{0}, then it
in fact holds for every P,, u € M.\{0}.

We mention that recurrence and transience for superdiffusions were first
defined and studied in [Pin96] in the case when a and B are positive con-
stants. (In [Pin96], [EP99], and [Eng99] the terminology is actually slightly
different: Instead of calling X recurrent/transient, the support of X is called
recurrent /transient respectively.)

Definition 11 (h-transformed superdiffusion X") Let 0 < h € C?” and
consider the (L, 3, a; R?)-superdiffusion X. Define

. dX}
XM =hx, (that is dXtt = h) , t>0. (18)
Then X" is the (L%, 8", of*; R?)-superdiffusion, where
h L h
Lh =L+ avT v, ph.= %, and o :=ah. (19)

X" makes sense even if 3" is unbounded from above (see [EP99, Section 2| for
more elaboration). X" is called the h-transformed superdiffusion. <

Remark 12 (h-transforms) (i) L! is just the diffusion part of the usual lin-
ear h-transformed operator L" (see [Pin95, Chapter 4]).

(ii) The operators A(u) := Lu+ Bu — au? and A"(u) := Lu + B"u — a"u? are
related by A"(u) = 1 A(hu). O

An obvious but important property of the h-transform is that it leaves the
support process ¢ — supp (X;) invariant. It is also important to point out
that extinction, local extinction, recurrence/transience, as well as the compact
support property are in fact properties of the support process, and that these
properties are therefore invariant under h-transforms.



Remark 13 In the particular case when h satisfies the equation (L + B8)h =0
on R?, the superdiffusion X" coincides with Overbeck’s [Ove94] additive h-
transform in a time-independent case. <

The following lemma collects some more detailed facts taken from [EP99].
Lemma 14 (details) Consider the (L, 3, a; R?)-superdiffusion X.

(a) (w-function and extinction) There erists a function w : R*— R, which
solves the ‘stationary’ equation

Lu+Bu—au?=0 onR?, (20)
and for which
P,(X becomes extinct) = e~ ¥®), uweE M. (21)

If infraa > 0 and B < 0 then w = 0. On the other hand, if w # 0, then
w is actually positive. Also, if L corresponds to a conservative diffusion
on R and o and B are constants then w = (8V 0) /.

(b) (wmax and the compact support property) There ezists a maximal
non-negative solution wpyax to (20). Furthermore, wmax = w with w from
(a) if X has the compact support property. If w =0, then wmax = 0 if and
only if X has the compact support property.

(¢) (¢min and recurrence/transience) Take an open ball B C R%. There
erists a minimal positive solution @i, to

Lu+Bu—au? =0 onRY\B,
(22)
lim, 5B u(z) = co.

Moreover, exactly one of the following two possibilities occurs:

(c1) @min > w on R\ B for any open ball B, and X is recurrent.
$Pmin

(c2) liminfjg|o #22(2) = inf, a5 2= (x) = 0 for any open ball B,
and X 1is transient.

Remark 15 (construction of ¢;,) Take balls B, D B centered at the ori-
gin and with (sufficiently large) radius n, where B is from (c). Moreover, let ¢,
be the unique solution to

Lu+pBu—au? = 0 on B,\B
w = n ondB, (23)
u = 0 ondB,.
Then @min = lim, 00 ©n (see [Pin95, p.250]). O

For relations between extinction and the compactness of the range of super-
Brownian motions with constant 8 but otherwise general branching mechanism,

see [She97].



3 A pde interpretation of some of our results

Recall that 8 € C7 is assumed to be bounded from above. Consider the following
two possibilities.

(I) There is no positive solution to (A + B)u = 0 on R.
(IT) There exists a positive solution to %Au + Bu —u? =0on RY.

By Lemma 4, case (I) is equivalent to exhibiting no local extinction for the
(%A, B, 1, R%)-superdiffusion X. In the light of this correspondence we point out
that conditions for (I) like the ones appearing in Theorem 1 and Remark 6 are, of
course, well-known from standard pde literature. By [EP99, Theorem 3.5], the
compact support property holds for X, and thus, by Lemma 14 (b), w = wpax,
where w and W,y are defined in (a) and (b) of Lemma 14 respectively. Putting
this together with the first sentence in Lemma 14 (a), it follows that (II) is
satisfied if and only if extinction does not hold for X. Using this together with
Theorem 2, we immediately obtain the following relations between (I) and (II),
and condition on (II); we omit the trivial proof.

