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Abstract: We consider disordered lattice spin models with �nite volume Gibbs measures

��[�](d�). Here � denotes a lattice spin-variable and � a lattice random variable with prod-

uct distribution IP describing the disorder of the model. We ask: When will the joint measures

lim�"ZZd IP (d�)��[�](d�) be [non-] Gibbsian measures on the product of spin-space and disorder-

space? We obtain general criteria for both Gibbsianness and non-Gibbsianness providing an

interesting link between phase transitions at a �xed random con�guration and Gibbsianness in

product space: Loosely speaking, a phase transition can lead to non-Gibbsianness, (only) if it

can be observed on the spin-observable conjugate to the independent disorder variables.

Our main speci�c example is the random �eld Ising model in any dimension for which we

show almost sure- [almost sure non-] Gibbsianness for the single- [multi-] phase region. We also

discuss models with disordered couplings, including spinglasses and ferromagnets, where various

mechanisms are responsible for [non-] Gibbsianness.
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I. Introduction

The purpose of this paper is to present a class of measures on discrete lattice spins showing

a rich behavior w.r.t. their Gibbsianness properties. The examples we consider turn up in a

natural context of well-studied disordered systems.

Given a random lattice system, such as the random �eld Ising model, we look at the joint

distribution of spins and random variables describing the disorder. It is now very natural from

a probabilistic point of view to consider the corresponding joint measures on the skew space

resulting from the a-priori distribution of the disorder variables. Taking the in�nite volume

limit leads to in�nite volume measures on the skew space. We will investigate the Gibbsianness-

properties of such measures, for general �nite range potentials. As we will see, this gives rise to

a whole family of interesting examples of measures with non-trivial behavior.

Why consider these measures?- Gibbs measures are the basic objects for a mathematically

rigorous description of equilibrium statistical mechanics. They are characterized by the fact that

their �nite volume conditional expectations can be written in terms of an absolutely summable

interaction potential. The failure of the Gibbsian property is linked to the emergence of long-

range correlations or hidden phase transitions.

In the theory of disordered systems on the other hand, the understanding of potentially

non-local behavior as a function of the disorder variables is very important. It is a general

theme that comes up very soon in any serious analysis of a lot of disordered systems. E.g., it

leads to technically involved concepts like that of a `bad region' in space where the realization

of the random variable was exceptional that must be treated carefully because it could lead to

non-locality.

Now, as we will see in our general investigation, the [non-] Gibbsianness of the joint measures

is related in an interesting way to the [non-] locality of certain expectations of random Gibbs-

measures as a function of the disorder variables. Since such a non-locality can arise in a variety

of di�erent ways, there is a variety of di�erent `mechanisms' for non-Gibbsianness. So, the

much-disputed phenomenon of non-Gibbsianness becomes related in a somewhat surprising way

to continuity questions of the random Gibbs measures on the spins w.r.t. disorder, or, in other

words, phase transitions induced by changes of the disorder variables.

The present investigation was motivated by the special recent example of the Ising-ferromagnet

with site-dilution (`GriSing random �eld') that was shown to be non-Gibbsian but almost

Gibbsian in [EMSS] where an interesting realization of the disorder variables leading to `non-

continuity' was found. Mathematically the analysis was simpli�ed here because the system

considered breaks down into �nite pieces. This is of course not true in most of the systems of
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interest (say: the random �eld Ising model). Such a `non-decoupling' is going to be an essential

complication of the general treatment we are going to present, as we will see.

Let us remark that there has been some discussion during the last years about numer-

ous examples of non-Gibbsian measures, to what extent the failure of the Gibbsian property

has to be taken serious, and what suitable generalizations of Gibbsianness should be (see e.g.

[F],[E],[DS],[BKL],[MRM], references therin, and the basic paper [EFS]). While this discussion

still does not seem to be �nished, the answers seem to depend on the speci�c situation. Our

point in this context is less a general philosophical one, but to provide interesting examples that

show (non-)Gibbsianness in a slightly di�erent light related to important issues in the theory of

random Gibbs measures.

More precisely we will do the following:

Basic De�nitions:

Denote by 
 = 
ZZd

0 the space of spin-con�gurations � = (�x)x2ZZd , where 
0 is a �nite

set. Similarly we denote by H = HZZd

0 the space of disorder variables � = (�x)x2ZZd entering

the model, where H0 is a �nite set. Each copy of H0 carries a measure �(d�x) and H carries the

product-measure over the sites, IP = �


ZZd . We denote the corresponding expectation by IE.

The space of joint con�gurations 
 � H = (
0 �H0)
ZZd

is called skew space. It is equipped

with the product topology.

We consider disordered models whose formal in�nite volume Hamiltonian can be written

in terms of terms of disordered potentials (�A)A�ZZd ,

H
�(�) =

X
A�ZZd

�A (�; �) (1.1)

where �A depends only on the spins and disorder variables in A. We assume for simplicity �nite

range, i.e. that �A = 0 for diamA > r. A lot of disordered models can be cast into this form.

For �xed realization of the disorder variable � we denote by �
�
b.c.

� [�] the corresponding

�nite volume Gibbs-measures in ��ZZd with boundary condition �
b.c.. As usual, they are

the probability measures on 
 that are given by the formula

�
�b.c.

� [�](f) :=

P
��

f(���
b.c.

ZZdn�
)e
�

P
A\�6=;

�A(���
b.c.

ZZdn�
;�)

P
��

e
�

P
A\�6=;

�A(���
b.c.

ZZdn�
;�)

(1.2)

for any bounded measurable observable f : 
 ! IR. The �nite-volume summation is over

�� 2 
�
0 . The symbol ���

b.c.

ZZdn�
denotes the con�guration in 
 that is given by �x for x 2 �

and by �
b.c.

x for x 2 ZZ
dn�.
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We look at spins and disorder variables at the same time and de�ne joint spin variables

�x = (�x; �x) 2 
0�H0 . The objects of main interest will then be the corresponding �nite vol-

ume joint measuresK�b.c.

� . They are the probability measures on the skew space (
0 � H0)
ZZd

that are given by the formula

K
�b.c.

� (F ) :=

Z
IP (d�)

Z
�
�b.c.

� [�](d�)F (�; �) (1.3)

for any bounded measurable joint observable F : 
 � H ! IR. We will consider the following

examples in more detail:

(i) The Random-Field Ising Model: The single spin space is 
0 = f�1; 1g. The Hamilto-

nian is
H

� (�) = �J
X

<x;y>

�x�y � h

X
x

�x�x (1.4)

where the formal sum is over nearest neighbors < x; y > and J; h > 0. The disorder

variables are given by the random �elds �x that are i.i.d. with single-site distribution �

that is supported on a �nite set H0.

The joint spins we will consider are given in a natural way by the Ising spin and the random

�eld at the same site, i.e. �x = (�x; �x). �x is thus 4-valued in the case of symmetric Bernoulli

distribution.

(ii) Ising Models with Random Couplings: Random Bond, EA-Spinglass

The single spin space is 
0 = f�1; 1g. The Hamiltonian is

H
� (�) = �

X
x;e

Jx;e�x�x+e (1.5)

where the formal sum is over sites x 2 ZZ
d and the nearest neighbor vectors in the positive lattice

directions, i.e. e 2 f(1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; 0; : : : ; 1)g =: E . The random variables

Jx;e take �nitely many values, independently over the `bonds' x; e. Speci�c distributions we will

consider are e.g.

