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The average density of super-Brownian motion

Abstract. In this paper we prove the existence of average densities for the support of a super-

Brownian motion at a �xed time. Our result establishes a dimension-dependent fractal para-

meter for super-Brownian motion, which enables us to compare the local mass density of the

super-Brownian motion at a �xed time with the local mass density of the occupation measure

of a standard Brownian motion.

1 Introduction

The Hausdor� dimension and the exact Hausdor� dimension gauge are important fractal para-

meters, which describe the size of a fractal set. Of course, two fractal sets of the same Hausdor�

dimension may have completely di�erent topology or shape. Therefore it is important to study

parameters which go beyond the measurement of size and characterize �ner features of the set,

like its local density or its geometric regularity. Not many such parameters are established in

fractal geometry, the notion of average density introduced by Bedford and Fisher in [BF92] is

one of the most popular concepts and it has given rise to a good deal of recent publications, see

for example [KF97] and references therein.

A striking example of two important random sets with the same exact Hausdor� dimension

gauge are the path of a Brownian motion on the one hand and the support of a super-Brownian

motion at a �xed positive time on the other hand. These two random sets look entirely di�erent,

the former is a curve and hence connected, the latter is totally disconnected (at least in higher

dimensions), their Hausdor� dimension gauge, however, is the same,

 (r) = r2 log log(1=r) in dimension d � 3

and

 (r) = r2 log(1=r) log log log(1=r) in dimension d = 2 :

It is therefore natural to try and compare them using a parameter describing their local density of

mass like the average density of Bedford and Fisher. Whilst the average density of the Brownian

path has been investigated in recent papers of Falconer and Xiao [FX95] and M�orters [PM98],

it is the aim of this paper to do this for the support of a super-Brownian motion. We show that,

for super-Brownian motion fZtg in dimension d � 3 at a �xed positive time t > 0, the average

density of order two exists at Zt-almost every point x and is equal to a constant (Theorem 1.1).

This constant depends on the branching rate  of the super-Brownian motion and coincides

with the average density of the Brownian occupation measure of the same dimension exactly

if  = 4. The constant can be interpreted in terms of the equilibrium measure of the super-

Brownian motion (Theorem 5.1). In the planar case the situation is more subtle and a stronger

averaging procedure is needed to get convergence of the average densities. We show that, for

super-Brownian motion fZtg in dimension d = 2 at a �xed positive time t > 0, the average

density of order three exists and is constant at Zt-almost every point x. If the branching rate

is  = 4, this constant agrees with the constant average density of the Brownian occupation

measure in the plane (Theorem 1.2).
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Beyond our motivation from fractal geometry our results constitute small scale ergodic theorems

for super-Brownian motion, which are of independent interest. Our proofs are based on an

interesting statement about the decay of correlation between the mass of concentric balls as the

radii move apart (Lemma 3.2).

It should not remain unmentioned that other authors have used di�erent fractal parameters to

compare the support of super-Brownian motion at a �xed time and the Brownian path. Very

interesting results were obtained by Le Gall, Perkins and Taylor [LT95] on the exact packing

dimension gauge and by Perkins and Taylor [PT98] on the multifractal spectrum of super-

Brownian motion.

In the remainder of this section we �rst introduce the notion of average densities and recall some

basic facts about it and then describe our results about the average densities of super-Brownian

motion and compare them with the known results about the Brownian path. In Section 2 we

collect some facts and results about super-Brownian motion before embarking upon the �ner

details of the proofs of our results, which shall be given in Sections 3 and 4. Section 5 is devoted

to the description of the average densites in terms of the equilibrium measure and we conclude

the paper with some additional remarks and open questions.

1.1 Average densities

The heuristic idea of a density of a locally �nite measure � is based on the picture that the mass

in a small closed ball B(x; r) of radius r, which is centred in a point x of the support, behaves

like �(B(x; r)) � D(x)r�, in which case � describes the dimension of � and the mass prefactor

D(x) the local density at x. In the case of a measure � that is absolutely continuous with respect

to Lebesgue measure this picture is correct. For singular measures, however, several diÆculties

occur.

The �rst problem consists in the fact that D(x) cannot be de�ned as limr!0 �(B(x; r))=r
�, as

this limit fails to exist for all irregular measures and the function oscillates as r # 0 (see [DP87]
or [PM95] for a precise statement of this fact). To handle this oscillation, Bedford and Fisher

[BF92] suggested to use an averaging method based on classical summation techniques of Hardy

and Riesz. They de�ne the average density of order n of � at x as

lim
k!1

1

k

Z k

0

�(B(x; 1= exp(n�1)(a))

(1= exp(n�1)(a))�
da ;

where exp(n) is the nth iterate of the exponential function. The average densities of order two

and three may also be written as

lim
"#0

1

log(1=")

Z 1

"

�(B(x; r))

r�
dr

r
and lim

"#0

1

log log(1=")

Z 1=e

"

�(B(x; r))

r�
dr

r log(1=r)
:

For a large class of fractal measures � possessing some self-similarity the average densities of

order two were shown to exist and be equal to a constant at �-almost every x. Examples include

the natural measures on random and deterministic self-similar sets, see e.g. [PZ93], [PZ94],

[SG95], mixing repellers, see [KF92], the zero set and path of Brownian motion, see [BF92],

[FX95], and intersections of Brownian paths in 3-space, see [MS99]. It was also shown that

average densities can distinguish between di�erent m-part Cantor sets of equal dimension, see

[LL94] or [KF97].
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In many cases, particularly in the context of stochastic processes, a further phenomenon occurs:

the upper hull behaviour and the lower hull behaviour of �(B(x; r)) are governed by di�erent

functions  and � with the property

0 < lim inf
r#0

�(B(x; r))

�(r)
<1 and 0 < lim sup

r#0

�(B(x; r))

 (r)
<1 :

Typically, in such cases a third gauge function ' enters, which governs the typical behaviour

between these hulls and which allows the de�nition of the average density for �(B(x; r))='(r).

Examples of fractal sets, for which an average density of order three can be de�ned using a

density gauge function di�erent from the exponential type '(r) = r� are the path of a Brownian

motion in the plane, [PM98], and intersections of independent planar Brownian paths, [MS99].

The family of average densities of order n is consistent in the sense that existence of average

densities of order n implies existence of average densities of all higher orders with the same

value. The minimal number n with the property that the average density of order n exists at

�-almost every point is sometimes called the order of regularity of �. It is intuitively plausible

that this parameter describes regularity properties of �, although this point of view seems to

have so far very little rigorous justi�cation. There are however interesting recent results relating

the geometric regularity of measures to the relation of the average densities and the lower and

upper densities, see [KF97], [JM96], [PM97].

Let us now recall the known results about the average densities of the Brownian path fB(t) :
0 � t � 1g. The path is equipped with a natural measure �, the occupation measure de�ned by

�(A) =

Z 1

0
1A(s) ds for A � IR

d Borel.

By classical results of Ciesielski, Taylor and Ray the occupation measure is almost surely a

constant mulitple of the generalized Hausdor� measure on the Brownian path with respect to

the gauge functions  mentioned at the beginning of this introduction. Here is what we know

about the average densities of �.

