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ABsTRACT. The paper is concerned with the problem of testing a linear hypothesis
about regression function. We propose a new testing procedure based on the Haar
transform which is adaptive to unknown smoothness properties of the underlying func-
tion. The results show rate optimality of this procedure under mild conditions on the

model.

1. Introduction

Suppose we are given data (X;,Y;),i =1,...,n, with X; € R', ¥; € R', obeying the

regression equation
Yi = f(Xi) + & (1.1)

where f is an unknown regression function and §; are zero mean random errors. Sta-
tistical analysis for such models may focus on the qualitative features of the underlying
function f. Particularly, no-response model corresponds to testing the simple zero hy-
pothesis that f is a constant function. Another typical example is connected to the
hypothesis of linearity. More generally one may consider a parametric type hypothesis
about f. In this paper, we restrict ourselves to the case of the hypothesis of linearity.
Using the hypothesis testing framework, we test the null hypothesis Hy : f ‘is linear’,
that is, f(z) = a + bz for some constants a,b, versus the alternative H; : f ‘is not
linear’.

The problem of testing a simple or parametrically specified hypothesis is one of the clas-
sical in statistical inference, see e.g. Neyman (1937), Mann and Wald (1942), Lehmann
(1957). Let ¢ be a test i.e. a measurable function of the observations Yi,...,Y, with
two values 0,1. As usual, the event {¢ = 0} is treated as accepting the hypothesis
and ¢ = 1 means that the hypothesis is rejected. The quality of a test ¢ is described
in terms of the corresponding error probabilities of the first and second kinds. Let Pj
denote the distribution of the data Y7,...,Y, for a fixed model function f, see (1.1).
If f coincides with a linear function fy, then the error probability of the first kind at
the point fy is the probability under f; to reject the hypothesis,

af(d) = Pro(d=1).

Similarly one defines the error probability Bf(¢) of the second kind. If the function f

is not linear, then

Br(¢) = Ps(¢ =0).

Typically one aims to construct a test ¢ of the prescribed level « , that is, satisfying for a
given g > 0 the condition ay,(¢) < ey which also has a nontrivial power 1 — Gf(p) >

0 against a possibly large class of alternatives f. A large number of proposals for
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constructing such tests can be found in the literature. We refer to Hart (1997) where
the reader can find historical remarks and further references. Note meanwhile, that the
majority of results in this domain is concentrated either only on verifying the condition
af,(¢) < o or on studying asymptotic properties of the power function 1—3¢(¢) for a
fixed or local alternative, and the question of test optimality is not addressed rigorously.

One possibility to introduce test optimality is proposed by Ingster (1982). The idea
is to construct a test ¢ which fulfills the above constraints oy, (¢) < g for all linear
functions fo and additionally the condition §f(¢) < By with some §y < 1—agp uniformly
over a possibly large class F of alternatives f. Following to Ingster (1982, 1993), we
consider the class F(p) consisting of smooth (in some sense) alternatives which are also

separated from the set of linear functions with the distance o, that is,
inf|[f(:) —a—b-| = o,
a,b

|I-|| being the usual Lo -norm. Then the quality of a test ¢ with the level aq is measured
by a minimal distance p such that Br(¢) < fo for all f from F(p). A test ¢* with
the level «g is optimal if it minimizes the corresponding separation distance p. Under
this approach, the goal is both to evaluate the minimal possible separation distance p
and to describe the corresponding optimal tests.

It turns out that the structure of optimal tests and the corresponding separation
distance strongly depend on the smoothness class F we consider. Ingster (1982, 1993)
described the optimal rate of decay of the separation distance p to zero as the sample
size n tends to infinity for Holder and Sobolev function classes, the case of Besov classes
is considered in Lepski and Spokoiny (1998). Sharp optimal asymptotic results can be
found in Ermakov (1990), Lepski (1993), Lepski and Tsybakov (1996), Ingster and Suslina
(1998).

Unfortunately the mentioned procedures hardly apply in practice since the informa-
tion about smoothness properties of the underlying function f is typically lacking. Some
adaptive (data-driven) smooth tests are proposed in Ledwina (1994), Fan (1996), Led-
wina and Kallenberg (1997), Hart (1997) where the reader can found further references.
Spokoiny (1996, 1998) considered the problem of adaptive testing against a smooth alter-
native and constructed an adaptive test which is near optimal by a log log multiple for a
wide range of smoothness classes. Moreover, the test is rate optimal in the class of adap-
tive tests, that is, this log log factor is an unavoidable payment for the adaptive property.
The inconvenience for practical applications is that this procedure is designed for an
idealized ‘signal + white noise’ model and only the case of a simple null is considered.

The aim of this paper is to develop an adaptive testing method which allows for a
non-regular design, non-Gaussian errors with an unknown distribution and a non-simple
null, and which is computationally simple and stable w.r.t. the design non-regularity.

The latter property is achieved by making use of the simplest wavelet basis, namely the
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Haar transform. It is worth mentioning that the Haar basis is not often used for estimat-
ing the regression function f from (1.1) because of its non-regularity: the corresponding
estimator is only rate suboptimal. Nevertheless, Ingster (1993) shown that, in spite of
the non-regularity of the Haar basis, the corresponding testing procedure is rate optimal.
Another remark concerns the assumption on the errors &;. Assuming i.i.d. errors with
a known distribution, one can easily select a critical level for any test statistic using the
Monte-Carlo or other resampling technique. For practical applications, this approach
needs to be justified since the underlying error distribution is typically unknown. The
problem becomes even more complicated if a data-driven test basing on the maximum of
different test statistics is used. We establish some general results on the approximation of
quadratic forms of independent random variables by similar quadratic forms of Gaussian
random variables which help to justify the following recipe: if the critical level of the
considered test statistic is calculated for Gaussian errors, then it applies, at least asymp-
totically, as the sample size grows, for an arbitrary errors distribution with bounded 4
moments.

The paper is organized as follows. Section 2 contains the description of the proposed
testing procedure. The properties of this procedure are discussed in Section 3. Some
possible extensions of the method to the multivariate regression and heterogeneous noise
can be found in Section 4. The proofs are postponed to Section 5. In the Appendix we

collect some general results for quadratic forms.

2. Testing procedure
We consider the univariate regression model
Y;,:f(Xz)—i_fla i:]-a"'ana

with additive homogeneous noise, that is, the errors & are independent identically dis-
tributed with zero mean and the variance o?: E& = 0 and Ef? = 02. The design
points X1,...,X, are assumed to be rescaled to the interval [0,1], that is, X; € [0, 1]
forall i=1,... ,n.

The proposed makes use of the Haar transform. We first recall some useful facts about

the Haar decomposition and then explain the idea of the method.

2.1. Preliminaries

Hereafter we denote by I the multi-index I = (j,k) with 7 = 0,1,2,... and k =
0,1,...,27 —1, and let Z be the set of all such multi-indices. We also set

Z; ={(j,k),k =0,1,... ,27 — 1}
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for the index set corresponding to j-th level. Let now the function (¢) be defined by

0 t<0,
1 0<t<1/2,
P(t) = <
-1 1/2<t<1,
\0 t> 1.

For every I = (j,k), define the Haar basis function h; by
hi(t) = 29/24(27t — k).

Clearly the function h; is supported on the interval A; = [277k,277(k + 1)]. It is well
known that each measurable function f on [0,1] can be decomposed in the following

way

f) =co+ > crhi(t) =co+ ¥ Y crhi(b). (2.1)

1€z j=01€T;

This means that the problem of recovering the function f can be transformed into
the problem of estimating the coefficients ¢; by given data. Since we have only n
observations, it makes no sense to estimate more (in order) than n coefficients. We
restrict therefore the total number of considered levels j. Let some j be fixed such that
2771 <n. We also introduce the rescaled basis functions t; to provide Y, [¢r(X;)]* =
1, that is,

Pi1(X;) = pyhi(Xa),

with p? = 3" | h?(X;). Next we replace the infinite decomposition (2.1) by the finite

approximation Y ¢rtr(t) where the index set Z(j) contains all level sets Z, with
I€Z(j)
¢ < j. Taking into account the structure of the null hypothesis, we complement the set

of functions (¢y, I € Zy), £ < j, with two functions 9y = 1 and 1 (¢) = ¢, that is, we

consider the set of indices
J
() ={0,1} + | J Z.
=0

The idea of the proposed procedure is to estimate all the coefficients (cr, I € Z(j5))
from the data Y7,...,Y, and then test that all the coefficients ¢y for I # 0,1 are zero.
For a function g, define ||g||,, by

1 n
lgliz == g*(Xa).
i=1
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Define also the column-vector 6*(j) = (67, I € Z(j)) as a minimizer of the error of

approximating f by a linear combination of 7, I € Z(j):

0°(j) = arginf[|f — Y Ori]l7. (2.2)
0(5) 1€7(j)

This is a quadratic optimization problem with respect to the coefficients {0;,1 € Z(j)}.
Therefore, the solution 8* always exists but it is probably non unique. To get an explicit
representation for 8* we introduce matrix notation.

