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Abstract. The paper is concerned with the problem of testing a linear hypothesis

about regression function. We propose a new testing procedure based on the Haar

transform which is adaptive to unknown smoothness properties of the underlying func-

tion. The results show rate optimality of this procedure under mild conditions on the

model.

1. Introduction

Suppose we are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 R
1 , Yi 2 R

1 , obeying the

regression equation

Yi = f(Xi) + �i (1.1)

where f is an unknown regression function and �i are zero mean random errors. Sta-

tistical analysis for such models may focus on the qualitative features of the underlying

function f . Particularly, no-response model corresponds to testing the simple zero hy-

pothesis that f is a constant function. Another typical example is connected to the

hypothesis of linearity. More generally one may consider a parametric type hypothesis

about f . In this paper, we restrict ourselves to the case of the hypothesis of linearity.

Using the hypothesis testing framework, we test the null hypothesis H0 : f `is linear',

that is, f(x) = a + bx for some constants a; b , versus the alternative H1 : f `is not

linear'.

The problem of testing a simple or parametrically speci�ed hypothesis is one of the clas-

sical in statistical inference, see e.g. Neyman (1937), Mann and Wald (1942), Lehmann

(1957). Let � be a test i.e. a measurable function of the observations Y1; : : : ; Yn with

two values 0; 1 . As usual, the event f� = 0g is treated as accepting the hypothesis

and � = 1 means that the hypothesis is rejected. The quality of a test � is described

in terms of the corresponding error probabilities of the �rst and second kinds. Let P f

denote the distribution of the data Y1; : : : ; Yn for a �xed model function f , see (1.1).

If f coincides with a linear function f0 , then the error probability of the �rst kind at

the point f0 is the probability under f0 to reject the hypothesis,

�f0(�) = P f0(� = 1):

Similarly one de�nes the error probability �f (�) of the second kind. If the function f

is not linear, then

�f (�) = P f (� = 0):

Typically one aims to construct a test ' of the prescribed level �0 , that is, satisfying for a

given �0 > 0 the condition �f0(�) � �0 which also has a nontrivial power 1� �f (') >
0 against a possibly large class of alternatives f . A large number of proposals for
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constructing such tests can be found in the literature. We refer to Hart (1997) where

the reader can �nd historical remarks and further references. Note meanwhile, that the

majority of results in this domain is concentrated either only on verifying the condition

�f0(�) � �0 or on studying asymptotic properties of the power function 1��f (') for a

�xed or local alternative, and the question of test optimality is not addressed rigorously.

One possibility to introduce test optimality is proposed by Ingster (1982). The idea

is to construct a test � which ful�lls the above constraints �f0(') � �0 for all linear

functions f0 and additionally the condition �f (') � �0 with some �0 < 1��0 uniformly

over a possibly large class F of alternatives f . Following to Ingster (1982, 1993), we

consider the class F(�) consisting of smooth (in some sense) alternatives which are also

separated from the set of linear functions with the distance % , that is,

inf
a;b
kf(�)� a� b � k � %;

k�k being the usual L2 -norm. Then the quality of a test ' with the level �0 is measured

by a minimal distance � such that �f (�) � �0 for all f from F(�) . A test �� with

the level �0 is optimal if it minimizes the corresponding separation distance � . Under

this approach, the goal is both to evaluate the minimal possible separation distance �

and to describe the corresponding optimal tests.

It turns out that the structure of optimal tests and the corresponding separation

distance strongly depend on the smoothness class F we consider. Ingster (1982, 1993)

described the optimal rate of decay of the separation distance � to zero as the sample

size n tends to in�nity for H�older and Sobolev function classes, the case of Besov classes

is considered in Lepski and Spokoiny (1998). Sharp optimal asymptotic results can be

found in Ermakov (1990), Lepski (1993), Lepski and Tsybakov (1996), Ingster and Suslina

(1998).

Unfortunately the mentioned procedures hardly apply in practice since the informa-

tion about smoothness properties of the underlying function f is typically lacking. Some

adaptive (data-driven) smooth tests are proposed in Ledwina (1994), Fan (1996), Led-

wina and Kallenberg (1997), Hart (1997) where the reader can found further references.

Spokoiny (1996, 1998) considered the problem of adaptive testing against a smooth alter-

native and constructed an adaptive test which is near optimal by a log log multiple for a

wide range of smoothness classes. Moreover, the test is rate optimal in the class of adap-

tive tests, that is, this log log factor is an unavoidable payment for the adaptive property.

The inconvenience for practical applications is that this procedure is designed for an

idealized `signal + white noise' model and only the case of a simple null is considered.

The aim of this paper is to develop an adaptive testing method which allows for a

non-regular design, non-Gaussian errors with an unknown distribution and a non-simple

null, and which is computationally simple and stable w.r.t. the design non-regularity.

The latter property is achieved by making use of the simplest wavelet basis, namely the
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Haar transform. It is worth mentioning that the Haar basis is not often used for estimat-

ing the regression function f from (1.1) because of its non-regularity: the corresponding

estimator is only rate suboptimal. Nevertheless, Ingster (1993) shown that, in spite of

the non-regularity of the Haar basis, the corresponding testing procedure is rate optimal.

Another remark concerns the assumption on the errors �i . Assuming i.i.d. errors with

a known distribution, one can easily select a critical level for any test statistic using the

Monte-Carlo or other resampling technique. For practical applications, this approach

needs to be justi�ed since the underlying error distribution is typically unknown. The

problem becomes even more complicated if a data-driven test basing on the maximum of

di�erent test statistics is used. We establish some general results on the approximation of

quadratic forms of independent random variables by similar quadratic forms of Gaussian

random variables which help to justify the following recipe: if the critical level of the

considered test statistic is calculated for Gaussian errors, then it applies, at least asymp-

totically, as the sample size grows, for an arbitrary errors distribution with bounded 4

moments.

The paper is organized as follows. Section 2 contains the description of the proposed

testing procedure. The properties of this procedure are discussed in Section 3. Some

possible extensions of the method to the multivariate regression and heterogeneous noise

can be found in Section 4. The proofs are postponed to Section 5. In the Appendix we

collect some general results for quadratic forms.

2. Testing procedure

We consider the univariate regression model

Yi = f(Xi) + �i; i = 1; : : : ; n;

with additive homogeneous noise, that is, the errors �i are independent identically dis-

tributed with zero mean and the variance �2 : E�i = 0 and E�2i = �2 . The design

points X1; : : : ;Xn are assumed to be rescaled to the interval [0; 1] , that is, Xi 2 [0; 1]

for all i = 1; : : : ; n .

The proposed makes use of the Haar transform. We �rst recall some useful facts about

the Haar decomposition and then explain the idea of the method.

2.1. Preliminaries

Hereafter we denote by I the multi-index I = (j; k) with j = 0; 1; 2; : : : and k =

0; 1; : : : ; 2j � 1 , and let I be the set of all such multi-indices. We also set

Ij = f(j; k); k = 0; 1; : : : ; 2j � 1g
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for the index set corresponding to j -th level. Let now the function  (t) be de�ned by

 (t) =

8>>>>>><>>>>>>:

0 t < 0;

1 0 � t < 1=2;

�1 1=2 � t < 1;

0 t > 1:

For every I = (j; k) , de�ne the Haar basis function hI by

hI(t) = 2j=2 (2jt� k):

Clearly the function hI is supported on the interval AI = [2�jk; 2�j(k + 1)] . It is well

known that each measurable function f on [0; 1] can be decomposed in the following

way

f(t) = c0 +
X
I2I

cIhI(t) = c0 +

1X
j=0

X
I2Ij

cIhI(t): (2.1)

This means that the problem of recovering the function f can be transformed into

the problem of estimating the coe�cients cI by given data. Since we have only n

observations, it makes no sense to estimate more (in order) than n coe�cients. We

restrict therefore the total number of considered levels j . Let some j be �xed such that

2j+1 � n . We also introduce the rescaled basis functions  I to provide
P

i j I(Xi)j2 =
1 , that is,

 I(Xi) = ��1I hI(Xi);

with �2I =
Pn

i=1 h
2
I(Xi) . Next we replace the in�nite decomposition (2.1) by the �nite

approximation
P

I2I(j)
cI I(t) where the index set I(j) contains all level sets I` with

` � j . Taking into account the structure of the null hypothesis, we complement the set

of functions ( I ; I 2 I`); ` � j , with two functions  0 � 1 and  1(t) = t , that is, we

consider the set of indices

I(j) = f0; 1g +
j[

`=0

I`:

The idea of the proposed procedure is to estimate all the coe�cients (cI ; I 2 I(j))
from the data Y1; : : : ; Yn and then test that all the coe�cients cI for I 6= 0; 1 are zero.

For a function g , de�ne kgkn by

kgk2n =
1

n

nX
i=1

g2(Xi):
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De�ne also the column-vector ��(j) = (��I ; I 2 I(j)) as a minimizer of the error of

approximating f by a linear combination of  I , I 2 I(j) :

��(j) = arginf
�(j)

kf �
X

I2I(j)
�I Ik2n: (2.2)

This is a quadratic optimization problem with respect to the coe�cients f�I ; I 2 I(j)g .
Therefore, the solution �� always exists but it is probably non unique. To get an explicit

representation for �� we introduce matrix notation.

First of all, we make an agreement to identify every function g with the vector

(g(Xi); i = 1; : : : ; n)> in R
n where the symbol > means transposition. Particularly,

the model function f is identi�ed with the vector (f(Xi); i = 1; : : : ; n)> .

