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ABSTRACT

In this paper we analyse a fully practical piecewise linear finite
element  approximation; invoelving regularization, numerical ‘ integration an&
backwar*dk Euler time discretisation; of the following degenerate parébolic
system arising in a model of reactive solute transport in porous media: Find
{ulx,t),v(x,t)} such that

u+dv-hu=f in Qx (0,T] wu=0 on 82 x (0,T]
8y = k(p(u)=v) in Q x (0,T]

u(+,0) =g (+) v(+,0) =g () inQc R, 1=d=3

+

for given data k € R, f, 9, 9, and a monotonically increasing
= CO(IR)ncl(—oo,O]u(O,oo) satisfying ¢(0) = 0; which is only locally H&lder
continuous, with exponent p € (0,1), at the origin; e.g. ¢(s) = [s]’:. This

lack of Lipschitz continuity at the origin limits the 'r‘egular‘ity of the
unique solution {u,v} and leads to difficulties in the finite element error
analysis. Nevertheless we arrive at error bounds which in some cases exhibit

the full approximation power of the trial space.



- 1. INTRODUCTION

In these papers wé study  finite element approximations of degenerate
parabolic systems and equations, as they arise in the modelling .of reactive
solute transport in porous media, as soils or aquifers. The reaction, that we
are going to take into account, is adsorption; that is, a retention/release
reaction of the solute, e.g. a contaminant, with. the porous skeleton.
Adsorption is a major concern in soil science and ‘hydrology as it is often
the primary factor determining the mobility of a solute.

We consider the process on a macroscopic level, i.e.
averaged/homogenized scale, where single grains and pores do not appear .
anymore. A macroscopic model has the form (c.f. Knabner (1891a) and van Duijn
& Knabner (19392) for a derivation)

at(@u) + pat[?\lt/l(u)i-?\av'] - V. (8QVu-gu) = f in Q. (1.1a) |

atv = r(u,v) in QT~, (1.1b)

supplemented by initial conditions for u and v and appropriate boundary
conditions for u. Here u and v are the unknowns of the s~ystem, the dissolved
concentration (with reference. to the water-filled part of the pore space) .and
the adsorbed concentration in non-equilibrium (with reference to the mass of

the porous skeleton).. The process takes place in a bounded domain Q in [Rd,

1= d = 3. Let [0,T] be the fixed time interval and. Qt Q x {(0,t], for
t € (0,T]. The other quantities, all assumed to be known, either describe the
underlying water flow regime and geology, as the water content 0, the
volumetric water flux g, the sum of diffusion and dispersion matrix D and the
bulk density p, or the adsorption process: Here ‘i»t is assumed' that two
classes of adsorption sites may be distinguished (with relative specific
grain surfaces A € [0,1]1). The sites in class 2 are in (chemical)

non-equilibrium and the kinetics are described by (1.1b), which applies to

adsorption reaction at a time scale comparable to transport. Whereas for



sites where the reaction is considerably faster, a quasistationary approach
is feasible, aésuininé i.he‘ reaction to be equilibrium. This approach is used
for sites in class 1, leading to an algebraic expression for the adsorbed
concentration in terms of the dissolved concentration, - the adsorption
isotherm y.

A common heuristic approach for the rate function r consists of taking

it proportional to the deviation from equilibrium, i.e.

| r(u,v) = k(p(u)-v), ' (1.2)
where ¢ is the adsorption isotherm for sites of class 2 and k > 0 is a rate
parameter. We will restrict ourselves to this .- form. The quasilinear,
respectively semilinear (for 7\1 = 0), system (1.1) may be degenerate because
there are typical examples for the isotherms ¢ or Y, which are not Lipschitz
continuous at u = 0 such as is the Freundlich isotherm

@(u) = au® for u = 0, where o € R* aridp e (0,1). (1.3)

On the other hand isotherms are monotone increasing |, suc'h that in the
following we will ;ﬁorisider* monotone nonlinearities allowing for degenerate
behaviour like (1.3) at the origin.

In the first part of this paper we consider only non-equilibrium
adsorption, such that we assume Ai = 0 from now on. The underlying water flow
regime in geneba] leads to time and space dependent coefficients, but with a
linear uniformly parabolic operator on u, due to

80+ V.g=0, 8(xt) =28 >0 in Q- (1.4)
The degenerate semilinear system (1.1), suppiemented by in and outflow
conditions has been extensively studied by Knabner (1991a) and van Duijn &
Knabner (1990). The boundary conditions read as

(eDVu-gu).n = F on 81 x (0,T] and DVu.n =0 on S2 x (0,T], (1.5)
where n is the outward normal to 8Q = S1u82, 81‘ is defined by g.n = 0 (the

inflow boundary) and 82 by a.n =2 0 (the outflow/noflow boundary). A specific

sequence of testing leads to a uniqueness result (see II Th.2.2 in Knabner



(19%1a)), which can be extended to the usual energy norm stabilityl estimate
for the u-components of ‘the solutions, but only under certain structural
conditions on the coefficients (II Th.2.6). These conditions are fulfilled
for time-independent coeffic%ents, i.e. for stationary water flow.

Our aim is to prove order of convergence estimates in ener‘gyv norms for
the corresponding finite element approximation, therefore we consider this
stability estimate to be important. In fact it turns out that the same
approach enables us to reduce the error estimation (for the continuous in
time conformal Galerkin approximation) to problems, which have already been
studied by Barrett & Shanahan (1291), see Knabner (1991b) for a preliminary
account. In fact the problem considered in Barrett & Shanahan (1891) can be
viewed as a- stationary version of the present problem by neglecting the
desorption term -kv. Therefore we restrict ourselves to situations where this
reasoning for the stability estimate is possible, by considering only
stationary water flow. We substantially extend and refine the aforementioned
preliminary analysis by improving on the error bounds there and considering a
fully practical scheme involving numerical integration on ) the nonlinear term
and time discretisation using the backward Euler method. The analysis is
centred on introducing a regularized system (Pe) obtained by sﬁbstituting P
by a Lipschitz continuous P differing only'near‘ u = 0. In fact if the
solution u satisfies a non_—degeneracy condition, see below, by adapting the
regularization parameter ¢ | to the discretization parameters one can prove
better rates of convergence for the approximation of (Pe) to (P) than for the
approxi}nation. of (P) directly. This situation is not uncommon for the finite
‘element approximation of degenerate problems (ey.g. see Nochetto & Verdi
(1988)).

The non-Lipschitzian behaviour of ¢ at u = 0 can only play an important
role if fronts, given by the boundary of the support of u (or v) in Q, do not

vanish instantaneously, as for the heat equation, but are preserved; i.e. if



the problem exhibits a finite speed of propagation property. This property is
analysed by Knabner (1981a) for the one-dimensional case and found to be
characterised by

Q‘K € Ll(O,B) for some & > O, ‘ (1.8)

s
where &(s) J ¢(o) do. This is fulfilled by the example (1.3) and may be

0

considered as the typical case in the following. The non-degeneracy condition
describes the minimal growth of u away from the front. This local behaviour
of the profile has only been analysed for travelling wave solﬁtions ( see
van Dujjn & Knabner (1991)). We will assume later on, that ¢ is HSlder
continuous near u = 0 with exponent p € (0,1]. If in addition the exponent is

sharp, i.e.

plu) = ad®  foru e [0,60] and for some «, 60 >0 (1.7)
then:
(N.D.) A(t) = ce* (1.8a)
where -
t
A (t) = J m(Q (s)) ds, (1.8b)
€ o € .
Qe(t) = {xe: ulxt)e (O,ehdl-p)) b, (1.8c)

and m is the Lebesgue measure.

Our analysis applies  to the case of general time-independent
coefficients (assuming they are sufficiently regular). However, the fact that
we analyse the Galerkin procedure implies the réquirement that the process is
not convection—-dominated, where we would encounter the V well-known
diffiéulties. There are alternative procedures for this situation like the
str‘eam]ine‘ diffusion method or the modified method of character;istics. We
expect that ‘the techniques thrat we are going to develop here will enable us
to analyse also ;/ariants of these methods. We refer to Dawson, van Duijn &
Wheeler (1992) for a first account with respect to the modified method of

characteristics.



For ease of exposition we will develop our results for the following
model problem, which keeps the specific. difficulty of the non-Lipschitz
nonlinearity, but reduces the handling of standard terms:

(P) Find {u(x,t),v(x,t)} suéh that
gu+dv - Au=f fnQ. u=0 on 8Qx (0,T]
atv = k(p(u)=-v) in QT
u(-,0) =gi(°) v(e,0) =92(') in Q,
where we make the following assumptions on the given data:
d

Assumptions (D1): Q c R, 1 =d = 3, with either Q convex polyhedral or

ech kerR', te Lm(QT), g, < Lm(Q)nH;(Q), g, € L®(Q) and ¢ e C’(R) is

such that

(1) e(0) = 0, ¢(s) > 0V s > 0 and ¢ is monotonically increasing (1.9a)
(if) ¢ € C'(~,0]U(0, ) h (1.9b)
(i) there exist L € R" and €y P € (0,1] such that

|p(a)-p(b) | = L|a-b|P for all a,b € [0, 1. (1.8¢)

The layout of this paper is as follows. In the nextm section we establish
the existence and uniqueness of a solution to (P) by firstly establishling
these results for a regularized version (Pe)' 'In section 3 we consider a
continuous in time continuous piecewise linear finite element approximation
in space. In section 4 we consider a more practical approximation employing
numerical integration on the nonlinear term. Finally in section 5 we consider
a fully practical approximation involving discretisation in time wusing the
backward Euler method.

Throughout the paper we adopt the standard notation for Sobolev Vspaces.'
We note that -the seminorm | | k

and norm I|°IIH1 are equivalent on H;(Q).

1
H () ()

The standard LZ inner product over Q is denoted by (+,+). Throughout C or C‘
denote genéric positive constants independent of &€ the regularization

parameter, h the mesh spacing and k the reaction rate parameter. If a



constant does depend on k say, this will be written as C(k). We track the
constant k in the analysis as we use nearly all the results in this paper to
study the case of k infinite, equilibrium adsorption, in part II. fhis often
makes the present analysis more complicated than it need be' if we were just

interested in the case k finite.