First of all, we make an agreement to identify every function g with the vector
(g(X;),i=1,...,n)" in R* where the symbol ' means transposition. Particularly,
the model function f is identified with the vector (f(X;),i=1,...,n)".

Denote by N; the number of elements at each level j,
Nj=#I) =2, j=01,...,]

and let N(j) be the total number of elements in the set Z(j),
j -
N(j) =2+ Ny=1+2""
£=0

Introduce nx N (j)-matrix ¥(j) = (ir,i=1,...,n, I €I(j)) with elements
Yig = ¢r(Xs) =r(X3),  T€I(j),i=1,...,n

Clearly v7(X;) = £1//M; where Mj is the number of design points in the interval

Ar corresponding to the index I, and also ;o = n~1/2 and i1 =X, (ZZZI X?)_I/Q.
Now the approximation problem (2.2) can be rewritten in the form
0*(j) = arginf ||f — ¥ (7)8(5) -
0(5)
The solution to this quadratic problem can be represented as
K/ - T A\ L AT
6'(j) = (v()TeG)) W)L (2.3)

Strictly speaking, this representation is valid only if the matrix ¥(5)" ¥(4) is not degener-
ate. In the general case, one may use the similar expression for 6*(j) when understanding
(\II(j)T\I/(j))_1 as a pseudo-inverse matrix.

If the function f is linear, that is, f(z) = 6y + 612, we clearly get 65 =6y, 07 =6,
and 67 =0 for all I = (£,k) with £>0 and k£ > 0. For a non-linear function f, the

J

sum Y. > |0%]? can be used to characterize the deviation of f from the space of linear
=0 1€T,

functions.

Since the function f is observed with a noise, we cannot calculate directly the coeffi-

cients 07 and we consider the least squares estimator 5(]) of the vector 8*(j) which is
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defined by minimization of the sum of residuals squared,

2
8(j) = arginf [|Y — W()0(j)[2 = arginf Y [Yi— D= Oru(Xi) | . (24)
0(4) {0:€2(5)} 521 I€T(j)
Here Y means the column-vector with elements Y;, 1 =1,... ,n.

Define V(j) as the pseudo-inverse of W(j)"W(j), V(i) = (¥(j) ¥(j)) It is a
symmetric N(j)x N(j) matrix (by v;p we denote its elements, I,I' € Z(j)) and

0(j) =V(ie()'Y. (2.5)
Neyman (1937) proposed a ‘smooth’ test based on the centralized and standardized sum

J —~
of squares > Y |0;|? for some j. Ingster (1982, 1993) suggested the special choice of j
(=01€Z,
depending on the smoothness properties of the function f which allows for a rate optimal

testing. We follow Spokoiny (1996) where the method of Ingster (1993) is extended to
adaptive testing by considering all such tests for different j simultaneously. Here we
slightly modify that approach and consider the family of levelwise tests, that is, for every
level 7, we construct a test statistic based only on the empirical Haar coefficients 51 for
I € Z;, and the resulting test is defined as the maximum of all levelwise ones.

Let some number j(n) be fixed such that 2/(" < n and let, for every j < j(n),
the estimate /é(j) be defined by (2.4). Denote by b\j the part of the vector b\(j)

corresponding to the level j,
/éj = (é\], Ie Ij).

We analyze every such vector separately for all j < j(n). Namely, for every j < j(n),
we use the statistic based on the sum ) Iz, |é\[|2 corresponding to j th resolution level.

To define our test, we need to have a more detailed insight into the properties of such
sums under the null hypothesis, i.e. when the function f is linear: f(x) = 6y +6012. We
have already mentioned that in this situation f = U(j)@* where 65 = 6y, 67 = 6, and
all remaining coefficients 67 vanish. Therefore, using the model equation ¥ = f + &,

we obtain
05) = V(EHIG)(f+8)
= V{)TG) ()0 + V()T e
= 0+ V()T() & (2:6)

Obviously ¢(j) = V(4)¥(4) "¢ is a random vector in RV with zero mean. Moreover,

it holds for its covariance matrix
EC(H)CG) T = V()P(G) BETT(G)V())
= V(EHEH) TGV ()
= o’V (j). (2.7)
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Due to (2.6), the subvector /0\]' of 5( 7) coincides under the null with the corresponding
subvector ¢; of the vector {(j), and it holds under the null in view of (2.7)

E6; = E¢;=0,
E0,0,

.
9 = B =0

This particularly implies
EY 0/°=E> [’ =0tV
IEIj IGI]‘

where tr A denotes the trace of a matrix A. Moreover, for the case of Gaussian errors

¢ in (1.1), the estimates 8, are also Gaussian random variables, and it holds

2
Var | Y1072 = E| Y101 — otV (2.8)
IEIJ' IEIj
2
= E[> [Uf-c’teV; | =20"trV},
IEIj

see (2.7). This leads to the obvious idea to use the centralized and normalized sum

1 ~
szi Z|9[|2—U2ter
z/ 204 tr Vj2 I€T;

as a test statistic. To define our testing procedure, we simply take the maximum of all

such statistics over the set of all considered Haar levels 7.

2.2. Testing procedure

First we define the finest considered resolution level j(n) which has to satisfy n2/(™® —

00, e.g.

j(n) = [logyn — logy logy n] .

where [a] denotes the integer part of . For each j < j(n), let /é(j) be defined by (2.5).
Denote by /0\]' the part of the vector 5( j) corresponding to the level j,

/0\]' = (5[, Ie Ij)

and let V; be the submatrix of the matrix V(j) = (¥(j)"¥(j))” corresponding to the
level j,ie. V; = (v, I,I' € Z;). We consider x?-type statistics

Si=161*=Y" 7.
IEIj
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and define test statistics T; by centralization and normalization of S :

1 ~ ~
=L Y pp-uy

7/ 284 tr Vj2 I€T;
where o is the estimate of the error standard deviation defined in the next subsection.
The proposed test rejects the null hypothesis, if at least one such statistic is significantly

large, that is,

¢*=1(T* > )N) with  T"= max [T}
3=0,...,5(n)

where A is a critical value. The choice of X is discussed in Section 2.4.

2.3. Estimation of o2

Recall that we assume a homogeneous additive noise in the model (1.1), that is, the

errors & are independent identically distributed random variables fulfilling E¢; = 0

2

and Ef? = ¢2. The variance o? is typically unknown in practical applications but

this value is important for the definition of our test procedure. Below we discuss how it
can be estimated from the data Yi,...,Y,. We suppose for simplicity that the design
points are ordered in a way that X; < ... < X, . There are several proposals for

2

variance estimation. Omne possibility is to estimate o“ by the expression of the form

2(n—1—1) Z?;ll(YiH —Y;)?, see Gasser et al. (1986). We follow the proposal from Hart
(1997, Section 5.3) which provides an unbiased estimate of the variance under the linear
null hypothesis.

Define pseudo-residuals

g = K- X) o (Xi—Xi)
' (Xiz1— Xic1) " (Xip1 — Xic1)

= a;Yj_1 +b;Yi1 - Y, 1=2,...,n—L

Yipgn - Y

which are the result of joining Y;;; and Y; ; by a straight line and taking the difference

between this line and Y;. A variance estimate based on these pseudo-residuals is

1 =

~2 7
_ , 2.9
MO Ay (2.9)

=2 1 7

It is obvious that E6? = ¢? if f is a linear function. Some other properties of this
estimates are listed in Lemmas 5.1, 5.2 and 5.9 below.

2.4. Critical value )\

Here we discuss how to select the critical value A to provide, at least asymptotically for

large n, the condition ay,(¢*) < g for all linear functions fy. We apply a bootstrap
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procedure resampling from the no-response model (which is a particular case of a linear

model) with standard normal errors
}/;Tnggk,ma i:]-a"'ana

for m=1,... , M, where the design points Xy,...,X, are the same as for the original
model (1.1), &f,...,¢; are iid. standard normal random variables and M is the
considered number of bootstrap samples.