Denote by Nj the number of elements at each level j ,

Nj = #(Ij) = 2j ; j = 0; 1; : : : ; j

and let N(j) be the total number of elements in the set I(j) ,

N(j) = 2 +

jX
`=0

N` = 1 + 2j+1:

Introduce n�N(j) -matrix 	(j) = ( i;I ; i = 1; : : : ; n; I 2 I(j)) with elements

 i;I =  I(Xi) =  I(Xi); I 2 I(j); i = 1; : : : ; n:

Clearly  I(Xi) = �1=
p
MI where MI is the number of design points in the interval

AI corresponding to the index I , and also  i;0 = n�1=2 and  i;1 = Xi

�Pn
`=1X

2
`

��1=2
.

Now the approximation problem (2.2) can be rewritten in the form

��(j) = arginf
�(j)

kf �	(j)�(j)k2n:

The solution to this quadratic problem can be represented as

��(j) =
�
	(j)>	(j)

��1
	(j)>f: (2.3)

Strictly speaking, this representation is valid only if the matrix 	(j)>	(j) is not degener-

ate. In the general case, one may use the similar expression for ��(j) when understanding�
	(j)>	(j)

��1
as a pseudo-inverse matrix.

If the function f is linear, that is, f(x) = �0 + �1x , we clearly get ��0 = �0 , �
�
1 = �1

and ��I = 0 for all I = (`; k) with ` � 0 and k � 0 . For a non-linear function f , the

sum
jP̀
=0

P
I2I`

j��I j2 can be used to characterize the deviation of f from the space of linear

functions.

Since the function f is observed with a noise, we cannot calculate directly the coe�-

cients ��I and we consider the least squares estimator b�(j) of the vector ��(j) which is
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de�ned by minimization of the sum of residuals squared,

b�(j) = arginf
�(j)

kY �	(j)�(j)k2n = arginf
f�I2I(j)g

nX
i=1

0@Yi � X
I2I(j)

�I I(Xi)

1A2

: (2.4)

Here Y means the column-vector with elements Yi; i = 1; : : : ; n .

De�ne V (j) as the pseudo-inverse of 	(j)>	(j) , V (j) =
�
	(j)>	(j)

��
It is a

symmetric N(j)�N(j) matrix (by vI;I0 we denote its elements, I; I
0 2 I(j) ) and

b�(j) = V (j)	(j)>Y : (2.5)

Neyman (1937) proposed a `smooth' test based on the centralized and standardized sum

of squares
jP̀
=0

P
I2I`

jb�I j2 for some j . Ingster (1982, 1993) suggested the special choice of j

depending on the smoothness properties of the function f which allows for a rate optimal

testing. We follow Spokoiny (1996) where the method of Ingster (1993) is extended to

adaptive testing by considering all such tests for di�erent j simultaneously. Here we

slightly modify that approach and consider the family of levelwise tests, that is, for every

level j , we construct a test statistic based only on the empirical Haar coe�cients b�I for

I 2 Ij , and the resulting test is de�ned as the maximum of all levelwise ones.

Let some number j(n) be �xed such that 2j(n) � n and let, for every j � j(n) ,

the estimate b�(j) be de�ned by (2.4). Denote by b�j the part of the vector b�(j)
corresponding to the level j ,

b�j = (b�I ; I 2 Ij):
We analyze every such vector separately for all j � j(n) . Namely, for every j � j(n) ,

we use the statistic based on the sum
P

I2Ij jb�I j2 corresponding to j th resolution level.

To de�ne our test, we need to have a more detailed insight into the properties of such

sums under the null hypothesis, i.e. when the function f is linear: f(x) = �0+ �1x . We

have already mentioned that in this situation f = 	(j)�� where ��0 = �0 , �
�
1 = �1 and

all remaining coe�cients ��I vanish. Therefore, using the model equation Y = f + � ,

we obtain

b�(j) = V (j)	(j)>(f + �)

= V (j)	(j)>	(j)�� + V (j)	(j)>�

= �� + V (j)	(j)>�: (2.6)

Obviously �(j) = V (j)	(j)>� is a random vector in R
N(j) with zero mean. Moreover,

it holds for its covariance matrix

E�(j)�(j)> = V (j)	(j)>E��>	(j)V (j)

= �2V (j)	(j)>	(j)V (j)

= �2V (j): (2.7)
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Due to (2.6), the subvector b�j of b�(j) coincides under the null with the corresponding

subvector �j of the vector �(j) , and it holds under the null in view of (2.7)

Eb�j = E�j = 0;

Eb�jb�>j = E�j�
>
j = �2Vj :

This particularly implies

E
X
I2Ij

jb�I j2 = E
X
I2Ij

j�I j2 = �2 trVj

where trA denotes the trace of a matrix A . Moreover, for the case of Gaussian errors

�i in (1.1), the estimates b�I are also Gaussian random variables, and it holds

Var

0@X
I2Ij

jb�I j2
1A = E

0@X
I2Ij

jb�I j2 � �2 tr Vj

1A2

(2.8)

= E

0@X
I2Ij

j�I j2 � �2 tr Vj

1A2

= 2�4 trV 2
j ;

see (2.7). This leads to the obvious idea to use the centralized and normalized sum

Tj =
1q

2�4 trV 2
j

0@X
I2Ij

jb�I j2 � �2 trVj

1A
as a test statistic. To de�ne our testing procedure, we simply take the maximum of all

such statistics over the set of all considered Haar levels j .

2.2. Testing procedure

First we de�ne the �nest considered resolution level j(n) which has to satisfy n2j(n) !
1 , e.g.

j(n) = [log2 n� log2 log2 n] :

where [a] denotes the integer part of a . For each j � j(n) , let b�(j) be de�ned by (2.5).

Denote by b�j the part of the vector b�(j) corresponding to the level j ,

b�j = (b�I ; I 2 Ij)
and let Vj be the submatrix of the matrix V (j) =

�
	(j)>	(j)

��
corresponding to the

level j , i.e. Vj = (vI;I0 ; I; I
0 2 Ij) . We consider �2 -type statistics

Sj = kb�jk2 = X
I2Ij

b�2I :
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and de�ne test statistics Tj by centralization and normalization of Sj :

Tj =
1q

2b�4 trV 2
j

0@X
I2Ij

jb�I j2 � b�2 trVj
1A

where b� is the estimate of the error standard deviation de�ned in the next subsection.

The proposed test rejects the null hypothesis, if at least one such statistic is signi�cantly

large, that is,

�� = 1 (T � > �) with T � = max
j=0;::: ;j(n)

jTj j

where � is a critical value. The choice of � is discussed in Section 2.4.

2.3. Estimation of �
2

Recall that we assume a homogeneous additive noise in the model (1.1), that is, the

errors �i are independent identically distributed random variables ful�lling E�i = 0

and E�2i = �2 . The variance �2 is typically unknown in practical applications but

this value is important for the de�nition of our test procedure. Below we discuss how it

can be estimated from the data Y1; : : : ; Yn . We suppose for simplicity that the design

points are ordered in a way that X1 � : : : � Xn . There are several proposals for

variance estimation. One possibility is to estimate �2 by the expression of the form
1

2(n�1)
Pn�1

i=1 (Yi+1 � Yi)
2 , see Gasser et al. (1986). We follow the proposal from Hart

(1997, Section 5.3) which provides an unbiased estimate of the variance under the linear

null hypothesis.

De�ne pseudo-residuals

bei =
(Xi+1 �Xi)

(Xi+1 �Xi�1)
Yi�1 +

(Xi �Xi�1)

(Xi+1 �Xi�1)
Yi+1 � Yi

= aiYi�1 + biYi+1 � Yi; i = 2; : : : ; n� 1:

which are the result of joining Yi+1 and Yi�1 by a straight line and taking the di�erence

between this line and Yi . A variance estimate based on these pseudo-residuals is

b�2 = 1

n� 2

n�1X
i=2

be2i
a2i + b2i + 1

: (2.9)

It is obvious that Eb�2 = �2 if f is a linear function. Some other properties of this

estimates are listed in Lemmas 5.1, 5.2 and 5.9 below.

2.4. Critical value �

Here we discuss how to select the critical value � to provide, at least asymptotically for

large n , the condition �f0(�
�) � �0 for all linear functions f0 . We apply a bootstrap
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procedure resampling from the no-response model (which is a particular case of a linear

model) with standard normal errors

Y �i;m = ��i;m; i = 1; : : : ; n;

for m = 1; : : : ;M , where the design points X1; : : : ;Xn are the same as for the original

model (1.1), ��1 ; : : : ; �
�
n are i.i.d. standard normal random variables and M is the

considered number of bootstrap samples.

For every bootstrap sample Y �1;m; : : : ; Y
�
n;m , we recalculate the test statistic T �m from

this sample using the previous procedure (including the step of variance estimation).

Finally we de�ne the critical value � as the �0 -level for the set fT �m; m = 1; : : : ;Mg :

� = min

(
t :M�1

MX
m=1

1(T �m > t) � �0

)
:

3. Main results

In this section we present the results describing asymptotic properties of the proposed

testing procedure. We �rst discuss the properties of the test under the null and then we

consider the power of the test.

3.1. Behavior under the null

Let �� be the test introduced above. Our �rst result concerns with the case of Gaussian

errors �i in the model ( 1.1). In this situation, independently of the design, the nominal

level of the test �� is exactly �0 .

Theorem 3.1. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1)

with a deterministic design X1; : : : ;Xn and with i.i.d Gaussian errors �i � N (0; �2) .

If the function f is linear, f(x) = �0 + �1x , then

�f (�
�) � P f (�

� = 1) = �0:

Our next result deals with a more general situation when the errors �i are i.i.d. with 6

�nite moments. In this case we also need some mild regularity conditions on the design.