(a) Random Bond: Jx;e takes values J
1
; J

2
> 0

(b) EA-Spinglass: Symmetric (non-degenerate) 3-valued, Jx;e takes values �J; 0; J with �(Jx;e =

J) = �(Jx;e = �J), 0 < �(Jx;e = 0) < 1

We de�ne the joint spins by the Ising spin and the collection of adjacent couplings pointing

in the positive direction, i.e. �x = (�x; �x) = (�x; (Jx;e)e2E). It is thus 16-valued in

dimension 3 in case (a).
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We think of the Random Field Ising model for a moment to motivate what we are going

to do. Recall that, in two dimensions, for almost every realization of the random �elds �

w.r.t. to the IP there exists a unique in�nite volume Gibbs measure �(�) (see [AW]). In three

or more dimensions, for low temperatures and `small disorder' there exist ferromagnetically

ordered phases �
+;�(�) obtained by di�erent boundary conditions [BK]. Di�erent from the

GriSing example of [EMSS] we can hence consider various in�nite volume versions of the form

`IP (d�)�(�)(d�)'.

The most general thing now that we can reasonably do, is to �x any boundary condition

�
b.c.. Then, due to compactness, there are always subsequences such that the corresponding

K
�b.c.

� (d�) converges weakly to a probability measure on the skew space that we call K(d�).

Note that this measure can in general depend on the boundary condition and the particular

choice of the subsequence in d � 2. It can be shown that: by conditioning K(d�) = K(d�; d�)

on the disorder variable � one obtains a (not necessarily extremal) random in�nite volume

Gibbs-measure, for IP -almost every �.1 The aim of this paper is to investigate the question:

When are the weak limit points of K�b.c.

� (d�) Gibbs-measures on the skew-space?

When are they almost [almost not] Gibbs?

This investigation is about continuity properties of conditional expectations. Throughout

the paper we will use the following notion of continuity that involves only uniquely de�ned �nite

volume events. Following [MRM] we say:

De�nition: A point � 2 
�H is called good con�guration for K, if

sup
�+;��

�:��V

���K(~�x
���V nx; �+�nV )�K(~�x

���V nx; ���nV )
���! 0 (1.6)

with V " ZZd
, for any site x 2 ZZ

d
, for any ~�x 2 H0. Call � bad , if it is not good.

As usual we have written �A = (�x)x2A (and will also do so for �A, �A).

In words: Good con�guration are the points � where: The family of conditional expectations

of K is equicontinuous w.r.t. the parameter �.

We recall: If there are no bad con�gurations, the measure K is Gibbsian (see [MRM]). If

Gibbsianness does not hold, one can ask for the K-measure of the set of bad con�gurations. We

say that K is almost Gibbsian, if it has K-measure zero. If it has K-measure one, we say that

K is almost non-Gibbsian. (See also the beginning of the next chapter.)

1 A reader who is familiar with meta-states will recognize that this measure K(d�j�) is precisely

the barycenter of the (corresponding) Aizenman-Wehr meta-state, see e.g. Newman [N]. For more

general information about meta-states and random symmetry breaking see [NS1]-[NS4], [K2]-[K5]
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In the remainder of the paper we will prove criteria that ensure that a con�guration (�; �) is

good or bad (see propositions 1-6). It might not be very intuitive at �rst sight to understand why

such measures can ever be non-Gibbsian. Let us stress the following facts: Surely, the conditional

expectation of the spin-variable �x given the joint variable � = (�; �) away from x and �x is

a local function, given by the local speci�cations. Trivially, the conditional expectation of the

disorder variable �x given � away from x is a local function - it is even independent. However:

The conditional expectation of �x given � and � away from x can be highly nontrivial, due to

the coupling between spins and disorder arising from the local speci�cations (1.2).

Rather than presenting our general results at this point, we specialize to the Random Field

Ising Model. For this model there is a complete characterization of a bad con�guration in terms

of the behavior of the �nite volume Gibbs-measures that is particularly transparent. We obtain:

Theorem 1: Consider a random �eld Ising model of the form (1.4), in any dimension d. A

con�guration � = (�; �) is a bad con�guration for any joint measure obtained as a limit point

of the �nite volume joint measures IP (d�)�
�b.c.@�

� [�] if and only if

lim
�"1

�
+
� [��] (~�x = 1) > lim

�"1
�
�

� [��] (~�x = 1) (1.7)

for some site x, independent of �. Here �
+;�
� are the �nite volume Gibbs measures with + (resp.

�) boundary conditions.

Note, that the theorem will hold for the joint measures corresponding to Dobrushin states

that are supposed to exist in d � 4.1 Using the known results about the random �eld model one

immediately obtains:

Corollary:

(i) d = 1: K is Gibbsian, for all J, h > 0.

(ii) d = 2: K is a.s. Gibbsian for all J, h > 0.

On the other hand, suppose that �[�x = 0] > 0. Assume that J is su�ciently large and

h > 0. Then K is not Gibbsian.

(iii) d � 3, � symmetric, J > 0 su�ciently large, �[�2x] su�ciently small. Then any such K is

a.s. not Gibbs.

Indeed: The a.s. Gibbsianness in d = 2 follows from the a.s. absence of ferromagnetism,

proved in [AW]. That we have Non-Gibbsianness in d � 2 if the support of the random �elds

contains zero follows from the fact that the con�guration � = (�x � 0; �) is a bad, if J is

1 For an existence result of this model in the SOS-approximation, see [BoK1], [K1]
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large enough s.t. there is ferromagnetic order in the homogeneous Ising ferromagnet. A.s. non-

Gibbsianness under the conditions (iii) follows from the existence ferromagnetic order, proved

in [BK].

The organization of the paper is as follows. In Chapter II we investigate the one-site

conditional probabilities of K and prove general criteria that ensure that a con�guration is good

or bad. We will see that the important general step is to consider the single-site variation of the

Hamiltonian w.r.t. the disorder variable �x and rewrite the conditional expectations in the form

of Lemma 1. This leads to expressions involving certain expectations of the `conjugate' spin-

observable. In the example of the random �eld model this observable is just the spin �x; thus

the corresponding criteria in Theorem (i) are simply formulated in terms of the magnetization.

In Chapter III we apply our results. We prove Theorem 1 about the RFIM. Next we

comment on Models with decoupling con�gurations, recalling the GriSing random �eld of [EMSS]

and Models with random couplings (including spinglasses) that can be zero. This provides more

examples of non-Gibbsian �elds. Next we specialize our criteria of Chapter II to Models with

random couplings, proving Theorem 2. Based on this we give a heuristic discussion explaining

how the validity of the Gibbsian property can be linked to the absence of random Dobrushin

states.

Acknowledgments:

The author thanks A.van Enter for a private explanation of reference [EMSS].

II. Criteria for joint [non-]Gibbsianness

In this chapter we are going to investigate whether a con�guration � = (�; �) is good or bad

for the joint states K. We will obtain criteria that are given in terms of the local speci�cations.

To do so we introduce the single-site variation of the Hamiltonian w.r.t. disorder (2.2) and use

the �nite volume perturbation formula (2.3) to rewrite the conditional expectations of K in

the form of Lemma 1. This leads to the characterization of good resp. bad con�gurations of

the Corollary of Proposition 1. As direct consequences thereof, Propositions 2 and 3 give more

convenient conditions that ensure goodness resp. badness. Under the additional assumption

of a.s. convergent Gibbs measures we obtain the slightly less obvious criterion for badness of

Proposition 4.

