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Abstract

We study several approximations for the LIBOR market models presented in [1,

2, 5]. Special attention is payed to log-normal approximations and their simulation

by using direct simulation methods for log-normal random �elds. In contrast to

the conventional numerical solution of SDE's this approach simulates the solution

directly at the desired point and is therefore much more e�cient. We carry out a

path-wise comparison of the approximations and give applications to the valuation

of the swaption and the trigger swap.

1 Introduction

By far the most important class of traded interest rate derivatives is constituted by derivatives

which are speci�ed in terms of LIBOR rates. The LIBOR1 rate L is the annualized e�ective

interest rate over a forward period [T1; T2] and can be expressed in terms of two zero-coupon

bonds B1 and B2 with face value $1; maturing at T1 and T2; respectively,

L(t;T1; T2) :=

B1(t)

B2(t)
� 1

T2 � T1
; (1)

where as usual T2 is the settlement date for the accrual LIBOR period. Brace, Gatarek and

Musiela [1], as well as Jamshidian [2], constructed an arbitrage free model for the LIBOR

rate process in order to price LIBOR derivatives such as caps, swaptions and more com-

plicated types in a direct way. In [1] the dynamics of the continuous family of processes

fL(t; T; T + �) j T � 0; 0 � t � Tg is studied for a �xed � > 0; whereas Jamshidian [2]

considered for a discrete set of tenors fT1; : : : ; Tng the processes fLi(t) := L(t; Ti; Ti+1) j t � Ti;

i = 1; : : : ; n � 1g: In both papers [1, 2] special attention is payed to so called LIBOR market

models which are models where for every settlement date the LIBOR process has deterministic

volatility. In a market model, each LIBOR is a log-normal martingale under the numeraire

measure given by the bond which terminates at the LIBOR's settlement date.

In this sequel we concentrate on a LIBOR market model for a discrete set of tenors given by a

stochastic di�erential equation (SDE) in the terminal bond measure as developed in Jamshidian

[2], equipped with a special correlation structure proposed by Schoenmakers and Co�ey [5]. In

this model we will test the valuation of several LIBOR derivatives such as the 'plain vanilla'

swaption and the more 'exotic' trigger swap. For a detailed analysis of the trigger swap and

the valuation of exotic LIBOR derivatives in general we refer to Schoenmakers and Co�ey [5].

For the LIBOR process, as being a solution of the SDE, we have constructed di�erent path-wise

approximations and in particular log-normal approximations and carried out implementations.

The results are subjected to mutual comparison and a ranking between the di�erent approxi-

mations is thus obtained. The main advantage of the log-normal approximations is that their

distributions can be simulated very fast by a Gaussian random �eld of log-LIBORs with a drift

and correlation structure determined by the speci�c approximation. As the valuation of a LIBOR

derivative generally comes down to the computation of the expected value of some functional

of the LIBOR process, a large class of derivatives can be valuated quite fast by random �eld

simulation.

Several approximations are derived in section (2) where a mutual comparison is studied. In

section (3) we construct a log-normal random �eld simulation algorithm and in section (4) we

1LIBOR stands for London Inter Bank O�er Rate.
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consider the valuation of swaptions and triggerswaps and compare the results for di�erent simu-

lation algorithms and di�erent correlation structures. In particular, in section (4) it is observed

that swaption prices depend on the input correlation parameters of the LIBOR model under

consideration in a numerical stable way, in contrast to correlation parameters in low-factor LI-

BOR models which tend to unstable behaviour under calibration to swaption prices. See, for a

more detailed discussion of this issue, Schoenmakers and Co�ey[5].

2 Di�erent approximations, log-normal approxima-

tions

For a given tenor structure 0 < T1 < T2 < : : : < Tn we consider a Jamshidian LIBOR market

model [2] for the forward LIBOR processes Li in the terminal bond numeraire IPn;

dLi = �
n�1X
j=i+1

�jLiLj i � j
(1 + �jLj)

dt+ Li i � dW (n); (2)

where, for i = 1; : : : ; n � 1; the Li are de�ned in the intervals [t0; Ti]; �i = Ti+1 � Ti and

i = (i;1; : : : ; i;n�1) are given deterministic functions, called factor loadings, de�ned in [t0; Ti];

respectively. In (2), (W (n)(t) j t0 � t � Tn�1) is a standard n � 1-dimensional Wiener process

under IPn. It is convenient to deal with the following integral form of (2):

ln
Li(t)

Li(t0)
= �

tZ
t0

n�1X
j=i+1

�jLjjijjj j�ij
1 + �jLj

ds�
1

2

tZ
t0

jij2ds+
tZ

t0

i � dW (n); (3)

where �ij = i � j =jijjj j. In practice, we may de�ne the vectors i=jij through the matrix

(�ij) by applying a Cholesky decomposition.

Note that only the �rst term in the right hand side of (3) is generally non-Gaussian. Let

us consider the contribution of the non-Gaussian term where we assume for simplicity that the

functions i are constants. We introduce the notations: �i =
n�1P
j=i+1

j�ij j, � = max
i

�i; � = max
i

�i,

and  = max
i
jij. Let us denote by ~L the maximum value of the Li, i.e., ~L = max

i
sup

t0�t�Ti

Li(t).