Recall the notation AI = [2�jk; 2�j(k+1)] and let MI stand for the number of design

points in AI : MI = #fi : Xi 2 AIg . Design regularity particularly means that each

interval AI contains enough design points Xi .

(D) (i) It holds for some positive constants C� and C� and all j � j(n)

inf
I2Ij

2jMI=n � C�;

sup
I2Ij

2jMI=n � C�;
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(ii) For some �xed constant CD and all j � j(n)

trV 2
j � CD2

j ;

(iii) For some �xed constant CV and all j � j(n)

kV (j)k � CV :

Here the norm kAk of a symmetric matrix A is understood as the maximal

eigenvalue of this matrix.

Condition (D) is trivially ful�lled with C� = C� = CD = CV = 1 for the case of a

uniform random or deterministic equidistant design when V (j) is the unit matrix.

Theorem 3.2. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1)

with a deterministic design X1; : : : ;Xn satisfying (D) and with i.i.d. errors �i satisfy-

ing E�i = 0 , E�2i = �2 and Ej�2i � �2j3 � �6C6 where C6 is a �xed constant. If the

function f is linear, f(x) = �0 + �1x , then

�f (�
�) � P f (�

� = 1) � �0 + �1(n);

where �1(n) depends on n , C6 and the constants C�; C�; CD; CV from condition (D)

only and �1(n)! 0 as n!1 .

3.2. Sensitivity of the test

Now we state the results concerning the sensitivity of the proposed test �� . The �rst

assertion presents su�cient conditions for detecting an alternative with a high probability.

Next we demonstrate how these conditions can be transferred into a more usual form

about the rate of testing against a smooth alternative.

Proposition 3.1. Let the design X1; : : : ;Xn obey (D) and the errors �1; : : : ; �n ful�ll

the conditions of Theorem 3.2. Let then the regression function f be di�erentiable with

the Lipschitz continuous �rst derivative f 0 :

jf 0(s)� f 0(t)j � Ljs� tj (3.1)

with some �xed constant L . Let also ��j = (��I ; I 2 Ij) be the subvector of the vector

��(j) from (2.3) corresponding to j th resolution level and let Vj be the corresponding

covariance submatrix, j = 1; : : : ; j(n) . If, for some j � j(n) , it holds

T �j �
k��jk2

�2
q
2 trV 2

j

� 3(�1=2n + 1)2;

with �n = maxf�; 2
p
log j(n)g , then

P (��(j) = 0) � �(n)! 0; n!1;
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where �(n) depends on n , L and the constants C6; C�; C
�; CD; CV only.

We shall show, see Lemma 5.2 that, at least for su�ciently large n , it holds � �
2
p
log j(n) (1 + on(1)) . Hence, the result of Proposition 3.1 means that the test ��

detects with a probability close to one any alternative for which at least one from the

corresponding values T �j exceeds 6
p
log j(n) (1 + on(1)) . Therefore, the error of the

second kind may occur with a signi�cant probability only if

T �j � 6
p
log j(n) (1 + on(1)) ; 0 � j � j(n):

It remains to understand what follows for the function f from these inequalities.

3.3. Rate of testing against a smooth alternative

To formulate the results on the rate of testing, we have to introduce some smoothness

conditions on the function f . This can be done in di�erent ways. We choose one based

on the accuracy of approximation of this function by piecewise polynomials of certain

degree s . Given j � j(n) , denote by fAI ; I 2 Ijg the partition of the interval [0; 1]

into intervals of length 2�j : if I = (j; k) , then AI = [k2�j ; (k + 1)2�j) . Next, for

an integer s , de�ne Ps(j) as the set of piecewise polynomials of degree s � 1 on the

partition fAIg i.e. every function g from Ps(j) coincides on each AI with a polynomial

a0 + a1x+ : : : + as�1xs�1 where the coe�cients a0; : : : ; as�1 may depend on I . Now

the condition that a function f has regularity s can be understood in the sense that this

function is approximated by functions from Ps(j) at the rate 2�js , or, more precisely,

inf
g2Ps(j)

�Z 1

0

jf(t)� g(t)j2dt
�1=2

� Cs2
�js

where a positive constant Cs depends on s only.

In our conditions we change the integral by summation over observation points. This

helps to present the results in a more readable form without changing the sense of required

conditions. It can be easily seen that if the design is regular, then the both forms are

equivalent up to a constant factor.

Let now a function f be �xed. Let also j0 be such that 2j0�1 � s . Set for j � j0

rs(j) = inf
g2Ps(j�j0)

kf � gkn = inf
g2Ps(j�j0)

"
nX
i=1

jf(Xi)� g(Xi)j2
#1=2

:

The quantity rs(j) characterizes the accuracy of approximation of f by piecewise poly-

nomials. In particular, the Haar approximation we use corresponds to the case when

s = 1 .

Theorem 3.3. Let condition (D) hold, the errors �1; : : : ; �n ful�ll the conditions of

Theorem 3.2, and the regression function f obey (3.1). There exist a constant { de-

pending on the values CV ; CD; C�; C� and L only, such that if f satis�es, for some
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j � j(n) , the following inequality

inf
a;b
kf � a� b 1kn � {

�
rs(j) +

p
2j=2�n

�
(3.2)

with  1(x) = x , then

P f (�
� = 0) � �(n)! 0; n!1;

where �(n) is shown in Proposition 3.1.

Remark 3.1. It is of interest to compare this result with existing results on the rate of

hypothesis testing. For instance, it was shown in Ingster (1982) that if f belongs to a

Sobolev ball Ws(1) with

Ws(1) =

�
f :

Z 1

0

jf (s)(x)j2dx � 1

�
;

f (s) being s th derivative of f , then the optimal rate of testing is n�2s=(4s+1) .

For our procedure, the following result is a straightforward corollary of Theorem 3.3.

Corollary 3.1. Let the underlying function f belong to a Sobolev ball Ws(1) and let

condition (D) hold. There exists a constant Cs > 0 depending on s and the constants

from condition (D) only and such that, for n large enough, the inequality

inf
a;b
kf � a� b 1k2n � Cs(n=�n)

� 2s
4s+1

implies

P (�� = 0) = on(1):

We observe that the proposed method is rate near optimal by a log-log multiple.

Remark 3.2. The result of Theorem 3.3 helps to understand what happens in the case

when the design is not regular and, for instance, if there some intervals I with MI = 0 .

It was already mentioned that the procedure applies in this situation as well and the

error probability of the �rst kind is about �0 at least for n su�ciently large and for

Gaussian errors �i . Concerning the error probability of the second kind, the inspection

of the proof shows that design irregularity decreases the sensitivity of our procedure in

the following sense: there exist smooth alternatives with probably large L2 -norm which

are not detected. This may occur e.g. in the situation when f is deviated from the best

linear approximation only in the domain with very few design points inside.

4. Some extension

Here we brie
y discuss some possible extensions of the procedure.
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4.1. Heterogeneous noise

The proposed procedure essentially uses the noise homoskedasticity. Namely, this condi-

tion allows to estimate the unknown noise variance at the rate n�1=2 . If this assumption

is not ful�lled (this is for instance the case for the binary response model, see e.g. Klein

and Spady, 1993), then the direct application of the method from Section 2 becomes

questionable. One often used approach in such situation is based on some local estima-

tion of the variance as a function of the design point x . Unfortunately, this may leads to

a very poor quality of variance estimation for small and moderate sample size n . This

may in turn destroy the behaviour of the test both under the null and the alternative

because the variance estimate is used for centering the considered test statistics. A more

useful approach is to avoid centering either by splitting the sample into two independent

subsamples or by removing the diagonal terms from the considered test statistics. We

brie
y discuss the latter possibility. Each empirical Haar coe�cient b�I is a linear combi-

nation of the observations Yi , see (2.5). Denote by wI;i the corresponding coe�cients:b�I =Pn
i=1 wI;iYi . Then clearly

jb�I j2 = nX
i=1

nX
i0=1

wI;iwI;i0YiYi0 :

To de�ne our modi�ed test statistics, we remove from this sum the diagonal elements

with i = i0 :

T 0j =

P
I2Ij

jb�I j2 � P
I2Ij

nP
i=1

w2
I;iY

2
iq

2 trV 2
j

:

The critical level for the test statistic T � = maxj�j(n)fT 0jg can be again calculated by

the bootstrap procedure when resampling from the heterogeneous model with Y �i = �i�
�
i

where �2i = (a2i + b2i + 1)�1be2i and the pseudo-residuals bei are de�ned in Section 2.3.

4.2. Linear parametric hypothesis

The proposed method allows for the straightforward generalization to the case of a linear

null of the form f(x) = �1 1(x) + : : : + �p p(x) with known function g1; : : : ; gp . One

should simply include this function in the set f I ; I 2 I(j)g and then proceed as before.

For theoretical study, the only properties of the estimate b�2 of �2 have to be re�ned.

4.3. General parametric hypothesis

The situation becomes more complicated for a general parametric null. Here one possi-

bility is, similarly to H�ardle and Mammen (1993), to construct �rst the parametric �t,

then to subtract it from the date and �nally to apply the above procedure for testing a

no-response hypothesis. A more detailed study of such test needs to be done.
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4.4. Multivariate regression

The procedure allows also for straightforward generalization to the multivariate regression

case. We may use the corresponding multivariate Haar basis taking so many levels that

the total number of estimated coe�cients does not exceed n . Some further extensions

to additive or generalized additive models are also possible, see e.g. H�ardle et al. (1998).

5. Proofs

In this section we �rst prove Theorems 3.1 and 3.3 for the case of Gaussian errors �i and

then discuss the generalization to the general case.

