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Summary

The paper contains a proposition of a model of adsorption in porous, and granular materials. It
is assumed that the mass source resulting from adsorption consists of two contributions: an equilibrium
phase change described by the Langmuir isotherm, and a nonequilibrium change due to the relaxation of

porosity. The model is illustrated by a simple numerical example of a homogeneous adsorption process.
1. Introduction

Processes of mass exchange between components of mixtures of fluids, and solids
belong in most real cases to one of the three fundamental classes: phase changes, chemical
reactions or adsorption/desorption processes. Within the first two classes the exchange of
mass is accompanied by thermal effects due to the presence of a latent heat of reaction.
The processes of the last class can be considered to be isothermal, for instance for a small
concentration of adsorbate.

In this work we limit our attention to adsorption processes and consider a construction
of the mass source contribution to mass balance equations of a multicomponent continuous
model of porous materials. As the basis for this construction we use the model presented in
my earlier papers [1,2]. In order to expose clearly the most important intrinsic properties
of such sources we investigate a simple example of a homogeneous process. The important
coupling of adsorption with diffusion shall be presented in the other two forthcoming
papers [3,4].

The model of such a mass exchange between a fluid component, and a solid in porous,
and granular materials is based on the classical work of Langmuir [5,6,7] (see also: [8,9]
for the discussion of other models). In the original works of Langmuir the theory of
adsorption was limited to flat solid surfaces interacting with a gas. On the microscopic
level of description of porous, and granular materials we rely on the assumption that
particles of the adsorbate change their kinematics from fluid to solid due to a weak van
der Waals interaction with internal surfaces of the skeleton (a solid component of the
system). The transfer of particles from the fluid component to the internal surface of the
solid depends on an area of this surface, and on the number of available bare sides on
this surface. Their physical interpretation depends on the nature of adsorption processes
on internal surfaces, and it shall be discussed in the paper [4]. On the macroscopic level
(i.e. in the representative volume element (REV') of a porous or granular material) the
normalized fraction of these sides per unit volume is denoted by 1—=z, i.e. z is the fraction
of occupied sides. If the area of the internal surface contained in the representative volume
element is denoted by f;,:, and the mass of adsorbate per unit area of the internal surface
by m# then the amount of mass which can be adsorbed in the representative volume
element is equal to the product m? fi,; (1 — ).

Let us denote by V' the volume of the representative volume element. Then the
amount of mass of adsorbate transfered in unit time from the liquid phase to the solid
skeleton is given by the balance relation
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where p? denotes the intensity of mass source per unit time, and unit macroscopic
volume.



In order to construct the model we have to specify the rates in this relation.

For Cfi—f we assume that changes of the fraction z are described by the Langmuir
relation
d
d—f :a(l—x)pA—bxe’f_ib“, (1.2)

where p? denotes the partial pressure of the adsorbate in the fluid phase, Ej is
the energy barrier for particles adsorbed on the solid surface due to the van der Waals
interaction forces, and it is assumed to be constant, a, and b are material parameters which
within the present model may depend solely on the temperature, k£ is the Boltzmann
constant, and T is the absolute temperature. In the case of full phase equilibrium we
obtain from the equation (1.2) the following relation for the fraction of occupied sides
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which defines the so-called Langmuir isotherm.

The relation (1.3) indicates that within this model the isothermal equilibrium change
of & can be produced by a change of partial pressure p*. Such a change yields a new
phase equilibrium with a new value of the equilibrium fraction xy,.

We proceed to formulate a relation for %. We make the assumption that changes of
the internal surface are coupled with dissipative changes of the porosity n which in turn
describe relaxation processes of microscopic changes of volume of the skeleton. Latter
processes are discussed in details in the works [1,2].