Then, we may write (3) as

ln
Li(t)

Li(t0)
= "i �

1

2
jij2(t� t0) + jij

p
t� t0 Zi(t);

where Zi(t) is a standard normal distributed random variable and "i can be estimated by j"ij �
(t� t0)� ~L

2�i: So, by neglecting "i we cause in Li only a small relative error of order of "i when

j"ij � (t� t0)� ~L
2�i � (t� t0)� ~L

2� << 1: (4)

Note that e.g. for typical values, � = 0:25,  = 0:4; ~L = 0:07, t � t0 = 5 this relative error

is about 1:4�%: However, dependent on � and the length of the tenor structure this error can

become rather large in practice.

The approximation by neglecting the non-Gaussian terms "i in (3) will be called (0)�approximation

to (2) which satis�es

dL
(0)
i = L

(0)
i i � dW (n) ; (5)
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and is given by the explicit solution

L
(0)
i (t) = Li(t0) exp

8<
:�

1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s)

9=
; : (6)

Below we show for illustration (see Figs. 1,2) some typical samples of Li(t) and L
(0)
i (t);

where we chose n = 21; j1j = : : : = jn�1j = 0:4, and

�ij =
bi ^ bj

bi _ bj
; bi = expf�i�g:

The correlations are thus de�ned via two parameters, � and �; see also [5]. In our simulations,

presented in the �gures below, we took � = 0:8; � = 0:1 and � = 0:8; � = 0:3; respectively.

Further we chose t0 = 0 and a uniform tenor structure Ti = i� with � = 0:25, i = 1; : : : ; 21. The

initial L values were taken to be Li(0) = 0:061.
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Fig.1 A sample of L10(t) and L
(0)
10 (t), for � = 0:8 and � = 0:1:
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Fig.2 A sample of L10(t) and L
(0)
10 (t), for � = 0:8 and � = 0:3:

From the trajectories presented in Figs.1-2 it is seen that on the initial time interval, the

function L
(0)
10 approximates the function L10 very good. For increasing time, however, the

discrepancy increases. Note that the larger �; the lesser the correlation time � and by (4) the

lesser the discrepancy. This is con�rmed by our observation presented above.

From the pictures in Figs.1-2 we see that the (0)�approximation is good for small times,

whereas from (4) we see that for large i the (0)-approximation is also good because �i decreases

with i (e.g., �n�1 vanishes). More details about the (0) and other approximations are presented

in Tables 1-5.

In Fig.3 we show a sample for the Bond price B31(Ti) and its (0)-approximation B
(0)
31 (Ti);

i = 0; : : : ; 31. In contrast to the results presented in Figs.1-2, the maximum descrepancy happens

around the middle of the time interval (0; T31). The reason is that the Bond price B31(Ti)

involves the product of all libor rates Lj; j = i; : : : ; 30 by B31(Ti) =
Q30

j=i(1 + �Lj(Ti))
�1:

Indeed, either when i is close to zero or when i is close to 30 where the drift terms become small,

the approximations L
(0)
j (Ti), j = i; : : : ; 30 are close to Lj(Ti) and so B

(0)
31 (Ti) is close to B31(Ti):
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Fig.3 A sample of Bond prices B31(t) and its (0)-approximation, for � = 0:8, � = 0:1,

n = 31.

It is of interest to consider more re�ned approximations to L and in particular to look for

lognormal approximations improving L(0): By replacing Lj in the right-hand side of (2) with

L
(0)
j we come to what we call the (1)-approximation:

dL
(1)
i = �

n�1X
j=i+1

�jL
(1)
i L

(0)
j i � j

1 + �jL
(0)
j

dt+ L
(1)
i i � dW (n); (7)

The solution to (7) is given explicitly by:

ln
L
(1)
i (t)

Li(t0)
= �

n�1X
j=i+1

tZ
t0

�jL
(0)
j (s)i � j (s)

1 + �jL
(0)
j (s)

ds�
1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s): (8)

It turns out that this approach improves very much the (0)-approximation indeed, and the

results presented in Tables 1-5 below con�rm this conclusion. It should be noted, however, that

the (1)-approximation is unfortunately non-lognormal, in contrast to the (0)-approximation.

Therefore, for each j we approximate the process

Zj(t) :=
�jL

(0)
j

1 + �jL
(0)
j

5



with a Gaussian process in (8) as follows. Let the function f be de�ned as f(x) := x=(1 + x);

so f (�1)(x) = x=(�x+ 1) and Zj = f(�jL
(0)
j ): Hence Zj satisies the SDE

dZj = f 0(�jL
(0)
j )�jL

(0)
j j � dW (n) +

1

2
f 00(�jL

(0)
j )[�jL

(0)
j jj j]2dt

= f 0 � f (�1)(Zj) f
(�1)(Zj) j � dW (n) +

1

2
f 00 � f (�1)(Zj) [f

(�1)(Zj) jj j]2dt

= : a(Zj ; t)dt+ b(Zj ; t) � dW (n);

with initial condition Zj(t0) = f(�jLj(t0)): The Picard�0 and Picard�1 iteration for the solution
of this SDE are respectively