� In dimension d � 3 Falconer and Xiao [FX95] found that, almost surely, average densities

of order two exist at �-almost every point for the occupation measure � using the density

gauge '(r) = r2. The actual value of the average density is deterministic and independent

of the point and equal to the total occupation time of the Brownian path in the unit ball,

which is easily seen to be equal to D(d) = 2=(d � 2).

� In dimension d = 2 M�orters [PM98] found that, almost surely, average densities of order

three exist at �-almost every point. The appropriate density gauge is '(r) = r2 log(1=r)

and the actual value of the average density is 2. The average density of order two fails to

exist, so that the order of regularity is three.

1.2 Statement of the main theorems

Super-Brownian motion is a continuous Markov process with values in the space MF (IR
d) of

�nite measures on IR
d. It was originally de�ned as a high density limit of a system of critically

branching particle systems, but the enormous interest super-Brownian motion has found in the
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last �fteen years is also due to its many connections to the theory of certain semi-linear partial

di�erential equations and to its rich and interesting geometric phenomenology, see for example

[DD93] for some of these aspects.

Throughout this paper we suppose that the measure valued process fZtg is a super-Brownian

motion with arbitrary �nite starting mass � and constant branching rate  > 0. Its precise

de�nition and some basic properties are recalled in Section 2. We now give the statement of our

principal results.

Theorem 1.1 Suppose that d � 3 and fZtg is a super-Brownian motion in IR
d with branching

rate  > 0. Then, for every t > 0 with probability one, at Zt-almost every x,

lim
"#0

1

log(1=")

Z 1

"

Zt(B(x; r))

r2
dr

r
= D(d; ) ;

where the constant average density is given by D(d; ) = =(2d � 4).

Remark. A description of the average density D(d; ) in terms of the equilibrium random

measure Z1 of the super-Brownian motion will be given in Section 5. This description connects

the value of D(d; ) to the long term behaviour of the super-Brownian motion.

In the critical dimension d = 2 we encounter a completely di�erent situation. It can be shown

that the average density of order two fails to exist for the support of a super-Brownian motion

in dimension 2. However, similarly as in the case of the planar Brownian path, averaging of

higher order helps.

Theorem 1.2 Suppose that d = 2 and fZtg is a super-Brownian motion in IR
2. Then, for every

t > 0, with probability one, at Zt-almost every x,

lim
"#0

1

log log(1=")

Z 1=e

"

Zt(B(x; r))

r2 log(1=r)

dr

r log(1=r)
= =2 :

Remark. Both our theorems are based on an ergodic phenomenon: the scale average over

Zt(B(x; r))='(r) converges to the average over all random paths, because of the decay in the

correlation of Zt(B(x; r)) and Zt(B(x; s)) as r moves away from s. The di�erent ways of avera-

ging reect qualitatively di�erent types of decay: a decay proportional to a power of r=s in the

case d � 3 and a decay proportional to a power of log(s)= log(r) in the case d = 2. All this will

be made precise in Section 3.

Let us now compare the average densities of the Brownian path and the super-Brownian motion

in di�erent dimensions. In dimension d � 3 the order of regularity of super-Brownian motion

is two, whereas in dimension d = 2, it is three, which heuristically means that the measure is

less regular in the plane. We have encountered the same behaviour already in the case of the

occupation measure of the Brownian path. For both measures the density gauge is '(r) = r2 in

dimensions d � 3 and '(r) = r2 log(1=r) in dimension 2 and so it makes sense to compare the

actual values of the average density. These values coincide in each dimension exactly for the

super-Brownian motion with branching rate  = 4. This is also the natural choice in view of

Le Gall's path valued process, see [LG93] and the next section. Hence, for the critical branching

rate of  = 4, the concept of average density is unable to distinguish between a Brownian path
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Figure 1: Average densities of super-Brownian motion

and the support of a super-Brownian motion equipped with their natural measures. Figure 1

shows a plot of the average density D(d; ) of super-Brownian motion for  = 8 (diamonds),

 = 4 (circles) and  = 1 (bullets) for dimensions d = 3; : : : ; 15.

Heuristically, the smallness of the average densities of super-Brownian motion in higher dimen-

sion can be explained by the fact that in every scale there are large massless areas between

seperate clumps of mass, so that typical balls centred in the support cover a large portion of

massless area. Such an observation was made rigorous by Tribe [RT91] to prove a disconnected-

ness property of super-Brownian motion, but his statement is to weak to have a direct inuence

on our result. The phenomenon of seperation of mass in a fractal measure by large holes has

been termed \fractal lacunarity" by Mandelbrot.

2 Preliminaries on super-Brownian motion

Denote by M(IRd) the space of locally �nite measures on the Borel-�-algebra on IR
d equipped

with the vague topology and by MF (IR
d) its subspace consisting of the �nite measures. Let

(
0;A0) be the canonical space of continuous MF (IR
d)-valued paths on [0;1) with the Borel-

�-algebra and denote the coordinate process by fZtg. With respect to a probability measure

IQ
� on (
0;A0), the Markov process fZtg is a super-Brownian motion in IRd with starting mass

� 2MF (IR
d) and branching rate  > 0 if, for every � : IRd ! [0;1) bounded, measurable,

IQ

�

�
exp(�

Z
�dZt)

�
= exp

�
�
Z
U

t �d�

�
; (1)
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where Ut = U

t � : IRd ! IR is the unique solution of the (integrated form of)

@Ut

@t
(x) =

�

2
Ut(x)�



2
Ut(x)

2; U0(x) = �(x) : (2)

The scaling properties of this equation show that

IQ

�(Z 2M) = IQ

1
�=(Z 2M) for M 2 A0 :

Hence, in our proofs, it suÆces to study the average density of fZtg for a single branching rate
, which we choose to be  = 4 in the sequel. We let IQ� = IQ

4
� and even write IQx = IQ� if � = Æx

is the Dirac measure in x.

We point out two important properties of super-Brownian motion. The superprocess property

states that the intensity measures IEZt evolve like a heat ow, i.e. denoting the Brownian

transition kernel by p we have

IE

nZ
�dZt

o
=

Z
p(x� z; t)�(z) d�(x) :

The second important feature, which can be seen from (1), is the so-called branching property of

super-Brownian motion: If we start with a �nite mass � = �1+�2 the contributions of �1 and �2
evolve independently of each other. Consequently, for any �xed time t > 0, the random measure

Zt is in�nitely divisible and we can characterize it via its canonical measure. Very useful (and

beautiful) descriptions of Zt and its canonical measure were given by Le Gall in [LG91] and

[LG93], we briey sketch the formulae relevant for our purpose.

Consider the space of stopped, continuous paths in IR
d de�ned as

W =
n
(W; �) 2 C([0;1); IRd)� [0;1) : W (s) =W (�) for s � �

o
;

equipped with the metric

d((W1; �1); (W2; �2)) = kW1 �W2k1 + j�1 � �2j :

Most of the time we write W for (W; �), as � is clear from the context. Denote by 
1 =

C([0;1);W) the space of continuous mappings from [0;1) to W equipped with the Borel-�-

algebra A1 coming from the compact-open topology. Denote by W = fWsgs�0 the coordinate
process on 
1, by �s the lifetime of Ws and by Ŵs = W (�s) the endpoint of Ws. By Pw we

denote the law on (
1;A1) of the path-valued process associated with d-dimensional Brownain

motion starting at w. This law was introduced in [LG93]. Under Pw the process fWsgs�0 is a
W-valued di�usion and f�sgs�0 is a one-dimensional reecting Brownian motion. The intuitive

picture is that fWsg grows like a Brownian motion in IR
d when f�sg increases and is erased,

when f�sg decreases (though, of course, f�sg has strictly speaking neither points of increase,

nor of decrease). Let fLts : s � 0g be the continuous local time of f�sg at t normalized to be a

density of the occupation measure of f�sg.
We identify a point x 2 IR

d with the constant path x of zero lifetime and write Px for PÆx .