For every bootstrap sample Y7',,,... Y, , we recalculate the test statistic 7}, from

this sample using the previous procedure (including the step of variance estimation).
Finally we define the critical value A as the «-level for the set {7, m=1,... ,M}:

M
A:min{t:M‘lzl(T;>t) gao}.

m=1

3. Main results

In this section we present the results describing asymptotic properties of the proposed
testing procedure. We first discuss the properties of the test under the null and then we

consider the power of the test.

3.1. Behavior under the null

Let ¢* be the test introduced above. Our first result concerns with the case of Gaussian
errors &; in the model ( 1.1). In this situation, independently of the design, the nominal

level of the test ¢* is exactly «q.

Theorem 3.1. Let observations Y;, X;, @ = 1,... ,n, obey the regression model (1.1)
with a deterministic design X1,...,X, and with i.i.d Gaussian errors & ~ N(0,02).
If the function f is linear, f(z) = 60y + 01z, then

as(¢) = Py(¢" =1) = o,

Our next result deals with a more general situation when the errors &; are i.i.d. with 6
finite moments. In this case we also need some mild regularity conditions on the design.
Recall the notation A; = [277k,277(k+1)] and let M; stand for the number of design
points in A;: Mjp = #{i : X; € Ar}. Design regularity particularly means that each

interval A; contains enough design points X .

(D) (i) It holds for some positive constants C, and C* and all j < j(n)

inf 2/ M;/n > C,,
IEIj

sup 2/ My /n < C*;
IEIj



10 SPOKOINY, V.

(ii) For some fixed constant Cp and all j < j(n)

trV;? > Cp2/;

(iii) For some fixed constant Cy and all j < j(n)
VI < Cv.
Here the norm ||A|| of a symmetric matrix A is understood as the maximal

eigenvalue of this matrix.

Condition (D) is trivially fulfilled with C, = C* = Cp = Cy = 1 for the case of a

uniform random or deterministic equidistant design when V' (j) is the unit matrix.

Theorem 3.2. Let observations Y;, X;, i = 1,... ,n, obey the regression model (1.1)
with a deterministic design X1,...,X, satisfying (D) and with i.i.d. errors & satisfy-
ing B¢ =0, EE2 = 0% and E|¢2 — 0% < 0%Cs where Cg is a fived constant. If the
function f is linear, f(x) =0+ 012, then

ar(¢”) = Pp(¢* = 1) < ag + d1(n),

where 61(n) depends on n, Cg and the constants Cy,C*,Cp,Cy from condition (D)
only and 61(n) =0 as n — 0o.

3.2. Sensitivity of the test

Now we state the results concerning the sensitivity of the proposed test ¢*. The first
assertion presents sufficient conditions for detecting an alternative with a high probability.
Next we demonstrate how these conditions can be transferred into a more usual form

about the rate of testing against a smooth alternative.

Proposition 3.1. Let the design Xi,...,X, obey (D) and the errors &i,... &, fulfill
the conditions of Theorem 3.2. Let then the regression function f be differentiable with

the Lipschitz continuous first derivative f:
|[f'(s) = £'(B)] < L|s — | (3.1)

with some fived constant L. Let also 07 = (07, I € I;) be the subvector of the vector
0*(j) from (2.3) corresponding to jth resolution level and let V; be the corresponding

covariance submatriz, j =1,...,j(n). If, for some j < j(n), it holds
S
O'QW
with X\, = max{\,2y/logj(n)}, then
P(¢*(j) =0) <d(n) =0,  n— oo,

> 3\ +1)2,
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where 6(n) depends on n, L and the constants Cg,Cy,C*,Cp,Cy only.

We shall show, see Lemma 5.2 that, at least for sufficiently large n, it holds A <
2y/logj(n) (14 0,(1)). Hence, the result of Proposition 3.1 means that the test ¢*
detects with a probability close to one any alternative for which at least one from the
corresponding values T} exceeds 6+/log j(n) (1 +0,(1)). Therefore, the error of the

second kind may occur with a significant probability only if
T7 < 6y/logj(n) (1+on(1)),  0<j<j(n)

It remains to understand what follows for the function f from these inequalities.

3.3. Rate of testing against a smooth alternative

To formulate the results on the rate of testing, we have to introduce some smoothness
conditions on the function f. This can be done in different ways. We choose one based
on the accuracy of approximation of this function by piecewise polynomials of certain
degree s. Given j < j(n), denote by {A;, I € Z;} the partition of the interval [0,1]
into intervals of length 277: if I = (j,k), then A; = [k277,(k + 1)277). Next, for
an integer s, define Py(j) as the set of piecewise polynomials of degree s — 1 on the
partition {A;} i.e. every function g from Ps(j) coincides on each A; with a polynomial
ag + a1z + ...+ as_12°~ ' where the coefficients ag, ... ,as—1 may depend on I. Now
the condition that a function f has regularity s can be understood in the sense that this

function is approximated by functions from Py (j) at the rate 277 or, more precisely,

1 1/2
. o 2 —Js
it [/ () = g(8) dt] <02

gEPs(
where a positive constant C; depends on s only.

In our conditions we change the integral by summation over observation points. This
helps to present the results in a more readable form without changing the sense of required
conditions. It can be easily seen that if the design is regular, then the both forms are
equivalent up to a constant factor.

Let now a function f be fixed. Let also jo be such that 270=! > s. Set for j > 5o

n 1/2

rs(j) = _inf |[f—glln= _ inf £(X3) —g(X)[| -
T gePy(i—jo) " gePai-io) ; ’ z

The quantity r4(j) characterizes the accuracy of approximation of f by piecewise poly-

nomials. In particular, the Haar approximation we use corresponds to the case when

s=1.

Theorem 3.3. Let condition (D) hold, the errors &i,... &, fulfill the conditions of
Theorem 3.2, and the regression function f obey (3.1). There exist a constant s de-

pending on the values Cy,Cp,Cy,C* and L only, such that if f satisfies, for some
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j < j(n), the following inequality
inf|f = a = byalln > 5 () + V2720 ) (3.2)
with 11 (z) = x, then
P(¢* =0) <d(n) — 0, n — 0o,
where §(n) is shown in Proposition 3.1.

Remark 3.1. Tt is of interest to compare this result with existing results on the rate of
hypothesis testing. For instance, it was shown in Ingster (1982) that if f belongs to a
Sobolev ball W(1) with

w={s: [Owra <1},

1) being sth derivative of f, then the optimal rate of testing is p—2s/(4s+1)

For our procedure, the following result is a straightforward corollary of Theorem 3.3.

Corollary 3.1. Let the underlying function f belong to a Sobolev ball W(1) and let
condition (D) hold. There exists a constant Cs > 0 depending on s and the constants

from condition (D) only and such that, for n large enough, the inequality
inf |/ — o — b} 2 Culn/An) 55
implies
P (¢" =0) = on(1).
We observe that the proposed method is rate near optimal by a log-log multiple.

Remark 3.2. The result of Theorem 3.3 helps to understand what happens in the case
when the design is not regular and, for instance, if there some intervals I with M7 =0.
It was already mentioned that the procedure applies in this situation as well and the
error probability of the first kind is about «g at least for n sufficiently large and for
Gaussian errors §;. Concerning the error probability of the second kind, the inspection
of the proof shows that design irregularity decreases the sensitivity of our procedure in
the following sense: there exist smooth alternatives with probably large Ls-norm which
are not detected. This may occur e.g. in the situation when f is deviated from the best

linear approximation only in the domain with very few design points inside.

4. Some extension

Here we briefly discuss some possible extensions of the procedure.
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4.1. Heterogeneous noise

The proposed procedure essentially uses the noise homoskedasticity. Namely, this condi-

—1/2 | If this assumption

tion allows to estimate the unknown noise variance at the rate n
is not fulfilled (this is for instance the case for the binary response model, see e.g. Klein
and Spady, 1993), then the direct application of the method from Section 2 becomes
questionable. One often used approach in such situation is based on some local estima-
tion of the variance as a function of the design point z . Unfortunately, this may leads to
a very poor quality of variance estimation for small and moderate sample size n . This
may in turn destroy the behaviour of the test both under the null and the alternative
because the variance estimate is used for centering the considered test statistics. A more
useful approach is to avoid centering either by splitting the sample into two independent
subsamples or by removing the diagonal terms from the considered test statistics. We
briefly discuss the latter possibility. Each empirical Haar coefficient 1/9\1 is a linear combi-
nation of the observations Y;, see (2.5). Denote by wy; the corresponding coefficients:

0; = Yo, wr;Y;. Then clearly

N n n
|9[|2 = Z Z ’w[’i’LUI,Z-IYViYVZ-/.

i=1i'=1
To define our modified test statistics, we remove from this sum the diagonal elements
with ¢ =14":

N n
> 10117 = X Y wiY?