Z
(0)
j (t) :� Zj(t0) =

�jLj(t0)

1+�jLj(t0)
and

Z
(1)
j (t) = Zj(t0) +

R t
t0
[a(Zj(t0); s)ds+ b(Zj(t0); s) � dW (n)(s)] =

f(�jLj(t0)) +
1
2
f 00(�jLj(t0))�

2
jL

2
j (t0)

R t
t0
jj j2ds+ f 0(�jLj(t0))�jLj(t0)

R t
t0
j � dW (n)(s) ;

which are clearly both Gaussian. The next Picard iteration, however, will be non-Gaussian

in general. By using Z
(0)
j in (8) we �nd a lognormal approximation which we call the (g)�

approximation,

ln
L
(g)
i (t)

Li(t0)
=

Z t

t0

�ji(s)j2

2
ds+

Z t

t0

i(s) � dW n(s)�
n�1X
j=i+1

Z t

t0

�jLj(t0)i � j (s)
1 + �jLj(t0)

ds (9)

which turns out to be a considerable path-wise improvement of the (0)�approximation and is

suggested in [1, 5]. By expanding f; f 0 and f 00 as f(x) = x�x2+O(x3); f 0(x) = 1� 2x+O(x2)
and f 00(x) = �2 +O(x) respectively, x = �jLj(t0) and denoting identity modulo terms of order

O(x2) and O(x3) by ' and �= respectively, we have

Z
(1)
j (t) �= Z

(0)
j � �2jL

2
j(t0)

Z t

t0

jj j2ds+ (�jLj(t0)� 2�2jL
2
j(t0))

Z t

t0

j � dW (n)(s)

' Z
(0)
j + �jLj(t0)

Z t

t0

j � dW (n)
s ' �jLj(t0)(1 +

Z t

t0

j � dW (n)
s );

Using Z
(1)
j while neglecting second order terms leads to another lognormal approximation, the

(g1)�approximation:

ln
L
(g1)
i (t)

Li(t0)
=

Z t

t0

�jij2

2
ds+

Z t

t0

i(s)�dW (n)(s)�
n�1X
j=i+1

Z t

t0

�jLj(t0)(1+

Z s

t0

j(u)�dW (n)
u )i � j (s)ds:

(10)

The (g1)�approximation in its turn improves the (g)�approximation signi�cantly as will appear

from a comparative analysis below. Similarly, we may include also the second order terms and

thus de�ne a lognormal (g10)�approximation which, however, is only slightly better than the

(g1) and is, in fact, subordinate to a �nal lognormal approximation which we construct below.

Instead of L
(0)
j we now plug in L

(g)
j in the right-hand side of (2) and we arrive at the (2)�

approximation which is given explicitly by,

ln
L
(2)
i (t)

Li(t0)
= �

n�1X
j=i+1

tZ
t0

�jL
(g)
j (s)i � j (s)

1 + �jL
(g)
j (s)

ds�
1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s): (11)
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Now construct a Gaussian approximation for f(L
(g)
j ) as above. We rede�ne

Zj := f(�jL
(g)
j ) =

�jL
(g)
j

1 + �jL
(g)
j

Hence Z now satis�es the SDE

dZj = f 0(�jL
(g)
j )�jL

(g)
j j � dW (n) +

1

2
f 00(�jL

(g)
j )[�jL

(g)
j jj j]2dt+

f 0(�jL
(g)
j )

8<
:��j

n�1X
k=j+1

�kLk(t0)k � j
1 + �kLk(t0)

L
(g)
j

9=
; dt

with initial condition Zj(t0) = f(�jLj(t0)): Obviously, replacing Zj by the Picard�0 iteration

Z
(0)
j � f(�jLj(t0)) gives the (g)�approximation again, whereas the Picard�1 iteration now leads

to

Z
(1)
j (t) = f(�jLj(t0)) + f 0(�jLj(t0))�jLj(t0)

R t
t0
j � dW (n) + 1

2
f 00(�jLj(t0))�

2
jL

2
j (t0)

R t
t0
jj j2ds

+f 0(�jLj(t0))
n
��j

Pn�1
k=j+1

�kLk(t0)Lj(t0)

1+�kLk(t0)

o R t
t0
j � kdt (12)

It should be noted that when instead of L
(g)
j we plug in L

(1)
j or L

(2)
j in the right hand side

of (2), although we get better and better explicit non-lognormal approximations, the Gaussian

Picard�1 approximation for Zj = f(�jL
(1)
j ) and Zj = f(�jL

(2)
j ); respectively, is the same as in

(12). So we do not get better Gaussian approximations in this way. In fact, we may derive (12) di-

rectly from (2). Clearly by neglecting second order terms in (12) we get the (g1)�approximation

again, whereas by keeping second order terms we get a new log-normal approximation, (g2) say,

given by

ln
L
(g2)
i (t)

Li(t0)
= �

n�1X
j=i+1

tZ
t0

~Z(s)i � j (s)ds�
1

2

tZ
t0

2i (s)ds+

tZ
t0

i(s) � dW (n)(s); (13)

where

~Z(t) �= f(�jLj(t0))� �2jL
2
j(t0)

R t
t0
jj j2ds+n

��j
Pn�1

k=j+1
�kLk(t0)Lj(t0)

1+�kLk(t0)

o R t
t0
j � kdt+ (1� 2�jLj(t0))�jLj(t0)

R t
t0
j � dW (n)

Here we note that the (g10)�approximation di�ers from (g2) in that the term with the sum

is missing.