Corollary 16 (relations between (I) and (II))
(a) (1) implies (II).

(b) (I) and (II) are equivalent if d < 2, or if B(z) < kq/|z|? for |z| >> 1 [with
kq from (7)].

(c) (II) holds, if B(z) > k/|z|? for |z| >> 1 and some k > kq.

4 Proofs

4.1 Preparation

We will utilize the following two lemmata.

Lemma 17 (condition for extinction) X becomes extinct if all of the fol-
lowing conditions are true:

(i) the (L, B, c; RY)-superdiffusion X exhibits local extinction,

(ii) B < 0 outside a compact set, and

(iil) infraa > 0.

Lemma 18 (condition for non-extinction) Let X* be the (L;, [, a;; R?)-
superdiffusions, i = 1,2, and assume that, outside a compact set, a1, B1, and
the coefficients of Ly coincide with as, B, and the coefficients of Lo respectively.
Furthermore, assume that

(i) X! ezhibits local extinction,

(ii) X2 does not become extinct, and

(iii) X? is transient.
Then X' does not become extinct either.



For the proofs of the Lemmas 17 and 18, we refer to [Eng99, Theorem 1.1],
more precisely, to the proof of part a) and to the end of the proof of part b)
there respectively.

4.2 Proof of Proposition 5 and Theorem 1

Proof of Proposition 5 Take h and B as in the proposition, and consider
the h-transformed superdiffusion X" according to Definition 11. Then, by as-
sumption, 8" < 0 on R¥\B. Note that o = h, and thus o” is bounded away
from 0, also by assumption. Since X exhibits local extinction, also X" does,
and from Lemma, 17 it follows that X" becomes extinct. Then the same is true
for X. m

Remark 19 (monotonicity) We will use the following comparison, for sim-
plicity we refer to this as “monotonicity™ If 8; < B2 and there is no positive
solution for the equation (%A + B1)v = 0 on R?, then there is no positive so-
lution to (%A + B2)v = 0 on R? either. In fact, similarly to the discussion
following Remark 6, the non-existence of positive solutions for (%A +B)u =0

on R? is equivalent to )\Eﬁ) > 0, where )\Eﬁ) denotes the so-called generalized
principal eigenvalue of %A—I— B on R?. Using the well-known probabilistic charac-

terization of )\Eﬁ) ([Pin95, Theorem 6.4.4]) it is immediate that A&B) is monotone
non-decreasing in (3. This implies the mentioned monotonicity. <

Proof of Remark 6 Let d = 1. By Lemma 4 it is sufficient to show that
there is no positive solution to the equation (%A +B8)u = 0 on R. We may
assume, that 3(z) > K/z?, z >> 1, where K > %. By monotonicity (Remark
19), it is enough to verify the statement for 8(z) = K/z?, = >> 1. Suppose
on the contrary that there exists a function f > 0 satisfying %f” + 8f = 0.
Then %f” + % f =0 for z >> 1. But the two-dimensional space of complex
solutions to this equation is spanned by the power functions z2+ and z¢-, where
0+ = %(1 + /1 —8K). Since Im(p+) # 0, there is no positive solution, getting
a contradiction. This already finishes the proof. m

Proof of Theorem 1 (b) Because of the previous proof, we could assume
that d > 2. Recall that it suffices to show that there is no positive solution to
the equation (%A + B)u = 0 on R?. Again, by monotonicity, it is enough to
verify the statement for 8(z) = K/|z|?, * >> 1. Suppose that there exists a
function f > 0 satisfying %Af+,6f = 0in R¢. Then %Af+ % f = 0 on some
annulus of the form {z € R? : |z| > ¢}, ¢ > 0. Using a scaling argument, it
then follows that there exists a positive solution to %Af + % f =0 on any
annulus of the above form. Then, by a compactness argument, there exists a
positive solution on R¥\{0} as well. (For compactness arguments see [Pin95,
Chapter 4].) But this is known to be false (see [Pin95, Example 3.12 on p.153]).
Consequently, part (b) of Theorem 1 is proved.