T, _ IEIj IEIj =1

! 2t v?

The critical level for the test statistic 7" = maxjgj(n){r;} can be again calculated by

the bootstrap procedure when resampling from the heterogeneous model with Y;* = 0;¢f

where o2 = (a? 4+ b? + 1)71€? and the pseudo-residuals ¢; are defined in Section 2.3.

4.2. Linear parametric hypothesis

The proposed method allows for the straightforward generalization to the case of a linear
null of the form f(z) = 6141 () + ...+ 0p1pp(x) with known function gq,...,g,. One
should simply include this function in the set {4y, I € Z(j)} and then proceed as before.

For theoretical study, the only properties of the estimate 52 of o2 have to be refined.

4.3. General parametric hypothesis

The situation becomes more complicated for a general parametric null. Here one possi-
bility is, similarly to Hirdle and Mammen (1993), to construct first the parametric fit,
then to subtract it from the date and finally to apply the above procedure for testing a

no-response hypothesis. A more detailed study of such test needs to be done.
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4.4. Multivariate regression

The procedure allows also for straightforward generalization to the multivariate regression
case. We may use the corresponding multivariate Haar basis taking so many levels that
the total number of estimated coefficients does not exceed n. Some further extensions

to additive or generalized additive models are also possible, see e.g. Hardle et al. (1998).

5. Proofs

In this section we first prove Theorems 3.1 and 3.3 for the case of Gaussian errors &; and

then discuss the generalization to the general case.

5.1. Proof of Theorem 3.1

It suffices to check that the distribution of the test statistic T based on the bootstrap
sample Y\*,... Y is the same as for the original sample Y7,...,Y, . The difference
between these two samples is only in the linear trend (which can be nontrivial for the
original sample but does not appear in the bootstrap one) and in the noise variance (we
resample with the error variance 1 instead of 02 ). Note however that the linear trend in
the regression function makes no influence on the considered test statistics 7. Indeed,
the numerator of this statistic is defined as the centered sum over Z; of the the empirical
Haar coefficients 51 squared, so that the coefficients 50 and 51, corresponding to the
linear trend, do not enter, see (2.7) and (2.6). Similarly, the estimate 72 of the noise

2 is based on the pseudo-residuals €; which are defined in a way that the

variance o
linear trend in the regression function cancels out, see Lemma 5.1.

Further, for the case of zero trend, both numerator and denominator of each T} is
some quadratic forms of the errors &; which can be represented as &; = 05 with i.i.d.
standard normal variables Ei, i =1,...,n. This yields, see (2.9), that the distribution
of each test statistic 7 does not depend on o. The same is obviously true for the

maximum 7% and the assertion follows.

5.2. The properties of the estimate &2

Here we discuss the properties of the estimate 52 of the noise variance o?. We present
two results. The first one describes the properties under the null, and the second one
applies under a smooth alternative as well. The results are stated under the Gaussian

errors &;. For the extension, see Section 5.5.
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Lemma 5.1. Let the regression function f be linear. Then for n > 36 and each v >1

. 3 /3(n—2)
with v < 24/ =5

~2
p <i\/ﬁ (% — 1) > 27> <e T4

Proof. For the case of a linear function f(z) = 60y + 012, one easily gets with the coeffi-
(Xit1—X5) b — (Xi—Xi—1)
b 2

clents a; = X1 Xio1) — (Xit1—Xio1)

aif (Xi—1) + bif (Xiv1) — f(X3) = 0.

Now the model equation (1.1) implies

1 n—1

~ 2

ot = — > Inil
=2

with

- aifi-1 + bilit1 — &
2 - .
Vai+v? +1

?|

To estimate the difference |52 — o
(72y..+ y7n_1)" . Obviously En = 0. Define ¥ = Enn' . Observe first that

, we apply Proposition 6.1. Let n denote the vector

1 1 ”2102(a§+b§+1) )

tr¥ =
n—2" n—24 (a? + b2 + 1)

=2

Next, it is easy to check that 1/2 < a? + b? <1 and

0_2 < o?(a; + b;) < 20?2
< <.
V@484 0@, +07, +1) 3

Hence

En} o?,

|Eninic1] < 20%/3,
o’ /2,

Y

| Eninit1]
0, | —i>1,

En;n;
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This allows to estimate tr X2 as follows:

n—1ln—1

1 2 1 2
Gap Y T G )
i=2 j=2
1 n—1ln—1
= o2 SN [(Enicani)? + (En))? + (Eniniga)’]
i=2 j=2
1 n—1
< ma‘i > (1+4/9+4/9)
=2
170% 204
— - < -
9n—2) — n
for n > 36. Similarly
1 1 iy 304
e ? > S (1A 14 =
(n — 2)? (n—2)? Z:Z? 2(n —2)
1 1 - 702
< Enni| < ———.
n—2|| I = n—2i1,{.%.).(,njz:1| mi;| < 3(n —2)

This implies || 3|~ \/tr3?/2 > %\/@ and the application of Lemma 6.1 with & =
\/% yields for every v with 1 <~y < %\/@

4
P (i(82 — %) >y 41) <e VM

n

and the required assertion follows.
O

Next we show that 52 estimate the true value o2 at the rate n /2 under a mild

assumption on the regression function f and the design Xi,..., X, . We again assume

that the design points are renumbered to provide X; < X < ... < X,,.
Lemma 5.2. Let the regression function f from (1.1) satisfies the condition
() = f/(£)] < Lls — ]
for some L >0 and all s,t from [0,1]. Let also the design Xi,... , X, fulfill
X1 — X; <Dn! (5.1)

. . 3 /3(n—2)
with some constant D . Then, for n > 36 and every v with 1 <~y <2 >

~2

P (i\/ﬁ ("—2 — 1) > 2y(1 + n1/2)> <2e /4,
ag

DALAn—4 DAL % [45\ /' 9452
+ ) < (5.2)
6 6 n n

provided that
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Remark 5.1. The condition (5.2) is obviously fulfilled if (DL)? < no .

Proof. The definition of the coefficients a; and b; , see Section 2.3, provides for any linear
function ¢(z) the identity a;¢(X;—1) + b;¢(X;+1) — £(X;) = 0. Now the smoothness
properties of the function f imply for 4(z) = f(X;) + f'(X;)(z — X;)

|f(z) — £(z)] < 0.5L%2z — X;|?

and hence, using (5.1) and the conditions a; >0, b; >0 and a; +b; =1

|a; f(Xi-1) + bi f (Xit1) — f(X5)]
= la; [f(Xi—1) — €(Xi—0)] + bi [f (Xit1) — 6(Xit1)] — [f(X3) — 6(X)]|
<0.5L%a;|X; — X;1|” + 0.5L%;| X1 — X2
<0.5D*L*n 2. (5.3)
Next, define
aifi—1 + bifit1 — &

i =
\ai+ b7+ 1

aif(Xi 1) +bif(Xit1) — f(Xz')_

\ai+b?+1

1 n—1
o° = n_2Z|Ai+77i|2-
i—2

Then

To estimate the difference |52 — 02|, we apply Proposition 6.2. Let n = (12,... ,7n_1) "

We know, see the proof of Lemma 5.1, that En = 0 and the matrix ¥ = Enn' fulfills

n_2tr2 = o2
204
— _trx? < /.
(n—2)2 g ~ n

The inequality a? + b2 > 1/2 and (5.3) provide

1 , 1 ., 1 KX Dpiritntt DALAR4
—AIF = — AT —2N < .
2 n—24& n—24c4(a; +b; +1) 6

The application of Proposition 6.2 with ¢ = = and € = Tn5 yields for every +y

. 3 /3(n—2)
with 1 <y <2 5

474, —4 4T 4, —4 4\ 1/4 4
P (i(az -ty > B g 2R (1) +7\/4i> <2e
n n

and the required assertion follows in view of (5.2). O
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Lemma 5.3. Let N; = 27 denote the number of elements in the set Z;. It holds
A F
\/2tr V2
Proof. Clearly

trV2 ZZUII,>ZUII

IeT; I'eT; IeT;

Next, the Cauchy-Schwarz inequality implies

1/2

1 _ a1 1 2
N; ' trVy=N; ZUI,IS N; ZUI,I

IGI]‘ IGI]‘

and the assertion follows. O

Lemma 5.4. Let \ be the critical value of the test selected by the testing procedure. If
design Xi,..., Xy fulfills (D), then, for n sufficiently large,

A < 2y/log j(n) (1 + on(1))