5.1. Proof of Theorem 3.1

It su�ces to check that the distribution of the test statistic T � based on the bootstrap

sample Y �1 ; : : : ; Y
�
n is the same as for the original sample Y1; : : : ; Yn . The di�erence

between these two samples is only in the linear trend (which can be nontrivial for the

original sample but does not appear in the bootstrap one) and in the noise variance (we

resample with the error variance 1 instead of �2 ). Note however that the linear trend in

the regression function makes no in
uence on the considered test statistics Tj . Indeed,

the numerator of this statistic is de�ned as the centered sum over Ij of the the empirical

Haar coe�cients b�I squared, so that the coe�cients b�0 and b�1 , corresponding to the

linear trend, do not enter, see (2.7) and (2.6). Similarly, the estimate b�2 of the noise

variance �2 is based on the pseudo-residuals bei which are de�ned in a way that the

linear trend in the regression function cancels out, see Lemma 5.1.

Further, for the case of zero trend, both numerator and denominator of each Tj is

some quadratic forms of the errors �i which can be represented as �i = �e�i with i.i.d.

standard normal variables e�i , i = 1; : : : ; n . This yields, see (2.9), that the distribution

of each test statistic Tj does not depend on � . The same is obviously true for the

maximum T � and the assertion follows.

5.2. The properties of the estimate b�
2

Here we discuss the properties of the estimate b�2 of the noise variance �2 . We present

two results. The �rst one describes the properties under the null, and the second one

applies under a smooth alternative as well. The results are stated under the Gaussian

errors �i . For the extension, see Section 5.5.
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Lemma 5.1. Let the regression function f be linear. Then for n � 36 and each 
 � 1

with 
 � 3
7

q
3(n�2)

2

P

�
�
p
n

�b�2
�2
� 1

�
> 2


�
� e�


2=4;

Proof. For the case of a linear function f(x) = �0 + �1x , one easily gets with the coe�-

cients ai =
(Xi+1�Xi)

(Xi+1�Xi�1)
, bi =

(Xi�Xi�1)

(Xi+1�Xi�1)

aif(Xi�1) + bif(Xi+1)� f(Xi) = 0:

Now the model equation (1.1) implies

b�2 =
1

n� 2

n�1X
i=2

j�ij2

with

�i =
ai�i�1 + bi�i+1 � �iq

a2i + b2i + 1
:

To estimate the di�erence jb�2� �2j , we apply Proposition 6.1. Let � denote the vector

(�2; : : : ; �n�1)> . Obviously E� = 0 . De�ne � = E��> . Observe �rst that

1

n� 2
tr� =

1

n� 2

n�1X
i=2

�2(a2i + b2i + 1)

(a2i + b2i + 1)
= �2:

Next, it is easy to check that 1=2 � a2i + b2i � 1 and

�2

2
� �2(ai + bi)q

(a2i + b2i + 1)(a2i+1 + b2i+1 + 1)
� 2�2

3
:

Hence

E�2i = �2;

jE�i�i+1j � 2�2=3;

jE�i�i+1j � �2=2;

E�i�i0 = 0; ji0 � ij > 1;
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This allows to estimate tr�2 as follows:

1

(n� 2)2
tr�2 =

1

(n� 2)2

n�1X
i=2

n�1X
j=2

(E�i�j)
2

=
1

(n� 2)2

n�1X
i=2

n�1X
j=2

�
(E�i�1�i)

2 + (E�2i )
2 + (E�i�i+1)

2
�

� 1

(n� 2)2
�4

n�1X
i=2

(1 + 4=9 + 4=9)

=
17�4

9(n� 2)
� 2�4

n

for n � 36 . Similarly

1

(n� 2)2
tr�2 � 1

(n� 2)2
�4

n�1X
i=2

(1 + 1=4 + 1=4) =
3�4

2(n� 2)

1

n� 2
k�k � 1

n� 2
max

i=1;::: ;n

nX
j=1

jE�i�j j �
7�2

3(n� 2)
:

This implies k�k�1
p
tr�2=2 � 3

7

q
3(n�2)

2 and the application of Lemma 6.1 with " =

�p
n�2 yields for every 
 with 1 � 
 � 3

7

q
3(n�2)

2

P

 
�(b�2 � �2) > 


r
4�4

n

!
� e�


2=4

and the required assertion follows.

Next we show that b�2 estimate the true value �2 at the rate n�1=2 under a mild

assumption on the regression function f and the design X1; : : : ;Xn . We again assume

that the design points are renumbered to provide X1 � X2 � : : : � Xn .

Lemma 5.2. Let the regression function f from (1.1) satis�es the condition

jf 0(s)� f 0(t)j � Ljs� tj

for some L � 0 and all s; t from [0; 1] . Let also the design X1; : : : ;Xn ful�ll

Xi+1 �Xi � Dn�1 (5.1)

with some constant D . Then, for n � 36 and every 
 with 1 � 
 � 3
7

q
3(n�2)

2 ,

P

�
�
p
n

�b�2
�2
� 1

�
> 2
(1 + n�1=2)

�
� 2e�


2=4;

provided that

D4L4n�4

6
+

r
D4L4n�4

6

�
4�4

n

�1=4
<

2�2

n
: (5.2)
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Remark 5.1. The condition (5.2) is obviously ful�lled if (DL)2 < n� .

Proof. The de�nition of the coe�cients ai and bi , see Section 2.3, provides for any linear

function `(x) the identity ai`(Xi�1) + bi`(Xi+1) � `(Xi) = 0 . Now the smoothness

properties of the function f imply for `(x) = f(Xi) + f 0(Xi)(x�Xi)

jf(x)� `(x)j � 0:5L2jx�Xij2

and hence, using (5.1) and the conditions ai � 0 , bi � 0 and ai + bi = 1

jaif(Xi�1) + bif(Xi+1)� f(Xi)j

= jai [f(Xi�1)� `(Xi�1)] + bi [f(Xi+1)� `(Xi+1)]� [f(Xi)� `(Xi)]j

� 0:5L2aijXi �Xi�1j2 + 0:5L2bijXi+1 �Xij2

� 0:5D2L2n�2: (5.3)

Next, de�ne

�i =
ai�i�1 + bi�i+1 � �iq

a2i + b2i + 1

�i =
aif(Xi�1) + bif(Xi+1)� f(Xi)q

a2i + b2i + 1
:

Then

b�2 =
1

n� 2

n�1X
i=2

j�i + �ij2 :

To estimate the di�erence jb�2��2j , we apply Proposition 6.2. Let � = (�2; : : : ; �n�1)> .

We know, see the proof of Lemma 5.1, that E� = 0 and the matrix � = E��> ful�lls

1

n� 2
tr� = �2;

1

(n� 2)2
tr�2 � 2�4

n
:

The inequality a2i + b2i � 1=2 and (5.3) provide

1

n� 2
k�k2 = 1

n� 2

n�1X
i=2

�2
i �

1

n� 2

n�1X
i=2

D4L4n�4

4(a2i + b2i + 1)
� D4L4n�4

6
:

The application of Proposition 6.2 with c = �p
n�2 and " = �p

n�2 yields for every 


with 1 � 
 � 3
7

q
3(n�2)

2

P

 
�(b�2 � �2) >

D4L4n�4

6
+ 


r
D4L4n�4

6

�
4�4

n

�1=4
+ 


r
4�4

n

!
� 2e�


2=4

and the required assertion follows in view of (5.2).
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Lemma 5.3. Let Nj = 2j denote the number of elements in the set Ij . It holds

trVjq
2 tr V 2

j

�
q
Nj=2:

Proof. Clearly

trV 2
j =

X
I2Ij

X
I02Ij

v2I;I0 �
X
I2Ij

v2I;I :

Next, the Cauchy-Schwarz inequality implies

N�1
j trVj = N�1

j

X
I2Ij

vI;I �

0@N�1
j

X
I2Ij

v2I;I

1A1=2

and the assertion follows.

Lemma 5.4. Let � be the critical value of the test selected by the testing procedure. If

design X1; : : : ;Xn ful�lls (D) , then, for n su�ciently large,

� � 2
p
log j(n) (1 + on(1)) :

Proof. Recall that the critical value � corresponds to the �0 -value of the test statistic

T � = maxj�j(n) Tj under the no-response model f(x) � 0 and under the assumption

of standard normal errors �i , i = 1; : : : ; n . In such a situation, the subvector b�j ofb�(j) coincides with the Gaussian vector �j � N (0; Vj) , see Section 2.1, and hence the

corresponding statistic Tj can be represented in the form

Tj =
k�jk2 � b�2 trVjb�2q2 tr V 2

j

:

and it su�ces to show that

P

�
max
j�j(n)

Tj > 2
p
log j(n)

�
1 + �1(n)

��
� �2(n)

with two numeric sequences �1(n)! 0 and �2(n)! 0 .