Before we start, let us however summarize the following facts about the notion of good

con�guration and its relevance for Gibbsianness, for the sake of clarity:
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(i) If � is bad for K any version of the conditional expectation �ZZd 7! K(�xj�ZZdnx) must be

discontinuous for some site x (use DLR-equation, see Proposition 4.3[MRM]).

(ii) Conversely: Assume that �̂ 2 G := f�; � is goodg. Then lim�"ZZd K(�xj�̂�nx) exists for any

site x and hence also lim�"ZZd K(�V j�̂�nV ) =: V (�V j�̂ZZdnV ) exists for any �nite volume V .

If G has full measure w.r.t K, the above limit can be (arbitrarily) extended to a measur-

able function of the conditioning. It is readily seen to de�ne a version of the conditional

expectation �ZZdnV 7! K(�V j�ZZdnV ) that is continuous within the set G [i.e.: �(N) ! � with

�
(N)

; � 2 G implies K(�V j�
(N)

ZZdnV
)! K(�V j�ZZdnV )]. (See [MRM]: Proof of Proposition 4.4).

In this situation we call K almost Gibbs. 1

In particular: If every con�guration is good, the measure K has a version of the conditional

expectation that is continuous on the whole space and is Gibbs therefor.

In the sequel it will be important to keep track of the local dependence of various quantities. It

will be useful to make this explicit. We use the following

Notation: For the �xed interaction range r we introduce the r-boundary @B = fx 2

ZZ
dnB; d(x;B) � rg. In the same fashion we write B = B [ @B and @�B = fx 2 B; d(x;Bc) �

rg, Bo = Bn@�B.

In this way we will write e.g. K�b.c.

� (��; ��) = IP
�
(�
�
)�

�
b.c.
@�

� [��](��) to denote the corre-

sponding probabilities.

To investigate the quantity (1.6) for the in�nite volume joint measure we will look atK
�b.c.@�N

�N

with �nite �N . Next, to investigate the conditional distributions of �x it su�ces to look at the

conditional distributions of �x. Indeed, we may write (for su�ciently large �N)

K
�b.c.@�N

�N

�
�x; �x

����nx; ��nx� = K
�b.c.@�N

�N

�
�x

����nx; �x; ��nx��K
�b.c.@�N

�N

�
�x

����nx; ��nx� where

K
�b.c.@�N

�N

�
�x

����nx; �x; ��nx�

=
IE

�Nn�
�
�b.c.@�N

�N
[�x; ��nx; ~��Nn�](�x; ��nx)P

�0x
IE

�Nn�
�
�b.c.
@�N

�N
[�x; ��nx; ~��Nn�](�

0
x; ��nx)

= �
�@x
x [�x; �@x](�x)

(2.1)

where the second equality follows from the application of the compatibility relation for the �-

measures for the inner volume made of the single site x, as soon as ��x. There is of course no

1 If K(G) = 1 but G 6= H � 
, we have: G is dense in H � 
 [since any ball w.r.t. a metric for

the product topology has to have positive K-mass, under the assumption of bounded interactions

�.] Thus the conditional expectation is continuous on G but necessarily not uniformly continuous

(because it could be extended to the whole space otherwise.)
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non-locality as a function of ��nx; ��nx in this term.

On the other hand we see that, if the conditional �x-distribution has a non-local behavior

as a function of ��nx; ��nx, this carries over also to the �x-marginal K
�b.c.@�N

�N

�
�x

����nx; ��nx� =R
K

�b.c.
@�N

�N

�
d~�x

����nx; ��nx���@xx [~�x; �@x](�x) unless the dependence on ~�x of the one-site expecta-

tion under the last integral is trivial, of course.

After these simple remarks we come to the important formula that is going to be the starting

point of all our analysis.

Let us de�ne the single-site-variation of the Hamiltonian w.r.t. the disorder variable
1
�x at

the site x to be

�Hx(�x; �x; �
0
x; �@x) =

X
A;A3x

h
�A (�x; �x�@x)� �A

�
�x; �

0
x�@x

�i
(2.2)

where is some �xed reference con�guration (that is independent of x). While we will later put

�
0
x 2 H0 one might also want to choose some other value that is not in the support of the

single-site distribution in certain situations.

The trick is to use the `�nite volume perturbation formula'

Z
�
�b.c.@�

� [�x; ��nx](d��)f(��) =

R
�
�b.c.@�

� [�0x; ��nx](d��)f(��)e
��Hx(�x;�x;�

0
x;�@x)R

�
�b.c.
@�

� [�0x; ��nx](d��)e
��Hx(�x;�x;�

0
x;�@x)

(2.3)

which is just a rewriting of Boltzmann factors. Using this we get

Lemma 1: For any reference con�guration �
0
x the conditional expectations of the one-site

disorder variable �x can be rewritten as

K
�b.c.@�N

�N

�
�x

����nx; ��nx�
= �(�x)

Z
�
�@x
x [�0x; �@x](d~�x)e

��Hx(�@x;~�x;�x;�
0
x;�@x)

�

Z
K

�b.c.@�N

�N

h
d~�

�Nn�

���@��; �0x; ��nxi
�Z

�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](d~�x)e

��Hx(~�x;�x;�
0
x;�@x)

��1

�

(X
�0x

�(�0x)

Z
�
�@x
x [�0x; �@x](d~�x)e

��Hx(�@x;~�x;�
0
x;�

0
x;�@x)

�

Z
K

�b.c.@�N

�N

h
d~�

�Nn�

���@��; �0x; ��nxi
�Z

�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](d~�x)e

��Hx(~�x;�
0
x;�

0
x;�@x)

��1)�1
(2.4)

1 A quantity of this type also plays a crucial role in [AW] where the uctuations of extensive

quantities are investigated. Its Gibbs expectation could be termed `order parameter that is conju-

gate to the disorder'.
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Proof: To compute the conditional distribution of �x we use the �nite volume perturbation

formula to extract the variation of �x. We use a convention to put tildes on quantities that are

integrated and write

K
�b.c.
@�N

�N

�
��nx; �x; ��nx

�
= IP (�x)IP (��nx)� IE

�Nn�
�
�b.c.
@�N

�N
[�x; ��nx; ~��Nn�](��nx)

= IP (�x)IP (��nx)� IE
�Nn�

R
�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](d~��)e

��Hx(~�x;�x;�
0
x;�@x)1~��nx=��nxR

�
�b.c.
@�N

�N
[�0x; ��nx; ~��Nn�](d~��)e

��Hx(~�x;�x;�
0
x;�@x)

= IP (�x)� IP (��nx)�
�@��

�o [�0x; ��nx](��onx)

�

Z
�
�@x
x [�0x; �@x](d~�x)e

��Hx(�@x;~�x;�x;�
0
x;�@x)

� IE
�Nn�

�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](�@��)R

�
�b.c.
@�N

�N
[�0x; ��nx; ~��Nn�](d~��)e

��Hx(~�x;�x;�
0
x;�@x)

(2.5)

We have used the compatibility relations for the local speci�cations in the last equation and we

have assumed that �;�N are su�ciently large. To get the conditional expectation we need to

normalize the r.h.s. by its �x-sum. To see that the claim follows now note that

IE
�Nn�

�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](�@��)R

�
�b.c.
@�N

�N
[�0x; ��nx; ~��Nn�](d~��)e

��Hx(~�x;�x;�
0
x;�@x)

=

Z
K

�
b.c.
@�N

�N

h
d~�

�Nn�

���@��; �0x; ��nxi
�Z

�
�
b.c.
@�N

�N
[�0x; ��nx; ~��Nn�](d~�x)e

��Hx(~�x;�x;�
0
x;�@x)

��1

� IE
�Nn�

�
�
b.c.
@�N

�N
[�0x; ��nx; ~��Nn�](�@��)

(2.6)

where the term in the last line is just a constant for �x. }

Remark: The formula gives the modi�cation of the conditional expectation compared

with the `free' a-priori measure �(�x) that results from the non-trivial coupling of � to the spin-

variable �. The second term in the second line of (2.4), a Gibbs expectation of the exponential

of the single-site variation of the Hamiltonian, is of course a local function in the conditioning.