Every x is a regular point for fWsg, so that we may introduce the Itô excursion measure Nx of

excursions of fWsg from x. Nx is a �-�nite measure on (
1;A1), which we normalize so that it

is the intensity measure of the Poisson process �x of excursions of W from x, completed up to
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time � [W ] = inffs : L0
s = 1g. The distribution of f�sg under Nx is the Itô excursion measure

for reecting Brownian motion normalized so that

Nx

�
sup
s
�s > h

�
=

1

2h
:

De�ne a continuousMF (IR
d)-valued process fXtg on the �-�nite measure space (
1;A1; Nx) by

Xt[W ](A) =

Z �[W ]

0
1A(Ŵs)L

t
�(ds) for A � IR

d Borel,

where �[W ] = inffs > 0 : �s = 0g, and an MF (IR
d)-valued process on the probability space

(
1;A1; Px) by

Zt[W ](A) =

Z � [W ]

0
1A(Ŵs)L

t
�(ds) for A � IR

d Borel.

Then, by [LG93, 2.1], fZtg is a super-Brownian motion. Furthermore, fZtg has a Poisson

representation in terms of fXtg, i.e. for all t > 0,

Zt[W ] =

Z

1

Xt[W ] �x(dW ) , Px-almost surely, (3)

and we infer from the formula for Laplace transforms of general Poisson processes, that

IQx

�
exp(�

Z
�dZt)

�
= exp

�
�
Z �

1� exp(�
Z
�dXt)

�
Nx(dW )

�
: (4)

This means that the distribution Rt of Xt under Nx is the canonical measure associated with

Zt for start in Z0 = Æx.

Let us now �x a time, say t = 1, and a starting mass, say Z0 = Æy. Later in this paper we

work mainly with the Campbell measure associated with the canonical measure of Z1, that is

the measure on MF (IR
d) � IR

d de�ned by P (d�; dy) = �(dy)R1(d�). A Poisson representation

of P can be found in [LP95, (5.4)]: Denote by IPx the law of a Brownian motion in IR
d started

in x. For each w 2 C([0; 1]; IRd) let M2(dt; dW ) be a Poisson random measure on [0; 1] � 
1

with intensity 4dtNw(t)(dW ) and assume that M2 is de�ned on a canonical probability space

(
2;A2; P
(w)) with w 7! P (w)(A) measurable for each A 2 A2. Then, for every measurable

function � : IRd �MF (IR
d)! [0;1),

Z Z
�(x;X1[W ])X1[W ](dx)Ny(dW ) =

Z
P (w)

�
�
�
w(1);

ZZ
X1�t[W ]M2(dt; dW )

��
IPy(dw) :

(5)

Finally, we recall the following useful formula for the second moments of the super-Brownian

motion, which may be inferred easily from the general moment formula in [DD93, 4.7.1],

IQ�

� Z
'dZt

Z
 dZt

�
� IQ�

� Z
'dZt

�
IQ�

�Z
 dZt

�

=

Z t

0
ds

Z
dz

Z
�(dw)

n
p(w � z; t� s) �

ZZ
'(x) (y)p(z � x; s)p(z � y; s) dx dy

o
: (6)
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3 Main lemma: The decay of correlation

We consider the starting mass � = Æ0 and the corresponding super-Brownian motion fZtg
at time t = 1. The canonical measure R1 associated with the random measure Z1 has been

described in the previous section. We work on the space 
 =MF (IR
d)� IR

d equipped with the

Borel-�-algebra A. We de�ne the associated Campbell measure P on 
 by

P (M �B) =

Z
M

X(B)R1(dX)

and observe that P is a probability measure on 
. On the space (
;A; P ) we de�ne the stochastic
process fX(r) : r > 0g by

X(r)[X;x] = X(B(x; r)) :

This process descibes the mass in a ball around a random point in the support of our super-

Brownian motion at time 1. Let us �rst study the expectations of X(r). Denote the transition

density of Brownian motion by

p(x� y; t) =
1p
2�t

d
e
�kx�yk2

2t ;

and write dx for integration with respect to Lebesgue measure `d.

Lemma 3.1 For the random variable X(r) on the probability space (
;A; P ) we have

IEX(r) = 4

Z 1

0
dt

ZZ
kv�xk�r

p(x; t)p(v; t) dv dx = 2

Z 2

0
dt

Z
kyk�r

p(y; t) dy :

Furthermore, in dimension d � 3 we have

lim
r#0

IE

nX(r)

r2

o
=

2

d� 2
;

and in dimension d = 2 we have

lim
r#0

IE

n X(r)

r2 log(1=r)

o
= 2 :

Proof. Recall the notation from the previous section. We use the Poisson representation (5) of

the Campbell measure to obtain

IEX(r) =

Z Z
X1[W ](B(x; r))X1[W ](dx)N0(dW )

=

Z h Z 1

0

Z
X1�t[W ](B(w(1); r))Nw(t)(dW ) 4dt

i
IP0(dw) :

For the innermost integral we note that, by the superprocess property,Z
X1�t[W ](B(y; r))Nz(dW ) = IQzZ1�t(B(y; r)) =

Z
B(y;r)

p(x� z; 1 � t) dx : (7)
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Hence we obtainZ h Z 1

0

Z
X1�t[W ](B(w(1); r))Nw(t)(dW ) 4dt

i
IP0(dw)

=

Z h Z 1

0

Z
B(w(1);r)

p(x� w(t); 1 � t) dx 4dt
i
IP0(dw)

=

Z 1

0

h Z Z Z
kv�xk�r

p(x� z; 1� t)p(z; t)p(v � z; 1� t) dv dz dx
i
4dt

= 4

Z 1

0
dt
h Z Z

kv�xk�r
p(x; t)p(v; t) dv dx

i

= 4

Z 1

0
dt
h Z Z

kyk�r
p(x; t)p(y � x; t) dx dy

i

= 4

Z 1

0
dt
h Z

kyk�r
p(y; 2t) dy

i
= 2

Z 2

0
dt
h Z

kyk�r
p(y; t) dy

i
;

where we have denoted v = w(1) and z = w(t) and used the Chapman-Kolmogorov-equation in

the penultimate step. This proves the general formulae. To obtain the limits we substitute the

space variables and change the order of integration obtaining

2

Z 2

0
dt
h Z

kyk�r
p(y; t) dy

i
= 2r2

Z
kyk�1

h Z 2=r2

0
p(y; t) dt

i
dy :

Hence, in dimension d � 3, we obtain

lim
r#0

IE

nX(r)

r2

o
= 2

Z
kyk�1

h Z 1

0
p(y; t) dt

i
dy =

�(d=2 � 1)
p
�
d

Z
kyk�1

1

kykd�2 dy =
2

d� 2
:

In dimension d = 2 we obtain for the inner integral an explicit solution in terms of the integral

exponential function Ei,

Z 2=r2

0
p(y; t) dt =

1

2�

Z 2=r2

0
e�kyk

2=2t dt

t
=

1

2�

Z 1

kyk2r2=4
e�t

dt

t
=

Ei(�kyk2r2=4)
2�

:

This yields, as Ei(r) � � log(1=r) for r " 0,

lim
r#0

IE

n X(r)

r2 log(1=r)

o
=

1

�
lim
r#0

Z
kyk�1

Ei(�kyk2r2=4)
log(1=r)

dy = 2 :

It is natural to conjecture a decay of the correlation of X(r) and X(%) when r moves away from

%. The crucial tool in the proofs of our main theorems makes this conjecture precise.

