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Abstract

We consider a problem related to resistance spot welding. The
mathematical model describes the equilibrium state of an elastic, cracked
body subjected to heat transfer and electroconductivity and can be
viewed as an extension to the classical thermistor problem.

We prove existence of a solution in Sobolev spaces.
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Figure 1: Schematic of the resistance spot welding process.

1 Introduction

In resistance spot welding two workpieces are pressed together by electrodes.
Owing to the Joule effect and the high resistivity in the contact area between
the workpieces, the welding current leads to an increase in temperature, until
finally a weld nugget is formed (cf. Fig. 1).

For a complete description of the process, one has to take into account me-
chanical, thermal and electrical effects, as well as the free boundary between
liquid metal and solid. To the knowledge of the authors mathematical models
up to now have only considered the thermal and electrical effects, neglecting
mechanics (cf. e.g. [3]).

Obviously, the most important control parameters for the process are the
force, applied to join the work-pieces and the shape of the electrode. To
achieve a uniform current density between the electrodes, flat electrodes
would be desirable. On the other hand, to reduce wear, a domed electrode is
more favourable. Hence, the area of contact between electrode and workpiece
is very important to control the quality of the weld joint.

The aim of the present paper is to initiate the investigation of this contact
problem. Owing to the quadratic Joule heating term in the energy balance a
crucial point for the analysis will be the regularity of solutions for the electric
potential equation. To avoid the additional difficulties, which arise from the
geometric singularity at the boundary of the contact between electrode and
workpiece, we will focus on the simplified problem of a cracked thermoelastic
body.

In the next section we give a precise formulation of the model. An existence
result is proved in Section 3.



2 Mathematical model

Let & C R? be a bounded domain with smooth boundary I, and = C Q
be a smooth curve without selfintersections. Denote Q. = Q '\ =, Q. = 0 x
(0,7),Q = 2 x (0,7), T > 0. Assume that T = T; UL, ,I'NTy = 0,

measl’;y > 0.

Q

Figure 2: The domain 2.

In the domain Q., we want to find a solution v = (u; ,us), 8, ¢ of the following
boundary value problem

—045,5 + 520,1' == 0, (1)
0, — A0+ 52%divu = v(0)|Ve|?, (2)
div(y(6)Ve) = 0, (3)
6 =0, fort =0, (4)
¥ = ®o, HZOOHFX(();T); (5)
oiyn; =gion 'y x (0,T),2=1,2, (6)
Oy 00 _
o= 03] <0, 0= 5] comEx0n, @
u=0onT7 x(0,T); [u]-v>00nz=x(0,T), (8)
0, <0, [0,]=0, 0,=0, o, -[ul-v=00nz=x(0,T). (9)

Here 6 1s a positive constant describing the thermal expansion, v is a given
C'—function, v, < v(s) < 742, s € R; 71,72 are positive constants, o;; =
o;;(u) denote the stress tensor components, 2,7 = 1,2, 0;; = aijuer(u) is
the Hooke’s law, eg(u) = %(ukl + uy ) are strain tensor components, elastic
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coeflicients a;;i are smooth and satisfy the usual assumptions of symmetry
and positive definiteness. We select a unit normal vector v = (v1,13) to =,
and n = (n1,ny) is a unit normal vector to T,

{U’ijyj}:aT—l_UV'V; 7::1727 T:(_V2;V1) .

The mathematical model (1)-(9) describes the equilibrium state of an elastic
body subjected to the heat transfer and electroconductivity. The function
u = (u1,ug) describes the displacement field in the body, 6 is the temperature,
¢ stands for the electric potential, the brackets [v] = v* — v~ mean the jump

-+ ——
(=

of v across Z, v¥, v~ stands for the values of v on Z*, =7, respectively, where

b
=% Z~ are defined for given choice of positive and negative directions of v

on =.

Figure 3: The cylinder Q..

The curve = presents the crack in the body, and the second inequality of (8)
corresponds to the mutual nonpenetration condition between the crack faces.
In the following we assume that

6o € Hy(Q); g: € H'(0,T;LX(T2)), i=1,2% o€ L®(0,T; H>(T)) .

Here

Hy(Q)={ve H(Q)|v=0o0n T}

The space H%(I‘) can be defined as the space of traces on I' of all functions
from H*(Q).