Assuming the �niteness of the potential it is bounded. Thus, to investigate the potential non-

locality of the l.h.s. one has to investigate the third line of (2.4).

Remark: The local�N -limit of the conditional expectationK
�b.c.@�N

�N

h
d~�

�Nn�

���@��; �0x; ��nxi
exists from the assumption of the existence of the joint local lim�N"ZZ

d K
�b.c.@�N

�N
. Also, the �N -

limit of the complete third line of (2.4) [that involves the average of an N -dependent function

of ~�] exists: The �N -limit of the quantity in the last line of (2.5) exists by our assumption on

10



the existence of a �N -limit on the l.h.s. of (2.5). The �N limit of the last line of (2.6) [the

normalization needed to obtain probabilities] also exists by the hypothesis.

Sometimes it is convenient to rewrite (2.4) using that, by the �nite volume perturbation

formula, we have

�Z
�
�b.c.@�N

�N
[�0x; ��nx; ~��Nn�](d~�x)e

��Hx(~�x;�x;�
0
x
;�@x)

��1

=

Z
�
�
b.c.
@�N

�N
[�x; ��nx; ~��Nn�](d~�x)e

+�Hx(~�x;�x;�
0
x;�@x) � �

�
b.c.
@�N

�N
[��; ~��Nn�]

�
e
�Hx(�x;�

0
x;�@x)

� (2.7)

The reader may also want to note that (2.7) is just a fraction of two partition functions,

Z
�b.c.
@�N

�N
[�0x��nx~��Nn�]=Z

�b.c.
@�N

�N
[�x��nx~��Nn�] (using usual notations) which makes the symmetry

between �x and �
0
x more apparent.

From this we have

Proposition 1:

K
�
�
1
x

����nx; ��nx�
K
�
�2x

����nx; ��nx� = q
local(�1x; �

2
x; �@x; �@x) q

nonloc

�;x [�1x; �
2
x; ��nx; �@��] (2.8)

where

q
local(�1x; �

2
x; �@x; �@x) =

�(�1x)

�(�2x)

Z
�
�@x
x [�2x; �@x](d~�x)e

��Hx(�@x;~�x;�
1
x;�

2
x;�@x) (2.9)

is a local function of �; � and

q
nonloc

�;x [�1x; �
2
x; ��nx; �@��]

= lim
�N"ZZ

d

Z
K

�b.c.@�N

�N

h
d~�

�Nn�

���@��; �2x; ��nxi
Z
�
�b.c.@�N

�N
[�1x; ��nx; ~��Nn�](d~�x)e

�Hx(~�x;�
1
x;�

2
x;�@x)

(2.10)

is a potentially nonlocal function of �; �. The last limit exists.

Corollary: A point � = (�; �) is a good con�guration for K if and only if

sup
�+;��;�+;��

�:��V

�����qnonloc�;x [�1x; �
2
x; �V nx; �

+
�nV

; �
+
@��

]� q
nonloc

�;x [�1x; �
2
x; �V nx; �

�

�nV
; �

�

@��
]

�����! 0 (2.11)

with V " ZZd
, for any site x 2 ZZ

d
, for any pair �1x; �

2
x 2 H0.

Proof: To prove the proposition choose the reference con�guration �
0
x = �

2
x and use Lemma

1, along with (2.7). The Corollary follows from the fact that qlocal is a local function, and that

it su�ces to check the conditional expectations of the disorder variable by (2.1). Note to this

11



end that both q's in Proposition 0 are uniformly bounded against zero and one, by the assumed

�niteness of �Hx. }

To understand the symmetry between �
1 and �

2 in this formula we remark that qlocal as

well as the inner integral in (2.10) can be written as fractions of partitions functions, by the

remark following (2.7). We will now discuss various consequences of Corollary of Proposition

1. It is very di�cult to say anything reasonable about the behavior of the conditional measure

K
�b.c.
@�N

�N

h
d~�

�Nn�

���@��; �2x; ��nxi, as a function of the spin-conditioning �@��. So, in our examples

we will at �rst draw conclusions from estimates that are uniform w.r.t. the integration variable

~��Nn�.

We start with a criterion for points � = (�; �) being good con�gurations that is a pretty

much straightforward consequence of Proposition 1. This will be employed if we want to show

Gibbsianness. Below will give a slightly more complicated criterion for points � = (�; �) being

bad con�gurations, needed to investigate non-Gibbsianness.

Proposition 2: Suppose that � is such that, for any x 2 ZZ
d
, we have that

rV;x(�
1
x; �

2
x; �) := sup

�+ ;��

�:��V

�����
Z
�
�b.c.@�

� [�1x; �V nx; �
+

�nV
]
�
e
�Hx(�

1
x;�

2
x;�@x)

�

�

Z
�
�b.c.@�

� [�1x; �V nx; �
�

�nV
]
�
e
�Hx(�

1
x;�

2
x;�@x)

������! 0

(2.12)

with V " ZZ
d
, for any x, for any pair �

1
x; �

2
x 2 H0. Then the con�guration �; � is a good

con�guration, for any �.

Proof: To see that the hypothesis implies (2.11) we use that�������
b.c.
@�N

�N
[�1x; �V nx; �

+;�

�nV
; ~�

�Nn�
]
�
e
�Hx(�

1
x;�

2
x;�@x)

�

� �
�b.c.@�N

�N
[�1x; ��Nnx]

�
e
�Hx(~�x;�

1
x;�

2
x;�@x)

������ � rV;x(�
1
x; �

2
x; �)

(2.13)

to compare the �-terms under the ~�-integrals with a term that is independent of ~� and �
+;�.

This shows that (2.11) is bounded by 2rV;x which converges to zero. }

Remark: To estimate rV;x(�
1
x; �

2
x; �) we can also bound the variation of the random cou-

plings by the variation over the boundary conditions

rV;x(�
1
x; �

2
x; �) � sup

�1;�2

������1@�V

V o [�1x�V nx]
�
e
�Hx(�

1
x;�

2
x;�@x)

�
� �

�2@�V

V o [�1x�V nx]
�
e
�Hx(�

1
x;�

2
x;�@x)

�����
(2.14)

12



Remark: We see, how (2.12) parallels (1.6). The quantity that is of interest is now the

Gibbs-expectation of the exponential of the single-site variation as a function of the disorder

variables. In words: If we have equicontinuity in the parameter � of these �nite �-Gibbs expec-

tations w.r.t. the disorder variable at the point �, we conclude that �; � is a good con�guration.