First of all let us notice that for sufficiently smooth internal surfaces of porous, and
granular materials with a random geometry of pore spaces a change of an average char-

acteristic linear dimension of the internal surface, and this of pores in the elementary
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representative volume can be assumed to be proportional: 6f2, ~ 6 (nV)3. Simulta-

neously dissipative changes of the porosity are given by a source n which describes the

intensity of these changes per unit time and volume of the porous material. Bearing the
above assumption in mind we obtain immediately
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where the proportionality factor ¢ is assumed to be constant for the purpose of this

work.
Substitution of relations (1.2) and (1.4) in (1.1) yields

n
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Obviously in a thermodynamic phase equilibrium n = 0, and the fraction x is con-
nected with the partial pressure p# by the relation (1.3). Then the mass source vanishes
identically.

In the next Section we incorporate this relation for changes of the fraction of bare
sides into the continuum field model.



2. Continuum model of adsorption

Let us consider a porous body with a fluid component carrying the adsorbate (see:
[3,4]). We assume that this fluid component and the adsorbate in the fluid phase have the
same kinematics given by the field of velocity v" (x,t). The skeleton (solid component)
moves with the velocity v° (x,t). If we denote by p", p#, p° the current mass densities
of the fluid component, of the adosrbate, and of the skeleton, respectively, then the mass
balance equations have the form
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0 +div (p'v") = pt (2.1)

It has been assumed that the fluid component does not exchange the mass with other
components.
These equations can be conveniently written in the following form
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The momentum balance equations shall be used in the reduced form in which the
partial stress tensors of fluid components are spherical. Then
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+div (v o v® - T%) = -p, (2.4)

+div (p"v" @ v +p"1) = p,

where p is the partial pressure in the liquid (i.e. in the fluid and adsorbate in the
fluid phase together), and it is assumed to be the sum of partial pressures in the fluid p*’,
and in the adsorbate p?: p* = p” + p°. T denotes the partial Cauchy stress tensor in
the skeleton, and p is the momentum source in the liquid.

In addition to the above partial balance equations of mass and momentum we need
an equation for the porosity. It has been argued in my earlier works on the model of
porous materials [1,2] that the porosity satisfies a balance equation of its own, vis.

%+vs-gradn+nﬁ;div (vF—vS) =n, (2.5)



where ng denotes an equilibrium value of the porosity. An assumption on small
deviations from the thermodynamic equilibrium yields the following form of the source of
porosity
A
n=——, A:=n—ng, T >0, (2.6)
T
where 7 is the relazation time of porosity. We accept this relation for the purpose of
this work.
We proceed to construct the mass source 6% in the case of the above model of porous,
and granular materials. Bearing the relation (1.5) in mind we obtain
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where pZ, shall be assumed to be constant. It means that we neglect a small devi-
ation of f;,; from its reference value which seems to be reasonable in the case of small
concentration c¢ of the adsorbate. For the same reason we have made the assumption
pA = cp’. 7.4 has the obvious interpretation of the characteristic time of adsorption.

In addition the fraction x must satisfy the evolution equation (1.2), i.e.
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where pf denotes the reference value of the pressure in the liquid.
This completes the model of the mass source for adsorption.
The source ¢ of equations (2.2) can be written in the form

a:p—%{(x—u—@ﬁ)—(1_x)yA}i, (2.9)
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with z satisfying the evolution equation (2.8), and A satisfying the balance equation
(2.5).

Bearing the above considerations in mind we can construct the model in the following
way. If we denote by € the Almansi-Hamel tensor of small deformations of the skeleton
then for the fields
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of a mechanical model of adsorption (isothermal processes) we need constitutive re-
lations for the partial Cauchy stress tensor in the skeleton, T*, partial pressure, p”, and
the momentum source p. In the next Section we consider solely a very simple example of

such relations.