Our aim is to prove an existence theorem for the problem (1)-(9).



Note that the so-called thermistor problem for finding the temperature and
electrical potential was considered in [1], [2], [8], [9]. The Stefan problem with
Joule’s heating was analysed in [5]. On the other hand, there are many pa-
pers related to equilibrium of elastic bodies with cracks and nonpenetration
conditions imposed on the crack faces (see [14],[13], [12]), and to thermoelas-
tic bodies with linear and nonlinear boundary conditions of Signorini’s type
(see [3], [4], [10],[11]). Thermoelastic problems are formulated in terms of
the displacement vector and the temperature.

3 Existence theorem and proof

To prove the existence of a solution to (1)-(9) we substitute the function
§ = 8 in (3) and determine the function ¢ from (3) and the first conditions of
(5),(7), respectively. Then we consider 4(8)|Vp|? as a given function in the
right-hand side of (2) and solve the equations (1), (2) along with all boundary
and initial conditions. In such a way we find the functions u, §. Next step of
the proof is to show that the mapping

9 — 6

admits a fixed point in an appropriate functional space. To this end we use
the Schauder fixed point theorem.
Let § € L*(0,T; H%(QC)) be any fixed function. Consider the following prob-

lem

div(y ()Ve) =0 in Q. (10)
w=9o on I'x(0,7), (11)
(o] =0, [’Y () g—‘f] =0 on =x(0,T). (12)

Here, ¢t plays the role of a parameter. Note first that the conditions & €
HY(Q.), [(] =0 on Z provide the inclusion ¢ € H*(Q).

Consider the problem (10), (11) with the first condition of (12). The solution
of this problem can be defined as follows

¢ € L™(0,T; H'(Q)),
/ VBV V=0 Vi € L2(0, T; HA(Q))
Q
(13)

with the condition (11). It is easy to obtain the estimate for the function
@ by choosing ¢ = ¢ — ®,. Here we take @y as an element of the space
L>(0,T; H*(Q2)) such that ®5 = o on I'x (0, T'). From the condition imposed
on g it follows that such an extension of ¢q in the domain @ exists. As a
result of the substitution we have the equality

/Q V(B)Ve - (Vo — Vo) = 0
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which provides the estimate

’Yl/ |V‘P|2 S’Yz/ |V‘P‘V‘I’o|-
Q Q

Hence the above inclusion ¢ € L*°(0,T; H(Q2)) follows. Existence of the
solution is proved by the standard variational method. Moreover, the second
condition of (12) is fulfilled since the equation (10) holds in @ (compare [13],
[14]). Indeed, in the domain @, consider the zeroth distribution div(y(6)Ve).
Denote by (-, ¢) the value of a distribution at the point £. We divide €. into
two subdomains €y, {25 by extending the curve =. In so doing we assume that
the extended curve crosses the boundary I' at two points, and the boundaries
08, + = 1,2, with unit external normals v!, v%, respectively, to possess the
Lipschitz property. We have in @,

(div(y()Ve), ) =0, ¢ € CR(Q).

Consequently,
(div(v(8)Ve),€) = — / Y(O) V- VE - VOV VE=
01 x(0,T) 0, x(0,T)

= (div(7(0) V), E)a, x(0,1) + (div(v(6) V), £)a, x(o.1)+

+ [ @) et =0,

Here we use the following well-known fact. Let D C R? be a bounded domain
with a Lipschitz boundary 8D Then the conditions u € H(D), div(aVu) €
L*(D),a € L*(D) imply a “ € H- 1/2(D), and the Green formula holds

1 = a@ — | aVu- !
/Ddlv(aVu)f—< 8n’€>1/2 /D Vu-VE¢ VEe H (D),

where (-, )1/, is the duality pairing between H~*/2(8D) and H'/2(8D). This

implies the second condition of (12),

JREGEAR SR

which holds in the sense

[ 0@ masit + [ @ Qanni=0, € O7(@Q)

Hence we obtain the following boundary value problem for ¢,

div(y () Vo) =0 in @, (14)
w=9o on I'x(0,T). (15)