The reader may also �nd it intuitive to rewrite the Gibbs-expectations appearing in (2.12) in the

form of fractions of partition functions, or (equivalently) as exponentials of di�erences of free

energies taken for �1x and �
2
x. In slightly di�erent words the criterion thus requires: Equiconti-

nuity in the volume of the single site-variations of the free energies w.r.t. the disorder variable

at the point �.

To get a criterion for bad con�gurations that is independent of the behavior of the outer

expectation of qnonloc [see (2.10)] leads to an expression that is slightly more complicated because

it contains an additional supremum.

Proposition 3: Put

q
upper

�;x [�1x; �
2
x; ��nx] := lim sup

�N"ZZ
d

sup
~�
�Nn�

�
�
b.c.
@�N

�N
[�1x; ��nx; ~��Nn�]

�
e
�Hx(�

1
x;�

2
x;�@x)

�
(2.15)

Then �; � is a bad con�guration for K, if for some site x, for some pair �1x, �
2
x

lim
V "ZZd

sup
�+;��

�:��V

��
q
upper

�;x [�2x; �
1
x; �V nx; �

+
�nV

]
��1

� q
upper

�;x [�1x; �
2
x; �V nx; �

�

�nV
]

�
> 0 (2.16)

Proof: By (2.7) and the uniform estimate of the ~�-integral we see that that

q
nonloc

�;x [�1x; �
2
x; ��nx; �@��] � q

upper

�;x [�1x; �
2
x; ��nx]; � q

upper

�;x [�2x; �
1
x; ��nx]

�1 (2.17)

Hence the claim (discontinuity of the l.h.s.) follows from the de�nition of a bad con�guration.

}

Models with a.s. convergent Gibbs states:

Suppose that we have the existence of a weak limit

lim
�"ZZd

�
�
b.c.
@�

� [��] = �1[�ZZd ] (2.18)

for IP -a.e. �. It follows that �1[�ZZd ] is an in�nite volume Gibbs measure for P -a.e. � that

depends measurably on �. Consequently the in�nite volume joint state is then just the IP -integral

13



of �1. We stress that this has not been assumed so far and is really a much stronger assumption

then local convergence of the joint states. It is not expected to hold e.g. for spinglasses in the

multi-phase region (that is supposed although not proved to exist).

This assumption implies that the terms in the main formula of Lemma 1 converge individ-

ually with �N " ZZd. So we have that

q
nonloc

�;x [�1x; �
2
x; ��nx; �@��]

=

Z
K
�
d~�ZZdn�

���@��; �2x; ��nx��1[�1x; ��nx; ~�ZZdn�]
�
e
�Hx(�

1
x;�

2
x;�@x)

� (2.19)

Suppose we want to exhibit a bad con�guration and we have estimates on the continuity of

� 7! �1[�] for typical directions but not in all directions. For an example of a perturbation in an

atypical direction think of the random �eld Ising model that will be discussed below. Here the

Gibbs-measure with plus boundary conditions can be pushed in the `wrong phase' by choosing

the random �elds to be minus in a large annulus. While the RFIM can be treated by Proposition

3 there are examples where we would like to get away from uniform estimates w.r.t. ~� in favor

of estimates that are only true for typical ~�, for the a-priori measure IP .

To obtain the following criterion is more subtle than what we noted in Proposition 2 and 3.

The trick is to show the existence of suitable `bad' �-conditionings using the knowledge about

typical disorder variables w.r.t. the unbiased IP -measure.

Proposition 4: Assume the a.s. existence of the weak limits of �nite volume Gibbs measures

(2.18) and denote by K the corresponding in�nite volume joint measure.

The con�guration � = (�; �) is a bad con�guration for K if: for each cube V , centered at

the origin, there exists an increasing choice of volumes �(V ), and con�gurations �
V
; ��V s.t. for

IP -a.e. ~� we have that

lim inf
V "ZZd

�1[�1x; �V nx��
V
�(V )nV ; ~�ZZdn�]

�
e
�Hx(�

1
x;�

2
x;�@x)

�
> lim sup

V "ZZd
�1[�1x; �V nx�

V
�(V )nV ; ~�ZZdn�]

�
e
�Hx(�

1
x;�

2
x;�@x)

� (2.20)

for some site x, and some �1x; �
2
x.

Proof: We will show that there exist two conditionings �� and �, s.t.

lim inf
V "ZZd

q
nonloc

�(V );x[�
1
x; �

2
x; �V nx��

V
�(V )nV ; ��@��(V )]

> lim sup
V "ZZd

q
nonloc

�(V );x[�
1
x; �

2
x; �V nx�

V
�(V )nV ; �@��(V )]

(2.21)

From this and the Corollary of Proposition 1 follows the badness.
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To show (2.21) we proceed as follows: The l.h.s. and r.h.s. of (2.20) are tail measur-

able, hence a.s. constant. Denote the l.h.s of (2.20) by �q1[�1x; �
2
x; �ZZdnx] and the r.h.s. by

q
1[�1x; �

2
x; �ZZdnx]. We will show that there exists a conditioning � s.t. the r.h.s. of (2.21) is

bounded from above by q1[�1x; �
2
x; �ZZdnx]. (Similarly, there exists a conditioning �� s.t. the l.h.s.

of (2.21) is bounded from below by �q1[�1x; �
2
x; �ZZdnx].)

We will construct this conditioning as a sequence given on the `small' annuli @��(V ) (and

arbitrary for other lattice sites.) To make use of the a.s. statement w.r.t the product measure

IP we need to produce a formula that recovers this measure. We write

lim sup
V "1

X
~�@��(V )

Z
K1

h
~�@��(V )

���2x; �V nx�V�(V )nV i qnonloc�(V );x[�
1
x; �

2
x; �V nx�

V
�(V )nV ; ~�@��(V )]

= lim sup
V "1

Z
IP (d~�)�1[�1x; �V nx�

V
�(V )nV ; ~�ZZdn�]

�
e
�Hx(�

1
x;�

2
x;�@x)

�
� q

1[�1x; �
2
x; �ZZdnx]

(2.22)

where the �rst equality follows from (2.19) and the inequality from Fatou's Lemma w.r.t product-

integration of the ~�. From this, the existence of such a conditioning � is easy to see. (By

contradiction: If the claim were not true, for any sequence of conditionings �@��(V ), we would

have that there exists a positive � s.t. min~�@��(V )
q
nonloc

�(V );x
[: : : ; ~�@��(V )] � q

1[: : :]+� for in�nitely

many V 's. But this would imply that also the quantity under the limsup on the l.h.s. of (2.22)

[which is just a ~�@��(V )-expectation] would have to be bigger of equal to this bound, for the

same in�nitely many V 's.) }

III. Examples

III.1: The random �eld Ising model

Note that the single site perturbation w.r.t the random �eld of the Hamiltonian is very

simple, i.e.

e
�Hx(�x;�

1
x;�

2
x) = e

h(�2x��
1
x)�x = e

h(�1x��
2
x) + 2 sinh h(�2x � �

1
x) 1�x=1 (3.1)

An application of Propositions 2 and 3 gives, with the aid of monotonicity arguments Theorem 1,

as stated in the introduction. It provides a complete characterization of good/bad con�gurations

in terms of the behavior of the �nite volume Gibbs-expectations with plus resp. minus boundary

conditions. The interesting part, the mechanism of non-continuity, is due to the fact that we

can make the random �eld Gibbs measure look like the plus (minus) phase around a given

site by choosing the �elds in a su�ciently large annulus to be plus (minus). That this works

independently of what the �elds even further outside do, is crucial for the argument.