It is now interesting to carry out a comparative numerical analysis of the di�erent approx-

imations presented. The numerical solution of the relevant stochastic di�erential equations are

solved by the Euler scheme.

For a correct path-wise comparison, it is necessary to construct all the approximations in

one common probability space. In the numerical schemes, it is easily achieved by using one and

the same Wiener increments for all approximations.

In the next tables we show how often the relative error (in percents) of the corresponding

approximation to L5; L10; and L20 lies in the relevant percentage intervals (�rst columns). For

instance, the relative error between L̂i, the numerical solution to the original equation (2) and

L̂
(1)
i , the numerical solution to the equation (7) is de�ned as

�i = max
1�j�i

jL̂i(Tj)� L̂
(1)
i (Tj)j

L̂i(Tj)
;

7



and corresponds, e.g., in the tables to the third column. The relative errors to other approxi-

mations are de�ned analogously.

In all tables we chose uniformly j1j = : : : = jn�1j = 0:4; L1(0) = : : : = Ln�1(0) = 0:061

and � = 0:8:

For instance, the numbers in the columns 2 - 7 of table 1 show the fraction of 700000

samples for which the event shown in the �rst column happens. From these results we see

that among all the path-wise approximations, the best one is the (2)-approximation, which is

however non-lognormal. Among the lognormal approximations, the (g2)�approximation shows

the best results. Also we conclude that the approximations are better when the LIBORs are

more de-correlated. Indeed, de-correlation diminishes the drifts in (2). Note that the fact that a

path-wise approximation is not good enough (e.g., see the (0)-approximation in column 6) does

not imply that the statistical characteristics will be approximated not good as well. We will

illustrate this in the case of swap and trigger swap, section (4).

100 � �5 (2) (1) (g2) (g1) (g) (0)

� 0:25% 0.9 0.561 0.0159 0.8059E-02 0.7529E-03 0.

� 0:5% 0.954 0.804 0.0966 0.0591 0.0122 0.

� 0:75% 0.974 0.895 0.208 0.136 0.0398 0.

� 1% 0.984 0.937 0.324 0.219 0.0781 0.

� 1:5% 0.993 0.973 0.574 0.395 0.166 0.

� 2% 0.996 0.986 0.835 0.606 0.255 0.3857E-04

� 2:5% 0.998 0.992 0.89 0.856 0.338 0.5471E-03

� 3% 0.999 0.995 0.913 0.93 0.417 0.2987E-02

� 3:5% 0.997 0.930 0.944 0.494 0.01

� 4% 0.998 0.944 0.955 0.569 0.0246

� 4:5% 0.9987 0.955 0.964 0.64 0.0472

� 5% 0.999 0.964 0.971 0.707 0.0785

� 6% 0.976 0.981 0.819 0.1597

� 7% 0.984 0.987 0.891 0.2564

� 8% 0.989 0.991 0.921 0.356

� 9% 0.992 0.993 0.935 0.450

� 10% 0.994 0.995 0.945 0.535

� 12% 0.996 0.997 0.961 0.672

� 14% 0.998 0.998 0.972 0.769

� 16% 0.998 0.999 0.979 0.837

� 18% 0.999 0.985 0.884

� 20% 0.988 0.917

Table 1. The cumulative distribution of the relative error �20,

for di�erent approximations; � = 0:1, N = 700000; T1 = 1, n = 31.
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100 � �5 (2) (1) (g2) (g1) (g) (0)

� 0:25% 0.9478 0.5046 0.1198 0.0491 0.0054 0.

� 0:5% 0.9859 0.8420 0.3710 0.1844 0.0466 0.

� 0:75% 0.9953 0.9417 0.6321 0.3335 0.1115 0.

� 1% 0.9980 0.9751 0.8551 0.5064 0.1817 0.

� 1:5% 0.9996 0.9946 0.9179 0.9262 0.3126 0.

� 2% 0.9998 0.9985 0.9487 0.9660 0.4297 0.

� 2:5% 0.9999 0.9995 0.9672 0.9788 0.5400 0.

� 3% 0.9997 0.9801 0.9871 0.6382 0.7500E-04

� 3:5% 0.9999 0.9878 0.9920 0.7252 0.7250E-03

� 4% 0.9920 0.9948 0.8 0.3975E-02

� 4:5% 0.9949 0.9964 0.8584 0.1258E-01

� 5% 0.9963 0.9976 0.9008 0.3023E-01

� 6% 0.9984 0.9989 0.9444 0.9710E-01

� 7% 0.9992 0.9994 0.9617 0.2052

� 8% 0.9995 0.9996 0.9720 0.3341

� 9% 0.9997 0.9997 0.9804 0.4633

� 10% 0.9997 0.9998 0.9859 0.5813

� 12% 0.9998 0.9999 0.9927 0.7584

� 14% 0.9999 0.9999 0.9962 0.8668

� 16% 0.9979 0.9270

� 18% 0.9990 0.9607

� 20% 0.9994 0.9785

Table 2. The cumulative distribution of the relative error �10,

for di�erent approximations; � = 0:1; N = 40000, T1 = 1, n = 31:

100 � �5 (2) (1) (g2) (g1) (g) (0)

� 0:25% 0.9970 0.8810 0.5064 0.2157 0.5102 0.