2. THE CONTINUQUS PROBLEM
In this section we establish existence and uniqueness of a solution to
(P). These results have been proved by Knabner(13831a) for (1.1) with boundary
conditions (1.5). However the model problem (P) allows for a more direct
account and furthermore in doing so, we will develop various bounds that will
be useful in analysing the error in the finite element approximation of (P).
Firstly we introduce a regularized version of (P), for £ € (0,80] (co as in
{(1.9¢})):
(P ) Find {u_(x,t),v _(x,t)} such that
£ € € .
Bu +38v -Al =f inQ u =0 on 892 x (0,T]
t g t e €

T €

3.V. = k((pe(ue)—vs) in Q.

u(+,0) =g (+) v (+,00 =g(:) ingQ

where ¢, € c®(R) is such that

(i) goe(s) = ¢(s) for s ¢ (0, 1P (2.1a)
(ii) gos(s) is strictly monotonically increasing on [0,81/“-”)] (2.1b)
(iii) for m € N there exists a M(m) € R:

tp;(s) = M(m)e! for a]mosﬁ all |s| =m. (2.1c)

Note that M can be chosen independently of m, if ¢’ is bounded in R\(0,8) for
some 8 > 0. In addition we set

<I>e(s) = .cl; goe(‘r) do . (2.2)

It is a simple matter to deduce from the conditions (2.1) that for all
lal, o] =m
-1 2 , -1 2
[M(m)] e|<pe(a)-<pe(b)| = [p_(a)-¢_(b)1(a-b) = M(m)e |a-b | (2.3a)
and

%(81/(1-;:)) = (e 1P < P/ (2.3b)

with L as in (1.9¢c). The simplest choice for Pe is the linear regularization

-1/(1-p) _, 1/(1-p)
Plole Phs

tpe(s) =g for s e (0, 1Py, (2.4)



Definition: {u_,v_ } is a weak upper (lower) solution to (P ) I
2 ! (PR - - bt 2
u, € LIO,T;H@)AH(0,T;L7(R) = W, (QT), {ps(ue) € L (QT) and'
Ve € HI(O,T;LZ('Q))' are such that for all test functions 7 e L2(0,T;H;(Q))
with n =2 0 in QT ‘

J [atuen + 8tven +Vu€.V'n ~-fn] dxdt ‘2 (=) 0 ug = (=) 0 on 8Q x (0,T]

O

8. Ve & (=) kg _(u)-v ) inQ
u(+,0) = (=) g (2 v (+,0) = (=) g(:) inaQ

{ue,ve} js a weak solution to (P 2& if it is both a weak lower solution and a

weak upper solution to (Pe)' Similar definitions hold for (P} with e in the

above replaced by ¢.

Theorem 2.1 : -
Let the Assumptions (D1) hold. Then for all & € (0,1 there exists a

unique weak solution {u_,v_} to (Ps) such that

£ €
us=u sSu ad Vv=v_=v inQ (2.5a)
€ £ T
Ivuele(QT) * latuelx_z(o_r) + Iatvele(QT) = Clk), (2.5b)

where u, u, v, V= CO(S_Z) are all independent of £ and k. Furthermore, if 9,

gzandf?-Oonecantakeg=x=0.

Proof: Firstly, we prove the existence of weak lower and upper solutions to
(Pe)' Let w € H(Q) (c €°(D)) be such that -Aw = 1 in Q and w = 1 on 8Q. It

follows that w =2 1 in Q. Let 7 = max {lfll o g il o 1}. Then for all

1 13
L (OT) 1L (S

€€ (O,eO] {u,v} ({u,v}) is an upper (lower) solution of (‘Pe)’ where u = 7w,

[
1]
¢
<
i}

max {Ilgzllhoo(m,Ilcp(u)IlLoo(Q)} and v = -max {IlgleLco(Q),Ilgo(g)lle(Q)}.

m
1]

Note that ¢€(G) e(u) and qos(g) @o(lu) as u =2 1 and u = 0. If 9, 9, and
f = 0 we note that one can alternatively choose {u,v} = {0,0}.
Let B = { u € LZ(QT) : U = u = U }. We now define an operator

T: B> LZ(QT). Firstly, given u € B, we define

10



vix,t) “k(t-s)

t
e_ktgz(x) +kJe

we(u(x,s)) ds. (2.86)
N ,

Clearly, v is such that 8y = k((pe(u)-v) in Q_ and v(e,0) = gz(~) in @ and

ueB =2 u e K

[inf u , sup ul = u € Lm(QT] = goe(u) € ‘Lm(QT) 3 v,
atv € Lm(QT) with norms bounded uniformly for all u € B. Then U = Tu is
defined to be the unique weék solution of -

atu - Au + Meu = k(v-qpe(u)) + Meu +f in QT (2.7a)

U=0 on 8Q and U(+,0) = g,(*) inQ, (2.7b)

where M8 kM(m)e ! is the Lipschitz constant of kgoe(') and m is such that

K< [-mm], see (2.1c). We now show that T : B —)LZ(QT) is (i) a compact
operator, (ii) a continuous operator and (iii) T[{B] < B.
(i) Using U (8 G) as a test function for (2.7) =

]Vu] [6u| =C |u|

N * K o (u) |72

+ KE|v|%

4
L(Q) L(Q) L(Q) L—(Q)

y (Q)] = C(k,€), (2.8)

71520, * el
where we have noted the bounds on u and v above and the assumptions (D1). "vl'he
testing with Btﬁ is Jjustified for sufficiently smooth solutions of the linear
equation (2.7). The desired estimate also holds tr‘ue‘in general, as the
smooth solutions are dense in the space of weak solutions (see e.g. III &1 in
Ladyzhenskaya (1985)). Therefore T[B] c W;’l(QT) and hence T : B > Lz(QT) is
a compact operator.

(ii) Let {un} € B be such that u >u in L2(QT) as n 5 w. We obtain, in
a similar way to (2.8), with Gn = Tun that

1.

|u-u_|T2

nli) = C(k,e) [|u-u

2 2
n.l.'z(QT) lw (u) 90 (u ”L (Q ) |v—vn|L2(QT)

(2.9)
From (2.1c), (2.8) and (2.9) it follows that goe(un) > qpe(u), V.oV and hence
u - Gn in LZ(QT) as n > w. Therefore T : B > L2(QT) is a continuous operator.
(i) \{e have that v given by (2.6) is such that

J (6t+k)(x-v) (y-v), dxdt = [ k[((pe(g)-q)e(u)] ‘(x—v)+ dxdt =

O O

1"



since u = u. Hence it follows that v = v in QT. In an analogous way we have
that v = v in QT. From (2..7) it then follows that u-u satisfies weakly

8,(G-u) - A(U-u) + M_(G-u) = k(v-y) + M (u-w) k(g (U)=p (U] = 0 in Q,

U-u 20 on 82 x (0,T] and (U-u)(+,0) 20 in Q,
since v =2 v, u z u, Me is the Lipschitz constant of kgoe(') and we(y-)v is’
monotonically increasing. From the weak maximum principle it follows that
U=zu in QT. In an analogous way it follows that U = u in Q‘r' Therefore we
have that T[B] < B.

As T satisfies the above properties it follows from the Schauder fixed
point theorem that T has a fixed point Ugs ik.e. u, = Tue. Moreover, it
follows that {ue,ve}, where Ve is defined by (2.6) with u = g is a weak
solution of (Pe) satisfying (2.5a), where we have noted from the above that
u, € W;’I(QT) and q)e(u), v, atv € Lm(QT). In addition for the fixed point u,
the term M., cancels on both sides of (2.7a) and therefore the bound (2.8)
holds for ug with ‘a constant C(k) independent of &£. Hence the desired result
(2.8b). To pr*oVe uniqueness we can argue as we will do for the

non-regularized problem in the proof of Theorem 2.2 leading to (2.17) and

then exploit the monotonicity of (pe. o

For k € R" and for sufficiently smooth w we set

2 2 -1 2
= + .
I ey = W2, * X KT IWE B |2,
1 t
and
2 2 t 2 1 2
= + . : + k- 2 .
"w"x-:z(k,t) IlwllE () XIV;l)‘w( ,s)dlez(m k IVWIL (@)

12



Lemma 2.1

Let the Assumptions (D1) hold and for 0 < e S ¢ =

a weak solution to (Ps ), i=
i

1, 2. Then for all t € (0,T] we have that

€, let {uel,vei} be

2 2 2
- + - + Y
”Ue Ye "E (k,t) ezlq)e (ue ) Pe (us )le(o ) 82"\/8 Ve "E (k,t)
1 2 2 1 1 2 2 t 1 21
-1 2 (1+p)/(1-p)
< -
= Ce, s ug |L2(Q) = Ce, , (2.10)
1 t
- -1 ' 1/(1-p) = :
where ¢ = e (tpe (ue )) if e (u»e = (O,go(e2 )) and ¢ = u, otherwise.

2 1 1 1 1

Proof: Let e = u

|
c
®
i
<

14
1 2 1 2

(Pez) from - that in (P€1) ,

t
n(e,s) = Je'(e,0)de for s € [0,t], n(-,s)

S

equation in using

integration by parts yields that -

u,2
le | 2
L

t t
u 2 - A ue
+ )5|\7_(J)“e (~,s)ds|L2(m = .CI;(e (¢,s),e (+,s))ds.

(Qt)

Using the test function n(+,s) = e“(-,s) for s e [O,t],

s € (t,T] yields that
t
u 2 u2 - - A u,
%le ( ,t)ILz(Q) + |Ve ILZ(Q) J‘(ase (+,s),e (°,s))ds.
Tt 0
Therefore combining (2.11) and (2.12) we have that
t

e = -f(k“ase"(-,s)+e“(-,é),e"(-,snds

E_(k,t)
2

the

0 for s € (t,T]

test

n(e,s)

t
= -J'(soe (ue (°.S))-<.o8 (ue (+,s)),e%(+,s))ds.

0 1 1 2 2

Noting that ¢_ (ue ) = . (g), it follows from (2.13) and (2.3) that

1 1 2

u 2 -1 2
1671 g,y * MOM)] 5l9g (g )0 (U )|

2
L
1 i 2 (Qt)

IA

t
J‘(«)e (ue (',s))-goe (u8 (‘»S)).(C‘Ue Y(e,s))ds

o 1 1 2 2 1
= % IMm) 17" o (u_)=¢_ (u_)|%2  + % M(me '|g-u_ |%2
2'°¢ € € € L (Q) 2 € 'L (Q)
1 1 2 2 t 1 t
-1 2 -1_2/(1-p)
< - < .
' M(m)ez € 98111.2(08 2 %2 T

where [inf u , sup ul € [-m,m], see (2.1c) and Theorem 2.1.

13

and t € (0,T]. Subtracting the first

function

and performing

(2.11)

= 0 for

(2.12)

(2.13)

(2.14)



Finally subtracting - the second equation in (Pe) from that in (P_),

2 &
multiplying by e’ and integrating over Qt yields
t
2 - v
"Ve Ve IIE e - .l“(go8 (u8 ( ,s))-qpe (uc (+,s)),e (',s))d§

1 21 o 1 1 2 2
2

= Clq’s (ue )-q’e (ue )il.z(ot)'_ (2.15)

1 1 2 2
Combining (2.14) and (2.15) yields the desired result (2.10). o

Theorem 2.2
Let the Assumptions (D1) hold. Then there exists a unique weak solution

{u,v} to (P) and for all € € (O,eol and t € (0,T]

2 -2 2 2
u USHEz(k,t) + k e[vVlu-u ) (=, t) | 2 o + €lo(u)-p_(u) ll‘z(Qt)
+ ellv-v_IIZ sc A (v) VPP, (2.16)
€ El(k,t) €

In addition the bounds (2.5a&b) hold true for {u,v} and in particular if 9,

gzandszthenu,VZDinQT.

Proof: We. first establish existence of a solution to (P). Let en >0 as n > w

and let {ue ,vs} be the unique weak solution to (Ps)' It follows from
n n ) n

(2.10) that {u_,v_} is Cauchy in L0, T;HH @) x L%0,T;L%(Q))  and

n n

therefore {u_,v_} > {u,v} in L2(0,T;HY(Q)) x L®(0,T;L%(Q)) as n - w. The

n n

inclusions (2.5a) also hold true for {u,v}. In addition from (2.5b) we have

that there exists a subsequence of {atus ,atve} -~ converging weakly to
n n ‘

{atu,atv} in L,Z(QT) X Lz(QT). Finally we have from (1.9), (2.1) and (2.3b)

that
letu)-p, (u )| 2 = [elu-plu )] 2 )+ |elu )-p  (u )] 2
n n t n t n n n t
< Clu-u_ [Pz, + ce PP,
_En L (Qt) n

Hence ¢€ (ue) > ¢(u) as n > w. Therefore {u,v} is a weak solution of (P).
n n

The bounds (2.5b) also hold true for {u,v}.