Proof. Recall that the critical value A corresponds to the «ag-value of the test statistic
T* = max;j<jn) T; under the no-response model f(z) = 0 and under the assumption
of standard normal errors &;, ¢ = 1,... ,n. In such a situation, the subvector 6; of
1/9\(]) coincides with the Gaussian vector ¢; ~ N(0,V}), see Section 2.1, and hence the

corresponding statistic 7} can be represented in the form

1,117 = 5%tV

32,/2‘51“1/}2

T; =

and it suffices to show that
P(??XT > 24/log j(n ( +01(n )) < d2(n)
J<j(n

with two numeric sequences 0;(n) — 0 and d2(n) — 0.
Now, for every z > 1 and a € (0,1),

1 11?2 =52t V; 1)52
fr 1) f RYEES,
a 02 /QtI"VjZ ao
2 2 _ ~ ~
1¢;1I7 — o trVj by (6% — o) trV; o1 U{UQ }

02,/2trVJ-2 02,/2ter2

N
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This clearly yields in view of Lemma 5.3

1
P(maXTj>z+ )

7<i(n) a
~9 ~ 1 j(n) 12 — o241 Vs
gP(U—2<a>+P 0—2—1>7 +Y P ¢ 1>z
o o WNj(n)/2 =0 02‘/2terZ

We apply this bound with z = 1+wv,, and a = 1—v,,} where v, = 2\/@ . It follows
from condition (D) that v, <||V;||7'\/tr Vj2/2 for all j > j; where j; is the minimal
integer satisfying Cp2/t > CZwv2. An application of Proposition 6.1 with v = v, and
t=1 for 5 > j; and with v =1 and ¢t = v, allows to bound

_v2 /4 Co
p ||Cj||2_02trvj>v 1] < e~tn/dmn/2 5> gy
n =
o?,/21tr Vj2 e~ n/2 otherwise.
Using also Lemma 5.1 we derive
24+ v,
p (T* > 7 1)
— /Un
) J1—1 j(n)
< e—nv; /4+e—n/(2Nj(n)) + Z e—vn/2 + Z e—v%/4—vn/2
J=0 J=i

S e—nvgz/zl + e—n/(?Nj(n)) 4 lOgQ(C‘Q/U%/CD)e_Un/Z + 1}—(‘7—())6_”"/2 — 0’ = 00.

j(n
n

Here we have used that n_le(n) =n~1290) = o, (1) and e ""/* < 1/j(n). O

5.3. Proof of Proposition 3.1

We again restrict ourselves to the case of Gaussian errors &; in (1.1). Recall that the
vector §j is defined as the subvector of 5(]) = (\If(j)\I/(j)T)_1 ()Y, 7 <j(n). The
model equation (1.1) yields
00) = (LG)EG)T) LG +8) = 00) +¢0)
with 8(j) = V()¥()f and ¢(j) = V(G)W()E where V() = (¥(7)¥(5)7) ™" Hence
0; = 0;+(; where 6; (resp. () is the subvector of 6(j) (resp. of ¢(j)) corresponding
to the jth resolution level. This particularly implies that ¢; is a zero mean random
vector with the covariance matrix V; which is the submatrix of the matrix V(j) =
(\Il(j)\I/(j)T)fl. Moreover, if the errors ¢ in (1.1) are Gaussian, then (; is for each
j <j(n) a Gaussian random vector with parameters (0,V}).

Let, for some j < j(n), it holds

O (1]

! 02,/2ter2

> 3(A\/2 +1)? (5.4)
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with X, = max{},2+/logj(n)}. We shall show that under this condition it holds
Ps(T; < X) <d(n) = n, n — 0o,

which obviously implies the assertion.
Observe first that

i <A)
P(! Gy <6 [20017)

<P (16;+¢l12 - o*trV; < Ao? 260 V2 + (52— 0?) (A 200 V7 + 1 V;))
<P(

165+ ¢I2 = ot Vi — 18512 < (A + Ao [260 V2 — 165

+P<(U -0 )(A,/QterQthr‘/j) < —02)\}/21/2&1/}2).

By Lemma 5.3 trV; (2tr Vj?)—l/Q < V/Nj/2 < \/Njpy2 forall j < j(n). Further, by

Lemma 5.2
=2 M2tV
PlZ—1<-
o 4)\,/2terZ—|—ter

)\nn
S%Xp( 41+ n 12+ /Ny))? ) %(n)

where d3(n) — 0 as n — oo since n/Nj,) = n2=71M = 0o,

Next, for every positive u, the inequality ||@| > 3u implies ||0]]? —2u||@|| — 3u? > 0.
Coupled with (5.4), this ensures, with 7; = o(2tr V-Z)l/4 that

16,117 > /4/3)10;|(AY? + 1)7; + (A2 +1)°r
> 0;1IAY2+ 1)1 + (M + 202+ 1)7

2
]
2
— J
Now Proposition 6.2 with v = 1 and ¢ = \&/? implies
P (Tj < )\)

< P (116, + ¢ = 0 tr v — 18,12 < — (A2 + 1)l18,llm; — A2 +1)7F ) + s ()
< 9 M /2 + d3(n) = 0, n — 00

as required.

5.4. Proof of Theorem 3.3

For the proof, we use the result of Proposition 3.1. Namely we show that the condition

(3.2) of the theorem with s large enough contradict to the constraints

ITF I <tw, 5 <i(n), (5.5)
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2
with ¢, =3 (1 + max{A, 2\/logj(n)}> .
We begin by reduction of the problem of testing a linear hypothesis to the problem
with a simple null hypothesis. Define coefficients 6y, 01 by

(60,61) = arginf || f — a — bypy ||, = arginf » (f(X;) — a — bX;)*.

ab) (a"b) =1

and set

fo=1Ff—60— 019
Note that for all j > 0, the vectors 8*(5) = V(j)¥(j)f and 0*(j) = V(j)¥(s5)f have

the same components except the first two. Obviously the smoothness properties of f

and fy also coincide and
inf ||f —a = bipi[ln = inf [ fo —a—byhrln

Recall also, that the linear trend in the regression function has no influence on our
variance estimator o2 . Hence, replacing f by f; changes nothing in the test behaviour
and we may suppose from the beginning that the coefficients 6; and 67 of the vector
0" (j) vanish.

About this new function f we know that
7l = inf 17—~ byl > o(m),

inf ) “f _an = Ts(j)a

for all j from zero to j(n).

Next we rewrite the constraints from (5.5) in term of the vectors [0}, j < j(n).
Recall that 67 is the subvector of 6(j) corresponding to jth level, and V; is the
corresponding submatrix of V(j).

Let L£(j) stand for the linear space generated by functions v;, I € Z(j). We denote
also by II(j)f the projection of f onto the space L£(j) with respect to the norm |- ||, ,

II(j)f = arginf[|f — hl|p.
heL(y)

Particularly, T1(0)f denotes the projection of f onto the space of linear functions (and
hence, II(0)f = 0) and, by definition of @(j),

() f = Y 05 (5.6)

1€1(5)

where 6;’s are the coefficients of the vector 6*(j).
Lemma 5.5. For each 1 < j < j(n),

ITG) flln < TG = 1) flln + [165]]-
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Proof. Since L(j —1) C L(j), then

(G —=1)f =TI = DIG)S.

When denoting f(j) = II(j)f, one has II(j — 1)f =TI(j5 — 1) f(j) and we have to show
that

LG = D) @l = 1 G lla — 1165]]-
In view of (5.6)

FG) =" Oyr.

1€1(5)

Denote by f; the part of this sum corresponding to the last level Z; in Z(j),

fi=Y 0ir.