� 0:5% 0.9999 0.9929 0.8975 0.5917 0.1799 0.

� 0:75% 0.9991 0.9425 0.9670 0.3079 0.

� 1% 0.9999 0.9670 0.9812 0.4208 0.

� 1:5% 0.9889 0.9936 0.6111 0.

� 2% 0.9963 0.9979 0.7659 0.

� 2:5% 0.9985 0.9990 0.8728 0.5000E-04

� 3% 0.9992 0.9995 0.9320 0.8500E-03

� 3:5% 0.9996 0.9999 0.9603 0.7400E-02

� 4% 0.9999 0.9999 0.9743 0.2947E-01

� 4:5% 0.9999 0.9827 0.8088E-01

� 5% 0.9879 0.1643

� 6% 0.9947 0.3950

� 7% 0.9974 0.6185

� 8% 0.9988 0.7864

� 9% 0.9992 0.8846

� 10% 0.9997 0.9412

� 12% 0.9856

� 14% 0.9966

� 16% 0.9991

Table 3. The cumulative distribution of the relative error �5,

for di�erent approximations; � = 0:1, N = 40000, T1 = 1, n = 31:
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100 � �5 (2) (1) (g2) (g1) (g) (0)

� 0:25% 0.8953 0.5452 0.0113 0.0066 0.2500E-03 0.

� 0:5% 0.9514 0.7923 0.0806 0.0502 0.9325E-02 0.

� 0:75% 0.9724 0.8879 0.1802 0.1198 0.3142E-01 0.

� 1% 0.9828 0.9330 0.2889 0.1978 0.6515E-01 0.

� 1:5% 0.9915 0.9703 0.5142 0.3571 0.1451 0.

� 2% 0.9956 0.9846 0.7954 0.5410 0.2279 0.

� 2:5% 0.9974 0.9910 0.8803 0.7905 0.3043 0.1750E-03

� 3% 0.9985 0.9946 0.9017 0.9192 0.3743 0.1375E-02

� 3:5% 0.9988 0.9966 0.9193 0.9356 0.4478 0.5475E-02

� 4% 0.9992 0.9978 0.9355 0.9473 0.5192 0.1398E-01

� 4:5% 0.9994 0.9986 0.9469 0.9566 0.5880 0.2850E-01

� 5% 0.9996 0.9989 0.9565 0.9641 0.6526 0.5120E-01

� 6% 0.9998 0.9993 0.9698 0.9746 0.7695 0.1122

� 7% 0.9998 0.9997 0.9785 0.9826 0.8533 0.1950

� 8% 0.9999 0.9998 0.9848 0.9869 0.9029 0.2857

� 9% 0.9999 0.9998 0.9887 0.9903 0.9233 0.3774

� 10% 0.9999 0.9999 0.9916 0.9931 0.9354 0.4598

� 12% 0.9999 0.9999 0.9952 0.9961 0.9524 0.6015

� 14% 0.9999 0.9969 0.9974 0.9645 0.7090

� 16% 0.9979 0.9983 0.9735 0.7879

� 18% 0.9985 0.9986 0.9799 0.8453

� 20% 0.9988 0.9988 0.9845 0.8857

Table 4. The cumulative distribution of the relative error �20,

for di�erent approximations; � = 0; N = 40000, T1 = 0:25, n = 31:

100 � �5 (2) (1) (g2) (g1) (g) (0)

� 0:25% 0.9887 0.9268 0.2079 0.1371 0.0269 0.

� 0:5% 0.9979 0.9873 0.5301 0.3830 0.1300 0.

� 0:75% 0.9992 0.9965 0.8094 0.6410 0.2448 0.

� 1% 0.9997 0.9986 0.9075 0.8799 0.3492 0.2500E-04

� 1:5% 0.9999 0.9997 0.9516 0.9612 0.5365 0.7750E-03

� 2% 0.9999 0.9734 0.9789 0.7033 0.1385E-01

� 2:5% 0.9844 0.9873 0.8310 0.5765E-01

� 3% 0.9909 0.9925 0.9054 0.1432

� 3:5% 0.9944 0.9951 0.9386 0.2579

� 4% 0.9959 0.9967 0.9521 0.3784

� 4:5% 0.9972 0.9976 0.9620 0.4933

� 5% 0.9979 0.9982 0.9696 0.5953

� 6% 0.9987 0.9989 0.9806 0.7493

� 7% 0.9993 0.9995 0.9880 0.8462

� 8% 0.9995 0.9996 0.9921 0.9068

� 9% 0.9997 0.9998 0.9948 0.9436

� 10% 0.9998 0.9999 0.9965 0.9631

� 12% 0.9999 0.9999 0.9983 0.9849

� 14% 0.9992 0.9934

� 16% 0.9996 0.9968

Table 5. The cumulative distribution of the relative error �20,

for di�erent approximations; � = 0:5; N = 40000, T1 = 1, n = 31:
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3 Simulation of a log-normal random �eld (DST)