14



We now prove uniqueness. Assume there exist two weak solutions {ui,vi},
i =1 2 to (P). Setting e" = u -y, and e’ = VTV the analogue of (2.13)

- with € = ¢ = 0, yields
1 2 .

u 2 ) u-o -
lle "Ez(k,t) + i‘(:p(ul( ,8)) qo(uz( ,8)),e (+,s8))ds = 0. (2.17)
From (1.9a) and (2.17) it follows that u, =y, and hence V= Ve

Finally setting € = 0 and £, = g in the proof of (2.10), noting (1.8)

and that, with a justification analogous to the proof of (2.8)
t . .
2 2
ilas(u ug)(+,8)] 2 g ds + %|V(u-u ) (+,t) | 2 o
t
-8 (v=-v_)(+,s),8 (u-u_)(-,s)ds
o s € s >4 ]

1A

2 2 2
Sl otul=p tud | 2, + Vvl 2 )]
| ¢ t

yields the desired result (2.16). 'O

Because of the bounds in (2.5a) we now can fix M in (2.1c) when dealing
with u or Ug We end this sectipn by proving some useful bounds on the unique

weak solution {us,ve} of (Pe)’ £ € (O,eol.

Lemma 2.2
Under Assumptions (D1) we have for all € € (0,801 and t € (0,T] that

: 2 2
s|the(u€)]L2(QT) * (<I>8(u€( 1)1+ kl‘oe(ue) Ve LZ(QT)

2  =c. (2.18)

2 -1
* vz + K |8, vel, (@)

Proof: From (Pe) we have that
t .
(J)’[(Vue(',s),Vgoe(uc(',s))) + (atue(',s),q)e(us(',s))) + (atvs(ns),ve(ms)) +

+ ko (u_(+,5))-v_(+,s) Iiz(m

t N
lds = J‘(’r‘(',s),soe(ue(-,s)))ds. (2.19)
o
From (1.9) and (2.1) it follows that for all w € H;(Q) with |w(x)l = m for
a.e. x €  that

M(m) 1 7'e|Vp_(w) |%2 o = (Tw,Tp_(w)). (2.20)

(qe)]
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Noting (2.20) and (2.5a) yields that

2 2 2
€|Vgos(u€)]|l_2(o) (e (u (1)), 1) + v (o, t) ] 2 o + Klo (U )=v, La(o)

A

t
C[ J(f(e,8),0 (u (+,8)))ds + (@ (u_(+,0)),1) + 'Ve( O)I,_ o) ]

0
=, + Cloglu) | Q)
=C, +Cle (ud-v, L2(O) C,lv, ]L(Q , = Cu . (2.21)

where we can choose 02 sufficiently small. Hence the desired result (2.18)

then follows from (2.21) and the second equation in (Pe)' O

For the finalkvr*esult we need further assumptions on the data.
Assumptions (D2): In addition to the Assumptions (D1) we assume that
f e H'(0,T;L%(Q)), g, € H2(Q) and to simplify the analysis that k = ko.

By the last assumption we do not neglect any important features, as for

k > 0 we expect convergence to the case of no reaction, i.e. to the linear

diffusion equation.

Lemma 2.3
Under Assumptions (D2) we have for all € € (O,eO] and t € (0,T] that

2 2
[Pu (o t) (2, * 184,112 (@) +eloyv, |2 (@) + e]o Lo, (ug 1|72

L(O)

-1 : 2
“ [latue(.’t)lLZ(Q) ¥ elaf.vs:(°’t)|1.2(£2) ¥ IV(B )lx_ (Q )]

C[1+k|§o (g )-g ] = Ck. (2.22)

2L(Q)

Proof: Differentiating the first equation in (Ps) with respect to t yields

that

-1 , _ _ 1 - !

k attue + (gos(ue)atu€ atve) k A(atue) k 6tf in QT (2.23a)
and hence that

-1 p _ -1 ! .

k attue + (1~l~goe(ue))c’3tu8 A(k atue+u8) k atf+f in QT. (2.23b)

This formal procedure can be justified as follows: Consider an auxiliary
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linear initial-boundary value problem for atue, i.e. an equation analogous to

(2.23a) and initial condition Agi+f(°,0)-—k[¢>€(g1)-ga]. Due to (D2) and (2.5a)

t

a weak solution We exists. We have that u€(~,t) = gl(-)+J‘we(°,s)ds as both
‘ )

satisfy the same linear initial-boundary value problem. - Thus w8=atue.

Multiplying (2.23b) by Bsue(',s), integrating over Qt’ where s is the
integration variable in time, and performing integration by parts yields that

t
k™ J‘|V6 u (e ,s)| ds + J'([1+q);(u€(°,s))]asue(-,s),asue(~,s))ds +

L2

t . % [ la,u (o) %20 + [Tu (o, 1) z(Q)]

= f(x's f{+,s)+f(*,s),8 u (°,s))ds +
o s s €
-1 2
+ % [k |8,u (00| 2o + |Vu(- 0)|L (m]

and hence

t t
-1 2 ,
k £|Vasue(~,s)ll_2m)ds + .g([1+q>e(u8(-,s))]Bsue(t.s).asue(nS))ds +

-1 2
k |6tu€(°,t)|L2(Q) + |Vu€( t)[L @

t
-1 2 -1 2
= ST f(e,8)+f(e,8) | 2 o ds + kT [8u (+,0)] 2o + [Tu_(: ,0)|%

5 L)
= }[k'la fe,s)+f(+,5)|% + Vg |%, .. + 2k"M|Ag (+)#f(+,0) |%
o s ’ L (Q 112 1 L A E )|
+ 2k|¢ (g )- g2 2y (2.24)

Noting (2.1c) we have that

t t
M'er (8 Lo (u (+,s))1|%2 o ds = SlpLu_(+,$))8u_(+,5),8 u_(+,s))ds.  (2.25)
0] - o]

In addition we have that

t
-1 2
KB v () |2 igasve( s)]
t
-1 2
= 4k o v (+,0)] 2o * .g(as[(pe(ue(‘,s))],asv€(°,s))ds

L (Q)

and hence that

-1 2 2
k lat"e'("t)lf(g +J‘|6v( s)| 2.0 ds

1A

-1
k |atv£(°,0)|L2 + J’[B [ (u (e ,s))]|L @

A

klo (u_(+,0))-v_(+,0) |L2(Q) + Bf‘[as[soe(uc( ,s))] |L o9 (2.26)

Combining (2.24) - (2.26) yields the desired result (2.22). o
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3. A CONTINUOUS IN TIME FINITE ELEMENT APPROXIMATION

We now cons%der- the continuous‘ ﬁiecewise linear finiter element
appf*oximation to’ (Pe)' We make the following assumptions on the data and
triangu]atioh:
Assumptions (D3): In addition to the vassumptions (D2) we assume that
g, € H'(Q) and the constant M in (2.1c) can be chosen uniformly for all
s € R. Let Q" be a polyhedral approximation to @ defined by " = u K, where

KeT

T is a quasi-uniform partition consisting of simplices k with maximum

diameter not exceeding h and with dist(an,aﬂh) = Chz.

For ease of exposition
we assume that Qh < Q.

We introduce

st = { x € C(S-Zh) : xIK is linear for all k € T }

and
ShE{xeC(ﬁ) : x[—heShandx[ -h =0}
0 ’ Q , O\Q ’
Let LA Co[ﬁ] = Sh denote the interpolation operator such that for any

we (@), mwes” satisfies
(Tthw)(xi) = w(xl] for all nodes X, of the partition ™,
Let Pﬁ . L%(Q) » S" denote the LZ projection such that for‘any W € LZ(Q),
Pow € S" satisfies
(W—Pw,x) =0 ¥ xS

Let P; H H;(Q) > Sg denote the H' semi-norm pro jection such that for any

1 1 h :
weHI(Q), Pwe S satisfies

0 h 0

(V(w-PW),Vx) =0 V¥ x € S,.

We recall the standard approximation results, for all k € Th

2-m = .
|w—1rhw|wm,q(m = Ch |w|w2,q(m for m = 0 and 1 and Q
Vge [1,w] fd=2and V qe (3/72,0] if d =3 (3. 1a)
o m = .
|w-P w| 2o =Ch'|w|m, form=0,1and2 (3.1b)

and
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[w—P w| + h|w-P w| < Ch |w| form=1and 2; (3.1c)

L () H(Q H ()

where in (3.1a) we note the imbedding wlk) ¢ c%K) in the case d = 2, see
for example p300 in Kufner et al. (1977).

As the partition is quasi-uniform we have the inverse inequalities

472 -1 h
leLm(Q) = |x|L @ and len o = Ch |x|L2(Q) VxeSsS, (3.2a)
and for d = 2 the discrete Sobolev imbedding result
2] 2q, = CUNOI/MIT x| 1o = ClIn(1/M)1"|2] 2 ¥ % € S (3. 2b)

where 0 = 0 if d = 1 and r = ¥ if d = 2; see for example p67 in Thomée

(1984). It follows from (3.1b&) and (3.2a) that for any w € H;(Q)

|P° gt =0 |(P P! vl 20, + [P Mt = Clvlatg, (3.3)
Another result that will be useful later is that
h
| (I-m e ()| 2 o = h|Vnlp ()| 2o VYXesS . (3.4)

This result is proved in Elliott (1987), p68, with h replaced by Ch on the
righthand side of (3.4). However, it is easy to see from this proof that C
can be taken as 1.

The approximation to (Ps) we wish to consider first is :

(PY) Find u®
£ £

P H‘(o,T;s:) and vz e H'(0,T;S™) such that
h h h _ h
(Bu_ +dv,x) + (W_,Vx) =(f,x) VxeS
h _ hy_h h
(6. ve 1) = kg (u) ve,x) VxesS

h = 1 . h [ = 0 °
ug(+,0) =P g (+) v (+,0) =Pg,/ ).

Theorem 3.1
Let the Assumptions (D3) hold. Then for all € € (0,80] and h > 0 there

exists a unique solution {uz,v:;} to (PZ).

Proof: Existence and uniqueness of a solution follows from standard ordinary
differential equation theory and the bounds

TV = c[|g

E:E(kt) |f|

1'L (Q) lgz L () L (0 )

1A

and v C|qo for t € (0,TI:

€ El(k,t) IL (0 )
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These are shown along the lines of the proof of Lemma 2.1, taking into

account that gpe(u::)uz =z 0 due to (1.8a) and (2.1a8b). Thé first estimate and

(3.2a) implies that I|uleLoo(Q ) = C(k,h), which in turn yields that
T .
Ilvhll o = C(k,h). Therefore the unigue local in time solution {uh,vh},
€L (QT) € €
assured by the Picard-Lindelof theorem, has to exist globally in time. o

Firstly, we have the following analogue of Lemma 2.3.