Lemma 3.2 (Main Lemma) For super-Brownian motion in dimension d � 3 and every 0 <

� < (d� 2)=(2d � 3), there is a r0 > 0 and a constant C > 0 such that, for all 0 < r � % < r0,

Cov
nX(r)

r2
;
X(%)

%2

o
� C �

�r
%

��
:
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For super-Brownian motion in dimension d = 2 there is a constant C > 0 such that, for all

0 < r � % < r0,

Cov
n X(r)

r2 log(1=r)
;

X(%)

%2 log(1=%)

o
� C �

s
log(1=%)

log(1=r)
:

Remark: We have not tried to optimize the powers appearing in the theorem, as they are

unimportant for our purpose.

We begin the proof of this lemma by deriving an explicit formula for the covariance of fX(r)g
using the Poisson representation provided in the previous section.

Lemma 3.3 For all d � 2 and 0 < r � % we have

Cov
n
X(r); X(%)

o

= 4

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
w; t

�
p
�
z; t� s

�
p
�
z � x; s

�
p
�
z � y; s

�
dw dx dy dz (8)

+16

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
v; t� s

�
p
�
w � v; s

�
p
�
x; t

�
p
�
v � y; s

�
dv dw dx dy (9)

+16

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
v; t� s

�
p
�
w � v; s

�
p
�
v � x; s

�
p
�
y; t

�
dv dw dx dy (10)

�16
Z 1

0
dt

Z 1

0
ds

Z Z Z Z
kv�xk�r
kw�yk�%

p
�
v; t

�
p
�
x; t

�
p
�
w; s

�
p
�
y; s

�
dv dw dx dy : (11)

Proof. Denote �(x; �) = �(B(x; r))�(B(x; %)). We use the Poisson representation (5) and the

formula for the variance of the Poisson process to get

IE

n
X1(B(x; r))X1(B(x; %))

o
=

Z Z
�(x;X1)X1(dx)N0(dX1)

=

Z
P (w)

�
�
�
w(1);

ZZ
X1�t[W ]M2(dt; dW )

��
IP0(dw)

=

Z
P (w)

�ZZ
X1�t(B(w(1); r))M2(dt; dW ) �

ZZ
X1�t(B(w(1); %))M2(dt; dW )

�
IP0(dw)

=

Z
IP0(dw)

�
4

Z 1

0

Z
X1�t(B(w(1); r))X1�t(B(w(1); %))Nw(t)(dW ) dt

+ 16
� Z 1

0

Z
X1�t(B(w(1); r))Nw(t)(dW ) dt

��Z 1

0

Z
X1�t(B(w(1); %))Nw(t)(dW ) dt

��
:

We have already seen in (7) thatZ 1

0

Z
X1�t[W ](B(w(1); r))Nw(t)(dW ) dt =

Z 1

0

Z
kw(1)�xk�r

p
�
w(t)� x; 1� t

�
dx dt :

From (4) and the moment formula (6) we infer thatZ
X1�t[W ](B(w(1); r))X1�t [W ](B(w(1); %))Nw(t)(dW )

10



= IQw(t)

�
Z1�t(B(w(1); r))Z1�t(B(w(1); %))

�
� IQw(t)

�
Z1�t(B(w(1); r))

�
IQw(t)

�
Z1�t(B(w(1); %))

�

=

Z 1�t

0
ds

Z
dz
n
p(w(t) � z; 1� t� s) �

ZZ
kw(1)�xk�r
kw(1)�yk�%

p(z � x; s)p(z � y; s) dx dy
o
:

We can plug these expressions in our formula, simplify, and get

IE

n
X1(B(x; r))X1(B(x; %))

o

= 4

Z
IP0(dw)

� Z 1

0

Z 1�t

0
dt ds

Z
dz
n
p(w(t)� z; 1 � t� s)

�
ZZ

kw(1)�xk�r
kw(1)�yk�%

p(z � x; s)p(z � y; s) dx dy
o�

+ 16

Z
IP0(dw)

�nZ 1

0

Z
kw(1)�xk�r

p
�
w(t)� x; 1� t

�
dx dt

o

�
nZ 1

0

Z
kw(1)�yk�%

p
�
w(s)� y; 1� s

�
dy ds

o�

= 4

Z 1

0
dt

Z 1�t

0
ds

ZZ
dv dw p

�
v; t

�
p
�
w � v; 1� t

�

�
nZZZ

kw�xk�r
kw�yk�%

dx dy dz p
�
v � z; 1� t� s

�
p
�
z � x; s

�
p
�
z � y; s

�o

+ 16

Z 1

0
dt

Z 1

t

ds

ZZZ
du dv dw p

�
u; t

�
p
�
v � u; s� t

�
p
�
w � v; 1 � s

�

�
ZZ

kw�xk�r
kw�yk�%

dx dy p
�
u� x; 1� t

�
p
�
v � y; 1� s

�

+ 16

Z 1

0
dt

Z t

0
ds

ZZZ
du dv dw p

�
u; s

�
p
�
v � u; t� s

�
p
�
w � v; 1 � t

�

�
ZZ

kw�xk�r
kw�yk�%

dx dy p
�
v � x; 1� t

�
p
�
u� y; 1� s

�

= 4

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
w; t

�
p
�
z; t� s

�
p
�
z � x; s

�
p
�
z � y; s

�
dw dx dy dz

+ 16

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
v; t� s

�
p
�
w � v; s

�
p
�
x; t

�
p
�
v � y; s

�
dv dw dx dy

+ 16

Z 1

0
dt

Z t

0
ds

Z Z Z Z
kw�xk�r
kw�yk�%

p
�
v; t� s

�
p
�
w � v; s

�
p
�
v � x; s

�
p
�
y; t

�
dv dw dx dy ;

where, in the penultimate step, we have split the second summand in two parts according as

s � t or s > t. We then get the �nal form of our formula by subtracting the expression for

IEX(r)IEX(%), which was established in Lemma 3.1.