3. Governing equations for a one-dimensional homogeneous process

In this Section we consider a homogeneous process of a one-dimensional compression
of a three-component system in an impermeable cylinder. One of the components is an
adsorbate with a small concentration c¢. The process is controlled by an impermeable
piston at z = 0 on which the external pressure is changed from pl,, = const. t0 Peyt =
const. Then the velocities v, and v possess a one identical non-zero component, v,, in
the direction of the piston motion z, and this is a linear function of the coordinate z. The
set of equations presented in the previous Section reduces to the following one

dc . opt L0685
T (1-0)¢, E‘FP o PG
9 pt(1-c) 5 TS
J— = — 1 —_— e
- 375( h—a) a\ " e .
(3.1)
op°  g0® L. 0 v,  Opt do®
ot TP T TP e T e Y e Y
Pt = o

In the above equations, p%, and ¢y are reference values of pX, and ¢, respectively, o
is the normal component in the z-direction of the stress tensor T, and ¢ denotes the
elongation of the skeleton in the z-direction, and it is the only essential component of the
Almansi-Hamel deformation tensor €.

In addition to the above relations we use the balance equation of porosity which
serves the purpose of a field equation for the porosity n, and the evolution equation (2.10)
for the field &.

In the case of homogeneous processes the porosity equation reduces to the evolution

equation of the form
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where ng is the initial value of the porosity, i.e. A;—g = ng—ng. Let us notice that in
the case of a natural initial condition for n when ny = ng the porosity remains constant
in the whole process. This is due to the lack of diffusion in our simple example. However
we can also expect an initial disturbance of porosity due to the coupling with deformation
processes. We present this problem in the sequel.

In order to transform equations (3.1) into field equations for the fields

{p°, 0" c, e}, (3.3)
we have to add constitutive relations for the quantities
{é, oL, O'S} ) (3.4)



Let us notice that the common trivial kinematics of components of this example re-
duces the momentum balance equations to equilibrium conditions. On the other hand the
usual boundary conditions for the one-dimensional case of the model of porous materials
yield the following solution

(P* = 05) = pear for z =0,
~v5) n=a(pt — npe) forz=0, (3.5)
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The coefficient « describes the so-called surface permeability (see: [3,4]) and it is
immaterial in the present homogeneous case.

To close the set of equations we need constitutive relations for the source ¢, the partial
pressure p*, and for the partial stress 0°. The first one is given by the relation (2.9). The
remaining two relations are assumed to be linear, and to have the form [1,2]

P = noply + %" (n) (p" — pg) + BA, (3.6)
US = - (1 - no)pgwt + ES (n) ES + BA7

where the compressibility coefficient s of the fluid, and the elasticity coefficient E°
of the skeleton may still depend on the current value of porosity. In the above relations
0 denotes the coupling coefficient of components.

Let us notice that constitutive relations (3.6) overdetermine the system of equations
due to the simplification of kinematics assumed for the present example. Namely bearing
equations (3.1) in mind we have to find solely the elongation €” from, say, equation (3.6)s.

The first relation (3.6) should be identically satisfied which, of course, cannot be
the case because s! (n) may be different for different materials. Consequently, we are
not able to satisfy either the boundary condition (3.5); or separately two constitutive
relations (3.6). In the first case we would have to consider jointly both momentum balance
equations, i.e.

0 (p* — %)
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In the second case we would have to require solely

=0 = pt— 0% = pest. (3.7)
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For the purpose of this work we choose the second possibility.
However we still use (3.6) for the motivation of initial conditions needed to solve
(3.1)124 and (3.2). We have to specify the following initial conditions

{ptL:07 Ct=0, Pf:o, 65:07 At:(]} . (39)



These are not independent if we accept (3.6) for t = 0. If we choose ¢;— and €7, as
given then we have

1
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where J° describes, as usual, changes of volume of the skeleton.

The choice of the initial condition for €;_, means that the full deformation of the
skeleton €° consists of the instantaneous elastic deformation €;_ 0 ¢ caused by the change of
pressure p2, — pest at t = 0, and of the ”viscous” part (6 — € 0) which is due to the
relaxation of porosity, and adsorption.

We are now in the position to formulate the main equation of the model, i.e. the
equation (3.1); for the concentration c. In order to simplify the numerical evaluation we
assume additionally that small changes of the mass density p” allow to replace it by p§ in
the coefficient of ¢ (see: (2.9). We can neglect as well the fraction z in coefficients in which
it is added to unity. This is admissible for small concentrations. These simplifications do
not change qualitatively the results.