I€T;
By construction, the functions 1y, I € Z;, are ortonormal w.r.t. to the inner product

| - || and particularly

Iflln = > 167> = 11651

IGIJ‘

Next, obviously f(j) — f; € L(j — 1), and by definition of II(j),

1£(G) =G =D f Dl < NG = (FG) = F)lln = 1 Fjlln = 1165]]

and the assertion follows by the triangle inequality. O
Lemma 5.6. Given j < j(n), let (5.5) hold true for all £ < j. Then
ITI(G) FII2 < s Cyv27 28,

with s = 2172214 —1)~2.
Proof. Recursive application of Lemma 5.5 gives

7j—1

ITTG) flln <D 11671
£=0

Here we have used that II(0)f =0. Now (5.5) and (D.iii) yield

10717 < 0*tay /200 V2 < 0%t JC2 201

and thus,

J 1/2 J
Gl < 30 (272000 ) = (Cvta) /230200
=1 =1

and the assertion follows by simple algebra. O
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Let now jo fulfill 270 > s and Ps(j — jo) denote the space of piecewise polynomials
with piece length 2~U=7) | Let now some j < j(n) be fixed and let g € P,(j — jo) be
such that

If = glln <7rs(d)-

Lemma 5.7. There is a constant 3o > 0 depending on C,,C* and s only and such
that for each j with jo < j < j(n)

Proof. Let g € Ps(j — jo) be such that ||f — glln < rs(j). Then
1flln < llglln +7s(5)
and, since II(j) is a projector,

L) £ I IML(7)g + TG (f = 9)lln = TG glln = TG = 9ln

ITL(5)glln — 7s(5)

Y

and the assertion follows from

gl < s lITL()gll7-

Recall that g is a piecewise polynomial function on the partition A7, I € Z;_;, and the
projection II(j)g means the approximation of each polynomial on interval A; of length
2-(=Jo) by piecewise constant functions with piece length 277 . Therefore, it suffices to
prove that for each piece A; and every polynomial P(z) = ag + ayx + ...+ as 12571,

it holds

D MG PX)P > 25y P?(Xi)
A[ AI

where the constant 33 depends on C,,C* and s only. The similar fact with integration
instead of summation over the design points in A; was stated in Ingster (1993) and we
present here only a sketch of the proof for our situation.

The key idea of the proof can be formulated as a separate statement.

Lemma 5.8. Let P(x) be a polynomial of degree s and let m be an integer with m >
s+ 1. With Ay = [(k —1)/m,k)/m) for k=1,... ,m Then for every measure p on
[0,1] with 0 < Cy < p(Ag) <C* >0 forall k<m,

m

>

2 1
2
> AkP(x)u(dm] > /0 P(@)u(da).

with a positive number 3 depending on C.,C* and s only.
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Proof. Let a = (ag,... ,as—1) be the vector of coefficients of P. Without loss of gener-

ality, we may assume that ||a||c = maxj—,.. s—1{|a;j|} < 1. Obviously, both

wmlz(ffwmmf,
1

nwgzhfﬂwmm

0
are scalar product in the space R®. Next, |lal|y2 = 0 only if a =0 ie. P(z) =0
and the same applies for ||al|; , since P(x) has at most s roots and p is supported on
m > s+1 disjoint intervals. Note also that ||a||,,1 and ||a|/,2 are continuous functionals
of a and p and the space M,,(Cy, C*) of measures p on [0,1] satisfying the condition
of the lemma is compact in the weak topology. Hence,

lallee _

ol (G Nollur

0t lalloo <1 pEMim (C.,C7)

as required. O

Application of this result to each interval A7, I € Z;_j, yields the desirable assertion.
O

The results of Lemma 5.5 through 5.7 yield the inequality

1£lln < 322 (rs(G) + V3 Cr 220, )

which contradicts to the constraints (5.5): ||f||n > » (rs(j) + 2j/2)\n> if s is large
enough, and the theorem is proved.
5.5. Proof of Theorem 3.2

Now we disregard the assumption that the errors & in (1.1) are normally distributed
and assume only they have 6 finite moments. We outline the proof of Theorem 3.2 only.

Proposition 3.1 can be considered similarly.

Lemma 5.9. Let the errors &; in (1.1) are i.i.d. and satisfy E&; =0, & = 0% and
E |¢? —02‘3 < Ce0%. Define 53 = 207*E(¢2 — 0%)?. Then, for n > 36 and every

v>0,
~2 2 4ot —2/4 ~1/2
P|+(c"—0°) > (say+v+1)\/— | <27 +rn
n

where r depends on sq4 and Cg only.

Proof. Similarly to the Gaussian case discussed in Section 5.2, it suffices to consider the

case of the no-response model with the vanishing regression function. In this case, the
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variance estimate o2 is a quadratic form of the errors & which allows for the following
representation:
-1
so_ | Z (aii1 + biciv1 — &)*
n—2 = a% + b? +1
where a; = %, b; = %, i=1,...,n. The estimation error 52 — o>
can be split into one centered diagonal quadratic form
-1
o 1 nz a?(&2 | — o?) + b3( i2+1 —0?) + (£2 — 0?)
n—2 -« a? +b? +1
1=2 4 4
-1 2 2
1S 4t 1 b7 ) 2 2
= + + -0
n—2i222(a§+1+b§+1+1 aZ2+b2+1 a2, +b7,+1 (& )

and one quadratic form (2 with vanishing diagonal elements:
~1
Qr = 2 nz a;bii 1811 — a;§i 18 — bi&i&iv1

n—2i:2 a?—l—b?—i—l

9 a;b;
o Ay ) )
- n—2 Z a2 + bz + lgz—lfz-i-l
=2 i i
n

2 a; b1 )
n—2;(a§+b§+1 a? | +b2 +1 Si-1i

where a, =b; =0.
Obviously Q1 = Y1, \i(é2 —o?) with coefficients A; which, in view of the conditions
ai,bi >0, a;+b; =1, fulfill 1/(2n—4) < \; <2/(n—2). Since E (¢ — 0—2)2 < 2s%0%,

we bound

n
2 _
E|Q)? = Z)\?E (512 - 02) < 8sin~ ot
i=1
Since also E|¢2 — 02| < Cgo®, the Berry-Esseen theorem yields for every z, see Petrov
(1975, Chapter 5)

P (L > (II) —[1=2(z)] < 7"10’61/2n*1/2

VE|Q1]?

where ®(-) is the Laplace function and r; is some absolute constant. This implies in
view of 1 — ®(z) < e /2

/4 4 .
P (Ql > YS4 L) S 6_72/4 +7‘2n_1/2.
n

Further, similarly to Section 5.2, it holds E |C,22|2 < 40*/n. Moreover, it is easy to
check that Qo fulfills the conditions of Proposition 6.3 with G? = 40*/n and some finite
constant C4 and hence, by Corollary 6.1, with § =1 and v > 0,

P (Q2 > G(’Y + 1)) <P (@2 > G’)’) + 7’377,_1/2.
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Finally, the quadratic form @2 of Gaussian random variables é can be handled as in

Section 5.2:
_ [454
P <Q2 >y 41) S 6*72/4
n
if n>36.
Combination of these results yields

P (82—02 > (547+’y+1)\/%>
<P (Ql > 84’)’“%> + P (QQ > (’Y—Fl)ﬂii)

< 2e VA 2,

Similarly one can get an upper bound for —(5? — 02).
U

In the same way one can extend the result of Lemma 5.2 to the non-Gaussian case: 72

estimates the true variance o2 at the rate n='/2 provided that f is sufficiently smooth.
Now we turn to Theorem 3.2. It obviously suffices to show that the distribution of
the test statistic T* can be approximated by a similar distribution corresponding to the
case of Gaussian errors. Then the result follows from Theorem 3.1.
As in the proof of Theorem 3.1, the general case can be reduced to the no-response
model with the vanishing regression function. Further, since the difference 2 — o2 is of

order n~Y2 | it suffices to consider the expressions T]{, j < j(n), defined by

-1 (Y ar-ocuy) =5

J / /
20’4 tr ‘/}2 I€T; 20’4 tr ‘/jZ

where 07 are elements of the vector 0(j), cf. the proof of Lemma 5.4. Under the no-
response hypothesis, this vector admits the representation, 8(j) = W(j)¢ with W(j) =
(\Il(j)T\I/(j))f1 T(5)", see (2.6). If P; denotes the mapping from Z(j) into Z;, then
0; = P;0(j) = P;W ()¢ and

S;=8;1> = "W () P PW ()¢ = €T AjE;

with A; = W(j)TPjTPjW(j) , so that §; is a quadratic form of the errors §;. We also
know that V; = PiW (/)W ()T P;' , and ESj = o® tr Aj = 0” tr Vj. Moreover, see (2.8),
under Gaussian errors &;, it also holds E (S; — ESj)2 = o*trV;. Hence, each of TJ’ is
a centered and normalized quadratic form of &;’s. This form in turns can be represented
)
J

as a sum of a diagonal form Tj(l) and a quadratic form 7" with vanishing diagonal
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terms. We first show that the impact of diagonal terms is negligible and then apply
Corollary 6.2 to TJ-(Q) ’s.
Let o; denote the ¢-th basis vector in R"”. Then the i-th diagonal element a;; of

Aj is equal to oiTAjoi:

-
ai; = 0; Ajo;

= ofu()T (v)Te) AR (v BTE (B0 TeG) T wi)er

Clearly

(w6 w@) ™ p e (v w)

< H(\P(j)T\If(j))_QH = [v()?*| < ¢

Next, for every Haar level £ < j, there exists only one index I € Z, such that ¢;(X;) #
0. More precisely, for this index T, it holds ¢;(X;) = +1/y/M; where M; is the number
of design points in the interval A; corresponding to the index I'. Condition (D.i) implies
M; > Cn2* forevery I € Z;. Also ¢o(X;) =n /2 and 41 (X;) = X; (23:1 XZ.2,)71/2.
Hence, the definition of the matrix ¥(j) and condition (D.i) provide

n —1/2 j 7
| (5)oi| <n™? (Z X2> +> 4/ % < 30, 1?21/ 1/2, (5.7)
i'=1 *

=0

Therefore,

wi < Gl | (v eG) AR (w6 TeG)

< 9c'2n1CR.