We now transform the above expression by means of a change of variable. Our aim is to express

all integrals as integrals over the same integrand.
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Lemma 3.4 For 0 < r � % denote q = r=%. For w; x; y; z 2 IR
d we denote

�%[w; x; y; z] = %4d
Z 1

0
t1�2dp

�w%p
t
; 1
�
p
�x%p

t
; 1
�
p
� y%p

t
; 1
�
p
� z%p

t
; 1
�
dt :

Then we can write

Cov

�
X(r)

r2
;
X(%)

%2

�
=

1

q2

Z 1

0
ds

�
4

Z Z Z Z
kw�

p
sx�

p
1�szk�q

kw�
p
sy�

p
1�szk�1

+16

Z Z Z Z
kw�

p
sx�

p
1�szk�q

k
p
sx�

p
syk�1

+ 16

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q

�16
Z Z Z Z

kw�zk�q
k
p
sx�

p
syk�1

�16
Z Z Z Z

kw�zk�1
k
p
sx�

p
syk�q

�

�%[w; x; y; z]

%4
dw dx dy dz : (12)

Furthermore,we have, for all w; x; y; z 2 IR
d,

lim
%#0

�%[w; x; y; z]

%4
=

�(2d� 2)

4�2d

h
kwk2 + kxk2 + kyk2 + kzk2

i2�2d

and this limit is monotonically increasing. If d = 2 we have, for all w; x; y; z 2 IR
2,

�%[w; x; y; z]

%4
=

1

4�4

�
%2

2

exp [� %2(kwk2 + kxk2 + kyk2 + kzk2)=2]
kwk2 + kxk2 + kyk2 + kzk2

+
exp [� %2(kwk2 + kxk2 + kyk2 + kzk2)=2]

[kwk2 + kxk2 + kyk2 + kzk2]2
�
:

Proof. We carry out the change of variables for (8). Substitute w for w=%, z for z=%, x for

(x� z)=% and y for (y � z)=% and obtain

4%4d
Z 1

0
dt

Z t

0
ds �

Z Z Z Z
kw�x�zk�q
kw�y�zk�1

p
�
w%; t

�
p
�
z%; t� s

�
p
�
x%; s

�
p
�
y%; s

�
dw dx dy dz :

Recall that p(x; s) = s�d=2p(x=
p
s; 1) and change the order of integration to obtain

4

Z Z Z Z
kw�x�zk�q
kw�y�zk�1

dw dx dy dz

n
%4d

Z 1

0
dt

Z t

0
ds
� 1

t(t� s)s2

�d=2
p
�w%p

t
; 1
�
p
� z%p

t� s
; 1
�
p
� x%p

s
; 1
�
p
� y%p

s
; 1
�o
:

Now substitute s for s=t, x for x=
p
s, y for y=

p
s and z for z=

p
1� s. This �nally yields

4

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�q

kw�
p
sy�

p
1�szk�1

dw dx dy dz

�
%4d

Z 1

0
t1�2dp

�w%p
t
; 1
�
p
� z%p

t
; 1
�
p
�x%p

t
; 1
�
p
� y%p

t
; 1
�
dt

�
:

This corresponds to the form given in the lemma and analogous substitutions may be performed

for the other terms. Additionally, we have split the last term in two parts according as s < t

12



or s � t. This proves (12). To obtain the asymptotics of �%[w; x; y; z] we abbreviate a =

kwk2 + kxk2 + kyk2 + kzk2 and get

lim
%#0

�%[w; x; y; z]

%4
= lim

%#0

%4d�4

(2�)2d

Z 1

0
t1�2d exp[�a%2=2t] dt

= lim
%#0

1

(2�)2d
(a=2)2�2d

Z 1

a%2=2
t2d�3e�t dt =

�(2d� 2)

4�2da2d�2
:

In the case d = 2 the limit above is also valid, but we have to evaluate the integral explicitly,

�%[w; x; y; z]

%4
=

1

4�4a2

Z 1

a%2=2
te�t dt =

1

4�4

�%2
2a
e�a%

2=2 +
1

a2
e�a%

2=2
�
:

It is now necessary to distinguish the cases d = 2 and d � 3. We start the estimates necessary

for the proof of the main lemma in the case d=2. In our estimates C denotes the value of

a constant that may change from line to line, % is assumed to be suÆciently small.

We proceed in two steps. We �rst prove that

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�q

k
p
sw�

p
syk�2

�%[w; x; y; z]

%4
dw dx dy dz � C � (log(1=%))2 : (13)

Note that this gives favourable estimates for the �rst two summands in (12). Observe �rst that

�%[w; x; y; z] � �%[0; x; y; z]. Hence we can integrate, �rst with respect to w and then with

respect to s and obtain

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�q

k
p
sx�

p
syk�2

�%[w; x; y; z]

%4
dw dx dy dz

� C �
Z 1

0
ds

�Z Z Z
k
p
sx�

p
syk�2

�%[0; x; y; z]

%4
dx dy dz

�
(14)

� C �
Z Z Z

min
�
1;

4

kx� yk2
��%[0; x; y; z]

%4
dx dy dz

� C �
Z Z Z

kx�yk>2

�%[0; x; y; z]

(kx� yk2)%4 dx dy dz + C �
Z Z Z

kx�yk�2

�%[0; x; y; z]

%4
dx dy dz :

We now use the expression for �% from Lemma 3.4. Using the symmetry in x and y we can

restrict integration to kxk � kyk. The second summand can be bounded easily byZ Z Z
kx�yk�2
kxk�kyk

�%[0; x; y; z]

%4
dx dy dz

� C �
�
%2

Z Z
exp [� %2(kxk2 + kzk2)=2]

[kxk2 + kzk2] dx dz

+

Z Z Z
kxk2+kyk2+kzk2�2

exp [� %2(kxk2 + kyk2 + kzk2)=2]
[kxk2 + kyk2 + kzk2]2 dx dy dz

+

Z Z Z
kxk2+kzk2�1

exp [� %2(kxk2 + kzk2)=2]
[kxk2 + kzk2]2 dx dz

�

13



� C �
�
%2
Z 1

0
s exp[�%2s2=2] ds+

Z p
2

0
s ds+

Z 1

1

exp[�%2s2=2]
s

ds

�
� C � log(1=%) :

For the �rst summand we can �nd an upper bound ofZ Z Z
kx�yk>2

kxk�kyk

�%[0; x; y; z]

(kx� yk2)%4 dx dy dz

� C �
�
%2

Z Z Z
2kxk�kx�yk>2

exp [� %2(kxk2 + kyk2 + kzk2)=2]
(kx� yk2)[kxk2 + kyk2 + kzk2] dx dy dz

+

Z Z Z
2kxk�kx�yk>2

exp [� %2(kxk2 + kyk2 + kzk2)=2]
(kx� yk2)[kxk2 + kyk2 + kzk2]2 dx dy dz

�

� C �
�
%2

Z Z
exp [� %2(kxk2 + kzk2)=2]

kxk2 + kzk2
Z
2kxk�kx�yk>2

dy

kx� yk2 dx dz

+

Z Z Z
kxk2+kyk2+kzk2�2

dx dy dz

[kxk2 + kyk2 + kzk2]2

+

Z Z
kxk2+kzk2�1

exp [� %2(kxk2 + kzk2)=2]
[kxk2 + kzk2]2

Z
2kxk�kx�yk>2

dy

kx� yk2 dx dz
�

� C �
�
%2
Z 1

0
exp(�%2s2=2) s log(s) ds+

Z p
2

0
s ds+

Z 1

1

exp(�%2s2=2)
s

� log(s) ds
�

� C � (log(1=%))2 :
This establishes an upper bound of C(log(1=%))2 for (13) and we are done.