Lemma 3.1

Under Assumptions (D3) we have for all £ € (0,80], h >0 and t € (0,T]

that

Vug(-,t) %2 + |8, + £]a,v + e[ [p_(u2) 1172

| +
teL(Q) L(Q) L(Q)

-1 :

k []6tu8(',t)|L2(m + e|6tv€( t)]L @ v )|L @ )]

= Cli+k|p_(g,)-g, |72 o +ke h'] = Ck(1+e7n"). (3.5)
Proof: A direct analogue of (2.23) and (2.24) yields that

t t
-1 h 2 . h,, h,,
k ilvasue( ,s) |2 qds + i([1+¢s(u€( ,$))18 u_(+,s),8 u_(+,s))ds +

-1 h 2 h
|auc(e,t) |2 o + [Tu (e 1) )%

LD
-1
Zl)‘]k af(° s)+f (. .s)]z [Vg|2 + 2k |Ag (+)+f (- O)IL(Q) +
* 2k|¢e(Phg1)—gz L (3.8)
In addition the analogue of (2 26) yields that
-1 h 2
Ko vt |2 * .r|av (e ,s)]
= k| (P g,)-g,|%2 o .r]a [p (unls,s))1]7 (3.7)

L (Q)
Combining (3.6) and (3.7) with the analogue of (2.25) yields that the

lefthand side of (3.5) 1is bounded by C[1+k|q> (Pg)-g| Finally we

L (Q)]
note from (2.1c) and (3.1c) that

-1, 2
lo e( hg1)_gz By = Iwe(vg1)-92 1.2(9);+ Ce h
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and hence the desired result (3.5). o

In order to analyse the approximation (Pz) it is convenient to introduce

the associated linear problem :

*
(P2’") Find u’” € H'(0,T;87) and v2'" € H'(0,T;8™ such that

h,* h,* h, * - h
(atue + 6tve ,X) + (Vue V) (f,x) V x e S0

2

h,
(r‘it‘vs

h’* ° = 1 o h" L] = 0 .
ug (¢,0) = Phgl( ) Ve («,0) Phgz( )7

. .
, X)) = k(qae(ue)—v:’: *,x) V x € Sh

h, *

The existence and uniqueness of {ue

h, * . h, *
Ve } solving (Ps ) for all

€ € (O,CO] and h > 0 is easily éstabh’shed and we have the following result.

Lemma 3.2

Under Assumptions (D3) we have for all £ € (0,80], h >0 ad t € (0,T]

that
h,* h 2 -2 h,*_ hy.. 2 _ h, 2
lu’ =ulis gy * K e[V —ud ) |2 o+ ele (u)-p (W[5 +
2 L (Qt)
+ ey R 2 = Ce-1|u -uh’*lz . (3.8)
€ € E_(k,t) € 2
1 L (Qt)
. s u,h _ h,* h
Proof: The proof is very similam to Lemma 2.1. Let e = U omug and
e P = vh’*-vz. Subtracting the first equation in (PZ) from that in (PZ’*),

4 £

choosing x = J‘e:’h(°,a‘)d0', integrating over (0,t) in time, where s is the
s

integration variable in time, and performing integration by parts yields that

t t t
u, h . 2 u,h . 2 = - v,h . u, h .
J‘|e€ ( ,s)|L2(mds + )$|Vj‘ee ( ,s)dlez(m J‘(e8 ( ,s),ee (,s))ds.
) 0 0
(3.9)
Similarly choosing x = eg’h and % = ¢'3se:’h yields respectively that
t t ,
u,h R 2 u,h . 2 - v,h . u,h .
}£|ee ( ’UILZ(Q) + £|Vee ( ,s)ILz(mds .g(asee ( ,s),es (+,s))ds

(3.10a)

and
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+ %|vel Be,t) |2

L (Q)

t
u, h
‘glasee ’S)l L)

t
= -J(a e’ (., s), 9_el 'R(e,s))ds
o s €
_ V,h . - o - h . u,h o .
= k:f)‘(ee (,s) [qpe(ue( ,S)) q>e(ue( ,8))],3se8 (+,s))ds. (3.10b)

Therefore from (3.9), (3.10a) and (2.3a) it follows that

e : h”i L) * M-lel‘pe(ue)-q’e(u )lL (Q,)
= nel ™ o }(fpe(ue(ns))-«Js(ug(-,s)),ue(-,s)-u:‘:('.s))ds
= ;z'(we(ue('.s))-¢8(u2(°,s)),u€(°,s)-u2’*(',s))ds
= Me'llue-uz”lfz(ot). (3.11)

Subtracting the second equation in (PZ)‘ from that in (PZ"),‘ choosing
x=e"" and integrating over (0 t) yields
vy,h, 2

Ite uE o = J‘(qo (u (e ,s))-(o (u (+,s)), e Myds

= [(pe(ue)-goe(u )IL ) (3.12)

Combinining (3.11), (3.12) and (3.10b) yields the desired result (3.8). o

Lemma 3.3

Under Assumptions (D3) we have for all € € (O,e;], h >0 and t € (0,T]

~ that
h,*2 T h,* ST
lugug’ 12, *h [V lu-u’ ) (e, s)ds | 2 o
t 0
af, 2 4
= ch L'“elx.z(o,t;uz(nn Ig Iu (Q)] = Ckh', (3.13a)
hy %y, 2
[(usu’ ) (e, '}2(9)
2 2 2 2
= Ch _Iue H?(o.t;ui(n)) ¥ lvue( t)l 2(9)] = Gk (3.13b)
Va2 |
t
2 2 2 2
= Ch _!uclnl(o,t;nl(m) ¥ I,uelLa(o,t;Hz(Q))] = Ckh (3.13¢)
[V(u - L0 | |
€ € PTUILT)
< ~R2 2 1,22
= Ch _|ue|H1(o’t;H1(m) lulew(o,t;Ha(Q))] s Ce kh (3.13d)
and
h, * 2 2 -1, 2
v v, "slm,n = Ch"[|Vp_(u )1L @ |g2 wlgy] SCeh (3.13e)
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Proof: The problem ('Pe) can be restated as: Find ue(x,t) such that

6tu8 - Aue = f + Fc(t’ue) in QT (3.14a)
u, = 0 on a9 ue(',O) = 91('), (3.14b)
where
-kt t -k(t-s)
F(t,we,t)) = k[e g, = ¢ (Wl 1)) + ke s qoe(w(-.s))ds]. (3. 14¢)

)
. . h,* . h,* 1 . h
Similarly, (F’8 ) can be restated as: Find u. € H (O,T;So) such that
h, * — h,* - _h
(éitu8 ,X) + (Vue V) = (f + Fe(t,ue),x) V x e So

L S
ug (+,0) Phgl( ).

h,* _ h,
Let e = us—u8 and so we have that
(ae™”, ) + (Ve“",vx) =0 Vyesh (3.15a)
t u,€ u,€ o
h’ L] — 1 L]
elx e( ,0) = 91( ) Phgl( ). (3.15b)
With ™" = (u-Plu) + (Plu —uh’*) = p + ¢, it follows by choosing
u, & € he he- ¢ ’

t
= [8(°,0)ldo, integrating over (0,t) in time, where s is the integration
s

variable in time, and performing integration by parts yields that

I{G( ,S) IL @ds * %]V‘(J;?( ,s)dslL .
t ‘ t
= - J(p(+,s)),9(+,s))ds + (gi(°)—P;gl('),fﬂ(°,s)ds). (3.16)
I .

Under the stated assumptions on Q we have from (Pe) that u, € Lr(O,T;Hz(Q))

for all r € [1,w] and

IUS‘Lr(O T;H2(Q)

C[Iat el @ * 19Vel o,k |f|Lr(O,T;L2(Q))]'
Hence from (2.18) and (2.22) we have that

2

2
2 =
Lm(O,T;H ()

¥l 200, 1320

From (3.16), (3.1c) and (3.17) we have that
h,* 2 2

o0 22, = S[lolEag, * lelfg,] = el ch'ls, 5200

1 = ckn?

=Ck and |u_| k", (3.17)

sCh[[u Ig

sL(OtH(Q)) 1H(Q)

and
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. \
- h, * o 2 2
lvie“ glroslas|z o = c[]v.rp( ,s)cts|L @ |p| 2 ] + ch? |g1 N

H

1A

ch’l u_|? 1 = Ckh°.

eL(OtH(Q)) 191 H(Q)

Hence we obtain (3.13a).

In addition choosing ¥ = 9 and x 8 19 in (3.15a) yields that

t
|8 t)] = J‘[ap( ,s)|

H (Q) L (Q)ds’
Hence from (3.1c), (2.22) and (3.17) we obtain the results (3.13b~-d).

Finally setting et’; = ve-v::’* we have from (3.1b) and (2.18) that

’

t
h, * 2 _ _p0 . L
nev’8 £ () = i‘((l P )e (u_ ,s)),ev'e( ,s))ds + % k- |(1 -p° )g2 2
2 -~ -1, 2
= Ch"[ |Vp_(u )]L (o) + kg, ]H @) sceh (3.18)
Hence the desired result (3.13e). o

Theorem 3.2

Under Assumptions (D3) we have for all £ € (0,80], h >0 and t € (0,T]

that

(1+p)/(1-p)~+ 8—1 4

h2 kh*] (3.19a)

ol + g|p(u) ¢ (u )| = C[As(t)e

u-u
I L (Ot) L (Q )

sllv-v u < CIA (1) T*P7AP) L 12 o ohenty. (3.19b)
(k t) €

Proof: The results (3.19a8b) follow directly from (2.16), (3.8) and (3.13). O

Corollary 3.2
Let Assumptions (D3) hold, then for allh > 0 and t € (0,T]:

(1) Under no assumptions on non-degeneracy, we have on choosing

e = ch21P) < g, that

|u—uh| 2 = c(k)h'*P, ; (3.20a)

el ,
' t

h h h

](u-ue).(',t)|L2(Q) + |.(l)'(u-u8)( ,s)ds|H1(m + |V(u uel 'Lzmr) =< C(k)h (3.20b)
—JMy (e P

|V (u ue)( ’t)'LZ(Q) s C(k)h (3.20c¢)
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and

= C(k)h%P, (3.20d)

. h by, 2
o105, + 10D g,
(ii) Assuming (N.D.) and choosing & = Ch®!!™P/(5P) g, we have that
u-ug] 2, = CUORZEPEP), | (3.21a)

T
t
_ohy . By, _h

[ (u ue)( ’t)le(Q) + |_(I)‘(u us)( ,s)ds]H1(m + |V(u ue’)ILz(QT) =< C(k)h, (3.21b)
V(a2 (-, 80| 2 = Cln PSP (3.21c)
and

_ h _uhye. 2 2(1+3p)/(5-p)
|@(u) <p8(u€) LZ(QT) + | (v ve)( ,t)lem) = C(k)h . (3.21d)

Proof: Noting the non-degeneracy condition (N.D.)}=(1.8a) in the case of
(3.21); (3.20a8d) and (3.21a&d) follow directly from (3.1%a8b). (3.20b&c) and

(3.21b&c) follow from (2.16), (3.8) and (3.13). u|

Remark 3.1
We note that one can improve on the error bound f‘or“ VZ in (3.20d) and
(3.21d) by choosing £ to maximize the rate of convergence ofl vz to v in
L2(QT) as opposed to the present choice which maxirﬁizes the rate of
convergence of uz to u in LZ(QT). For example under no assumptions on
2(1-p)/(1+p)

non-degeneracy, choosing € = Ch = g one obtains O(h

2p/(1+p))
0

convergence for vz to v in LZ(QT), but only O(h) convergence for uz to u in

LZ(QT). u]

One could approximate directly the problem (P) without regularising by

in‘troducing problem (Ph), the same as (PZ) with e replaced by ¢.
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Theorem 3.3

Let the Assumptions (D3) hold. Then there exists a unique solution

W™, v" to (P for all h > 0 and for all € € (0‘,80] and t € (0,T]

h h,2 -2 h h 2 h h, 2
- + - . + - +
llu ue"za(k,t) k e|V(u ue)( ’t)ILZ(Q) e|<p(u ) goe(ue) Lz(ot)
h h,2 (1+p)/(1-p)
+ ellv=-vl = . .
c El(k,t) Ce (3.22)

Moreover, we have that the error bounds (3.20a-d) hold with {uz,vg,cpe(UZ)}

replaced by {uh,vh,w(uh)} for allh > 0 and t € (0,T].