Define G; =ottr A; . Note

A2 = wW() P PW{HW(G) P PW(3)
— wPWGW() P PW (W () P

= ter2
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so that T = G7' 0" a;i(¢? — 0®). The condition (D.ii) implies tr A? > Cp2/.
Now, for every § >0,

i(n)
P ( max TO > 5) < P (T.(” > 5)
§=0,....i(n) 7

§=0
o e
-2
< oy B[
§=0
j(n)
< 57222672040%22-
§=0
i) | | ,
< 257 2052770 (9C, 120 1CY)
§=0
< O i L, n — oo.

Next we consider Tj(Z) which is obtained from TJ’- by removing the diagonal terms.
This quadratic form can be approximated (in distribution) by a similar one with Gaussian
errors 5, at a reasonable rate provided that the corresponding value Cj4, defined as n
times the ratio of the maximal diagonal element of the matrix 0’4A§ to G? =ottr A?,
see (6.2) and Remark 6.1, remains bounded.

The i-th diagonal element d; of A? is equal to oiT A?oz- :

T 42
di = 0y AJOZ

-1

= o {96 (v em) e (0 0G)

= ofu()" (v() e BE (v eG) BT (B TEG) i)

Clearly

[(viwe) " (v v e (0 v0)

< ‘(\D(j)T\If(j>)3H = [IVi)?| < ¢v-
The use of (5.7) provides
(v w() BT (v Tem) T TR (i) T G)

< 9T}

di < [9(j)oi?

and

13 0 13
O < 9C; CVQ _ 9C; CV
Cp2 Ch

that is, the value C is bounded by a fixed constant depending on design regularity only.
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By Corollary 6.2, the joint distribution of TJ-(Q), j < j(n), and the distribution of
their maximum, can be approximated by the distribution of similar quadratic forms of

Gaussian r.v.’s which implies the required assertion.

6. Appendix

Here we discuss briefly some general properties of quadratic forms of random variables.
We first consider the case when the underlying random variables are Gaussian and estab-
lish an exponential bound for deviations of such forms over certain level. Next we show
how an arbitrary quadratic form of independent random variables can be approximated

(in distribution) by a similar quadratic form of Gaussian random variables.

6.1. Deviation probabilities for quadratic forms of Gaussian random vari-

ables
Let e1,... ,eny be Gaussian random variables with zero mean and the covariance N xN
matrix V,i.e. V = Eee' where ¢ denotes the vector € = (¢1,... ,en) ' .

We first present the following general results about quadratic forms of Gaussian ran-

dom variables.

Proposition 6.1. Let ¢1,... ,en be Gaussian random variables with zero mean and the

covariance matriz 'V := Eee' . Then

Ele|?>:=E (1 +... + Ec}) = trV,
E(le)? —tr V) = 2tr V2

Moreover, for v < ||V||7'\/trV2/2 and each t >0,

P (£(lel? ~ V) > (v + HVZETZ) < 2P,

Proof. Let V = U"AU be a diagonal representation of V with a diagonal matrix A =
diag{\1,... ,An} and an ortonormal matrix U . It is well known that ¢ = A~1/2Ue¢ is a
standard Gaussian vector and ||| = ¢TAC. Alsoit holds trV = A\ +...+ Ay, tr V2 =
M+ ...+ A% and [|[V]| = max{\i,... ,Ax}. To bound the expression |[¢]|> —trV , we
apply the exponential Chebyshev inequality: with each p > 0 satisfying 2uA; < 1 and
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every z
P(lel*—trV>2) < e *Eexp{u(ell*—trV)}
N
- man (s -0
i=1
N
= e[ Bexp {pi(G - 1)}
i=1
N N o
= exp{—,uz—uZAi — Zglog(l —2@)%-)}.
We now set p = 2\/2;7 so that 2u\; = \/% < 1/2 and use that —log(1—u) < u-+u?

for 0 <wu <1/2. This yields

s N
2 AN (v +1) gl 2
P (HEH trV > (y+t)v2trV ) < exp ( 5 + T2 ;1 A

= exp (—t/2 - 72/4)
as required. The bound for —(||e||? — tr V) is proved in the same line. O

Further, for a deterministic vector ¢ = (c1,... ,cn) ! from RY | we consider quadratic

forms of type
N
le+ell* =" lej + 5
j=1
Proposition 6.2. Let 1,... ,eny be Gaussian random variables with zero mean and the
covariance matriz o®V . Then it holds for any vector ¢ = (ci,...,cn) ' in RY
Ellc+el? = |le|® + trV,
E(lctel? =) —trV)’ =de Ve + 2t V2,
Moreover, for every positive v with v < ||[V||='\/tr V2/2 and every t >0
P (%(le+el? = flell? = trV) > llell2tr VA4 + (y + )V2 0 VZ) < 2e 7 /4700/2,

Proof. With vector notation, the studied quadratic form can be rewritten as |c +€||?> =
(c+¢€)"(c+e¢). Now, since Eg; =0, it holds

Ellc+el? = E (|lel? +2¢7e + e]?) = lle]* + Bllel|* = lel|* + tx V.
Next,
Varle+e>? = E(lc+el?— Elc+e|?)’
= E (2cTe + |le||® - trV)2

— 4E|c e’ +4Bce (|e|? —tr V) + E (e — tr V)°.
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The Gaussian vector € ~ N (0,V) fulfills
Ee (|e|* —trV) =0,
E|lc'e?=c"(Bee")e=c"Ve
so that in view of Lemma 6.1 Var||c +€||? =4c' Ve +2trV? as required.
Let now v > 1 be fixed such that v < ||V !y/trV2/2. This particularly means
that ||V|| < \/trV2/2. Note that the scalar product c'¢ is a linear combination of the

Gaussian zero mean random variables and it is therefore Gaussian as well with Ee¢'e = 0
and E|c'e|?> = ¢"Ve. This yields for every v > 1

P (cTs > YV cTVc) <e N2,

The condition ||V < \/trV2/2 provides ¢' Ve < ||c|?|V] < |lcl|?\/tr V2/2. Combin-

ing this inequality with the previous one implies

P (2¢Te > (y+ t)llef (26 V2)/4) < emOF07,
Next, by Lemma 6.1

P <||€||2 —trV > (y+t)vV2tr V2> < e A2,

Summing up the previous estimates, we obtain

N
P Z lcj + e —tr V> el + (v +t)|ell(2tr VAV L (v + V2t V2
j=1

—P (2&: el =tV > (v +0)llell2tr VY4 4 (v + ) V2 tr v2)

<P (QCTE > (y+8)|le)|(2 tr v2)1/4) +P (HeH? —trV > (y+ V2 v2)

< 26*72/4*%/2

as required. O

6.2. Gaussian approximation for quadratic forms

In what follows we consider quadratic forms Y7 S0 | a;p€i&s of independent but not
necessarily normal random variables £1,...&, with vanishing diagonal coefficients, i.e.
ai; = 0. We aim to show that, under moment conditions on &;’s and mild assumptions
on the coefficients of the quadratic form, the asymptotic distribution of this quadratic
form only weakly depends on the particular distribution of £;’s and, as a consequence,
it can be approximated by a distribution of a similar quadratic form of Gaussian r.v.’s
with the same first and second moments.

Let A = (ay,4,7 =1,...,n) be a nxn symmetric matrix with a; = 0 for all 7,
and let &1,...,&, be independent zero mean r.v.’s with Eé’f < oo for all 7. Define

o? = E¢?. We study some properties of the quadratic form Y 5 > | a;&:&,.
2 = E¢?. We study properties of the quadratic f Dot 21 @iekie



32 SPOKOINY, V.

Lemma 6.1. It holds

n n n
EY > au&ite=Y aio; =0,
i=1

=1 ¢=1
n n 2 n
E{zzaww} Y S abetal 61
=1 /=1 i=1 (#i

Proof. Obvious. Here it is only important that the diagonal elements a;; vanish. O

By A(&y,...,&,) we denote the corresponding quadratic form, that is

A1y 56n) = ZZM&&

1=1 {#£i

Let also El, . ,gn be a sequence of independent Gaussian r.v.’s with Eg, = 0 and

E§2 = O' , 1 =1,...,n. Define another quadratic form

A&, 6n) = ZZM&&

1=1 0#i

Clearly EA(Ey,... &) =0 and E|A(&y, ... &) = BlA(&, ..., &)%.