Now, for every z � 1 and a 2 (0; 1) ,

�
Tj >

z + 1

a

�
=

8<:k�jk2 � b�2 trVj�2
q
2 tr V 2

j

>
(z + 1)b�2
a�2

9=;
�

8<:k�jk2 � �2 trVj

�2
q
2 tr V 2

j

> z

9=; [

8<:(b�2 � �2) trVj

�2
q
2 tr V 2

j

> 1

9=; [
�b�2
�2

< a

�
:
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This clearly yields in view of Lemma 5.3

P

�
max
j�j(n)

Tj >
z + 1

a

�

� P

�b�2
�2

< a

�
+ P

0@b�2
�2
� 1 >

1q
Nj(n)=2

1A+

j(n)X
j=0

P

0@k�jk2 � �2 trVj

�2
q
2 trV 2

j

> z

1A :

We apply this bound with z = 1+vn and a = 1�v�1n where vn = 2
p
log j(n) . It follows

from condition (D) that vn � kVjk�1
q
trV 2

j =2 for all j � j1 where j1 is the minimal

integer satisfying CD2
j1 > C2

V v
2
n . An application of Proposition 6.1 with 
 = vn and

t = 1 for j � j1 and with 
 = 1 and t = vn allows to bound

P

0@k�jk2 � �2 trVj

�2
q
2 trV 2

j

> vn + 1

1A �

8<:e�v
2
n=4�vn=2 j � j1;

e�vn=2 otherwise:

Using also Lemma 5.1 we derive

P

�
T � >

2 + vn

1� v�1n

�

� e�nv
�2
n =4 + e�n=(2Nj(n)) +

j1�1X
j=0

e�vn=2 +

j(n)X
j=j1

e�v
2
n=4�vn=2

� e�nv
�2
n =4 + e�n=(2Nj(n)) + log2(C

2
V v

2
n=CD)e

�vn=2 + 1+j(n)

j(n)
e�vn=2 ! 0; n!1:

Here we have used that n�1Nj(n) = n�12j(n) = on(1) and e�v
2
n=4 � 1=j(n) .

5.3. Proof of Proposition 3.1

We again restrict ourselves to the case of Gaussian errors �i in (1.1). Recall that the

vector b�j is de�ned as the subvector of b�(j) = �	(j)	(j)>��1	(j)Y , j � j(n) . The

model equation (1.1) yields

b�(j) = �	(j)	(j)>��1	(j)(f + �) = �(j) + �(j)

with �(j) = V (j)	(j)f and �(j) = V (j)	(j)� where V (j) =
�
	(j)	(j)>

��1
. Henceb�j = �j+�j where �j (resp. �j ) is the subvector of �(j) (resp. of �(j) ) corresponding

to the j th resolution level. This particularly implies that �j is a zero mean random

vector with the covariance matrix Vj which is the submatrix of the matrix V (j) =�
	(j)	(j)>

��1
. Moreover, if the errors �i in (1.1) are Gaussian, then �j is for each

j � j(n) a Gaussian random vector with parameters (0; Vj) .

Let, for some j � j(n) , it holds

T �j =
k�jk2

�2
q
2 tr V 2

j

� 3(�1=2n + 1)2 (5.4)
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with �n = maxf�; 2
p
log j(n)g . We shall show that under this condition it holds

P f (Tj < �) � �(n)! n; n!1;

which obviously implies the assertion.

Observe �rst that

P (Tj < �)

= P
�
k�j + �jk2 � b�2 trVj < �b�2q2 tr V 2

j

�
� P

�
k�j + �jk2 � �2 trVj < ��2

q
2 tr V 2

j + (b�2 � �2)
�
�
q
2 tr V 2

j + trVj

��
� P

�
k�j + �jk2 � �2 trVj � k�jk2 < (�+ �1=2n )�2

q
2 trV 2

j � k�jk2
�

+P
�
(b�2 � �2)

�
�
q
2 tr V 2

j + trVj

�
< ��2�1=2n

q
2 tr V 2

j

�
:

By Lemma 5.3 trVj (2 tr V
2
j )
�1=2 �

p
Nj=2 �

p
Nj(n)=2 for all j � j(n) . Further, by

Lemma 5.2

P

0@b�2
�2
� 1 < �

�
1=2
n

q
2 tr V 2

j

4�
q
2 tr V 2

j + trVj

1A
� 2 exp

 
� �nn

4(1 + n�1)2(�+
p
Nj(n))

2

!
= �3(n)

where �3(n)! 0 as n!1 since n=Nj(n) = n2�j(n) !1 .

Next, for every positive u , the inequality k�k � 3u implies k�k2 � 2uk�k � 3u2 � 0 .

Coupled with (5.4), this ensures, with �j = �(2 tr V 2
j )

1=4 that

k�jk2 �
p
4=3k�jk(�1=2n + 1)�j + (�1=2n + 1)2�2j

� k�jk(�1=2n + 1)�j + (�n + 2�1=2n + 1)�2j :

Now Proposition 6.2 with 
 = 1 and t = �
1=2
n implies

P (Tj < �)

� P
�
k�j + �jk2 � �2 trVj � k�jk2 < �(�1=2n + 1)k�jk�j � (�1=2n + 1)�2j

�
+ �3(n)

� 2e��
1=2
n =2 + �3(n)! 0; n!1

as required.

5.4. Proof of Theorem 3.3

For the proof, we use the result of Proposition 3.1. Namely we show that the condition

(3.2) of the theorem with { large enough contradict to the constraints

kT �j k2 � tn; j � j(n); (5.5)
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with tn = 3
�
1 +maxf�; 2

p
log j(n)g

�2
.

We begin by reduction of the problem of testing a linear hypothesis to the problem

with a simple null hypothesis. De�ne coe�cients �0; �1 by

(�0; �1) = arginf
(a;b)

kf � a� b 1kn = arginf
(a;b)

nX
i=1

(f(Xi)� a� bXi)
2:

and set

f0 = f � �0 � �1 1:

Note that for all j � 0 , the vectors ��(j) = V (j)	(j)f and ��(j) = V (j)	(j)f have

the same components except the �rst two. Obviously the smoothness properties of f

and f0 also coincide and

inf
a;b
kf � a� b 1kn = inf

a;b
kf0 � a� b 1kn

Recall also, that the linear trend in the regression function has no in
uence on our

variance estimator b�2 . Hence, replacing f by f0 changes nothing in the test behaviour

and we may suppose from the beginning that the coe�cients ��0 and ��1 of the vector

��(j) vanish.

About this new function f we know that

kfkn = inf
a;b
kf � a� b 1kn � %(n);

inf
g2Ps(j)

kf � gkn = rs(j);

for all j from zero to j(n) .

Next we rewrite the constraints from (5.5) in term of the vectors k��jk , j � j(n) .

Recall that ��j is the subvector of ��(j) corresponding to j th level, and Vj is the

corresponding submatrix of V (j) .

Let L(j) stand for the linear space generated by functions  I , I 2 I(j) . We denote

also by �(j)f the projection of f onto the space L(j) with respect to the norm k � kn ,

�(j)f = arginf
h2L(j)

kf � hkn:

Particularly, �(0)f denotes the projection of f onto the space of linear functions (and

hence, �(0)f = 0 ) and, by de�nition of �(j) ,

�(j)f =
X

I2I(j)
��I I (5.6)

where �I 's are the coe�cients of the vector ��(j) .

Lemma 5.5. For each 1 � j � j(n) ,

k�(j)fkn � k�(j � 1)fkn + k��jk:
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Proof. Since L(j � 1) � L(j) , then

�(j � 1)f = �(j � 1)�(j)f:

When denoting f(j) = �(j)f , one has �(j � 1)f = �(j � 1)f(j) and we have to show

that

k�(j � 1)f(j)kn � kf(j)kn � k��jk:

In view of (5.6)

f(j) =
X

I2I(j)
��I I :

Denote by fj the part of this sum corresponding to the last level Ij in I(j) ,

fj =
X
I2Ij

��I I :

By construction, the functions  I , I 2 Ij , are ortonormal w.r.t. to the inner product

k � kn and particularly

kfjk2n =
X
I2Ij

j��I j2 = k��jk2:

Next, obviously f(j)� fj 2 L(j � 1) , and by de�nition of �(j) ,

kf(j)��(j � 1)f(j)kn � kf(j)� (f(j)� fj)kn = kfjkn = k��jk

and the assertion follows by the triangle inequality.

Lemma 5.6. Given j � j(n) , let (5.5) hold true for all ` � j . Then

k�(j)fk2n � {1CV 2
j=2tn

with {1 = 21=2(21=4 � 1)�2 .

Proof. Recursive application of Lemma 5.5 gives

k�(j)fkn �
j�1X
`=0

k��`k:

Here we have used that �(0)f = 0 . Now (5.5) and (D:iii) yield

k��`k2 � �2tn

q
2 tr V 2

` � �2tn

q
C2
V 2

`+1

and thus,

k�(j)fkn �
jX

`=1

�
2`=2tnCV

�1=2
= (CV tn)

1=2

jX
`=1

2`=4

and the assertion follows by simple algebra.
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Let now j0 ful�ll 2j0 > s and Ps(j � j0) denote the space of piecewise polynomials

with piece length 2�(j�j0) . Let now some j � j(n) be �xed and let g 2 Ps(j � j0) be

such that

kf � gkn � rs(j):

Lemma 5.7. There is a constant {2 > 0 depending on C�; C� and s only and such

that for each j with j0 � j � j(n)

kfkn � {2 fk�(j)fkn + rs(j)g :

Proof. Let g 2 Ps(j � j0) be such that kf � gkn � rs(j) . Then

kfkn � kgkn + rs(j)

and, since �(j) is a projector,

k�(j)fkn = k�(j)g +�(j)(f � g)kn � k�(j)gkn � k�(j)(f � g)kn
� k�(j)gkn � rs(j)

and the assertion follows from

kgk2n � {3k�(j)gk2n:

Recall that g is a piecewise polynomial function on the partition AI , I 2 Ij�j0 and the

projection �(j)g means the approximation of each polynomial on interval AI of length

2�(j�j0) by piecewise constant functions with piece length 2�j . Therefore, it su�ces to

prove that for each piece AI and every polynomial P (x) = a0 + a1x+ : : : + as�1xs�1 ,

it holds X
AI

[�(j)P (Xi)]
2 � {3

X
AI

P 2(Xi)

where the constant {3 depends on C�; C� and s only. The similar fact with integration

instead of summation over the design points in AI was stated in Ingster (1993) and we

present here only a sketch of the proof for our situation.

The key idea of the proof can be formulated as a separate statement.