Proof of Theorem 1: We use the fact that the function (�; �bc) 7! �
�bc

� [��] (~�x = 1) is

monotone (w.r.t. the partial order of its arguments obtained by site-wise comparison.) From
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this follows that the limits in (1.7) exist, due to monotonicity, for any �. Denote the l.h.s. of

(1.7) by m
+
x (�ZZd) and the r.h.s. of (1.7) by m

�
x (�ZZd). We also note that, by the �nite-volume

perturbation formula, one obtains that

e
h(�1x��

2
x)
��
m
+;�
x (�1x; �ZZdnx)

��1
� 1

�
= e

h(�2x��
1
x)
��
m
+;�
x (�2x; �ZZdnx)

��1
� 1

�
(3.2)

This shows in particular that (say) m+
x (�

1
x; �ZZdnx) and m

+
x (�

2
x; �ZZdnx) are strictly monotone

functions of each other (when varying �ZZdnx). In particular we see explicitly that, whether the

l.h.s. and r.h.s. of (1.7) coincide does of course not depend on the value of �x.

Now, to show that a con�guration is good if the two limits coincide, we apply Proposition

2 and the remark after it. Using (3.1), we see that rV;x(�
1
x; �

2
x; �)! 0 with V " ZZd if

sup
�1;�2

����
Z
�
�1@V
V [�1x�V nx](~�x = 1)�

Z
�
�2@V
V [�1x�V nx](~�x = 1)

����! 0 (3.3)

with V " ZZd. Using monotonicity in the boundary condition we see that this is equivalent to

the equality of the two limits in (1.7).

Now, to show that a con�guration is bad, if the two limits in (1.7) do not coincide, we use

Proposition 3. We have that

q
upper

�;x [�1x; �
2
x; ��nx] = lim sup

�N"ZZ
d

sup
~��Nn�

�
�b.c.@�N

�N
[�1x; ��nx; ~��N n�]

�
e
�Hx(�x;�

1
x;�

2
x)
�

= e
h(�1x��

2
x) + lim sup

�N"ZZ
d

sup
~��Nn�

2 sinh(h(�2x � �
1
x))�

�b.c.@�N

�N
[�1x; ��nx; ~��N n�] (~�x = 1)

(3.4)

Suppose now that �2x � �
1
x. Then we get from the monotonicity

q
upper

�;x [�1x; �
2
x; ��nx] � e

h(�1x��
2
x) + 2 sinh(h(�2x � �

1
x))�

+@�

� [�1x; ��nx] (~�x = 1) (3.5)

Similarly we have that

q
upper

�;x [�2x; �
1
x; ��nx] � e

h(�2x��
1
x) + 2 sinh(h(�1x � �

2
x))�

�@�

� [�1x; ��nx] (~�x = 1) (3.6)

Now we use the important fact that

lim
�"ZZd

�
�@�

� [�V ; ��nV = +] (~�x = 1) = lim
�"ZZd

�
+@�

� [�V ; ��nV = +] (~�x = 1) (3.7)

that follows from the unicity of the Gibbs measure of a homogeneous ferromagnet in a positive

magnetic �eld, and, consequently,

lim
V "ZZd

lim
�"ZZd

�
�@�

� [�V ; ��nV = +] (~�x = 1) = lim
V "ZZd

lim
�"ZZd

�
+@�

� [�V ; ��nV = +] (~�x = 1)

= m
+
x (�ZZd)

(3.8)
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where the right equality follows from the inequality �+@�

� [�V ; ��nV ] (~�x = 1) � �
+@�

� [�V ; ��nV =

+] (~�x = 1) � �
+@V

V [�V ] (~�x = 1). From this we have that

lim
V "ZZd

lim
�"ZZd

q
upper

�;x [�1x; �
2
x; �V ; ��nV = �] � e

h(�1x��
2
x) + 2 sinh(h(�2x � �

1
x))m

�

x (�
1
x; �ZZdnx) (3.9)

and, similarly

lim
V "ZZd

lim
�"ZZd

q
upper

�;x [�2x; �
1
x; �V ; ��nV = +] � e

h(�2x��
1
x) + 2 sinh(h(�1x � �

2
x))m

+
x (�

2
x; �ZZdnx)

=
�
e
h(�1x��

2
x) + 2 sinh(h(�2x � �

1
x))m

+
x (�

1
x; �ZZdnx)

��1 (3.10)

where the last line follows from relation (3.2). From this it is evident that (1.7) implies (2.16).

}

III.2: Models with decoupling con�gurations

Suppose we have a model that allows for `non-percolating' decoupling con�gurations �. By

this we mean that, for given �, for any site x there exists a volume �x(�) s.t., for any ���x(�)

we have that

�
�b.c.
@�

� [�1x; �̂�nx]
�
e
�Hx(�

1
x;�

2
x;�@x)

�
= �

open

�x(�)
[�1x��x(�)nx]

�
e
�Hx(�

1
x;�

2
x;�@x)

�
(3.11)

independently of � (for any pair �1x; �
2
x), for any con�guration �̂ that coincides with � on �x(�).

Think e.g. of an Ising model with random couplings taking the value 0 with positive proba-

bility. Then a con�guration of coupling constants s.t. the all resulting spin clusters (with edges

of non-zero coupling constants) are �nite is such a non-percolating decoupling con�guration.

For a decoupling con�guration � the formula for the conditional expectations simpli�es

considerably. A look at (2.10) tells us that we get

q
nonloc

�;x [�1x; �
2
x; ��nx; �@��] = �

open

�x(�)
[�1x; ��x(�)nx

]
�
e
�Hx(�

1
x;�

2
x;�@x)

�
(3.12)

for � su�ciently large (depending on �). Since any perturbation of � far away from x leaves

this quantity unchanged, we immediately obtain:

Proposition 5: A con�guration � = (�; �) is a good con�guration, if � is a decoupling

con�guration. Consequently: If IP [� 2 H : � is a decoupling con�guration] = 1, then any joint

measure that is a limit of the form (1.3) is almost surely Gibbs.

This has not to be confused with the fact that a non-decoupling � can be shown to be bad

with the use of (a sequence of) decoupling con�gurations �+, ��, as the following examples

show.
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The GriSing Random Field revisited (see [EMSS]):

The spins are �x 2 f�1; 1g, the local disorder variable �x takes values in f0; 1g with �[�x =

1] = p 2 (0; 1) and the Hamiltonian is given by H
�(�) = �J

P
<x;y> �x�x�y�y . This model

was shown to be non-Gibbs for p below the percolation threshold for site percolation. Let us

see, how this comes out of our framework and explain at the same time that any1 weak limit

lim�N IP (d�)��
b.c.

�N
[�](d�) will also be non-Gibbs, for any p 2 (0; 1) (for su�ciently large J).

There is the trivial mapping that sends the pair (�x; �x) to the product �x�x; looking at

new variables that are products (as it was done in [EMSS]) is equivalent to looking at pairs since

�x = 0 i� �x�x = 0.