Proposition 6.3. Let Efg1 < C’40§L for some fized constant C4 > 3. Let, for a sym-
metric matrix A with a; =0 for i =1,... ,n, and for a normalizing constant G, the
numbers Cy be defined by

— 2
Ca = n{lax’nnG’ ezlaea 207. (6.2)

Then, for every three times continuously differentiable function f, it holds

_ 1 > 8 _
Bf (G AL &) — BS (MA@ &) | < S /(G100 201
where f3 means the mazimum of the absolute value of the third derivative of f, that is,

f3 = supy | f" ()] -

Remark 6.1. The value C'4 can be easily evaluated for the case of an homogeneous noise
when all o2 coincide with some o?. Clearly each sum d; = Py 1“ % is i-th diagonal
element of A2 and Cy < G2 max;—1,.. p{nd;}.

Remark 6.2. The conditions of Proposition 6.3 do not guarantee that the distribution
of G YA(¢1,... ,&,) is close to some norma distribution. A typical example which just
meets in hypothesis testing framework corresponds to the quadratic form A(&y,... ,&,) =
(€1 + ...+ &,)?. which, even with normal &;’s, has the x?2-distribution.

Proof. The change &; for &/o; and ay for ayojo, allows to reduce the general case
to the situation with o; = 1 for all ¢. Hence, for the sake of notation simplicity, we

suppose that 52-2:1, 1=1,...,n
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We use the following obvious inequality

‘Ef(G*lA(gl,... ,gn)) _Ef (G*IA(El,... ,En))\ (6.3)

< |BF (67 A &G )~ BE (6 A 1B 8))
=1

where we assume &y = §n+1 = 0. We evaluate the last summand here, all others can be

bounded in the same way. Denote

n—1n—1

Unmt = GTY D auils,

i=1 (£

n—1
Ap = GT'AG, .. &) —tno1 =2G76)  aini
=1

n—1
Ap = G A, & 16n) —tn 1 =2G 6 aini .

=1

The Taylor expansion yields

BF (GT A &) = BS (GG 1,6 | (6.4)

< ‘Efl(“nfl)(An - zn) + % ‘Ef”(unfl)(A% - zi) %(E |An|3 + E|£n|3)

+

Since &, and an are independent of &;,...,&, 1 and since E¢, = Egn =0, EE =

Eg% =1, taking the conditional expectation given &i,...,&, 1, we obtain
E(An—ﬁnml,... ,gn,l) —0 (6.5)
B (A2 -A2 |6, b)) =0. (6.6)

Further we evaluate E|A,|? and E|A,[?. Note first that, since E¢} < Cy with Cy >3,

n—1 4 n—1 n—1
® (zg) - S dEe 33
=1 =1

04i

n—1 n—1 2
< Za?n(a; —-3)+3 (Z a%n>
i=1 i=1
n—1 2
S Ch (j{:aié) .
=1
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Now the Hélder inequality yields in view of E|&,[> < C2/*!

n—1 3
2) " ainki
i=1

n—1 4 3/4
< 802/4 {E (Z amfi) }
=1

n 3/2
< 802/2 (Z a?n>
i=1

and the condition G2 " a2 <n~'C, provides

G3E|A,? = E|&|PE

E|A,|? < 8(C4C )3 032, (6.7)
For the Gaussian r.v. sngn, the similar bound applies:
E|A, P < 8(CuCy)% 0312, (6.8)

Substituting these estimates as well as (6.5) and (6.6) in (6.4) implies

‘Ef (A(gl,.é. ,sn>> By (A(fl,... ,snl,a»)

16 3/2. —3/2
<= .
e <5 f3(CiCa)’*n

Similar bounds hold for the other summands in (6.3). Summing them out, we obtain

f3(CaCA)* P 1/2

w| oo

Bf (G A, &) — B (G AG- - &) | <

as required. O

Corollary 6.1. Under the conditions of Proposition 6.3, for each § >0 and every =z
p (GilA(fla N fB) <P (GilA(a,... ,gn) >z — 5) + Const.C:o:l/QTfl/Z(T3

with a constant Const. depending on Cy only. If, in addition, G*> > E|A(¢y,... ,&)|?,
then

P(GTA(G,... &) > 1) < P (G—IA(El, B > :1:) + Const.C¥2n=1/2573 4.4,

Proof. Let a smooth function f fulfill f(u) =0 for v < —1 and f(u) =1 for u > 0.
Define C; = sup, |f"”(u)|. Now, given z and § > 0, set fys(u) = (0~ (u—12)).
Obviously f5(u) =0 for u <2 —0 and fy5(u) =1 for u > z and also |f;"s(u)| <
Cf5_3 .

Next, by Proposition 6.3

P(G'A(&,... &) >x) < Efps (G 1A, ... &)

S Ef$a5 (G_IA(gla T agn)> + (CAC4)3/2Cf6_3n_1/2.

w| oo
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It remains to note that

Ef,s (G—lA(a,...,En)) < P(G‘lA(gl,...,gn)>x—6>

The last statement of the corollary follows from the obvious fact that the density of
G LA(&,... ,&,) is bounded by 1 for every G with G2 > E|A(&y, ... ,&)|%. O

6.3. A family of quadratic forms

Here we briefly discuss the situation arising in adaptive testing problem when the max-
imum of a family of quadratic forms of &;’s is considered. We again aim to show that
the joint distribution of this family (and thus the distribution of the maximum) can be
well approximated by the similar distribution for quadratic forms of Gaussian random
variables.

Let Ai,...,Apn be a collection of symmetric n X n-matrices with vanishing diag-
onal elements. We analyze the joint distribution of the normalized quadratic forms
Gl Ay (&1, . .. &) with independent random variables ¢; satisfying E¢; = 0, EE? =
02-2 and Efgl < oo, and some constants G,,,, m =1,... ,M . More precisely, we intend
to show that the distribution of this family is close to the distribution of the family
{G;}Am(é, ), m=1,... , M} with Gaussian variables £ ~ N(0,02).

Proposition 6.4. Let the variables &; fulfill B¢} < Cro} and let every matriz Ay,
satisfy the conditions of Proposition 6.3 with the same constant Cy, m = 1,... , M.

Then, for every three times continuously differentiable function f in the space RM | it

holds
‘Ef (G7A(&, ... &) — Ef (G_IA(gl, . ,En))‘ < §f3M3(C4CA)3/2n_1/2

where G~YA denotes the vector with elements G, ' A, and f3 means the mazimum of
the absolute value of the third derivative of f, that is,

‘ 0°f (=)

= Ssu ma, —a
f3 b * (9:51651,‘] a(IIk

2eRM irjk=1,...,.M

Proof. The proof follows the same line as in the case of one quadratic forms when un-
derstanding G™'A, up_1, f'(up_1) and A, as vectors in RM and f”(u,_1) as the
M x M -matrix of the second derivatives of f at w,_1. The only difference is that we
apply the bound E|A,|? < M38(C’40,4)‘°’/2n_3/2 for the norm of A,, whichis M? times
larger than in the case of M =1, cf. (6.7). The details are left to the reader.

O

A straightforward corollary of this results concerns the maximum of G;,;'4,,’s.
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Corollary 6.2. Let the conditions of Proposition 6.4 be fulfilled. Then
< C’onst.M?’Ciﬁn_l/%_?’

with a constant Const. depending on Cy only. If, in addition, G2, > E|Ay,(&1,... ,&))?
for all m < M , then

-1 _ -1 z z
P (gnngaﬁGm AnEr,- - 16) < x) P (Tg?ﬁam A B < x)
< C’onst.M3C’z/2n71/2573 + M.

Proof. The first statement can be checked exactly as for the case of M = 1, see the
proof of Corollary 6.1. As regard to the second statement, it suffices to mention that
the density of each G;}Am(é, . ,gn) is bounded by 1 and hence the density of the
maximum of G;llAm(é, e ,En) ’s is bounded by M . O

Remark 6.3. If M is not too large in the sense that M3n~'/2? is small, then, selecting
a proper 0, we can derive from this statement that the distribution of the maximum of
G AL (&1, ... &) s is approximated by the similar distributions for G;nlAm(gl, .. ,gn) ’s.
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