Now we aim to show an additional regularity for ¢. First note that for any
given g € W;(Q),p > 1, the solution w of the problem

div(iVw+g¢)=0 in £,

w=0 on T
exists and the following estimate holds,
IVwl[zo)y < Ap| V]| zo(a) (16)

with the positive constant A, depending on p.
We can rewrite the problem (14), (15) in the form

div (fyl —;—'yg Vv +5(0)Vv + ’Y(g)v(%) =0 in @, (17)
v=0 on I x(0,T). (18)

Here v = ¢ — @ is unknown function, §(s) = y(s) — 2322 Note that |j(s)| <
s R
Take any function v° € L*(0,T; W}(Q)) and apply the iteration method for

solving the problem (17), (18):

div (’Yl;va"H —|—'~y(§)Vv"—|—'y(§)V<I>o> =0 i @, (19

v

"1=0 on T x(0,7), (20)

where n = 0,1,2,... Assume that the oscillation of the function v is small
enough so that A < 1, A = Z2A,. According to (16) for almost all ¢ €
(0, T) we have the estimate

2’}’2A2

Vv”“ 4 < AlIVY?|| 74 + AV 4 ,)\: .
| [ze(a) < AIVV™|[zega) + AV ®ol|1e(a) "t

Consequently, for almost all ¢ € (0,7") this implies
A
IVo™ Iz @) < IV lzsa) + 77 IV @ollt(@), 7 =0,1,2, ..
Whence the following estimate is obtained,
V0™ || poogo,rsLe(a) < € (21)
being uniform in n. Taking the difference v™ —v!,n > [, we easily derive that
IV (0™ = ") |zee o524y < A V(0" = 0%)|| 1= (0,7328()

By (21), it follows that the sequence v™ is fundamental, and we can assume
that as n — oo



v* —wv in L=(0,T; LY.

This allows us to pass to the limit in (19), (20) as n — oo. Hence the
problem (17), (18) (or, what is the same, the problem (14), (15)) has the
solution which satisfies the inclusion v € L°°(0, T; W;(2)). Consequently,

Ve € L®(0,T; L*(Q)). (22)
This implies that

7 (0) [Vel* € L*(Q.),

and we can consider the following initial-boundary value problem in @). for
unknown functions u = (uy ,u2), §:

—0ij;+6%0; =0,

(23)
2 0 . 2
0, — N+ adlvu:'y(g) Vel?,
(24)
u=0onTI x(0,T);0;m; =g, on Ty x(0,T),2=1,2,
(25)
[u]-v>0, 0,<0, [0,]=0, 0,=0, o, -[ul-v=00nz=x(0,T),
(26)
§=0onl x(0,T),
(27)
6
0] = [8_] =0on = x (0,7),
Ov
(28)
0 =6, for t = 0.
(29)

The problem (23)-(29) with the given right-hand side h = v (9) |[Ve|* €
L?*(Q.) can be solved for small § (see [3], [7]), with the following estimates

10¢]2(@c) + 10|22 0,51 (00)) < c8|ul| g0, msmr(an)) + callhllzz@ . (30)
| o181 (00)) < €3]0\ () + callgllmromszo(ms)) + ¢sllfollmr),  (31)

and the constants ¢; are independent of &, § . This solution (u,8) satisfies
the variational inequality

/ oijei (U —u) — 52/ gdiv(u — u) > /1“ o) 9i(ui —w;) YueK,
c c 2 X(0,
(32)



and the identity

/Q (0t + 52%divu — v (6) |w|2) n=— , V8-V Vnc L*0,T; Hy(Q)).
(33)

Here

K={veL’(0,T; H(Q)v=00n Ty x (0,T), [v]-v>0 on Zx(0,T)}.

In fact, the presence of the estimates (30)-(31) allows us to find 6 such that
for all § < ég the problem (23)-(29) is solvable. In what follows we fix any
8 < 8o which provides the solvability of (23)-(29). The solution of (23)-(29)

satisfies the following inclusions

6, € L*(Q.), 8 € L*(0,T; H(Q.)), v € H'(0,T; H'(.)).