The results of section 2 listed in Tables 1-5 clearly show that lognormal models (g2), (g1), (g)

and (0) are good approximations to the solution of SDE (2). This suggests the following direct

simulation technique (DST): construct lognormal random �eld models whose �rst two statistical

moments are consistent with those of the approximations (g2), (g1), (g); (0):

The motivation of DST is clear: in contrast to numerical solution of stochastic di�erential

equations there is no need for taking small time steps; in DST, it is possible to construct the

solution directly at the desired points, e.g., at the points of the given tenor structure 0 < T1 <

T2 < : : : Tn. Therefore, DNT takes generally much less computer time.

To be more speci�c, let us construct the direct simulation algorithm consistent with the

(g)-approximation.

We thus have to construct a lognormal random �eld

L(g)(i; t) = expf�(g)(i; t)g (14)

with gaussian �(g)(i; t), i = 1; : : : ; n � 1, t0 � t � Ti, whose mean and covariation structure

coincide with that of ln(L
(g)
i (t)=Li(t0)), t0 � t � Ti, i = 1; : : : n� 1; in the IPn� measure:

h�(g)(i; t)i = hln
�L(g)

i (t)

Li(t0)

�
i; (15)

h�(g)(i1; t1); �(g)(i2; t2)i = hln
�L(g)

i1
(t1)

Li1(t0)

�
; ln

�L(g)
i2
(t2)

Li2(t0)

�
i: (16)

From (9) we see that

h�(g)(i; t)i � �(g)(i; t0; t) = �
n�1X
j=i+1

�jLj(t0)

1 + �jLj(t0)

tZ
t0

i � j(s)ds�
1

2

tZ
t0

jij2(s)ds; (17)

h�(g)(i1; t1); �(g)(i2; t2)i � cov(g)(i1; i2; t0; t1 ^ t2) + �(g)(i1; t0; t1)�
(g)(i2; t0; t2); (18)

where

cov(g)(i1; i2; t0; t) =

tZ
t0

i(s)j(s)ds:

In practice, one usually evaluates LIBOR derivatives which depend on the values Li(Tj),

i = 1; : : : ; n � 1, j = 1; : : : ; i. Therefore, we have to construct numerically the desired random

�eld L(g)(i; Tj); i = 1; : : : ; n � 1; j = 1; : : : i. To do this, we could simulate the gaussian

vector with the given covariance structure by a conventional simulation technique. However the

speci�c time correlation suggests a di�erent simulation algorithm, [3]. Indeed, in the �rst step,

we simulate a n� 1-dimensional gaussian vector (�(g)(1; T1); : : : ; �
(g)(n� 1; T1)) as

�(g)(i; T1) = �(g)(i; t0; T1) +

K1X
k=1

h
(1)
ik �

(1)
k ; i = 1; : : : ; n� 1 (19)

where the positive integer number K1 and the entries h
(1)
ik are chosen so that

K1X
k=1

h
(1)
ik h

(1)
jk = cov(g)(i; j; t0; T1); i; j = 1; : : : n� 1;
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and f�(1)k gK1

k=1 is a set of independent standard gaussian random numbers.

In the l-th step (2 � l � n� 1) we have:

�(g)(i; Tl) = �(g)(i; Tl�1) + �(g)(i; t0; Tl)� �(g)(i; t0; Tl�1) +

KlX
k=1

h
(l)
ik �

(l)
k ; i = l; : : : ; n� 1: (20)

The positive integer number Kl and the entries h
(l)
ik are chosen so that

KlX
k=1

h
(l)
ik h

(l)
jk = cov(g)(i; j;Tl�1; Tl); i; j = l; : : : n� 1; (21)

where �
(l)
l , �

(l)
l+1, : : : , �

(l)
n�1 is a set of independent standard gaussian random numbers.

Thus after n� 1 steps we �nd

L
(g)
i (Tj) = Li(t0)L(g)(i; Tj) = Li(t0) expf�(g)(i; Tj)g; i = 1; : : : ; n� 1; j = 1; : : : ; i: (22)

Here we presented simulation of a lognormal random �eld consistent with the g-approximation.

Analogously, the same could be easily done for the lognormal approximations (0). Indeed, the

simulation formulae (19)- (22) remain the same, but the functions �(g) and cov(g) should be

replaced with

�(0)(i; t0; t1) = 0; and cov(0)(i1; i2; t0; t) = cov(g)(i1; i2; t0; t);

for the (0)�approximation. For the g1-approximation we may de�ne,

�(g1)(i; t0; t) = �
n�1X
j=i+1

�jLj(t0)

tZ
t0

i � j(s)ds�
1

2

tZ
t0

jij2(s)ds:

From (10) we derive

ln
L
(g1)
i (t)

Li(t0)
= �(g1)(i; t0; t) +

Z t

t0

2
41�

n�1X
j=i+1

�jLj(t0)

Z t

s

j � i(u)du

3
5 i(s) � dWs

and thus �nd

Cov[�(g1)(i1; t1); �
(g1)(i2; t2)] =

R t1^t2
t0

i1 � i2(s)
h
1�

Pn�1
j=i1+1 �jLj(t0)

R t1
s j � i1(u)du

i
�h

1�
Pn�1

k=i2+1 �kLk(t0)
R t2
s k � i2(u)du

i
ds

and similar expressions for the (g2)-approximation can be derived from (13). However, unfortu-

nately the covariance functions of (g1; 2) have not the special structure as in the case of the (0)

and (g)� approximation, so the simulation of the corresponding random �elds might be slower.