In the second step we show that

1

q2

Z 1

0
ds

�Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q

�
Z Z Z Z

kw�zk�1
k
p
sx�

p
syk�q

�
�%[w; x; y; z]

%4
dw dx dy dz (15)

� C � log(1=%)3=2 log(1=r)1=2:
This gives a favourable estimate of the last three summands of (12). In this term the cancellation

occurs. Fix a = a(r; %) � 1. We can bound (15) from above by

C

q2

Z 1

0
ds

�Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; k

p
sxk�a

+

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; (1�

p
1�s)kzk�a

+

Z Z Z Z
1�kw�zk�1+2a

k
p
sx�

p
syk�q

�
�%[w; x; y; z]

%4
dw dx dy dz: (16)

Observe that in the last integral we have decoupled the variables w; z from the variables x; y.

Hence this term is the product of two integrals as they were considered in Lemma 3.1 and we

have

C

q2

Z 1

0
ds

Z Z Z Z
1�kw�zk�1+2a

k
p
sx�

p
syk�q

�%[w; x; y; z]

%4
dw dx dy dz:

� C � IEX1B(x; r)

r2
IEX1(B(x; %(1 + 2a)) nB(x; %))

%2

� C � log(1=r)
�
(1 + 2a)2 log(1=(%(1 + 2a))� log(1=%)

�
:
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Choosing a = log(1=%)= log(1=r) gives an upper bound of C(log(1=%))2. It remains to estimate

the �rst two integrals in (16) for this choice of a. Let us begin with the �rst integral. Integrating

with respect to y and w and using Lemma 3.4 yields

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; k

p
sxk�a

�%[w; x; y; z]

%4
dw dx dy dz

� C �
Z 1

0

ds

s

Z Z
k
p
sxk�a

�%[0; x; 0; z]

%4
dx dz

� C �
�
%2

Z 1

0

ds

s

Z
k
p
sxk�a

dx

Z
exp [� %2kxk2(1 + kzk2)=2]

1 + kzk2 dz (17)

+

Z 1

0

ds

s

Z
k
p
sxk�a

dx

kxk2
Z

exp [� %2kxk2(1 + kzk2)=2]
[1 + kzk2]2 dz

�
: (18)

For (17) we obtain,

%2
Z 1

0

ds

s

Z
k
p
sxk�a

dx
n
e�%

2kxk2=2
Z

exp [� %2kxk2kzk2=2]
1 + kzk2 dz

o

� C � %2 �
Z 1

0

ds

s

Z
kxk�a=

p
s
dx
n
e�%

2kxk2=2
�
log

�
1=(kxk%)

�
+ 1

�o

� C � %2 �
Z
dx
n
e�%

2kxk2
�
log

�
1=(kxk%)

�
+ 1

�
log

�
a=kxk

�o

� C �
Z 1

0

n
e�p

2
�
log (1=p) + 1

�
log (a%=p)

o
dp

� C � log(1=%a) :

With our choice of a the last expression is easily seen to be bounded by C �log(1=%)3=2 log(1=r)1=2.
This gives the necessary bound for (17). For (18) we can split our domain in two parts depending

whether kxk � % or kxk > % and obtain an estimate

Z 1

0

ds

s

Z
k
p
sxk�a

dx

�
1

kxk2
Z

exp [� %2kxk2(1 + kzk2)=2]
[1 + kzk2]2 dz

�

� C �
Z 1

0

ds

s

Z
k
p
sxk�a

dx

kxk2 e
�%2kxk2=2

Z
1

[1 + kzk2]2 dz

� C �
�Z 1

a2=%2

ds

s

Z
%�kxk�a=

p
s

dx

kxk2 e
�%2kxk2=2 +

Z
kxk�%

dx

kxk2 e
�%2kxk2=2

Z 1

a2=kxk2
ds

s

�

� C �
�Z 1

a2=%2

ds

s
log(

p
s=a) +

Z 1

%

1

p
e�%

2p2=2 log(p=a) dp

�

� C �
n
log(1=a) log(1=%) + log(1=%)2

o
:

Both expressions are bounded by a constant multiple of log(1=%)3=2 log(1=r)1=2 and hence we have

established the necessary bound for the �rst integral in (16). Upon observing that 1�p1� s �p
s for all 0 < s < 1, the second integral may be bounded in the same manner. Thus we have

established the necessary bounds for all expressions in (16) and (15) is proved. Altogether, (13)

and (15) yield the main lemma in the case d = 2.
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Let us now work out the proof of the main lemma in the case d�3. Given 0 < � <

(d� 2)=(2d � 3) we choose � < � < (d� 2)=(2d � 3) such that Æ = (1� 2�)(d � 2) > �.

To make our proof as compact as possible we start with a general estimate. Let 0 � a; b; c; � � 1,

then there is a constant C > 0 independent of them, such that

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�a

kx�yk�b=
p
s;kyk�c=s�

dw dx dy dz

[kwk2 + kxk2 + kyk2 + kzk2]2d�2

� C � ad
Z 1

0
ds

Z Z Z
kx�yk�b=

p
s

kyk�c=s�

dx dy dz

[kxk2 + kyk2 + kzk2]2d�2

� C � ad
Z 1

0
ds

Z
kyk�c=s�

dy

�
kyk4�2d

ZZ
kxk�b=(

p
skyk)

dx dz

[1 + kxk2 + kzk2]2d�2
�

� C � ad
Z 1

0
ds

��Z b=
p
s

c=s�
p3�d dp

�+

+ s�d=2bd
h
max

� bp
s
;
c

s�

�i4�2d�
: (19)

Having provided this general estimate, we now start with the estimates leading to the statement

of the main lemma. Again we proceed in two steps. In the �rst step we show that

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�q

k
p
sx�

p
syk�2

dw dx dy dz

[kwk2 + kxk2 + kyk2 + kzk2]2d�2 � C � q ; (20)

thus providing a favourable estimate for the �rst two summands in (12).

If d = 3 we can use (19) straight away with a = q, b = 2 and c = 0 and obtain an upper bound

for (20) of

C � q
Z 1

0
ds

�Z 2=
p
s

0
dp+ s�3=2

� 2p
s

��2� � C � q
Z 1

0
ds

1p
s
� Cq :

In dimensions d � 4 we �rst look at a restriction of our domain of integration by assuming

kyk � q. From (19) with a; c = q, b = 2 and � = 0 we obtain an upper bound of

Cqd�2
Z 1

0
ds

�Z 2=
p
s

q

p3�d dp+s�d=2
h
max

� 2p
s
; q
�i4�2d� � C �qd�2 max

�
q4�d; log(1=q)

�
� Cq:

It remains to integrate over the part of the domain satisfying kyk � q.

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�q

k
p
sx�

p
syk�2;kyk�q

dw dx dy dz

[kwk2 + kxk2 + kyk2 + kzk2]2d�2

� C

q2

Z 1

0
ds

Z q

0
dp

�
p3
ZZZ

kxk�2=(
p
sp)

kwk�1=p

dw dx dz

(1 + kwk2 + kxk2 + kzk2)2d�2
�
:

Recall that Z 1

0
ad�1

da

(b+ a2)2d�2
� C

b3d=2�2
for b � 1.