Proof: Existence and uniqueness of a solution and (3.22) follow from a
discrete analogue of the proof of Theorem 2.2. Combining this with (3.20a-d)

yields the desired error bounds. o

Remark 3.2

In proving (3.22) we have made no assumptions on thevnon-degeneracy of
uh, as such assumptions would be difficult to verify fn practice. If we know
that wu satisfiés the non-degeneracy éondition (N.D.), then from the error
estimates above it is bettel"“ to approximate (P) by (P;), with the appropriate

choice of e, rather than (Ph). o

Remark 3.3

One could of course analyse the error between u and uh without using the

h,*)

regularization procedure by introducing problem (Ph’*), the same as (Pe

with P replaced by ¢. If we assume that (1.9¢) holds for all a, b € R, as it
does for ¢(s) = [s]f, then we have in place of (2.3a) that

L™P|p(a)-p(b) | PP < [p(a)-p(b)1(a-b) = L|a-b|**P.
Let uh’* be the solution of (Ph"). It is then a simple matter to adapt the

proof of Lemma 3.2; to prove for all t € (0,T] that
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t
* - /
- + L7720 plule, 8))-p(uR (e, 5)) [ 100)7F
0 L PP
t
h,* h, 2

U o * .g(go(u(-,s))—qa(u“(-,s)),u(~,s)—u*‘(~,snds

1A
c

t *
Flpuls,s)) -, 8)),uls,s)-u™"(+,s))ds
(o}

1A

A

t
cr(u-u™) (e, s ' ds. (3.22)
0 L P

Letting € » 0 in (3.13a-c) and combining this with (3.22) yields the results
(3.20a8b) with € = 0 and in place of (3.20c&d) with £ = 0 we have that

t h (1+p)/ p/(1+p)
[.rlgo(u(-,s))-go(u CoosN | 2P ds ]
o L PP

Therefore, bypassing the regularization procedure yields no error bound

< C(K)hZP. (3.23)

for v. u}
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4. A MORE PRACTICAL CONTINUOUS IN TIME FINITE ELEMENT APPROXIMATION
The standard Galerkin approximation analysed above is nét préctical as
it requires the term (goe(u::),x) to be integrated exaci.ly. ‘This is obviously
difficult in practice and it is computationally more convenient to consider a
scheme where numerical integration 15 applied to all the terms and the
initial data is interpolated as opposed to being projected. Below we
introduce and analyse such a scheme.
For all w, w_ € c®@) we set
(wl,wz)h = gh nh(wlwz)
as an approximation to (wl,wz). On setting
]w|h = [(w,w)h]x for w e (M),
we recall the weli-known results
x| 2 gp, = l2l, s Clxl2gp, Y€ s", (4.1a)
|£h 1,2, = ()" = Ch i gl gn, ¥ ox, %, € 8" (4.1b)
We make the following assumptions on the data.
Assumptions (D4): In addition to the Assumptions (D3) we assume that

£ e H'(0,T;c%(@))nL%(0, T;H3(Q)) and g, < H2(Q).

A more practical approximation to (Pe) than (PZ) is then :
(PZ) Find uz € Hl(O,T;SZ) and VZ € Hl(O,T;Sh) such that
“h “h _\h “h - h h
(Bu_ + v, + (VW) = (f,x)" Vxes;
“h _Jh _- “hy "h _,h h
(atve,x) = k(¢€(ue) ve,x) VxyesSs
Ah _ . Ah . - .
ue( ,0) = nhgl( ) ve( ,0) nhgz( ).

We have the following analogues of Theorem 3.1 and Lemmas 3.1.

Theorem 4.1
Let the Assumptions (D4) hold. Then for all € € (0,80] and h > O there

. R . “h “h “h
exists a unique solution {ue,ve) to (Pe)‘
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Proof: A simple adaption of the proof of Theorem 3.1. o

Lemma 4.1

Under Assumptions (D4) we have for all € € (0,80], h >0 and t e (0,T]

that

h2

+
ela,ve .2 C

+ €|d 'h[wetue)ll

“h 2
[Vugt ]2, + a0y L)

teL(Q)

-1 “h 2
k [[8tue(',t)|L2(n) +eldyv (st 2 + |V(a )|L (Q)]

= Cl1+k|p _(g,)-g,| ] = Ck. (4.2)

Proof: A direct analogue of (2.24) and (3.6) yields
t ~ v t ~ PN -
-1 h 2 felhe h, h . h
k" J[va_u_( ,s)ILzm)ds + .g([1+<pe(u€( ,$))18 u_(+,s),8 u_(+,s))7ds +

-1, "h 2 “h
koo u (e )]+ |vu (- 1:)|L )

1A

t ~
-1 2 -1 h
Jlk7a_f(+,8)+f(e,s) | ds + k |atu8(',0)|h+ |Vue( ,0) |2

L ()
0
b 2 2 2
= ,ct)‘|k 8_f(+,s)+f(+,s) | ds + Clg | 2 o + 2k|p (g )-g,| +
-1 2
+ 2k [[gllﬂz(g)+]f( 0)|L (Q)] (4.3)
where we have noted from (3.1a) and (3.2a) that for all x € S
|(Vm,g,, V) | = |(V(mg,-g),V2) - (Ag,,x)| = Clg, |2 (Q)ler. ol

A direct analogue of (3.7) yields
KHa (e, 0|2 + E;asCZ(o,s)lﬁds
< k'1|at§2(~,0)|: ¥ zlas[¢e(32(-,s))]|§ds
= }|65[¢8(32(°,s)‘)]|§ds + k| (g)-g, |2
Combining the above with (4.3) and noting (4.71a) and the analogue of (2.25)

yields the desired result (4.2). O
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Assumptions (DS): In addition to the Assumptions (D4) we assume that
The triangulation ™ is such that (i) for d = 2 it is weakly acute; that
is, for any pair of adjacent triangles the sum of opposite angles relative to
the common side does not exceed m; and (ii) for d = 3 the 'angle between the
vectors norma!kto any two faces of the same tetrahedron must not exceed n/2,
see Kerkhoven & Jerome (1990).
1

Let B = {bij}i,j=1 = {(Vxl,\?xj)}i’j=1 and A

{><i}§_1 are the internal ngdes‘of the partitioning and xj € Sg is such that

hyI
{(xi,xj) )i’j=1, where

xj(xi) = SU, i,jg =1 > 1. It follows that A is diagonal matrix with positive

entries and that B and B = A-IB are positive definite. Under Assumption (D5S)
it follows that bij = 0 for i # j and hence B, and B, are M-matrices. “From

this property one can deduce the discrete analogue of (2.20)

Me|vr [p (0)1]%2 = (V¥ lo (X)) V¥ x €S, (4.4)

{e))
see §2.4.2 of Nochetto (1991).

Corollary 4.1

Let the Assumptions (DS) hold. If 9, 9, and f = 0 then the unique
solution {u®,v"} to (P"), € € (0,e.1, is such that u”, v® = 0 in Q_.
g€ € 0 e € T

Proof: Adopting the notation above, it follows as q)s(0)=0 that

~ I - I J
uh(x,t) = Yoa(t)yx (x) and vh(x,t) = YR()x(x) + e ke Y g.(x)x(x),
€ j b € 3 b _ 2 373
j=1 j=1 J=1+1
J . .
ey € the boundary nodes and {x j} =101 the corresponding basis

. h
functions € S'.

J

where {x
{ J}J
As xj 20, j=1->J; to prove the assertion we need to show

that a(t)

1 _ I -
{aj(,t)}j=1’ B(t) = {Bj(t)}j=1= 0 for all t e [0,TI.

Problem (P:) and the assumptions on the data yield that for all t € [0,T]

@’ (t) + kg _(aft)) + Ba(t) = kB(t) €(0) =0 (4.5a)
B’ (t) = kg _(alt))-B(1)) g(0) = 0, (4.5b)
- I = - + I
where 9_8(5) = {tpe(ocj)}j=l. Setting « = o + a, where a = {[azj]*_}j=1 and
[«], = max {«,0}, and noting that [«'1%a" = [«17" = 0, [a'1"Ba = [a1'Ba”
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=z 0 and [gc_-]Tge(g) [g-]Tge(g—) =z 0; we have that [5-(t)]T(4.53) and
[87(£)17(4.5b) yield for all t € [0,T]

% Sele (0] = ko (DT = ko (L1TIE7(1)] o« (0)

1]
1O

d - N -1, - - - )
% SE1BT () ]2 s k1B ()1 (p (alt)) s ke [BT()1TIaT(8)]  gT(0) = 0.
Adding the above, applying a Cauchy Schwartz and a Gronwall inequality yields

that g—(t) = E"(t) =0 for all t € [0,T] and hence the desired result. o
We now have the analogue of Lemma 2.2.

Lemma 4.2

Under Assumptions (D5) we have for all € € (O,eo], h >0 ad t e (0,T]

that |
“h ' SIEN
e|Vm Lo, (uh )][L (@ + (@e(ue(',t)),ﬂ + k|m Lo (u )] -v.l2 @y
SRz, <
¥ |Ve( O [f2g, + K8Vl @) - ¢ - (4.8)

Proof: We have on choosing x = nh[cpe(u};)] in (PZ) that
“h “h “h “h,yh “h “h,h “hy “h2
(Vue,Vnh[we(ue)]) * (atue’¢e(ue)) * (atve’ve) * k|go£(u€)fve|h
_ “hyq4h
= [f.wthlgoe(ue)]) . (4.7)
Integrating (4.7) in time over (0,t), noting (4.4), (4.1a) and a Gronwall
inequality yields the analogue of (2.21)
“h2

, ' “h,, h Chy, 2 “hyq_
€|V1th[(p )]|L (@) + (@ (u (+,2)),1)" + ]ve( ,t)]h + klnh[q)e(ue)] Ve L2(Ot)

IA

t -~ -~ . A~
c[ FUFCe,s),m [ (ul(+,8))1)ds + (2_(u2(+,00),1)" + |v2(°,0)|i]
0

1A

1
C + 3Kyl Lo (01|72 (@)

1A

L VP2, s c. (4.8)

1
+ -
C + 3k,Im Lo, (“ )] ve La(Q) 30lVe Lz(Qt)

Hence the desired resuit (4.6) then follows from (4.8) and the second

equation in (PZ‘) and noting (4.1a). o
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We now prove the analogue of Lemma 4.2 for the solution {UZ,VZ} of (PZ).