10



(a) Assume that 8(z)|z|? < K? for |z| >> 1, and let h be a positive C?7-
function satisfying h(z) = |z|~(?~2)/2 for |z| >> 1. Note that
5Ah 1

d

Moreover, let B < 0 be a C7-function satisfying

Blz) = B(z) — K¢/|z?,  |z] >> 1. (25)
(The existence of such a B\ is guaranteed by the growth rate assumption on 3.)
Define g* := 8 — % %. It is easy to see that 8* belongs to C'7, and moreover,

using (24) and (25) we have 8*(z) = B(z) for |z|] >> 1. Taking the linear
h-transform (see [Pin95, Chapter 4]) of the operator

1
5A+,6*, (26)
we get
1 Vh ~
A4+ 2.V . 27
A+ = V+p (27)

Since 3 < 0, it is well-known (see e.g. [Pin95, Theorem 4.3.3 (iii)]) that there
exists a positive solution for

(%A+%-V+,§)u:0 on R%. (28)
Therefore,
1
<§A + B*> (hu) =0 (29)

[recall Remark 12 (ii)], and thus, by Lemma 4, the (%A, B*,1; R4)-superdiffusion
exhibits local extinction, finishing the proof. m

4.3 Proof of Theorem 2

(a) Let d < 2, and suppose to the contrary that X does not become extinct
but exhibits local extinction. Since § is bounded from above, using the recur-
rence of the Brownian motion and Theorem 4.5 (a) of [EP99], it follows that
X is recurrent. But this contradicts the local extinction (see the remark after
Theorem 4.2 in [EP99]), giving the claim (a).

(b) If d < 2, then the statement follows from (a).

Assume now that 3 < d < 6 and that X exhibits local extinction. Similarly
to the argument in part (a) of the proof of Theorem 1, X can be h-transformed

into the ($A + % -V, 8" h; R%)-superdiffusion X", where 8" = B for |z| >>1

11



with B as in (25). Recall that 8* < 0 for |z| >> 1. According to [EP99,
Theorem 3.5], the compact support property holds for X, thus the same is true
for X". Therefore, using Lemma 14 (b), it follows that the extinction of X" is
equivalent to the non-existence of positive solutions for the corresponding semi-
linear elliptic equation. Dividing through by h, we see that X" (and also X)
becomes extinct if and only if there is no positive solution to

1 Vh h

ﬁAu+ﬁ-Vu+%u—u2:0 on R?, (30)
that is, if and only if the corresponding maximal solution wy,.x is zero. In order
to prove that wpax = 0, let X* denote the superdiffusion corresponding to the
quadruple

1 Vh Bt 4
<ﬁA+ﬁ-V,T,1,R : (31)

We will show that X™* becomes extinct (the w-function of Lemma 14 (a) is zero),
and that w = wpax. For the first statement, note that by the local extinction
assumption on X and Lemma 4, (%A + B)u = 0 with some u > 0. By Remark
12 (ii) then

Vh ,Bh) u

1
(ﬁAU,-Fﬁ'V‘F A h—O, (32)

and therefore by Lemma 4, also X* exhibits local extinction. Since 8" < 0 for
|z| >> 1, and & = 1, Lemma 17 yields that X* becomes extinct.

For the present 3 < d < 6 part, it remains to show that w = wpyax- By
Lemma 14 (b), it is enough to verify that the compact support property holds
for X*. Since in particular d < 6, for the diffusion coefficient in (31) we have

1

2h(@) =0(|z*) as |z| = . (33)

Using this, the fact that the drift term Y2 (z) is negative for |z| >> 1, and that
B"/h is bounded from above (non-positive outside a compact set), the compact
support property is implied by [EP99, Theorem 3.5].

Assume now that d > 6. Take an h € C?7 satisfying h(z) = |z|~2 for
|z] >> 1. Resolving the Laplacian in radial form, an elementary computation
shows that if B(z)|z|?> < d — 4 is satisfied for |z| >> 1, then

(i) (3A+B)h(z) <0 and

(ii) Vh(z) <0
for |z| >> 1. Then the rest of the proof works similarly as in the case 3 < d < 6.
In fact, reading carefully the proof, one can see that it relies only on the fact
that the h chosen there satisfies (i) and (ii) of the present case as well as (33).
Indeed, we replaced the previous h by the present one in order to guarantee (33)
for d > 6. This completes the proof of (b).