Remark Note that the cost of the simulation algorithm used for the (g)�approximation has

the order O(n4) since in the l-th step, we apply the Cholesky decomposition (21) whose cost has

the order O(n3). The conventional direct method would take about O(n6) operations. It should

be noted also that if the factor loadings functions i do not depend on time, then the cost of

our algorithm is O(n3), since we apply the Cholesky decomposition only once, at the �rst step.

There is one interesting feature of our algorithm which is to be stressed: in practice, one

often speci�es the model not by the factor loadings i, but through the quantities

Cov(i; j; t) �
Z t

t0

i � j(s)ds
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which can be determined from the Cap/Swaption markets, see also [5]. In our random �eld

approximations just these quantities are only relevant and can thus be plugged in directly,

whereas in case the approximations are obtained by numerical solution of the relevant SDE,

it is needed to calculate the factor loadings by Cholesky decomposition of the time derivatives

of Cov(i; j; t); generally, in each integration step. This can be very time consuming, especially

when the factor loadings are time dependent.

4 Valuation of swaptions and trigger swaps

We now present some test results on the valuation of two typical LIBOR derivatives: the swap-

tion and the trigger swap. For a derivation of the several valuation formulas, see e.g. [5]

The value of a swaption, an option to swap LIBOR against a �xed coupon � at the settlement

dates T2; : : : ; Tn; can be represented in the IPn measure by

Swpn(t) =
n�1X
j=1

Bn(t)IEn

�
Bj+1(T1)

Bn(T1)
1A(Lj(T1)� �)�j jFt

�
; (23)

In (23), A denotes the FT1 measurable event fS(T1) > �g; where the swaprate S(T1) is given by

S(T1) :=
1�Bn(T1)Pn�1

k=1 �kBk+1(T1)
=

�1 +
Qn�1

k=1(1 + �kLk(T1))Pn�1
k=1 �k

Qn�1
i=k+1(1 + �iLi(T1))

and Bj+1(T1)=Bn(T1) can be expressed in the LIBORs by

Bj+1(T1)

Bn(T1)
=

n�1Y
i=j+1

(1 + �iLi(T1)):

In a trigger swap contract with speci�ed trigger levelsK1; : : : ;Kn; as soon as Li(Ti) > Ki one

has to swap LIBOR against a �xed coupon � for the remaining period [Ti; Tn] with settlement

dates Ti+1; : : : ; Tn:

The value of the trigger swap in the IPn measure can be expressed by

Trswp(t) =
n�1X
p=1

Bn(t)IEn

2
41[�=p] 1

Bn(Tp)

0
@1�Bn(Tp)� �

n�1X
j=p

Bj+1(Tp)�j

1
A j Ft

3
5 ; (24)

where �; the trigger index, is given by � := min1�p<nfp jLp(Tp) > Kpg; see [5]. In (24) the

expression inside the expectation can be expressed in LIBORS only and we thus have

Trswp(t) =
n�1X
p=1

Bn(t)IEn

2
41[�=p]

0
@�1 +

n�1Y
i=p

(1 + �iLi(Tp))� �
n�1X
j=p

�j

n�1Y
i=j+1

(1 + �iLi(Tp))

1
A j Ft

3
5 :

(25)

We now simulate the prices of swaptions and trigger swaps for the LIBOR trajectories simulated

in the tables 1,2 and 4, where the strike is taken to be the initial swaprate; � = 0:06045 and

all trigger levels equal to the strike; Kp = � for every p: The Monte Carlo errors are based on

three standard deviations. Note that the discrepancy between an option value simulated with

L and a value simulated with some approximation should be interpreted as a systematic error

caused by the approximation since the trajectories of L and the approximation are constructed

with one and the same Wiener increments.
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simulation swaption M:C: error trig: swap M:C: error

L 0.4400E-01 0.3390E-03 0.4747E-01 0.4242E-03

L
(2) 0.4396E-01 0.3367E-03 0.4745E-01 0.4240E-03

L
(1) 0.4387E-01 0.3356E-03 0.4739E-01 0.4237E-03

L
(g2) 0.4432E-01 0.3772E-03 0.4749E-01 0.4273E-03

L
(g1) 0.4414E-01 0.3749E-03 0.4735E-01 0.4265E-03

L
(g) 0.4579E-01 0.4519E-03 0.4940E-01 0.4355E-03

L
(0) 0.5188E-01 0.5441E-03 0.5450E-01 0.4521E-03

Table 6. Swaption and trigger swap values for di�erent approximations; � = 0:1, N =

700000; T1 = 1, n = 31.