Lemma 5.8. Let P (x) be a polynomial of degree s and let m be an integer with m >

s + 1 . With Ak = [(k � 1)=m; k)=m) for k = 1; : : : ;m Then for every measure � on

[0; 1] with 0 < C� � �(Ak) � C� > 0 for all k � m ,

mX
k=1

�Z
Ak

P (x)�(dx)

�2
� {3

Z 1

0

P 2(x)�(dx):

with a positive number {3 depending on C�; C� and s only.



24 SPOKOINY, V.

Proof. Let a = (a0; : : : ; as�1) be the vector of coe�cients of P . Without loss of gener-

ality, we may assume that kak1 = maxj=0;::: ;s�1fjaj jg � 1 . Obviously, both

kak2�;1 =

�Z 1

0

P (x)�(dx)

�2
;

kak2�;2 =

Z 1

0

P 2(x)�(dx)

are scalar product in the space R
s . Next, kak�;2 = 0 only if a = 0 i.e. P (x) � 0

and the same applies for kak1 , since P (x) has at most s roots and � is supported on

m > s+1 disjoint intervals. Note also that kak�;1 and kak�;2 are continuous functionals

of a and � and the space Mm(C�; C
�) of measures � on [0; 1] satisfying the condition

of the lemma is compact in the weak topology. Hence,

sup
a : kak1�1

sup
�2Mm(C�;C�)

kak�;2
kak�;1

= {3 <1

as required.

Application of this result to each interval AI , I 2 Ij�j0 yields the desirable assertion.

The results of Lemma 5.5 through 5.7 yield the inequality

kfkn � {2

�
rs(j) +

p
{1CV 2j=2�n

�
which contradicts to the constraints (5.5): kfkn � {

�
rs(j) +

p
2j=2�n

�
if { is large

enough, and the theorem is proved.

5.5. Proof of Theorem 3.2

Now we disregard the assumption that the errors �i in (1.1) are normally distributed

and assume only they have 6 �nite moments. We outline the proof of Theorem 3.2 only.

Proposition 3.1 can be considered similarly.

Lemma 5.9. Let the errors �i in (1.1) are i.i.d. and satisfy E�i = 0 , �2i = �2 and

E
���2i � �2

��3 � C6�
6 . De�ne s24 = 2��4E(�21 � �2)2 . Then, for n � 36 and every


 > 0 ,

P

 
�(b�2 � �2) > (s4
 + 
 + 1)

r
4�4

n

!
� 2e�


2=4 + rn�1=2

where r depends on s4 and C6 only.

Proof. Similarly to the Gaussian case discussed in Section 5.2, it su�ces to consider the

case of the no-response model with the vanishing regression function. In this case, the
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variance estimate b�2 is a quadratic form of the errors �i which allows for the following

representation:

b�2 = 1

n� 2

n�1X
i=2

(ai�i�1 + bi�i+1 � �i)
2

a2i + b2i + 1

where ai =
(Xi+1�Xi)
(Xi+1�Xi�1)

, bi =
(Xi�Xi�1)
(Xi+1�Xi�1)

, i = 1; : : : ; n . The estimation error b�2 � �2

can be split into one centered diagonal quadratic form

Q1 =
1

n� 2

n�1X
i=2

a2i (�
2
i�1 � �2) + b2i (�

2
i+1 � �2) + (�2i � �2)

a2i + b2i + 1

=
1

n� 2

n�1X
i=2

�
a2i+1

a2i+1 + b2i+1 + 1
+

1

a2i + b2i + 1
+

b2i�1
a2i�1 + b2i�1 + 1

�
(�2i � �2)

and one quadratic form Q2 with vanishing diagonal elements:

Q2 =
2

n� 2

n�1X
i=2

aibi�i�1�i+1 � ai�i�1�i � bi�i�i+1

a2i + b2i + 1

=
2

n� 2

n�1X
i=2

aibi

a2i + b2i + 1
�i�1�i+1

� 2

n� 2

nX
i=2

�
ai

a2i + b2i + 1
+

bi�1
a2i�1 + b2i�1 + 1

�
�i�1�i

where an = b1 = 0 .

Obviously Q1 =
Pn

i=1 �i(�
2
i ��2) with coe�cients �i which, in view of the conditions

ai; bi � 0 , ai+ bi = 1 , ful�ll 1=(2n� 4) � �i � 2=(n� 2) . Since E
�
�2i � �2

�2 � 2s24�
4 ,

we bound

E jQ1j2 =
nX
i=1

�2iE
�
�2i � �2

�2 � 8s24n
�1�4:

Since also Ej�2i � �2j3 � C6�
6 , the Berry-Esseen theorem yields for every x , see Petrov

(1975, Chapter 5)

P

 
Q1p
EjQ1j2

> x

!
� [1� �(x)] � r1C

1=2
6 n�1=2

where �(�) is the Laplace function and r1 is some absolute constant. This implies in

view of 1� �(x) � e�x
2=2

P

 
Q1 > 
s4

r
4�4

n

!
� e�


2=4 + r2n
�1=2:

Further, similarly to Section 5.2, it holds E jQ2j2 � 4�4=n . Moreover, it is easy to

check that Q2 ful�lls the conditions of Proposition 6.3 with G2 = 4�4=n and some �nite

constant CA and hence, by Corollary 6.1, with � = 1 and 
 > 0 ,

P (Q2 > G(
 + 1)) � P
� eQ2 > G


�
+ r3n

�1=2:
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Finally, the quadratic form eQ2 of Gaussian random variables e�i can be handled as in

Section 5.2:

P

 eQ2 > 


r
4�4

n

!
� e�


2=4

if n � 36 .

Combination of these results yields

P

 b�2 � �2 > (s4
 + 
 + 1)

r
4�4

n

!

� P

 
Q1 > s4


r
4�4

n

!
+P

 
Q2 > (
 + 1)

r
4�4

n

!
� 2e�


2=4 + rn�1=2:

Similarly one can get an upper bound for �(b�2 � �2) .

In the same way one can extend the result of Lemma 5.2 to the non-Gaussian case: b�2
estimates the true variance �2 at the rate n�1=2 provided that f is su�ciently smooth.

Now we turn to Theorem 3.2. It obviously su�ces to show that the distribution of

the test statistic T � can be approximated by a similar distribution corresponding to the

case of Gaussian errors. Then the result follows from Theorem 3.1.

As in the proof of Theorem 3.1, the general case can be reduced to the no-response

model with the vanishing regression function. Further, since the di�erence b�2 � �2 is of

order n�1=2 , it su�ces to consider the expressions T 0j , j � j(n) , de�ned by

T 0j =
1q

2�4 trV 2
j

0@X
I2Ij

jb�I j2 � �2 trVj

1A =
Sj � �2 trVjq

2�4 trV 2
j

where b�I are elements of the vector �(j) , cf. the proof of Lemma 5.4. Under the no-

response hypothesis, this vector admits the representation, �(j) =W (j)� with W (j) =�
	(j)>	(j)

��1
	(j)> , see (2.6). If Pj denotes the mapping from I(j) into Ij , then

�j = Pj�(j) = PjW (j)� and

Sj = kb�jk2 = �>W (j)>P>j PjW (j)� = �>Aj�j

with Aj = W (j)>P>j PjW (j) , so that Sj is a quadratic form of the errors �i . We also

know that Vj = PjW (j)W (j)>P>j , and ESj = �2 trAj = �2 tr Vj . Moreover, see (2.8),

under Gaussian errors �i , it also holds E (Sj �ESj)
2 = �4 trVj . Hence, each of T 0j is

a centered and normalized quadratic form of �i 's. This form in turns can be represented

as a sum of a diagonal form T
(1)
j and a quadratic form T

(2)
j with vanishing diagonal
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terms. We �rst show that the impact of diagonal terms is negligible and then apply

Corollary 6.2 to T
(2)
j 's.

Let oi denote the i -th basis vector in R
n . Then the i -th diagonal element aii of

Aj is equal to o>i Ajoi :

aii = o>i Ajoi

= o>i 	(j)
>
�
	(j)>	(j)

��1
P>j Pj

�
	(j)>	(j)

��1
P>j Pj

�
	(j)>	(j)

��1
	(j)oi:

Clearly





�	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1



 � 



�	(j)>	(j)��2



 = 

V (j)2

 � C2
V :

Next, for every Haar level ` � j , there exists only one index I 2 I` such that  I(Xi) 6=
0 . More precisely, for this index I , it holds  I(Xi) = �1=

p
MI where MI is the number

of design points in the interval AI corresponding to the index I . Condition (D:i) implies

MI � C�n2�` for every I 2 I` . Also  0(Xi) = n�1=2 and  1(Xi) = Xi

�Pn
i0=1X

2
i0

��1=2
.

Hence, the de�nition of the matrix 	(j) and condition (D:i) provide

j	(j)oij � n�1=2 +

 
nX

i0=1

X2
i0

!�1=2
+

jX
`=0

s
2`

nC�
< 3C

�1=2
� 2j=2n�1=2: (5.7)

Therefore,

aii � j	(j)oij2




�	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1





� 9C�1� 2jn�1C2
V :

De�ne G2
j = �4 trA2

j . Note

trA2
j = trW (j)>P>j PjW (j)W (j)>P>j PjW (j)

= trPjW (j)W (j)>P>j PjW (j)W (j)>P>j

= trV 2
j
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so that T
(1)
j = G�1j

Pn
i=1 aii(�

2
i � �2) . The condition (D:ii) implies trA2

j � CD2
j .