12



(c) Obviously, we can assume that d > 6, otherwise the assertion follows from
Theorem 1(b). Also, by comparison, we can set 8(z)|z|? = d — 4 + &g for
|z| >> 1, with some 0 < g9 < 1. In fact, for the comparison one has to check
that for larger 8 we have a larger w-function, that is, less chance for extinction.
This can easily be seen from the construction of the w-function and the parabolic
maximum principle (see [EP99], Theorem 3.1 and Proposition 7.2 respectively).
Last, we will assume that the process exhibits local extinction (otherwise the
assertion is trivial).
Let h be a radially symmetric positive C%7-function satisfying

h(z) = |z| % for |z| >> 1. (34)

Making the h-transform and dividing by A in the quadruple corresponding to
X, we obtain the quadruple (31) [but now with h as in (34)]. Let X' denote the
corresponding superdiffusion. Note, that by a simple computation, 8" /h = &g
outside a large closed ball B C R?. The same argument as in part (b) shows
that X! exhibits local extinction.

Similarly to the argument preceding (30), the extinction of X is equivalent
to the non-existence of a positive solution to (30) [but now with h as in (34)].
Our goal is to prove that extinction does not hold for X!. In fact, then by
Lemma 14 (a), the corresponding w-function is a positive solution to (30).

Using (34) and Feller’s test for explosion (see e.g. [Pin95, Theorem 5.1.5]), we
conclude that the operator %A + % -V corresponds to a conservative diffusion
on R, Thus, by the last part of Lemma 14 (a) applied to X2, which denotes
the superdiffusion corresponding to the quadruple

(%A+%-V,eo,1,ﬂ&d), (35)

we obtain w(z) = &y . In particular, X2 does not become extinct.

Applying Lemma 18 to X! and X? it will suffice to show that the latter
process is transient. Then non-extinction of X! will follow.

Consider the @i -function according to Lemma 14 (¢) applied to X and
with B, the ball introduced above. Resolving the Laplacian in radial form, and
using €9 < 1, a simple computation reveals that if

0<a§%(d—6+\/(d—6)2+8(1—50)), (36)

then u(z) = |z| 2 ¢ satisfies $Au + Bu — u? < 0 for |z| >> 1. Thus, by
the elliptic maximum principle ([EP99, Proposition 7.1]) and Remark 15, there
exists a constant ¢ > 0 such that

©min(7) < cu(z), |z] >> 1. (37)

(Cf. the end of the proof of Theorem 4.2 in [EP99].) Since @l: = ©omin/h by
Remark 12 (i), the @min-function for X* (and also for X?2) on R?\B is @min/h.
Putting this together with (34) and (37), the pmin-function for X2 tends to zero

13



as |z| — oo. Therefore lim|,|_, o %"E()z) =0 for X2. Thus, X? is transient, by

Lemma 14 (c2).
This completes the proof of (c¢) and of Theorem 2 altogether. m

Proof of Remark 8 First, let d < 2. By [Pin95, Theorem 6.3 (i)], there is
no positive solution to the equation (%A + B)u = 0 on R%. Thus, the statement
is true by Lemma 4. On the other hand, if d > 3, 8 > 0, 8 # 0, and § is
compactly supported, then by [Pin95, Theorem 4.6.2], there exists an £ > 0 and
a function v > 0 such that (%A +eB)u = 0 on R?. Then, by Lemma 4, the
(%A,E,B, 1, R?)-superdiffusion X exhibits local extinction, hence by Lemma 17
it even becomes extinct. m

4.4 Proof of Theorem 3

We need a lemma. Define the §y-regularization

@) =26(2), >0, zeR (38)

where 8 > 0is a compactly supported non-vanishing smooth symmetric function
with 8'(z) <0 for z > 0.

Lemma 20 (subsolutions for approximating equations) There is a num-
ber £ > 0 and there are functions v = Uoyg, € >0, defined on the interval
Dy := (—£,8), such that, for e sufficiently small,

(i) v >0, and v =0 on 0D, := {4},

(ii) 3(v2)" +Bev — (v7)2 >0 on Dy,

(iil) supp, v= = v (0),
and that vZ (0) is bounded away from zero as e | 0.