Recalling [EMSS] we look at the con�guration �
disc that is 0 on the `base-plane' B = fx 2

ZZ
d
; xd = 0g and 1 otherwise. Then (�disc; �) is a bad con�guration for any �, for any joint

in�nite volume measure that is a limit of the form (1.3). To see this, one only needs to look at

conditional probabilities for special decoupling con�gurations. Indeed, for a �nite box V�ZZd,

centered at the origin, denote by �disc;V the con�guration that coincides with �disc inside V and

vanishes outside V . Denote by V + (V �) the occupied sites in V in the upper (lower) half-space.

For z 2 V \ B denote by �
disc;V;z the con�guration that has z as an additional occupied site.

Denote the nearest neighbor of the origin in V
+ by x0 and the nearest neighbor of the origin in

V
� by y0. Put �

2
0 = 1, �10 = 0. Then e

�H0(�0;�
1
0;�

2
0 ;�

disc
@0 ) = e

J�0(�x0+�y0) and one obtains

q
nonloc

�;0 [�10; �
2
0; �

disc;V

�n0
; �@��] = 2�0V +[V � (coshJ(~�x0 + ~�y0)) = a�

0
V +[V � (~�x0 ~�y0 ) + b

q
nonloc

�;0 [�10; �
2
0; �

disc;V;z

�n0
; �@��] = a�

0
V +[V �[z (~�x0 ~�y0 ) + b

(3.13)

for some positive constants a; b, for � su�ciently large. Here �
0
W is the ferromagnetic Ising

Gibbs measure in the �nite volume W with zero boundary conditions. The correlations on the

r.h.s. were seen in [EMSS] to be di�erent for large J , for arbitrarily large V , uniformly in the

location of z. (Adding a site z destroys the independence and introduces a positive correlation

between �x0 and �y0 once there is ferromagnetic order.) By the Corollary of Proposition 1 this

shows that (�disc; �) is a bad con�guration for any �.

Our point here was that while �disc is not a decoupling con�guration, the perturbed con-

�gurations �disc;V ; �disc;V;z are decoupling, leading to simple formulas for qnonloc , that are inde-

pendent of the speci�c joint measure and independent of the value of p.

Models with Random Bonds that can be zero:

We note that the same [EMMS]-mechanism is responsible for the occurrence of bad con�g-

urations in models with random bonds. Although not di�cult to see once the previous example

1 Think e.g. of the Dobrushin states that are supposed to exist for p close to 1 in d � 4!
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is understood, this might be interesting, because it is also true for e.g. for EA spinglasses of the

type (iib) from the Introduction. We have

Proposition 6: Suppose that we are given a model of the form (1.5) in dimensions d � 2

where �(Jx;e = 0) > 0 and �(Jx;e = J
1) > 0 with J

1
su�ciently large.

Decompose the lattice ZZ
d
into two half-spaces ZZ

d
+[ZZ

d
� that are separated by a hyper-plane

of bonds that we call H. Denote by J
disc

the con�guration of bonds that is equal to zero for

bands in H and equal to J
1
otherwise.

Then � = (Jdisc; �) is a bad con�guration for any joint measure obtained as limit point of

IP (dJ)�
�b.c.@�

� [J ](d�).

Proof: Assume that the hyper-plane is of the form H = f< x; y >: xd = 0; yd = 1g. Then

we have < 0; ed >2 H . In a similar fashion as above, for �nite ~V�(ZZd)� (a box on the dual

lattice, centered around the origin), denote by Jdisc;
~V the con�guration that coincides with Jdisc

inside ~V and vanishes outside ~V . Denote by ~V + ( ~V �) the occupied bonds in ~V in the upper

(lower) half-space. For a bond b 2 ~V \H denote by Jdisc;
~V ;b the con�guration that has b as an

additional non-empty coupling taking the value J1.

To �nd a discontinuity, it su�ces to look at pairs �1x and �
2
x that di�er only by one coupling

constant, �10 = (J10;e1 ; : : : ; J
1
x;ed�1

; 0) and �
2
0 = (J10;e1 ; : : : ; J

1
x;ed�1

; J
1
x;ed

). Then the variation

at the origin becomes e�H0(�0;�
1
0 ;�

2
0;�

disc
@0 ) = e

J1�0�ed = e
�J

1

+ 2 sinh J1 1�0=�ed where we have

written �disc for the obvious con�guration corresponding to Jdisc (and will also do so for �disc;
~V ,

�
disc;~V ;b). So one obtains

q
nonloc

�;0 [�10 ; �
2
0; �

disc;~V

�n0
; s@��] = e

�J1 + 2 sinh J1 �̂0~V +[ ~V � (~�0 = ~�ed)

q
nonloc

�;0 [�10 ; �
2
0; �

disc;~V ;b

�n0
; �@��] = e

�J1 + 2 sinh J1 �̂0~V +[ ~V �[b
(~�0 = ~�ed)

(3.14)

for � su�ciently large. Here �̂0~W is the ferromagnetic Ising Gibbs measure with zero boundary

conditions on the vertex set of the graph whose bonds are ~W with the coupling constant J1.

Now, in the very same way as in [EMSS], the probabilities on the r.h.s.'s are seen to be di�erent,

for arbitrarily large ~V , uniformly in the location of b. By the Corollary of Proposition 1 this

shows the claim. }

III.3: Ising models with disordered nearest neighbor couplings

Denote by (ZZd)� the lattice of bonds of ZZd. We denote subsets of (ZZd)� by symbols with

tildes (like ~V ) . An application of Proposition (2) resp. Proposition (4) yields the following.

Theorem 2: Consider an Ising model with random nearest neighbor couplings of the form

(1.5), in any dimension d.
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(i) A con�guration � = (J; �) is a good con�guration for any joint measure obtained as a limit

point of the �nite volume joint measures IP (dJ)�
�b.c.
@�

� [J ](d�) if

sup
J+;J�

�

�����b.c.@�

� [J ~V J
+

(ZZd)�n~V
](~�x = ~�y)� �

�b.c.@�

� [J ~V J
�

(ZZd)�n~V
](~�x = ~�y)

���! 0 (3.15)

with ~V " (ZZd)�.

(ii) Suppose moreover that we have the existence of a weak limit lim�"ZZd �
�b.c.@�

� [J ] = �1[J ] for a

nonrandom boundary condition �
b.c.

, for IP -a.e. J. Denote by K(d�; dJ) = IP (dJ)�1[J ](d�)

the corresponding joint measure.

A con�guration � = (J; �) is a bad con�guration for K, if there exists an increasing choice

of volumes ~�( ~V ) and con�gurations J
~V
; �J

~V
, s.t., for IP -a.e. ~J we have that

lim inf
~V "(ZZd)�

�1[J ~V
�J
~V
~�( ~V )n~V

; ~J(ZZd)�n~�(V )](~�x = ~�y)

> lim sup
~V "(ZZd)�

�1[J ~V J
~V
~�( ~V )n~V

; ~J(ZZd)�n~�(V )](~�x = ~�y)
(3.16)

for some nearest neighbor pair < x; y >.

Proof: To check the condition of Proposition 2, it su�ces to look at pairs �1x and �
2
x that

di�er only by one coupling constant, say �1x = (Jx;e1 ; : : : ; Jx;ej�1
; J

1
; Jx;ej+1

; : : : ; Jx;ed) and �
2
x =

(Jx;e1 ; : : : ; Jx;ej�1
; J

2
; Jx;ej+1

; : : : ; Jx;ed). Put y = x + ej . The variations at the site x then

become

e
�Hx(�x;�

1
x;�

2
x) = e

(J2�J1)�x�y = e
(J1�J2) + 2 sinh(J2 � J

1) 1�x=�y (3.17)

which is analogous to formula (3.1) for the Random �eld model.