Now, for every � > 0 ,

P

�
max

j=0;::: ;j(n)
T
(1)
j > �

�
�

j(n)X
j=0

P
�
T
(1)
j > �

�

� ��2
j(n)X
j=0

E

���T (1)j

���2

� ��2
j(n)X
j=0

2G�2j �4a2ii

� 2��2
j(n)X
j=0

2C�1D 2�jn
�
9C�1� 2jn�1C2

V

�2
� C��2n�12j(n)+1 ! 0; n!1:

Next we consider T
(2)
j which is obtained from T 0j by removing the diagonal terms.

This quadratic form can be approximated (in distribution) by a similar one with Gaussian

errors e�i at a reasonable rate provided that the corresponding value CA , de�ned as n

times the ratio of the maximal diagonal element of the matrix �4A2
j to G2

j = �4 trA2
j ,

see (6.2) and Remark 6.1, remains bounded.

The i -th diagonal element di of A2
j is equal to o>i A

2
joi :

di = o>i A
2
joi

= o>i

�
	(j)

�
	(j)>	(j)

��1
P>j Pj

�
	(j)>	(j)

��1
	(j)>

�2
oi

= o>i 	(j)
>
�
	(j)>	(j)

��1
P>j Pj

�
	(j)>	(j)

��1
P>j Pj

�
	(j)>	(j)

��1
	(j)oi:

Clearly 



�	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1




�




�	(j)>	(j)��3



 = 

V (j)3

 � C3

V :

The use of (5.7) provides

di � j	(j)oij2




�	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1 P>j Pj �	(j)>	(j)��1





� 9C�1� 2jn�1C3
V

and

CA �
9C�1� C3

V 2
j

CD2j
=

9C�1� C3
V

CD

that is, the value CA is bounded by a �xed constant depending on design regularity only.
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By Corollary 6.2, the joint distribution of T
(2)
j , j � j(n) , and the distribution of

their maximum, can be approximated by the distribution of similar quadratic forms of

Gaussian r.v.'s which implies the required assertion.

6. Appendix

Here we discuss brie
y some general properties of quadratic forms of random variables.

We �rst consider the case when the underlying random variables are Gaussian and estab-

lish an exponential bound for deviations of such forms over certain level. Next we show

how an arbitrary quadratic form of independent random variables can be approximated

(in distribution) by a similar quadratic form of Gaussian random variables.

6.1. Deviation probabilities for quadratic forms of Gaussian random vari-

ables

Let "1; : : : ; "N be Gaussian random variables with zero mean and the covariance N�N
matrix V , i.e. V = E""> where " denotes the vector " = ("1; : : : ; "N )

> .

We �rst present the following general results about quadratic forms of Gaussian ran-

dom variables.

Proposition 6.1. Let "1; : : : ; "N be Gaussian random variables with zero mean and the

covariance matrix V := E""> . Then

Ek"k2 := E
�
"21 + : : :+E"2N

�
= trV;

E
�
k"k2 � trV

�2
= 2 tr V 2:

Moreover, for 
 � kV k�1
p
trV 2=2 and each t � 0 ,

P
�
�(k"k2 � trV ) > (
 + t)

p
2 tr V 2

�
� e�
t=2�


2=4;

Proof. Let V = U>�U be a diagonal representation of V with a diagonal matrix � =

diagf�1; : : : ; �Ng and an ortonormal matrix U . It is well known that � = ��1=2U" is a

standard Gaussian vector and k"k2 = �>�� . Also it holds trV = �1+ : : :+�N , tr V 2 =

�21 + : : : + �2N and kV k = maxf�1; : : : ; �Ng . To bound the expression k"k2 � trV , we

apply the exponential Chebyshev inequality: with each � � 0 satisfying 2��i < 1 and
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every z

P
�
k"k2 � trV > z

�
� e��zE exp

�
�(k"k2 � trV )

	
= e��zE exp

(
�

NX
i=1

�i(�
2
i � 1)

)

= e��z
NY
i=1

E exp
�
��i(�

2
i � 1)

	
= exp

(
��z � �

NX
i=1

�i �
NX
i=1

1

2
log(1� 2��i)

)
:

We now set � = z

2
p
2 trV 2

so that 2��i =
z�ip
2 trV 2

< 1=2 and use that � log(1�u) � u+u2

for 0 � u � 1=2 . This yields

P
�
k"k2 � tr V > (
 + t)

p
2 trV 2

�
� exp

 
�
(
 + t)

2
+


2

4 trV 2

NX
i=1

�2i

!
= exp

�
�
t=2� 
2=4

�
as required. The bound for �(k"k2 � trV ) is proved in the same line.

Further, for a deterministic vector c = (c1; : : : ; cN )
> from R

N , we consider quadratic

forms of type

kc+ "k2 =
NX
j=1

jcj + "j j2:

Proposition 6.2. Let "1; : : : ; "N be Gaussian random variables with zero mean and the

covariance matrix �2V . Then it holds for any vector c = (c1; : : : ; cN )
> in R

N

Ekc+ "k2 = kck2 + trV;

E
�
kc+ "k2 � kck2 � trV

�2
= 4c>V c+ 2 tr V 2;

Moreover, for every positive 
 with 
 � kV k�1
p
trV 2=2 and every t � 0

P
�
�(kc+ "k2 � kck2 � trV ) > 
kck(2 tr V 2)1=4 + (
 + t)

p
2 trV 2

�
� 2e�


2=4�
t=2:

Proof. With vector notation, the studied quadratic form can be rewritten as kc+ "k2 =
(c+ ")>(c+ ") . Now, since E"i = 0 , it holds

Ekc+ "k2 = E
�
kck2 + 2c>"+ k"k2

�
= kck2 +Ek"k2 = kck2 + trV:

Next,

Var kc+ "k2 = E
�
kc+ "k2 �Ekc+ "k2

�2
= E

�
2c>"+ k"k2 � trV

�2
= 4Ejc>"j2 + 4Ec>"

�
k"k2 � trV

�
+E

�
k"k2 � trV

�2
:
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The Gaussian vector " � N (0; V ) ful�lls

E "
�
k"k2 � trV

�
= 0;

Ejc>"j2 = c>(E"">)c = c>V c

so that in view of Lemma 6.1 Var kc+ "k2 = 4c>V c+ 2 tr V 2 as required.

Let now 
 � 1 be �xed such that 
 � kV k�1
p
trV 2=2 . This particularly means

that kV k �
p
trV 2=2 . Note that the scalar product c>" is a linear combination of the

Gaussian zero mean random variables and it is therefore Gaussian as well with Ec>" = 0

and Ejc>"j2 = c>V c . This yields for every 
 � 1

P
�
c>" > 


p
c>V c

�
� e�


2=2:

The condition kV k �
p
trV 2=2 provides c>V c � kck2kV k � kck2

p
trV 2=2 . Combin-

ing this inequality with the previous one implies

P
�
2c>" > (
 + t)kck(2 tr V 2)1=4

�
� e�(
+t)

2=4:

Next, by Lemma 6.1

P
�
k"k2 � trV > (
 + t)

p
2 tr V 2

�
� e�


2=4�
t=2:

Summing up the previous estimates, we obtain

P

0@ NX
j=1

jcj + "j j2 � trV > kck2 + (
 + t)kck(2 tr V 2)1=4 + (
 + t)
p
2 tr V 2

1A
= P

�
2c>"+ k"k2 � trV > (
 + t)kck(2 tr V 2)1=4 + (
 + t)

p
2 trV 2

�
� P

�
2c>" > (
 + t)kck(2 tr V 2)1=4

�
+P

�
k"k2 � trV > (
 + t)

p
2 tr V 2

�
� 2e�


2=4�
t=2

as required.

6.2. Gaussian approximation for quadratic forms

In what follows we consider quadratic forms
Pn

i=1

Pn
`=1 ai`�i�` of independent but not

necessarily normal random variables �1; : : : �n with vanishing diagonal coe�cients, i.e.

aii = 0 . We aim to show that, under moment conditions on �i 's and mild assumptions

on the coe�cients of the quadratic form, the asymptotic distribution of this quadratic

form only weakly depends on the particular distribution of �i 's and, as a consequence,

it can be approximated by a distribution of a similar quadratic form of Gaussian r.v.'s

with the same �rst and second moments.

Let A = (ai` ; i; j = 1; : : : ; n) be a n�n symmetric matrix with aii = 0 for all i ,

and let �1; : : : ; �n be independent zero mean r.v.'s with E�4i < 1 for all i . De�ne

�2i = E�2i . We study some properties of the quadratic form
Pn

i=1

Pn
j=1 ai`�i�` .
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Lemma 6.1. It holds

E

nX
i=1

nX
`=1

ai`�i�` =

nX
i=1

aii�
2
i = 0;

E

(
nX
i=1

nX
`=1

ai`�i�`

)2

= 2

nX
i=1

X
`6=i

a2i`�
2
i �

2
` : (6.1)

Proof. Obvious. Here it is only important that the diagonal elements aii vanish.

By A(�1; : : : ; �n) we denote the corresponding quadratic form, that is

A(�1; : : : ; �n) =

nX
i=1

nX
`6=i

ai`�i�`:

Let also e�1; : : : ; e�n be a sequence of independent Gaussian r.v.'s with Ee�i = 0 and

Ee�2i = �2i , i = 1; : : : ; n . De�ne another quadratic form

A(e�1; : : : ; e�n) = nX
i=1

X
`6=i

ai`e�ie�`
Clearly EA(e�1; : : : ; e�n) = 0 and EjA(e�1; : : : ; e�n)j2 = EjA(�1; : : : ; �n)j2 .