Lemma 4.3

Under Assumptions (D5) we have for all € € (O,eo] and for all h, provided
Me 'kh® = 1, and t € (0,T] that

e|Vin o (u)1]%  + (@e(ug( 20,10+ kg (u)-vD

L (Q ) € L (Q )

R ER% s C. (4.9)

Vel 2 el

L (Q)

1]

Proof: We have on choosing % nh[we(uz)] in (PZ) that

h

h h h h _h h2
(Vu_,Vm Lo _(u 1) + (8u_ e _(u)) + (8 v ,v.) + k|fp8(u )-v |2

e'L (D)

_ h h hy hy _ _ h
= (f,p_(u)) + (U] + klp_(u)-v] = f,(I-m Jp_(ul)). (4.10)

Integrating (4.10) in time over (0,t), noting (4.4) and the bounds (3.4) and

(3.1b) yields the analogue of (4.8) that

M e |vr Lo (ul) 1|22 (o, (8_(up(s,t)), 1) + g;VZ( ) %2+
+k|<P (u )= Vex_(o)
sC+ =k le, (u RE: fz(o) + 2 o|v2|iz(o) + (QC(P;QI),‘I) +
+ th2|Vnh[¢p€(ue)]]L2 + Bk [|6 u 2 (Q) kzlgos(u:) -V |L (Q, NE

(Qt)

(4.11)

Hence the desired result (4.9) then follows from (4.11), the second equation

2

. h h
in (Ps)’ the bound (3.5) for |8.u |L (0)

Ye (3.1c) and a Gronwall inequality

provided Me 'kh® = 1. o
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Lemma 4.4

Under Assumptions (DS5) we have for all € € (0,80], h >0 and t € (0,T]

that
h “h,2 h
”UC uE:"l’.‘ (k,t) + 8|(p8(ue)-{p )lL (Q ) * SHVC_VCME (k,t)
-1
= Cle + k|¢e(g1)-g2] +limg uH (Q)]h + cln® |g1 2y *lU-m )g2 2]
< Cle t+k1n2. (4.12)

Proof: The proof is very similar to Lemma 2.1. Let eZh = uz—uz and
ez’h = vz—vz. Subtracting the first equation in (PZ) from that in (PZ),

tA
choosing x = J‘ez’h(nc')da'. integrating over (0,t) in time, where s is the

integration variable in time, and performing integration by parts yields that

LN
J‘]e::’h(°,s)|fz ds + XIVJ‘eu’ (e, s)ds|

L ()
0

t . - ta
v,h R “u,h . . “u,h "v,h . u,h R
= —zl)‘(ee ( ,s),ee (¢,s))ds -+ ((e8 e, )( ,0),£e€ (¢,s)ds) +

t -~ ~
+ I[(e(o,s),e;*“t-.s)) - (g(-,s),e;"‘(o,s))*‘]ds, (4.13a)

o
where
t “h “h
E(e,t) = i(f-asue—ésvc)(e,s)ds
~ ~ ~ A t
_ h "hy . _(oh Chy o . ‘
= (ue+v€)( ,0) (ue+ve)( ,F) + i(f( ,S)ds. (4.13b)

In addition subtracting the first equation in (PZ) from that in (PZ),

e: h, integrating over (0,t) and performing integration by parts

choosing x

yields that
~ t A
u,h . 2 u,
}4|e8 ( ’t)|L2(Q) ¥ ‘glvee ’S)lL (Q)
t' -~ ~
= -J(8 ev’h(ns).e P(e,s))ds + xle oh 0)|L o *
)
+ J'[(a E(',s) e (° s)) - (8 E(° s) e, whe, ,s))h]ds. (4.14)

0
Therefore from (4.13), (4.14) and the second equations in (PZ) and (PZ), it

follows that
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H(Q) € Ez(k,t)

and

34

L ()

]+

)

(4.15a)

(4.15b)
(4.15c)

(4.15d)

(4.15e)

(4.16)

(4.17)

t - ~
“u,h,2 h h u,h
lle e NE ) + i‘((pe(ue(nS))—tpe(ue(-,s)),e8 (*,s))ds
t
- J‘[((1+k 8)6(+,8),620(+,8)) = (1470 )E(+,5), %M (+,5)) ]ds .
0
t n N - .
+ .CJ;((1+k-168)v2('.s)-¢€(u2(',S)),e:’h(',s))ds +
t.
+ ((e2Pre v’h)(°,0),J‘e:’h(',s)ds) + xk'1| (e,0))%
o ,
A ~ tA
,h. “v,h ,h -1
= [((e: +e; )(°,0),ie: (+,s)ds) + %k | e, 0)|L o,
t
+ J”[(n(- s), e Ble,s)) - (nle,s), e (',S))h]ds
)
=T + T,
1 2
where
- -1 “h . _ “h .
n(e,t) = (1+k at)(E+v8)( ,t) ¢e(u8( 1))
= n1(°,t) + nz(‘,t) + ns(',t),
= (P ohy - =1, y“h,, h
n1(~,t) = (u8+vc)(t,0) (1+k at)ue( ,t) € 8
n,(+,t) = (14k7'3 ) F(F(+,s)ds
0
and
(+,t) = —p_(W"(-, 1))
773 12 = ¢€ u€ [} t- X
From (3.1a&c) and as Ie:’h(-,s)ds e s" it follows that
0
ta
< 1 u,h . 1_
T S ((Ph-nh)glﬂl-nh)ga.i‘ee (+,s)ds) + C|(P - )g, |L @
< 2 “u, h 2
= c[nt |g1 2 |(I-nh)gz|L2 1+ e " o
Next we note that
. X .
= ® u’h o —-— . L]
T = ,g[(nhn( $),680,9)) = (male,8), e s))]
“u,h .
+ i([(l-nh)(n2+n3)](°,s),¢e (¢,s))ds = 2.1 + T2,2.
We have from (4.1b), (3.2a), (3.1a), (4.2), (4.6) and (3.4) that
. t
u, .
Tz, = Ch iun 7(e,s)l 1(9) ( ,s)H 2(Q)ds
t ¥  “u,h
= Ch[i"n n(e ,s)H 1(9 ds] Hee “EZUnt)
< -% % - “u,h
= Chle™™ + k |<p8(gl) gu2|h + llm gl 1 Tne ™

(4.18a)



T sJ‘|(I—n)(n+n)( ,s)| 2

u,h
2.2 [e (+,s)] 2 4ds

L7(Q) L ()

-% »h
s Ce hllee "Ez(k,t)' (4.18b)

Combining (4.15a), (4.16), (4.17) and (4.18) and noting (2.3a) -and (3.1a)
. . h “h h “h
yields the desired result (4.12) for u U and ;pe(ue) rpe(ue),.

Finally, we have from (3.4) and (4.6) that

el ™2

1t i

h “h “v,h -1 o_
g‘(we(ue( ,S)) nh[qpe(us( ,s))],ee (e,s))ds + ¥ k |(Ph nh)g

2‘1.2(9)

A

h 2
cl |<pe(u8)—¢ (u ) |2 . L2(0)]

“hyq12 -1
Loy I(I'"h)[“’e(”e)lll.ztot) + ko[ )g

1A

Cl e (up)-p_(u )] + &7h + k7 (1w )g

12 (@) ] (4.19)

22
2'L7(Q)

and hence the desired result (4.12) for VZ_VZ' o

We now improve on the bound (4.12) in the physically interesting case of

~

given data 9,0 9, and f = 0 yielding u, UZ z 0 in Q'r'

Assumptions (DB): In addition to the Assumptions (D5) we assume that
() QcR, d=1or 2, (id) 9 9, and f = 0 and (iii) ¢ € Cz(O,m) such that
e’’(s) = 0 for all s > .0 and there exist an sb such that ¢(s) =z s¢’(s) for

all s € (O,so). We set P to be the following quadratic regularization of ¢

p(s) for s 2 8
goe(s) =] as’ +bs forse [0,8] ; (4.20)
bs for s =0
where a = & qo’(é) - 82(8), b=~ ¢'(8) + 25 (8) and 8 = ¢/'P so that

0. € C (R).

As (ii) =2 u = 0 in QT, see Theorem 2.1, we can choose ¢(§) for s < 0 as
we please. As (iii) holds it follows for & sufficiently small that
0<b = Cléafwawnd -Cze(p-Z)/(1°p) < a =<0, see (2.3b), and hence e satisfies
the conditions (2.1b&c). Extending ¢ so that ¢(s) = goe(s) for s = 0, we have
that (1.9) holds and e satisfies (2.1a).‘ Therefore all the results proved so

far in this paper hold under the Assumptions (DB6). We note for example that
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o(s) = sP for s = 0 with p € (0,1) satisfies (1.8) and (iii) above.

Lemma 4.5

Under Assumptions (D6) there exists an Eo = € such that we have for all

€€ (O,EO] and for all h, provided Me 'kh® = 1, and t € (0,T] that

h “h,2 h
I ehe e * eln [o (uh)-g_(uM)1|% (@)
= CkIn(1/h) 1% e h®l u_| % e TP y(u_-ul) |t ©o,6:.20 7 *

L(OtH(Q))

2 2 4
+limg g o Ih + clin(1/h) 12 "l (I-m )92 Ly

+ Ckle™ + kleglg,)-g, |,

= c(K)e htIn(1/n) 1711 + 3PP (4.21a)
and
h “h, 2 2 ' h
ellv, VE:"El(k,t) = Clh + e]»nh[goe(ue) go )][L @, * ek |(I T )g2 L (Q)]
2 h
= C[h® + e|nh[<p€(ue) P )] |L (Q) (4.21b)

fand r= X if d = 2.

where r = 0 if d

Proof: Adopting the notation of Lemma 4.4 we have from (4.15a) that

“u,h, 2 -1 h
Ilee 2 ) + Mg [ (u)-p )] |L (@)
t ~
“u,h,?2 h u,h. h
< lle e, IIE ) + [l (ue( ,s)) (ps(ue( ,s)),ee (+,s)) ds
=T + T, (4.22a)
1 2
where T1 is given by (4.15a),
t N -~ -~ -~
T, = I[(n(',s),eZ’h(~,s)) - (n(-,s),e:"‘(o,s))“]ds. (4.22b)
o ,
;7 =7 + 7+ ;; with n., m_ as given by (4.15¢c&d) and ;; = -9 (u®). Next we
1 2 3’ 1" 2 € €
write T2 = T2,1 + Tz, , where T2’1 and Ta,a are the same as Tz,1 and Tz,e’
see (4.17), with n and nsAreplaced by ';: and ﬁs,respectively. We then have
from (4.15a), (4.16), (3.2b), (4.1b), (3.1a), (4.2), (3.4) and (4.9) that

4 2 2r 2 “u,h 2
= Clh'[g |2 o, * [INOI/A)17 [(I-m )g, | 1 o1 + Hlle Il oy (4.23a)
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t

PN

“u,h(

2
T2,1 = Ch .(Jj‘llnhn( ,s_)llﬂl(mllee ,s)llnl(md
%o % % )
= Ck"h[e " + k Itpe(gl) g2|h I gl 1(9)]Ile I et (4.23b)
> 2 “u,h 2 .
T2,2 = Ch "ee "Ez(k,t) + T3 (4.23c)
and
. v h “u,h
= - . Uy .
T, = II((I T e (ug(e,8)),e " (+,5))ds|
“u,h .
= C”(I LR LN (U (- .S))|L (Q)ie ( .S)le(mds
%
= c¥ima/m Tt )[ rlm dp (e, 801 |2 g ] .
(4.23d)
We have from (3.1a) that
t : 2
4 h
I](I LT (u (¢ ,s))|L (@ds =ch [ T h|go€(L,|€(-,S))|wz,1“c)] ds
o L ket
sch' T, _ (4.24a)

where by the fact that w;'(s) = 0 for almost all s

i‘.
4

t t
£|c<p;'(uZ(-,s))VuZ(e,s),Vug(-,s))|2ds = J;|(vw'e(ugc-,s))],Vu‘e‘(o,s))|2ds

t

. 2
i [I(V[’so;:(u::(',s))],Vue('.s))| * |(vt¢;(u‘8‘(-,s))1,vtue—u‘€‘)(-,s))1] ds

A

t 2

J [|(¢;(u2(',s)),Aue(°,s))[ + | Iwé(UZ(-,s))Vue(',S).r_\ |] ds +
.