After easy manipulations we obtain the following equation
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and the change of fraction z is given by the equation (2.8), whereas n, and A are
given by the relations (3.2).

The set of equations for z and ¢ is a coupled nonlinear set of differential equations
which cannot be solved analytically. Therefore we use an iteration following from the
assumption on a small value of the concentration c. Namely we integrate first the equation
(2.8) with ¢ replaced by ¢y which is a constant. Then we substitute this result in the
equation (3.11) which becomes the Riccati equation, and can be solved approximately for
small changes of the concentration. In the next iteration step we should substitute the
solution of the Riccati equation in (2.8), and calculate = again. This would yield the next
iteration step for c¢. For the purpose of this work we estimate only the first iteration step.

Bearing the solution (3.2) in mind we obtain for z
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It follows easily for large times
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The last result means, of course, that the system relaxes to the point of Langmuir

isotherm defined by a new value of the external loading. This limit is independent of the

behaviour of porosity because A = 0.

t—00

We proceed to investigate the first step in the approximation of the concentration.
It follows easily from the equation (3.11)
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Certainly, this linear equation can be solved analytically. Bearing in mind a very
small value of the relaxation time of porosity 7 we can further simplify the solution of
this equation, and after easy calculations we obtain

¢ — o — L [w (1- ) L V7 (o = ng) (1 —eéﬂ , (3.16)
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Consequently the second contribution (i.e. influence of changes of porosity) is almost
constant for ¢ > 0, and it is equal to zero for ¢ = 0. Its order of magnitude is the same as
this of the first contribution (due to changes of fraction of occupied sides) provided the
coefficient v in the product with — is of the order of magnitude one, i.e. ¢ of the relation
(1.4) is of the order of magmtude one.

4. Numerical example

In order to illustrate the qualitative behaviour of characteristic fields we present below
a numerical example for typical data of real soils. These are presented in the table.



Table 1

Elastic constant, £ (ng) 40 GPa Compressibility coeff., s" (ng) 106 2
Coupling constant, 8 100 MPa Langmuir pressure, pg 10 kPa
Initial concentration, ¢ 1073 Initial porosity, ng 0.23
Initial pressure, pY, 100 kPa Initial mass density, p§ x 107°  0.23 X%
Relaxation time, 7 10°%s Charact. time of adsorp., 7,4 1s
mass density on f,q, m* 7 x 1073 % internal surface, % 1500 E—i

In addition we choose €5 = —107% v = 10°, and the loading pressure pe,; = 200 kPa.

For the above data we obtain the following time behaviour of the fraction x of occupied
sides of the internal surface.
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Fig. 1: Fraction x as a function of time %

In Figure 2 we show the time behaviour of the concentration c described by the
solution of the equation (3.15).
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Fig. 2: Time changes of concentration c

The initial rapid change of the concentration is, of course, caused by the contribution
of changing porosity. For ¢ = 0 this contribution in the brackets of (3.16) is zero, and
then grows rapidly to a constant value 0.00117, while the contribution of the changes of
occupied sides grows slowly , and it reaches the maximum value of 0.00462 for ¢t — co.

In spite of simplicity and, consequently, some inconsistencies following from the lack of
relative motion of components the above example shows clearly that the structure of mass
balance proposed in this work for adsorption processes in porous, and granular materials
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yields physically and mathematically reasonable results. It remains to be checked if
it agrees quantitatively with experimental data. The latter problem is rather involved
as discrepancies in available experimental data are very large indeed, and they cannot
be clearly interpreted without a consistent model. The present model shows that such
processes require estimates of at least five parameters specific for adsorption. Namely
we need to know two relaxation times, 7, 7,4, the coefficient p?, the coefficient v, and
the Langmuir pressure py. Only rough estimates are available for some simple physical
systems.
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