Proposition 6.3. Let E�4i � C4�
4
i for some �xed constant C4 � 3 . Let, for a sym-

metric matrix A with aii = 0 for i = 1; : : : ; n , and for a normalizing constant G , the

numbers CA be de�ned by

CA = max
i=1;::: ;n

nG�2
nX
`=1

a2i`�
2
i �

2
` : (6.2)

Then, for every three times continuously di�erentiable function f , it holds���Ef �G�1A(�1; : : : ; �n)��Ef
�
G�1A(e�1; : : : ; e�n)���� � 8

3
f3(C4CA)

3=2n�1=2

where f3 means the maximum of the absolute value of the third derivative of f , that is,

f3 = supx jf 000(x)j .

Remark 6.1. The value CA can be easily evaluated for the case of an homogeneous noise

when all �2i coincide with some �2 . Clearly each sum di =
Pn

`=1 a
2
i` is i -th diagonal

element of A2 and CA � G�2maxi=1;::: ;nfndig .

Remark 6.2. The conditions of Proposition 6.3 do not guarantee that the distribution

of G�1A(�1; : : : ; �n) is close to some norma distribution. A typical example which just

meets in hypothesis testing framework corresponds to the quadratic form A(�1; : : : ; �n) =

(�1 + : : :+ �n)
2 . which, even with normal �i 's, has the �

2 -distribution.

Proof. The change �i for �i=�i and ai` for ai`�i�` allows to reduce the general case

to the situation with �i = 1 for all i . Hence, for the sake of notation simplicity, we

suppose that �2i = 1 , i = 1; : : : ; n .
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We use the following obvious inequality

���Ef�G�1A(�1; : : : ; �n)��Ef
�
G�1A(e�1; : : : ; e�n)���� (6.3)

�
nX
i=1

���Ef �G�1A(�1; : : : ; �i; e�i+1; : : : ; e�n)��Ef
�
G�1A(�1; : : : ; �i�1; e�i; : : : ; e�n)����

where we assume �0 = e�n+1 = 0 . We evaluate the last summand here, all others can be

bounded in the same way. Denote

un�1 = G�1
n�1X
i=1

n�1X
`6=i

ai`�i�`;

�n = G�1A(�1; : : : ; �n)� un�1 = 2G�1�n

n�1X
i=1

ain�i ;

e�n = G�1A(�1; : : : ; �n�1; e�n)� un�1 = 2G�1e�n n�1X
i=1

ain�i :

The Taylor expansion yields

���Ef �G�1A(�1; : : : ; �n��Ef
�
G�1A(�1; : : : ; �n�1; e�n)���� (6.4)

�
���Ef 0(un�1)(�n � e�n)

���+ 1

2

���Ef 00(un�1)(�2
n � e�2

n)
���+ f3

6
(E j�nj3 +Eje�nj3):

Since �n and e�n are independent of �1; : : : ; �n�1 and since E�n = Ee�n = 0 , E�2n =

Ee�2n = 1 , taking the conditional expectation given �1; : : : ; �n�1 , we obtain

E
�
�n � e�n j �1; : : : ; �n�1

�
= 0 (6.5)

E
�
�2
n � e�2

n j �1; : : : ; �n�1
�
= 0: (6.6)

Further we evaluate Ej�nj3 and Eje�nj3 . Note �rst that, since E�4n � C4 with C4 � 3 ,

E

 
n�1X
i=1

ain�i

!4

=

n�1X
i=1

a4inE�
4
i + 3

n�1X
6̀=i
a2ina

2
`n

�
n�1X
i=1

a4in(C4 � 3) + 3

 
n�1X
i=1

a2in

!2

� C4

 
n�1X
i=1

a2in

!2

:
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Now the H�older inequality yields in view of Ej�nj3 � C
3=4
4

G3Ej�nj3 = Ej�nj3E
�����2

n�1X
i=1

ain�i

�����
3

� 8C
3=4
4

8<:E
 
n�1X
i=1

ain�i

!4
9=;
3=4

� 8C
3=2
4

 
nX
i=1

a2in

!3=2

and the condition G�2
Pn

i=1 a
2
in � n�1CA provides

Ej�nj3 � 8(C4CA)
3=2n�3=2: (6.7)

For the Gaussian r.v. sne�n , the similar bound applies:

Eje�nj3 � 8(C4CA)
3=2n�3=2: (6.8)

Substituting these estimates as well as (6.5) and (6.6) in (6.4) implies�����Ef
�
A(�1; : : : ; �n)

G

�
�Ef

 
A(�1; : : : ; �n�1; e�n)

G

!����� � 16

6
f3(C4CA)

3=2n�3=2:

Similar bounds hold for the other summands in (6.3). Summing them out, we obtain

���Ef �G�1A(�1; : : : ; �n)��Ef
�
G�1A(e�1; : : : ; e�n)���� � 8

3
f3(C4CA)

3=2n�1=2

as required.

Corollary 6.1. Under the conditions of Proposition 6.3, for each � > 0 and every x

P
�
G�1A(�1; : : : ; �n) > x

�
� P

�
G�1A(e�1; : : : ; e�n) > x� �

�
+ Const:C

3=2
A n�1=2��3

with a constant Const: depending on C4 only. If, in addition, G2 � EjA(�1; : : : ; �n)j2 ,
then

P
�
G�1A(�1; : : : ; �n) > x

�
� P

�
G�1A(e�1; : : : ; e�n) > x

�
+ Const:C

3=2
A n�1=2��3 + �:

Proof. Let a smooth function f ful�ll f(u) = 0 for u � �1 and f(u) = 1 for u � 0 .

De�ne Cf = supu jf 000(u)j . Now, given x and � > 0 , set fx;�(u) = f(��1(u � x)) .

Obviously fx;�(u) = 0 for u � x � � and fx;�(u) = 1 for u � x and also jf 000x;�(u)j �
Cf�

�3 .

Next, by Proposition 6.3

P
�
G�1A(�1; : : : ; �n) > x

�
� Efx;�

�
G�1A(�1; : : : ; �n)

�
� Efx;�

�
G�1A(e�1; : : : ; e�n)�+ 8

3
(CAC4)

3=2Cf�
�3n�1=2:
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It remains to note that

Efx;�

�
G�1A(e�1; : : : ; e�n)� � P

�
G�1A(e�1; : : : ; e�n) > x� �

�
The last statement of the corollary follows from the obvious fact that the density of

G�1A(e�1; : : : ; e�n) is bounded by 1 for every G with G2 � EjA(e�1; : : : ; e�n)j2 .
6.3. A family of quadratic forms

Here we brie
y discuss the situation arising in adaptive testing problem when the max-

imum of a family of quadratic forms of �i 's is considered. We again aim to show that

the joint distribution of this family (and thus the distribution of the maximum) can be

well approximated by the similar distribution for quadratic forms of Gaussian random

variables.

Let A1; : : : ; AM be a collection of symmetric n�n -matrices with vanishing diag-

onal elements. We analyze the joint distribution of the normalized quadratic forms

G�1m Am(�1; : : : ; �n) with independent random variables �i satisfying E�i = 0 , E�2i =

�2i and E�4i <1 , and some constants Gm , m = 1; : : : ;M . More precisely, we intend

to show that the distribution of this family is close to the distribution of the family

fG�1m Am(e�1; : : : ; e�n); m = 1; : : : ;Mg with Gaussian variables e�i � N (0; �2i ) .

Proposition 6.4. Let the variables �i ful�ll E�4i � CE�
4
i and let every matrix Am

satisfy the conditions of Proposition 6.3 with the same constant CA , m = 1; : : : ;M .

Then, for every three times continuously di�erentiable function f in the space R
M , it

holds ���Ef �G�1A(�1; : : : ; �n)��Ef
�
G�1A(e�1; : : : ; e�n)���� � 8

3
f3M

3(C4CA)
3=2n�1=2

where G�1A denotes the vector with elements G�1m Am and f3 means the maximum of

the absolute value of the third derivative of f , that is,

f3 = sup
x2RM

max
i;j;k=1;::: ;M

���� @3f(x)

@xi@xj@xk

���� :
Proof. The proof follows the same line as in the case of one quadratic forms when un-

derstanding G�1A , un�1 , f 0(un�1) and �n as vectors in R
M and f 00(un�1) as the

M�M -matrix of the second derivatives of f at un�1 . The only di�erence is that we

apply the bound Ej�nj3 �M38(C4CA)
3=2n�3=2 for the norm of �n which is M3 times

larger than in the case of M = 1 , cf. (6.7). The details are left to the reader.

A straightforward corollary of this results concerns the maximum of G�1m Am 's.
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Corollary 6.2. Let the conditions of Proposition 6.4 be ful�lled. Then

P

�
max
m�M

G�1m Am(�1; : : : ; �n) � x

�
� P

�
max
m�M

G�1m Am(e�1; : : : ; e�n) � x� �

�
� Const:M3C

3=2
A n�1=2��3

with a constant Const: depending on C4 only. If, in addition, G2
m � EjAm(�1; : : : ; �n)j2

for all m �M , then

P

�
max
m�M

G�1m Am(�1; : : : ; �n) � x

�
� P

�
max
m�M

G�1m Am(e�1; : : : ; e�n) � x

�
� Const:M3C

3=2
A n�1=2��3 +M�:

Proof. The �rst statement can be checked exactly as for the case of M = 1 , see the

proof of Corollary 6.1. As regard to the second statement, it su�ces to mention that

the density of each G�1m Am(e�1; : : : ; e�n) is bounded by 1 and hence the density of the

maximum of G�1m Am(e�1; : : : ; e�n) 's is bounded by M .

Remark 6.3. If M is not too large in the sense that M3n�1=2 is small, then, selecting

a proper � , we can derive from this statement that the distribution of the maximum of

G�1m Am(�1; : : : ; �n) 's is approximated by the similar distributions for G
�1
m Am(e�1; : : : ; e�n) 's.
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