. cr [[V[<p W+ 5001 |%

0

IA

@ 170y )( ’S)|L (Q)] ds

A

ce2|u_|2% + |VlgL(u) ]| s

e'L(0,t;H (Q)) [V(ue-u )|

L(OtL(Q)) L(OtL(Q))

(4.24b)

From (4.20) it follows that - (u2(~,s)) = -2a = CeP?/P) ang hence

t )
= X h ’ h . h . 2
EAT TR = I1p (G0 SNV WL e 1T 90) s

2(p-2)/(1-p)2

T. (4.25)
4

Combining the bounds (4.24b) and (4.25) yields that

< Ce

~

T, Ce 2t |u + g ¥ -P) |V(u ) |

el%00, ;55 1. (4.26)

L(OtL(Q))
Combining (4.22), (4.23), (4.24a) and (4.26) yields the first inequality

in (4.21a). From (3.13) and (3.8) it follows that
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-1 2

[V(u_~u2)|%2 = Clk)[1+e'h?In = c(k)h?,

2
L (Q )

|V(u_ul) | = C(k)e ' [1+e 'h%In? = C(k)e 'h?

L (0,t;L (n))
and hence we have that
-1 4
[V(u u )|L (0,651 2.0)) = C(k)e h.
Noting this with (3.17) and (3.1a) yields the second inequality in (4.21a).

Finally, in similar manner to (4.139), (3.4) and (4.9) yield that

“v,h,2 h
e "™ ot = Cl|(I-m ) [p_(u )]|L @) |1th[«>8(ue)-¢>e(u )]|L @)
| I(P -m g, | (Q)]
-1 2 h -1 2
= Cle 'h” + Inh[goe(ue)-tpe(u )]|L (Q) + k |(I—1th)g2 I-2(9)].

Hence the desired result (4.21b). =]

Theorem 4.2

Under Assumptions (D5) we have for all £ € (0,801, h>0and t € (0,T]

“h,2 “h, 2
]u-u8 L2(Qt) + €|p(u) e (" )IL @) + ellv-vellgi(k’t)
< CA_(t) e B P P (4.27)

Under Assumptions (DB6) there exists an Eo = g, such that we have for all

€ € (O,EO] and for all h, provided Me 'kh? = 1, and t € (0,T] that

(1+p)/(1-p)

“h ) :
|u—ue La(q ) CAe(t)e +
+ C(K)e 214" B PP 1t 1 (/) 15, (4.28a)
“h 2
lotu)-n [o_(u)] ]Lz(qt) + v vsllE (6
< Ce"[Ae(t)e‘“"”“ 2] 4
+ Clk)e e PP R IRt 1 (1/h) 1% (4.28b)

where r =0 ifd=1andr=%if d = 2.
Proof: The result (4.27) follows immediately from (3.19) and (4.12). (4.28)

follows similarly with (4.12) replaced by (4.21) and noting (3.1a), (3.4)

with ¢ = uz and (4.9). O
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Corollary 4.2

- Let Assumptions (D5) hold, then for all h > 0 and t € (0,T]:

(i) Under no assumptions on non-degeneracy on chodsing e=ch'™® €, Wwe
have that

A t A

_’h hyo, _ (1+p)/2

[(u-ud () | 2 o0 + Ii(u ug) (eys)ds| 1 o + [Vlu u ){L () = C(k)h
and (4.29a)
- _uh P
le(u)-m o (U )]IL (@ + v ()] 2 o) = ClKOR. (4.29b)
(ii) On assuming (N.D.) and choosing & = chtii-P)/(5p) eo we have that
~ t ~
h h
[ (u ue)( t]|L @ |£(u-ue)( ,s)ds[H1 + |V (u-u )|L (@)
= c(k)n(®PV/(EP) (4.30a)
and
_ _h . (1+3p)/(5-p)

[@(u) nh[soe(u )1 2, @ * | v=vd (1) ] 2 ) = ClKDR . (4.30b)
Proof: The results follow directly from (4.27), (4.12), (2.16), (3.8),
(3.13), (1.8), (3.4) and (4.6). a]

Corollary 4.3 -
Let Assumptions (D6) then for all t € (0,T]
(i) Under no assumptions on non-degeneracy and on choosing
= c{h®IIn(1/m) I 2IPYEP) < 5 e have for all h = h (k)
lu-u"| 2 = c(k){hZ[In(1/h) 7} TP/ E P (4.31a)
e'L (QT)
h h
[(u-ud (e ) | 2o + |_£(u ug) (us)ds| 1 o }V(u u )]L @)
= C(k) min [h {h2[In(1/h) 17} 1P/ (37P) ] (4.31b)
and
lo(w-m [p_(UM1] 2+ [(v=v") (e, )| 2
hTe e 7L (QT) € L (D)
= C(k){h%[In(1/h) 1"} 2P/ 3P) (4.31c)
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(ii) On assuming (N.D.) and choosing ¢ = C{hz[lnﬂ/h)]r}“l-p)/”-s'p) 45 Eo’
we have for all h = ho(k) |
[ (u-u") | 2 (@ = C(k){h2[In(1/h) 7y (BHPI/(7-30) (4.32a)
t -
](u-ue)("t) 2 * Ii(u_-uz)(.’S)dslui(Q [76u-u .2 (@)
= C(k) min [h . {R2[In(1/R) 17y 3R/ (7730 ] (4.32b)
and
lotw)-m Lp_(uM)1] 2 o * [v=vB) (1) 2,0
< C(k){hznnwh)1’}“*3"”‘7'3"’. (4.32¢)

Proof: The results follow directly from (4.28), (4.21), (2.18), (3.8), (3.13)"°

and (1.8). u]
Let problem (P") be the same as (P2)~with P replaced by ¢.
Theorem 4.3

Under the Assumptions (D4) there exists a uf’ﬁque solution {uh,vh} to

(P™) for all h > 0 and for all € € (0,e ] and t € (0,T] we have that

“h “h,2 -2 “h “h “h
Hu ue"za(k,t) + k g|V(u u€)( t)]L @ e|nh[¢(u ) cp )]|L @)
+ elvP=vPi? < cg'ipi/(i-p) (4.33)
€E, (k)

~

Underr the Assumptions (D5) if 9,» 9, and f =z 0 then uh, vV 2z 0 in QT.
Moreover, under the Asumptions (DS) and (DB) the error bounds (4.29) and

(4.31), respectively, hold with {uz,v;,we(UZ)} replaced by {uh,vh,qo(;uh)}.
Proof: Existence and uniqueness of a solution and (4.33) follow from a

discrete analogue of the proof of Theorem 2.2. Combining (4.33) with

(4.29a&b) and (4.31a-c) yields the desired error bounds. o
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5. A FULLY DISCRETE AND PRACTICAL FINITE ELEMENT APPROXIMATION
In this 'section we ahalyse the following fully discrete practical

approximation to (Pe) with timestep T = T/N :

(P™) Forn=15Nfindu)’" e ) and v’ € " such that

-1,,”h,n “h, n-1 “h,n “h,n-1
T (W’ =u’" )+ (v =v’' )
>4 £ £ >4

h._ Ah!n _Ah)n h h
» X) -k(q:z:(ue ) Ve ,X)  VxeS

,x)h + (Vuz’n,Vx] = (f‘n,x)h VYV x e Sg

-1,”h,n  “h,n-1
T (vt o yen
€ €

Ah’o = . Ah’o . = °
ug (¢) = nhgi( ) Ve (¢) = nhgz( ),

where fn(-)

f(e,nt).
Let U_ € L®(0,T;S)) and V_ € L™(0,T;8") be such that for n = 1 > N
U (e,t) = GZ’n(ﬂ and 08(',\1) = \:2’"0) if t e ((n-1)T,nTl.
Theorem 5.1

Let the Assumptions (D4) hold. Then for all € € (0,80], h, T > 0 there
exists a unique solution {08,\78} to (I;’Z’T). Moreover, if the Assumptions (D5)
hold and gi, g2 and f = 0 then Gs’ \78 = 0.

-~

Proof: Adopting the notation of the proof of Corollary 4.1, (F’h’T]

€

can be

]
i

{an}I Bn = {Bn}l

restated as find o ,
= 3 =1 - J =1

. 1
,  where WP (x) = alx (%),
€ y=1 373

~ I J
vIR(x) = TAM.(x) + (1+kT)™ ¥ g (x)x.(x), such that o = g (x),
£ 3 27y 3 17
j=1 j=I+1
B(j)sgz(xj) J=1>T1and forn=1->N
Flo™) = (1+B)d + (1+kt) krg (o) = & + (1+km) keg™ + 7t (5.1a)
B" = (1+kn) 1" + ke _(a™]. - (5.1b)

As I+"c§ is positive definite and P is a continuous diagonal isotone mapping,
the existence of a unique solution to (5.1a), and hence (5.1b), is easily
established. Furthermore, under Assumptions (D5) I+TE is a M-rﬁatrix and hence
the mapping F(+) is inverse isotone and a homeomorphism of R' into itself,

see §13.5 of Ortega & Rheinboldt (1970). Therefore as F(Q) = 0, it follows

thatgc_o, go, £n20=>g“, B"=20 forn=1->N. O
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Lemma 5.1

Under the Assumptions (D4) we have for all ¢ € (O,t:o], h, T > 0 and

= 0 »> N that
a0 i@ + g|m lp_(Q2)-p_(U)]1]? + elvhv 2
€ € E (k,mT) LQ(Q € € E (k,mT)
CT~{ EX u 2 (Q ) k]V(a )lL @ |6tnh[¢e(u )]|L (@)
|at8“0) E [nf]|L(Q) } (5.2)

Proof: Let E® = (4"0 )(+,nT), E" = (vP-v )(+,nTt). Defining IM(w)(+) =
unT € € v € €

w(e,nt) - 'r-lJ" w(e,s)ds, we then set 7" = In(u:;), " = In(VZ), pto=
(n-1)T

I [y (G™)1) and ¢® = I™(f).. It then follows from (P") and (P™7T) that E°
h'e € € e u

ES=Oandfor‘n=1—>N
THED - B o« (B - Y, 0" + (VERLV) = (V00 - (0"
u u v v u
Vxe sg (5.3a)
-1,-n _ -n-1 _h _ “h, . Dt Y7 _ gR _yh
T (Ev - E, ,x) =k ([goe(us( ,NT)) goe(Ue( ,nNT)) 1] Ev,x)
N CHTIRY b V x e s (5.3b)