simulation swaption M:C: error trig: swap M:C: error

L 0.4389E-01 0.1441E-02 0.4799E-01 0.1810E-02

L
(2) 0.4384E-01 0.1432E-02 0.4796E-01 0.1808E-02

L
(1) 0.4376E-01 0.1427E-02 0.4792E-01 0.1807E-02

L
(g2) 0.4421E-01 0.1561E-02 0.4802E-01 0.1832E-02

L
(g1) 0.4404E-01 0.1553E-02 0.4791E-01 0.1828E-02

L
(g) 0.4568E-01 0.1770E-02 0.5002E-01 0.1853E-02

L
(0) 0.5176E-01 0.2038E-02 0.5533E-01 0.1927E-02

Table 7. Swaption and trigger swap values for di�erent approximations; � = 0:1; N =

40000, T1 = 1, n = 31:

simulation swaption M:C: error trig: swap M:C: error

L 0.2830E-01 0.7791E-03 0.4487E-01 0.7704E-03

L
(2) 0.2828E-01 0.7764E-03 0.4486E-01 0.7704E-03

L
(1) 0.2826E-01 0.7753E-03 0.4488E-01 0.7701E-03

L
(g2) 0.2844E-01 0.8171E-03 0.4488E-01 0.7705E-03

L
(g1) 0.2838E-01 0.8147E-03 0.4494E-01 0.7705E-03

L
(g) 0.2892E-01 0.8843E-03 0.4517E-01 0.7753E-03

L
(0) 0.3139E-01 0.9783E-03 0.4508E-01 0.7972E-03

Table 8. Swaption and trigger swap values for di�erent approximations; � = 0; N = 40000,

T1 = 0:25, n = 31:

simulation swaption M:C: error trig: swap M:C: error

L 0.2691E-01 0.7269E-03 0.1995E-01 0.1287E-02

L
(2) 0.2691E-01 0.7267E-03 0.1994E-01 0.1286E-02

L
(1) 0.2690E-01 0.7265E-03 0.1992E-01 0.1286E-02

L
(g2) 0.2693E-01 0.7289E-03 0.1998E-01 0.1295E-02

L
(g1) 0.2689E-01 0.7282E-03 0.1991E-01 0.1294E-02

L
(g) 0.2715E-01 0.7366E-03 0.2048E-01 0.1307E-02

L
(0) 0.2880E-01 0.7638E-03 0.2365E-01 0.1338E-02

Table 9. Swaption and trigger swap values for di�erent approximations; � = 0:5; N =

40000, T1 = 1, n = 31:

14



�i;j 1 4 7 10 13 16 19 22 25 28

1 1.00

4 0.82 1.00

7 0.69 0.84 1.00

10 0.59 0.72 0.86 1.00

13 0.51 0.62 0.74 0.86 1.00

16 0.44 0.54 0.64 0.75 0.87 1.00

19 0.39 0.47 0.56 0.65 0.76 0.87 1.00

22 0.34 0.41 0.49 0.57 0.67 0.77 0.88 1.00

25 0.30 0.36 0.43 0.51 0.59 0.67 0.77 0.88 1.00

28 0.26 0.32 0.38 0.45 0.52 0.60 0.68 0.78 0.88 1.00

Table 9. Forward log LIBOR correlations �(lnLi(T1); lnLj(T1)); for � = 0:8 and � = 0:1.

�i;j 1 4 7 10 13 16 19 22 25 28

1 1.00

4 0.36 1.00

7 0.15 0.42 1.00

10 0.07 0.19 0.46 1.00

13 0.03 0.09 0.22 0.48 1.00

16 0.02 0.05 0.11 0.24 0.49 1.00

19 0.01 0.02 0.06 0.12 0.25 0.51 1.00

22 0.00 0.01 0.03 0.06 0.13 0.26 0.52 1.00

25 0.00 0.01 0.02 0.03 0.07 0.14 0.27 0.53 1.00

28 0.00 0.00 0.01 0.02 0.04 0.07 0.15 0.28 0.54 1.00

Table 10. Forward log LIBOR correlations �(lnLi(T1); lnLj(T1)); for � = 0:8 and � = 0:5.

5 Conclusion

For practical relevance, simulation prices of derivatives should be well within so called bid-

ask spreads: A bid-ask spread can be estimated roughly by the change of the claim price due

to an overall LIBOR-volatility movement of 5% up and 5% down. By experiment we found

out that for the examples above this comes down to desire a relative accuracy of about 5%;

both for the swaption and the triggerswap. So, from table 6, where the Monte Carlo error

(de�ned as 3 standard deviations) is much smaller than the spread we may conclude that the

(g1)�approximation performs excellent whereas the (g)�approximation performs tolerable. The

(0)�approximation, however, produces relative errors of more than 6%: From tables 6 and 7 we

see also that 40000 payo� simulations are su�cient to reach a Monte Carlo error below 5%

and when simulated with the DSM method applied to the (g)� approximation this takes a few

seconds for the swaption and a few minutes for the triggerswap respectively. However, simulation

of these prices by solving the SDE for L; L(1) or L(2) by using small time steps takes much longer,

for instance, a few hours for the triggerswap.
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