This allows us to estimate

1

q2

Z 1

0
ds

Z q

0
dp

�
p3
ZZZ

kxk�2=(
p
sp)

kwk�1=p

dw dx dz

(1 + kwk2 + kxk2 + kzk2)2d�2
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� C

q2

Z 1

0
ds

Z q

0
dp

�
p3
ZZ

kxk�2=(
p
sp)

kwk�1=p

dw dx

Z 1

0
ad�1

da

(1 + kwk2 + kxk2 + a2)2d�2

�

� C

q2

Z 1

0
ds

Z q

0
dp

�
p3
ZZ

kxk�2=(
p
sp)

kwk�1=p

dw dx

(1 + kwk2 + kxk2)3d=2�2
�

� C

q2

Z 1

0
ds

Z q

0
dp

�
p3
�
1 + log

� 1p
sp

���
� C � q :

This �nishes the proof of (20) in all dimensions d � 3.

In the second step we have to establish that,

1

q2

Z 1

0
ds

�Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q

�
Z Z Z Z

kw�zk�1
k
p
sx�

p
syk�q

�
�%[w; x; y; z]

%4
dw dx dy dz � C � q�: (21)

We proceed as in the case of d = 2. One can bound (15) from above by

C

q2

Z 1

0
ds

�Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; k

p
sxk�q�

+

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; (1�

p
1�s)kzk�q�

+

Z Z Z Z
1�kw�zk�1+2q�

k
p
sx�

p
syk�q

�
�%[w; x; y; z]

%4
dw dx dy dz : (22)

As before we have decoupled the variables w; z from the variables x; y in the last term. Hence

this term is the product of two integrals as in Lemma 3.1 and we may estimate

C

q2

Z 1

0
ds

Z Z Z Z
1�kw�zk�1+2q�

k
p
sx�

p
syk�q

�%[w; x; y; z]

%4
dw dx dy dz:

� C � IEX1B(x; r)

r2
IEX1(B(x; %(1 + 2q�)) n B(x; %))

%2

� C �
�
(1 + 2q�)2 � 1

�
� C � q� :

As � � � this is suÆcient. The �rst error term may be estimated by means of (19), with a = 1,

b = q, c = q� and � = 1=2,

1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q;k

p
sxk�q�

�%[w; x; y; z]

%4
dw dx dy dz

� 1

q2

Z 1

0
ds

Z Z Z Z
kw�

p
sx�

p
1�szk�1

k
p
sx�

p
syk�q; k

p
sxk�q�

dw dx dy dz

[kwk2 + kxk2 + kyk2 + kzk2]2d�2

� C

q2

Z 1

0
ds

�
s�d=2qd

� q�p
s

�4�2d� � C � qÆ ;

and this estimate is good, as Æ � �. The second term may be estimated completely analogously.

Hence (21) is established and this �nishes the proof of our main lemma.
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4 Proof of the main theorems

By a result of Evans and Perkins [EP91], for all nonzero measures �; � 2MF (IR
d) and 0 < s < t

the laws of Zs under IQ
1
� and Zt under IQ

1
� are mutually equivalent, so that it suÆces to consider

the case � = Æ0 and t = 1.

By the Poisson representation (3) we can write Z1[W ] as a sum of clusters X1[W
i], where W i

are those excursions of W from the constant path 0 of lifetime 0, which are completed at time

� [W ] and whose lifetime �i reaches level 1,

Z1[W ] =
MX
i=1

X1[W
i] :

Here M is a Poisson random variable with mean 1=2 (by our choice of the normalization of

N0) and, given M = m, the X1[W
i] are independent with law N0(X1 2 � jX1 6= 0). Now,

clearly, independent samples of super-Brownian motion at time 1 are almost surely mutually

singular measures. Hence, almost surely, at X1[W
i]-almost every x the density of X1[W

j],

i 6= j, vanishes and it suÆces to prove our theorems for the random measure X1 whose law is

N0(X1 2 � jX1 6= 0). We look again at the Campbell measure P associated with the canonical

measure of Z1. From our main lemma we infer the following.

Lemma 4.1 For the process fX(r)g on the probability space (
;A; P ) we have, for some con-

stant C > 0 and all 0 < " < 1=e, in the case d � 3,

Var

�
1

log(1=")

Z 1

"

X(r)

r2
dr

r

�
� C

log(1=")
;

and, in the case d = 2,

Var

�
1

log log(1=")

Z 1=e

"

X(r)

r2 log(1=r)

dr

r log(1=r)

�
� C

log log(1=")
:

Proof. In the case d � 3 we can bound the variance by

2C

(log(1="))2

Z 1

"

Z %

"

�r
%

�� dr
r

d%

%
=

C

(log(1="))2

Z 1

"

1

%�
%�

�

d%

%
� C

log(1=")
:

In the case d = 2 we substitute s = (log(1=r))�1, t = (log(1=%))�1 and let Æ = (log(1="))�1.
Then we can bound the variance by

C

(log log(1="))2

Z 1=e

"

Z %

"

s
log(1=%)

log(1=r)

dr

r log(1=r)

d%

% log(1=%)
=

C

(log(1=Æ))2

Z 1

Æ

Z t

Æ

r
s

t

ds

s

dt

t
;

which again is bounded by C= log(1=Æ), as in the �rst part.

By a straightforward Borel-Cantelli argument we infer from the previous lemma that, if d � 3

and chosing "n = exp(�n2),

lim
n!1

1

log(1="n)

Z 1

"n

X1(B(x; r))

r2
dr

r
= lim

r!0
IE

nX(r)

r2

o
= D(d; 4) P -almost surely.
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It is easy to see that the sequence f"ng is suÆciently rich to ensure the convergence along every

sequence. In the case d = 2 we de�ne "n = exp(� exp(n2)) to obtain

lim
n!1

1

log log(1="n)

Z 1=e

"n

X1(B(x; r))

r2 log(1=r)

dr

r log(1=r)
= lim

r!0
IE

n X(r)

r2 log(1=r)

o
= 2 P -almost surely,

and again the sequence "n is rich enough to ensure full convergence. Hence Theorems 1.1 and 1.2

are proved.

Let us briey sketch an argument leading to nonexistence of the average densities of order two of

fZtg in dimension 2. Suppose they exist on a set of positive measure with positive probability.

Then, arguing with a zero-one law as Le Gall and Perkins in [LP95, Section 7], they exist Zt-

almost everywhere, almost surely. By the consistency of the averaging procedure, the average

densites of order two must be equal to the average densities of order three, and in particular

they must be constant. But one can check that the family

�� 1

log(1=")

Z 1

"

X(r)

r2 log(1=r)

dr

r

�2�

is uniformly integrable and hence the expectation of this family has to tend to zero. It may be

shown, using calculations analogous to those in Section 3 above, that this is not the case, and

one arrives at a contradiction.

5 Average densities and long time behaviour

In this section we restrict attention to the case d � 3. We recall some well-known facts about

the long-term behaviour of super-Brownian motion (see [DP91]) and point out the connection

to the average densities. In our current setting, if the super-Brownian motion is started with a

�nite mass, almost surely, the process fZtg su�ers extinction in �nite time, i.e. there is a �nite

random time T such that, almost surely, Zt = 0 for all t � T . It is however possible to obtain a

nontrivial longtime behaviour if we extend our process to a process on the space

Mp(IR
d) = f� 2M(IRd) :

Z
'p d� <1g ;

for 'p(x) = (1 + kxk2)�p, equipped with the p-vague topology, generated by the functionals

� 7! R
'd� for all ' : IRd ! [0;1) satisfying sup j'(x)='p(x)j < 1. Such an extension is

possible and allows the de�nition of the process fZtg started in Z0 = `d, the Lebesgue measure,

if p 2 (d=2; d=2 + 1). Then it is easy to see that

lim
t!1

Zt = Z1 weakly in Mp(IR
d),

for some random variable Z1 on the space Mp(IR
d). Z1 is called the equilibrium random

measure of the super-Brownian motion. By the superprocess property we have IEZ1 = `d.