We note the following identities, assuming aoi = 0,

T I(a™a"") §b'l = yTab® (5.4a)
n=1 i=n n=1 )

m m m m m

Tla"Tb'l + YL Yalb = (Ya" b + Yab" (5. 4b)
n;l i=n n=1 i=n n;’1:1 n=1 n=1

T (a™a"1a"l = % [(a™? + T (a™a"h?) . ~ (5.4c)
n=1 n=1

Choosing x = ZE:x in (5.3a), then summing the equations from n = 1 > m
i=n

and noting (5.4a8b) yields

tZ(E:+ Ez,EZ) + % [IV(':' ZE )|

n=1

+ T E|VE|

L (Q) L (Q)

= { (V(t T 2M,V(z ):E )) + T z(vn JVEP) - 1 z (vt T 1Y), VE™ } -
’ n=1 n n=k v n=é v ﬁ:l mi=n u
- { (gl T LEN + P L ED - T Rz D LED" ) (5.5)

n=1 n=1 n=1 n=1 i=n
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Choosing x = EZ in (5.3a), then summing the equations from n = 1 5 m and

noting (5. 4c) yi’elds

m
: m n-1,2 n n-1 _n.h
% [|Eu| +): |E-ED | 1+ nE:l(l-:v-lzv E) +1:Z |VE 2
m
=73 [(V"VED) - (o ,Eu)h]. (5.6)

n=1

From (5.5) and (5.6) it follows that

+1:}:|VE| +

L (Q)

m
T L ELIZ + % [|V(1: ED) |72 g,
n=1

n

=1
m

+ KR LERZ + 8 EERT R 4 g 2 |VER |2 o} +
n=1

u

L (Q)

) (we(a‘e‘(-,m))-«»e(ﬁe(.,m))l.eu)

n=1

m . N ’ -
= -kt Yy (t"u—:" - B0 + KED - klg, (uh(',n‘c))-cp (0, (°,m:))],E“)h

n1
+ { (V(an)V(rZE)) + T )j(Vn VE) —rE(V(‘th) VE) } -
n=1 n—1 n-'l n=n} n}n
-{(rza“r;;s“) + 77 zw",s") -t Yt LoLEMY )+
n=1  n=1 n=1 n=1 i=n =
+ kT rz[(vn VE)-(a'E)] (5.7)
n=1

From (5.7) and (5.3b) it follows that

.]+

m m
T D ENZ + % 1|V(x TED |G + 77 z; |VED |22 0,
n=1 1

m
kTS EDZ + p EDEDTR 4 e ); | vE™ |L .
: n=1

m ~ "~
+TY ([soe(u:;(*.nt))—w (0, ('.nr))l,E )4
n=1
m 2 m m 1 2
s C{|V('c T |2 * T(T+k ) Z |vn®|? 2 * kT L [v(z T2,
n=1 n— n=1 i=n

m m
+‘Tzo.n|h+1;(-t+k)Z|0|h+rzlrzo.ii+
n=1 =n

n=1 n n=1
+T Y- g“|§}. (5.8)
n=1
Next we note that
m m
|t L ') () |2 = (m-n)7® ¥ [THW) () |2 | (5.9a)
i=n i=n
and
m -1 m iT 2
T )| =TT S Is-Gi-DT] w (s,s)ds|
i=n ) i=n (1-1)T s
2 o 2
=Ctt J |wl(,s)|%s. i (5.9b)
(n-1)T s ”
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Therefore it follows from (5.8), (5.9) and (2.3a) that

2
rZ[EnI + % [Vt ZE)]L(Q)-PT ):[VE |L(Q) +
+ K {x[|E“‘|2+z|E E“‘1|21 +1:}:|VE 2.} *

+ Me 1 2 o, (* S(nT)) -0, (0 ('.n‘r))]h

n=1

s C'r{ |3, {v - [tp (ah )]}|L (@ + k|V(6 )|L (@
2
+ J‘|atf(-,t) |h dt } (5.10)
o -
Noting bounds like
mT ah A 2 . m n.2 m
J AU 0] dts2r TE| +2% J‘ |u (-, t)-u (-, n'r)] (5.11a)
n=1 n=1 (n- 1)1.' ‘
m n‘E m nT ~th 2
X |u (e, t)-—u (<, nr)l r J | f 8 u (+,s) ds| dt
n=1 (n- 1)'!: n=1 (n-1)T nT
2"C  n 2
= z{ |, u Cent) | dt, (5.11b)

(5.98) and (4.1a) it follows that

Ah -~
a0 12 =
€ € E (k,nT)

m m
) n;2 n, 2 -1 m;2
c, {rn§1|sut,, x|V BED g, + K7L K [T fn§ 9E] P2 g, |+

* G { 0,91, (o ) ' + |vou) |2 (@) } (5.12a)
and
|m Lo, Q" o) (U)]l sc-c):|go (u( ,nT) =g (U( ,n'c))l
L(Q 2 n=1
| + C412|3 LR (u )1 IL 0" (5.12b)

Finally, choosing % E: in (5.3b), then summing the equations from

n=1-mand noting (5.4c), (5.10) and (5.9) yields
m
1 m, 2 n n-1 2 ngi2
[(ED) n; 3 z|E|

+ ¥ (

1

- “h nyh n n _n,h
Ty [([“’e(us(°’”T))-“’e(us(°'m))]’Ev) + (§ - ,Ev) ]
n=1

1A

ce“rz{ |6, (%"= [p (0 )1>|“Q) + |va % "

+ J‘Iatf(',t) |2 at } (5.13)
0
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Similarly to (5.12) we have that

m
“h & 2 n;2 -1 2 2 “h,2 :
vV i = C, [rn§i|Ev|h + 5 KTIED]T] + oo v |2 (5.

€ € , :
E, (k wT) t elL (QT)

Combining (5.10), (5.12), (5.13) and (5.14) yields the desired result (5.2).o

Corollary 5.1
Under the Assumptions (D4) we have for all ¢ € (0,80], h, T > 0

m=0 >N that

“h A 2 ~h - 2 ~h & 2
hu" - ’ + - + -
lugU e (k,wT) a]nh[rpe(ue) qpe(ue)]l 2 ellv Vel (k,mT)
2 L@ ) 1
nT
= C(k)e 172, (5.

Proof: The result (5.15) follows immediately from (5.2) and the bounds (4.

Theorem 5.2
(a) Let Assumptions (DS) hold. Then for the stated choice of g,
choosing T = Ch we have that the error bounds (4.29) and (4.30) hold
_ o . ~“h “h em
t =mz, m=0 3 N, with {ue,ve} replaced by {Ue’ve}'

(b) Let A\ssumptions (D6) hold. Then for the stated choice of &g,

choosing T = Cs:'xhallr\(Vh)]r we have that the error bounds (4.31) and (4.

hold for t = mT, m = 0 5> N, with {GZ,QZ} replaced by {08,{/8}.

Proof: These results follow from balancing the terms (5.15), (4.27), (4.

14)

and

15)

2).

on

for

on

32)

28)

(4.21), (4.12) , (2.16), (3.8), (3.13) and (1.8). In case (a) it follows that

we require £ 72 = Ce 'h? and in case (b) & '1° = Cs_z{hz[lnﬁ/h)]r}a. o

Let (Ph’T) be the same as problem (PE’T) with R replaced by ¢.
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Theorem 5.3
Under the Assumptions (D4) hold there. exists a unique solution {0,\7} to
(Ph’r) for all h and T > 0 and for all € € (0,80] and m = 0 > N we have that
. .

OO 5 " 2 SO0 e
U ueuEz(k’mr) + elnh[qJ(U) wg(ue)] ILZ(QmT) + ellVv vsuEl(k"m |

< Ce(ii—p)/(l-p).

(5.18)

Moreover, under the Assumptions (DS) we have (i) if 9, 9, and f =2 0
then Cl, V =0 in QT, (ii) on choosing T = Ch we have that the error bounds
(4.29) hold for t=mr, m = 0 3 N, with {G‘S‘,Gg,we(&gn replaced by
{0,\7,@(0)}. Under the Assumptions (D6) on choosing T = C{hz[ln(Vh)]r}z/(g-p)

the error bounds (4.31) hold for t =mt, m = 0 - N, with {62,02,%(&2)}

replaced by {0, v, go(Cl)} .

Proof: Existence and unigueness of a solution follows as for (PZ’T), see the

proof of Theorem 5.1. Let E: e(')

’

W@ ) = (-0 (,n7)  and

n _ “h,n “h,n Y
Ev’e(") = (v Ve )(e)

({/—\A/e)(nnr). It follows from (P™T) and (PZ’T)

thatEZ =0 and E? Oand forn=1-N

’ v,

-1 n n-1 n n-1 h n = h
T ((Eu,e - Eu,e) + (Ev,e - Ev’e),x) + (?Eu’e,Vx) 0 Yxe S0 (5.17a)
-1,-n n-1 _ h _ “h,ny_ “h,ny, _ n h h
T (Ev,s -mEv’e,x) =k ([p(u™) goe(ue )] 'Ev,e,x) VxyesS. (5.17b)
Choosing x = ZEie and x = Ez e in (5.17a), summing from n = 1 - m and
i=n ’ ‘ ’

noting (5.4) yields, in a similar manner to (5.5) and (5.6), that

m m m
n n n h n 2 2 n 2 =
T ¥ (Eu,e + Ev’e,Eu,e) + % [|V(z ZEu,e) |L2(9> + 1T ¥ |VEu’€|L2(m] 0
n=1 n=1 n=1
(5. 18a)
and
% [!Em |2 + % IEn _ n-1l2 + E(En _ n-1 n )h + T E (VEn 122
u,e'h u,€& uw,E'h v,E v, u,€ u,e/L5(Q) '
=1: n=1 n=1
(5.18b)
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respectively. From (5.18) and (5.17b) we have the discrete analogue of (2.13):

m m m

n 2 n 2 2 n 2

Tn§1lEu»€|h v E [IV(ttElEu,e) ILZ(Q) T n)ElIVEu,eILZ(Q)] *
m ‘m

-1 m o2 n _.n-1,2. n 2
PR [IE“'SI*' * .z_:llEu,e Eu,elh] ¥ TnalVEu’ehz(Q)}
m A -~ N .
h,n, h,n n h
= -tn§1(¢(u )-p (U ),Eu’e) . (5.19)

From (5.19), (4.1a) and (2.3) we have that for all m = 0 > N that

A A2 -1 - - 2
W-UME ey * M 8lm LU= (U] 2
S a
= J (p(0Ce,8))=p_(U_(+,$)),(g-0) (+,5))ds = ce!™P/0P, (5.20)
0 ,
where ¢ = ¢;1(¢(0)) if q)(G) € V(O,go(cl/“_,p))) and & = U otherwise. Choosing

X = E: in (5.17b), summing from n

1 - m and noting (4.1a) and (5.4c¢),

yields for allm = 0 » N that

2

Y 2 k-I [lEm |2 y

v-v =
€ E (k,nT) v,€'h

+ |En

m
v
=1 K

m
n-1,2 n
e Ev,elh] *Tk lEv,el
n n=1

m ~ A .
=ty (go(uh’n)-goe(ug’n),E: I

(5.21)

n=1

Combining (5.20), (5.21) and (4.1a) yields the desired result (5.16). The
desired error bounds then fol]ow from combining (5.16) with (4.23) and

(4.31). u}

Remark 5.1
It is a simple matter to adapt the results in this section to analyse a
time discretisation of (PZ). However this is not so interesting as it is not

a practical scheme, requiring the nonlinear term to be integrated exactly.
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