Writing out the condition (2.12) from Proposition 2 then essentially amounts to the criterion

(3.15) given in the theorem, except that possibly di�erent values J at the bond < x; y > can

appear. However, there is a simple formula analogous to formula (3.2) for the random �eld model

relating the probabilities of the event �x = �y for di�erent values of J<x;y> that is obtained

by the �nite volume perturbation formula. From this an argument like the one given for the

random �eld model given after (3.2) shows that the validity of condition (3.15) is independent

of the value of J<x;y> . This proves statement (i).

To show that (J; �) is a bad con�guration (for any �) by means of Proposition 4 we have

to look at

lim sup
~V "(ZZd)�

�1[J1<x;y>; J ~V n<x;y>J
~V
~�(~V )n ~V

; ~J(ZZd)�n~�(V )](e
(J2�J1)~�x~�y) and

lim inf
~V "(ZZd)�

�1[J1<x;y>; J ~V n<x;y>
�J
~V
~�(~V )n ~V

; ~J(ZZd)�n~�(V )](e
(J2�J1)~�x~�y)

(3.18)
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and �nd two sequences of conditionings J
~V and �J

~V such that the lower expression is strictly

bigger than the upper one. Assuming that J2 > J
1, this is true, if and only if

lim inf
~V "(ZZd)�

�1[J1<x;y>; J ~V n<x;y>
�J
~V
~�(~V )n ~V

; ~J(ZZd)�n~�(V )](~�x = ~�y)

> lim sup
~V "(ZZd)�

�1[J1<x;y>; J ~V n<x;y>J
~V
~�(~V )n ~V

; ~J(ZZd)�n~�(V )](~�x = ~�y)
(3.19)

Using the argument presented for the RFIM we see that this is true if and only if the same strict

inequality holds for any other value of J<x;y> replacing J1<x;y> . This proves statement (ii). }

Finally we would like to discuss the relevance of Theorem 2 on a heuristic level in application

to a random bond ferromagnet.

Heuristics considerations: Gibbsianness destroyed by interfaces

Assume dimensions d � 2. Suppose that the random bonds Jx;e take two values 0 < J
1
<

J
2
<1 with positive probability, independently of the bond (x; e). We assume that J1 is smaller

than the critical inverse temperature of the corresponding homogeneous Ising ferromagnet. J2

should be large enough and �[Jx;e = J
1] should be small enough s.t. there is ferromagnetic order

in the disordered model with IP - probability one.

Let us at �rst look at �b.c.

x � 1 boundary conditions. Then we expect a.s. joint Gibbsianness.

Indeed, Criterion (i) of Theorem 2 should be satis�ed for IP -a.e. con�guration of couplings J ,

for the following reason:

Let us assume that the realization J is from the full measure set of couplings for which the

�nite volume Gibbs-measures converge to a ferromagnetic in�nite volume Gibbs measure. Let

us check the expected behavior with two `extreme' choices of perturbations:

Consider �rst a typical perturbation J+ that does have enough stronger couplings to support

the ferromagnetic order. Then the state �
+
� [J ~V J

+

(ZZd)�n~V
] should look like �

+
1[J ] locally, for

su�ciently large inner volume ~V and any (bigger) �.

Choosing next J
+ � J

1 (the weaker couplings) will however destroy the ferromagnetic

order in the annulus. Hence the boundary conditions should be forgotten for su�ciently large

annulus and the volume V will approximately feel open boundary conditions. (This argument is

of course strictly true for the case J1 = 0). The corresponding state should then approximately

look like 1
2
(�+1[J ] + �

�
1[J ]) for large ~V . This would of course lead to di�erent expectations on

general observables compared to those of �+
1
[J ]. The point is however that the expectations of

the di�erent states on the event f�x = �yg are the same, due to spin-ip symmetry.
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We expect that in general, choosing whatever annulus should result in one of the two

possibilities, or a linear combination of them.

This provides an example that shows that although a phase transition occurs by varying

the disorder variables in a large annulus, it leads to the same expectations on the single site

perturbation of the Hamiltonian. Thus the resulting state can be Gibbs.

Let us now look at Dobrushin boundary conditions, i.e. we start from �nite volume Gibbs

measures in boxes centered around the origin with plus boundary conditions on the top half, and

minus boundary condition on the lower half. We assume additionally that we are in dimensions

d � 4, that J2 is large enough and �[Jx;e = J
1] small enough s.t. there are interface states

(random `Dobrushin'-states [Do1]) in the disordered model with IP -probability one. The exis-

tence of such states that are perturbations of the spin con�guration that is all plus in the upper

half-space and all minus in the lower half-space was proved in [BoK1] in the SOS-approximation

of the model. (For complementary information about disordered interface models, see [BoK2],

[K7].)

Now we expect almost sure non-Gibbsianness for the resulting in�nite volume joint measure,

di�erent from the model with +-boundary conditions. Indeed, Criterion (ii) of Theorem 2 should

be satis�ed for IP -a.e. con�guration of couplings J , for the following reason:

We �x a nearest neighbor pair < x; y > located at, and perpendicular to, the base plane

(whose intersection with the boundary of � is the boundary between plus and minus boundary

spins). Again we look �rst at a typical perturbation J
+. We expect that the in�nite volume

Dobrushin states ��1[J ] have the locality property that for IP -a.e. perturbation ~J we have that

lim
~V "(ZZd)�

�
�

1[J~�
~J(ZZd)�n~�](~�x = ~�y) = �

�

1[J(ZZd)� ](~�x = ~�y) (3.20)

for any nearest neighbor pair < x; y >. A corresponding statement could in principle be extracted

from the renormalization group analysis of [BoK1] for the corresponding SOS-model.

Choosing next the exceptional con�guration J
+ � J

1 in an annulus ~�( ~V )n ~V that is suf-

�ciently large will destroy the ferromagnetic order in the annulus and decouple the volume ~V

from the outside. This should result in

lim
~V "(ZZd)�

�
�

1[J ~V J
1
~�(~V )n ~V

; ~J(ZZd)�n~�(V )](~�x = ~�y)

=
1

2

�
�
+
1[J(ZZd)� ](~�x = ~�y) + �

�

1[J(ZZd)� ](~�x = ~�y)
� (3.21)

Note that both terms of the r.h.s. are the same, due to spin-ip symmetry. This will di�er from

the expectation in the interface-state (3.20), so that we believe that criterion (3.16) should be

satis�ed.
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Let us point out that, in order to reach this conclusion even on the heuristic level we

have presented it, we really needed Theorem 2 (ii) that follows from Proposition 4, a result

that involves typical con�gurations (as opposed to the Criterion of Proposition 3, a result that

involves uniform estimates). Note that there is the following fundamental di�erence between

the random �eld and the random bond Ising model: In the random �eld model, one is able to

select a phase by choosing the disorder variables (magnetic �elds) in a large annulus, no matter

what the disorder variables even further outside will look like. In contrast to that, one is not

able to `restore' a Dobrushin state in a random bond model by a suitable choice of J 's in a

large annulus, if the � boundary conditions have been forgotten, because the couplings further

outside were too weak.
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