It is not hard to see (using the branching property) that Z1 is an in�nitely divisible random

measure and hence we can associate a canonical measure R1 with Z1. R1 is a �-�nite and
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translation invariant measure on M(IRd). The Palm distributions Rx
1 associated with R1 are

given by the formula Z
exp

h
�
Z
'd�

i
Rx
1(d�) = IPx

�
e�

R1
0

Us'(ws) ds
�
; (23)

where IPx is the distribution of Brownian motion W started in x, see [DP91, 6.1] for a proof.

Note that, due to the translation invariance of R1 the Palm distribution Rx
1 at x are given as

translates of the Palm distribution R0
1 at 0.

Theorem 5.1 Suppose that X0 is distributed according to the Palm distribution R0
1 at 0, which

is associated with the canonical measure of the equlibrium random measure Z1. Then the average

density of Theorem 1.1 may be described as D(d; ) = IEfX0(B(0; 1))g.

Proof. We choose  = 4 and look at the distribution of X(r)=r2 on the space (
;A; P ) equipped
with the Campbell measure P associated with the canonical cluster. For every y 2 IR

d this

distribution is equal to the distribution under X1[W ](dx)Ny(dW ). For this distribution we

obtain, using (5) and the moment formula for Poisson processes,Z
exp

h
� �

X1(B(x; r))

r2

i
X1[W ](dx)Ny(dW )

=

Z
P (w)

n
exp

h��
r2

ZZ
X1�t[W ](B(w(1); r))M2(dt; dW )

io
IPy(dw)

=

Z
exp

�
4

Z 1

0
dt

Z
Nw(t)(dW )

�
exp[��=r2X1�t[W ](B(w(1); r)] � 1

��
IPy(dw) :

Using (4) and (1) we can infer thatZ
Nw(t)(dW )

�
exp[��=r2X1�t[W ](B(w(1); r)] � 1

�
= log IQw(t)

n
exp

h
� �=r2Z1�t(B(w(1); r))

io
= �U1�t

� �
r2
1B(w(1);r)

�
(w(t)) :

Altogether, we obtainZ
exp

h
� �

�(B(x; r))

r2

i
P (dx; d�) =

Z
exp

�
� 4

Z 1

0
dtU1�t

���
r2

1B(w(1);r)

�
(w(t))

�
IPy(dw) :

Choose g : IRd ! [0;1) such that
R
g(x) dx = 1. As the above expression is independent of y,

we may take an average over y and then use the reversibility of Brownian motion. This yieldsZ
exp

h
� �

�(B(x; r))

r2

i
P (dx; d�)

=

ZZ
g(y) exp

h
� 4

Z 1

0
U1�t

� �
r2
1B(w(1);r)

�
(w(t)) dt

i
IPy(dw) dy

=

ZZ
g(w(1)) exp

h
� 4

Z 1

0
U1�t

� �
r2
1B(z;r)

�
(w(1 � t)) dt

i
IPz(dw) dz

=

Z
exp

h
� 4

Z 1

0
U1�t

� �
r2
1B(0;r)

�
(w(1 � t)) dt

i
IP0(dw) :
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We now use the scaling property of the equation (2) in the form (see [DD93, 4.5.1])

Ut

� �
r2
1B(0;r)

�
(y) =

1

r2
Ut=r2

�
�1B(0;1)

�
(y=r) (24)

and afterwards Brownian scaling to obtainZ
exp

h
� 4

Z 1

0
Ut

� �
r2
1B(0;r)

�
(w(t)) dt

i
IP0(dw)

=

Z
exp

h
� 4

Z 1

0

1

r2
Ut=r2

�
�1B(0;1)

�
(w(t)=r) dt

i
IP0(dw)

=

Z
exp

h
� 4

Z 1=r2

0
Us

�
�1B(0;1)

�
(w(s)) ds

i
IP0(dw)

r#0�!
Z

exp
h
� 4

Z 1

0
Us

�
�1B(0;1)

�
(w(s)) ds

i
IP0(dw)

= IE

n
exp[��X0(B(0; 1))]

o
;

where we have used (23) in the last step. As we already know from our main lemma that the

family fX(r)=r2g is uniformly integrable on the space (
;A; P ), we infer that IEfX(r)=r2g
converges to IEfX0(B(0; 1))g.

Remarks. The proof of Theorem 5.1 also shows that limr!0X(r)=r2 = X0(B(0; 1)) in distri-

bution. We carry the approach of this section a little bit further and investigate the random

measure X0. From (23), the scaling property of Brownian motion and the scaling property (24)

we get, for every ' : IRd ! [0;1) and r > 0,Z
exp

h
�
Z
'd�

i
R0
1(d�) = IP0

�
exp

h
� 

Z 1

0
Us(')(ws) ds

i�

= IP0

�
exp

h
� 

Z 1

0
Us(')(wr2s=r) ds

i�

= IP0

�
exp

h
� 

Z 1

0

1

r2
Ut=r2(')(wt=r) dt

i�

= IP0

�
exp

h
� 

Z 1

0
Ut

�'(�=r)
r2

�
(wt) dt

i�

=

Z
exp

h� R '(x=r)�(dx)
r2

i
R0
1(d�) :

In other words, the Palm distribution R0
1 on the space M(IRd) is invariant under the scaling

ow fS�g�2IR, which is de�ned by S��(A) = �(e��A)=e�2�. This observation allows the use of

Birkho�s Ergodic Theorem, which yields the existence of a random variable D0 with IED0 =

D(d; ) such that

lim
"#0

1

log(1=")

Z 1

"

X0(B(0; r))

r2
dr

r
= D0 , R0

1-almost surely.

By de�nition of the Palm measures and the canonical measure we thus obtain

lim
"#0

1

log(1=")

Z 1

"

Z1(B(x; r))

r2
dr

r
exists for Z1-almost every x,
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in other words the average densities of order two exist for the equilibrium measure Z1. This

looks like a good starting point for a natural proof of Theorem 1.1, but I have not been able to

make the transition back from the random measure Z1 to the super-Brownian motion with an

arbitrary �nite starting mass.

6 Further comments and open questions

� An interesting line of generalization one might want to follow is the replacement of the

Brownian motion as underlying particle movement by a general di�usion. In the case of

a scalar di�usion coeÆcient � : IRd ! (0;1) it would be interesting to see whether the

values of the average densities of the critically branching measure-valued di�usion fZtg
with underlying particle motion dXt = �(Xt) dBt at a �xed time t allow a reconstruction

of the scalar �eld � at Xt-almost every point. In a similar vein one could make the

branching rate space-dependent and ask whether it can be recovered by means of the

average densities.

� It would also be interesting to give �ner descriptions of the uctuations of the density

function r 7! Z1(B(x; r)), for example the lacunarity distributions studied for the case of

planar Brownian motions in [PM98].
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