Proof Denote by A’ the leading eigenvalue for %A+B€ on D, with zero bound-
ary condition and with corresponding eigenfunction ¢ > 0. Furthermore, de-
note by A the leading eigenvalue for %A on D, with zero boundary condition
and with corresponding eigenfunction t, > 0, where 1, has been normalized by
sz dz ¢?(z) = 1. In other words,

1 T ‘ T
¢g($) = W COs (ﬂ) and A= — @ . (39)
Define
=X Pt D (40)
Vg g = SupD, AL on Dy.

Then v_, satisfies the boundary condition in (i), and a simple computation
shows that (ii) also holds. We are going to show that there exists an £ > 0
such that liminf, o )\ﬁ > 0. This will prove that v_, > 0 for ¢ sufficiently small
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and that supp, v_, is bounded away from zero as € | 0. In order to do this, we

invoke the following minimax representation of ! (see [Pin95, Theorem 3.7.1]):

1 ’U,”
L _ : -
A = sup wdttf o, /D[ p(dz) (2 ” +Bs) (z), (41)
u€C?(Dy)

where the supremum is taken over all probability measures p on D, with den-
sities f satisfying /f € C'(D;) and f(££) = 0. (Of course, C™, m > 1,
refers to the set of all m-times continuously differentiable functions.) Take

p(dz) = ¢?(z) dz in (41). Then,

lull
> inf dz =—1? /d 2 = T+ 11 42
E_0<u€HC13’2(D1)/DZ x 5 ul/)e-f- . T Beiby + (42)

(with the obvious correspondence). Using [Pin95, Theorem 3.7.1] again, we get
I = ). Thus

2
‘ ‘ 5 0T 1 7z
Ac > A +/D£ dz B9 = YR +/De dz 7 8 (ﬁ) Be(z). (43)

Since B¢ (z)dz — do(dz) weakly as € | 0, the latter inequality yields lim inf, o A4
> 0, provided that £ is sufficiently large.

It remains to show that supp, Pt = £(0) and consequently SUPp, U,y =

vz ,(0). For this purpose, we consider the equation

S = O~ ot (14)

Clearly, (%)"(z) > 0 if and only if B.(z) < Af, and consequently \! <
supp, B = PB:(0). Putting this together with the positivity, symmetry and
compact support of ¢, we conclude that supp, ! = +*(0). This completes the

proof of the lemma. m

Proof of Theorem 3 Step 1° Let £ > 0 and let v, = v_, be as in Lemma
20. By that lemma, one can pick a constant ¢ > 0 such that

supv, = v, (0) > ¢ for all small € > 0. (45)
Dy

Fix a non-negative continuous function g satisfying

g=conD; and g¢g=0 on R\Dyy. (46)
Put
u.- :70-,05 — . (47)
SUpp, Ve
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Note, that u_ (0) = ¢ by Lemma 20 (iii). Using (i)-(ii) of the same lemma and
the statement (45), an easy computation shows that, for £ > 0 sufficiently small,

u_ satisfies

1

E(u;)" +Beus — (uZ)2 >0 on Dy,

uZ (z) < g(z) on Dy, (48)
uZ =0 on dDy.

Then, by the parabolic maximum principle ([EP99, Proposition 7.2]), for all
€ > 0 small enough,

uZ () <ud(-,1), t >0, (49)

€

where uf denotes the minimal non-negative solution to the evolution equation
(3) withd=1, L= %A, B replaced by 3., @ =1, and g from (46).

Step 2° First we verify the claim in the special case yu = rég with r > 0. Let
E® denote the expectations corresponding to the (%A,,@E, 1; R)-superdiffusion.
By (2) specialized to the present case, (49), and using

u_ (0) =c¢ >0, (50)
we obtain for all € > 0 small enough and t > 0,
Efs exp (X;,—g) = exp [ —rul(0,t)] <exp [—ru, (0)] =e " (51)
Since this holds for all € > 0 small and ¢ > 0, letting € | 0, we get

Sin exp (X;, —g) <e "< 1, t>0. (52)

7‘50

Assume for the moment that

rdo

sin (Xt(Du) =0 for all large t) =1, (53)

then the left hand side of (52) tends to one as t — oo, and this is a contradic-
tion. Consequently, the superdiffusion X with law P7;% does not exhibit local
extinction.