Actually, the function 6 has a higher regularity. To see this we write the
equation (33) in Q. in the following form

—Af = —0; — 52%divu +v(8) [V (34)

with the right-hand side —8; — §22divu + v (6) [V¢|? belonging to L(Q).
Of course, the derivative %divu is defined with respect to the domain Q..
Conditions (28) provide that the equation (34) holds in Q. In this case we
can argue as in the case of the boundary value problem (10)- (12) which, in
fact, removes the singularity surface = x (0,7"). Consequently, by (27),

9 € L*(0,T; H*(Q) N Hy()) .
Note that the estimate

||0||L2(0,T;H2(Q)OH3-(Q)) < cg

for the solution to the system (32)-(33) is also independent of the norm

||§||L2(O,T;H%(Qc)). The constant ¢g depends on @ and the L?—mnorm of the

right-hand side of (34).
Divide next the domain €. into two subdomains €2y, {2, with Lipschitz bound-
aries as before, and notice that the space

6, € L*(0,T; L*(Q;)), 6 € L*(0,T; H*(Q;))
is compactly imbedded in the space [15]

6 € L*(0,T; H7()) ,i = 1,2.

?

Consequently, the space

0, € L*(0,T; L3(Q)), 6 € L*(0,T; H¥(QL))



has a compact imbeddeding in the space
6 € L*(0,T; H?(Q,)) .
This means that if  belongs to any ball in the space L*(0, T} H%(QC)), ie.

HHHL?(O,T;H%(QC)) <k

for R sufficiently large, the solution 8 belongs to the same ball, and the
mapping Lz(O,T;H%(QC)) 580 — 0 ¢ Lz(O,T;H%(QC)) is compact. So
we can apply the Schauder fixed point theorem to assure the existence of a
solution to the problem (1)-(9). As a result we have the following existence
theorem.

Theorem 3.1 Assume that all assumptions concerning gi,7, o, 0o, aijr are
satisfied. Then for small § there exists a solution to the problem (1)-(9) such
that

0, c L*(Q.), 0¢cL*0,T;H'(Q)), vec K, uc H'(0,T; H(Q,)),

/ (0t + 52%divu —v(0) |ch|2) n=— V8-V Vne L*0,T; Hy (),
Qc QC

Note that, in fact, we have some additional regularity for the solution of (35)-
(39), in particular,

0 € L*(0, T; H3(Q) N HY(Q)) . (40)

The inclusion (40) follows from the equation

0
—Af = —0; — 52Edivu +(8) V|
and the given bounary conditions for 8 on I' x (0,7) and = x (0,T"). Recall
that the boundary conditions on = x (0,7) remove the singularity surface

=x (0,T).
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Boundary conditions (6),(9) are included in the variational inequality (37).
It can be shown (see [7]) that the displacement u also has an additional
regularity, in particular, for any z € = there exists a neighbourhood V' such
that

u € L*0,T; H3(V N Q.)).

Consequently, from the variational inequality (37) it follows that boundary
conditions (9) hold for almost all (z,t) € = x (0,T).

We can state an additional smoothness of ¢ provided that |y'(s)| < vz, 13 =
const. Namely,

o € L90,T; H*(Q)) ,q < 4. (41)

Indeed, the equation (39) reads

Ap = _:};’((00)) V8-Vo in Q. (42)

According to [15] the space

. € L*(0,T; L*(Q)), 6 ¢ L*(0,T; H*(Q))
has (compact) imbeddeding in the space
6 € L0, T; H2(Q)),q < 4.

Consider the right-hand side of the equation (42). Since the imbedding
Hl/z(Q) C L*(Q) is continuous for the two dimensional case we have

Vo ¢ LY0,T; L*(Q)) . (43)

Consequently, by (22), (43),

V- V8 € 190, T; LA(Q)) .

The right-hand side of the equation (42) belongs to L%(0,T; L*()), and
o € L=(0,T; H*(2)), hence the inclusion (41) follows.

It is clear that to prove the existence theorem we can choose the function

6 ¢ L*0,T; H%(Q)) satisfying the additional conditions [m = [g] =0 on

= %X (0,T). In this case the proposed scheme of the proof also works since
the solution 8 of the problem (32), (33) is smooth , i.e. 6, € L*(Q), 6 €
L?(0,T; H*(Q)), and consequently, we obtain a compact imbedding of the
space L2(0,T; H%(Q) into itself.

Also, note that to prove the theorem it suffices to require a weaker regulariry
assumptions on ¢g. We can assume that ¢o is a trace on I' x (0,T) of a

function ®, € L*(0,T; W} (Q)).
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