Step 3° Before turning to general starting measures, we need a slight general-
ization of (52). To this end, we modify the superdiffusion X with law Pf;‘s‘; a bit:
Instead of starting at time 0 with the measure rdy, we choose a starting time s
according to a non-vanishing finite measure n(ds) on Ry . Then, by definition,

E:in exp (X¢,—g) = exp [— /[0 g n(ds) u(0,t — S)] ) t>0, (54)
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with u satisfying the integral equation (9) with g from (46). Moreover, by (49)
and (50), instead of (52) we then get

B exp (X, , —g) < exp [ —n([0,4) c} <1, t>>1. (55)

Step 4°  Finally, for our original superdiffusion X with general starting measure
w € M#\{0} (at time 0), we use Dynkin’s stopped (or ezit) measures X, and
their so-called special Markov property (see [Dyn9la]). In our case, 7 is the
Brownian (first) hitting time of 0, where the additional mass source is sitting.
Having in mind a historical setting of the superdiffusion X (see, for instance
[DP91] or [Dyn91b]), then intuitively the present X, (ds) is a measure on R}
which describes the mass distribution of all superdiffusion’s particles which hit 0
the first time in the moment 7 = s. Of course, the formal description of stopped
measures as X, along the historical setting and their special Markov property
requires some technicalities, but we skip such details here and in the sequel.

Now,

Bt oxp (X, —g) = B B3™ {exp (X, ~g) | Gt} (56)

where G, a; denotes the pre-(7 A t) o-field (concerning the stopped historical
superdiffusion and the Brownian stopping time 7 A t). By the special Markov
property and (55) we may continue with

= E’Zi“E'g'}'T‘M exp (X, —g) < Ezi“ exp [ — X nt ([O,t]) c} . (57)
But, as t — oo, the right hand side converges to
E;exp [~ || Xr|c] < Buexp[— X ], (58)

where E,, refers to the (%A, 0,1, R)-superdiffusion. (Indeed, dropping the addi-
tional mass source &y, we may loose some population mass.) However,

Py (IIX-]l #0) >0 (59)
since by the expectation formula for X,-measures (see [Dyn91a, (1.50a)]),

By | Xl = [l > 0. (60)
Hence, E, exp [ — || X ] C] < 1, and therefore altogether

lim sup Ezi“ exp (X:,—g) < L. (61)

t—o00

Again arguments as in the end of step 2° will finish the proof. m
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4.5 Proof of Theorem 4

(a) Set u(z,t) := E;™||X;||. Then using the equation (9), it is standard to
verify the following integral equation for the expectations:

¢
u(z,t) =1 +/ ds p(t — s,z)u(0, s), zeR, t>0. (62)
0

(Symbolically, u; = %Au + dou with u(z,0) = 1.) Setting z = 0 and exploiting
the notations f(t) := u(0,t) and p,(t) := p(t, z), we realize that f satisfies

f@) :1+/0 ds po(t — s)f(s), t>0. (63)

Taking Laplace transforms on both sides (where the Laplace transform of a
function g is denoted by g), the convolution on the right hand side transforms
into a product. Thus,

- 1 1
f(A):l—;ﬁB()\):)\(l—\/%)7 > 0. (64)

Statement (a) follows by an inverse Laplace transform.

(b) Fix a bounded continuous g. Set
u(z,t) == Ej" (X;,9) and  f(t) == u(0,t). (65)

Put F(t) := e */2f(t). Finally, let C(g) := [pdz g(z)e!®l. Our goal is to
verify that F(t) — C(g) as t — oco. By a well-known Tauberian theorem
([Fel71, formula (13.5.22)]), it is enough to show that

~ 1
Set k(t) := [, dz p(t,z)g(x) . By a similar computation as in (a), for the Laplace
transforms one obtains,

ﬁ(A):f(A+%>:E(A+%>;1, A>0. (67)

as A} 0. (66)

Using Fubini’s Theorem,

lim & (A + %) —% (%) _ /Rdm > (%) 9(@). (68)

Since pp(1/2) = e~ 1°l, we get

~(1
Furthermore, an elementary computation shows that
1 1
1= V2A+1

This completes the proof of (b), hence of Theorem 4 altogether. m
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