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Abstract. Let Mt be a vector martingale and hMit denote its predictable quadratic

variation. In this paper we present a bound for the probability that z�hMi�1
t
Mt >

�

q
z�hMi�1

t
z with a �xed vector z and discuss some its applications to statistical es-

timation in autoregressive and linear di�usion models. Our approach is non-asymptotic

and does not require any ergodic assumption on the underlying model.

1. Introduction. Statistical examples

Let observations Y1; : : : ; YT be generated by the linear regression model:

Yt = X�
t � + "t; t = 1; : : : ; T; (1.1)

where � 2 R
p is unknown vector of parameters, Xt; t = 1; : : : ; T , are deterministic

design points from R
p , and ("t)t�1 is a sequence of i.i.d. zero mean Gaussian random

variables with the variance �2 . Hereafter, all vectors are assumed to be vector-columns

and a� (resp. kak ) means the transpose (resp. the Euclidean norm) of the vector a .

For estimating the vector � , one usually applies the maximum likelihood estimate

(MLE) b� :
b� =  TX

t=1

XtX
�
t

!�1 TX
t=1

XtYt: (1.2)

(the matrix
PT

t=1XtX
�
t is assumed to be non singular). The estimation error

b� � � =

 
TX
t=1

XtX
�
t

!�1 TX
t=1

Xt(Yt �X�
t �) =

 
TX
t=1

XtX
�
t

!�1 TX
t=1

Xt"t (1.3)

is a zero mean Gaussian vector. Its covariance matrix, which is often called often the

information matrix, reads as follows:

W = E(b� � �)(b� � �)� = �2

 
TX
t=1

XtX
�
t

!�1
By wk;k0 , k; k

0 = 1; : : : ; p we denote the elements of the matrix W . The propertyb� � � � N (0;W ) implies: for every � > 0 and k = 1; : : : ; p

P

�
jb�k � �kj > �w

1=2
kk

�
� 2e�

�
2

2 : (1.4)

The aim of this paper is to establish a similar exponential bound for probability of

deviations b� � � for more complicated statistical models arising in time series analysis.

Below we present two typical examples.

Example 1.1. [Autoregression model] Let observations Y1; Y2; : : : ; YT follow the autore-

gression equation

Yt = �1Yt�1 + : : : + �pYt�p + "t; (1.5)



2 LIPTSER, R. AND SPOKOINY, V.

where one sets Y0; Y�1; : : : ; Y1�p = 0 and ("t)t�1 are i.i.d. Gaussian random errors with

parameters (0; �2) .

Introduce a vector � of the unknown coe�cients � = (�1; : : : ; �p)
� 2 R

p and de�ne

Xt = (Yt�1; : : : ; Yt�p)
� 2 R

p . Then, the original autoregression equation given in (1.5)

admits the `regression-like' representation (compare (1.1)):

Yt = X�
t � + "t:

Moreover, formula (1.2) (resp. (1.3)) for the MLE b� (resp. for the deviation b� � � )

remains valid for the autoregression case as well. Despite of this similarity, there is an

essential di�erence between regression and autoregression models. For the autoregression

case, the `design' points X1;X2; : : : are random and heavy correlated with the observa-

tions Y1; Y2; : : : . Therefore, the matrix W =
�PT

t=1XtX
�
t

��1
, which is often called the

conditional covariance or conditional information matrix, is also random and heavy cor-

related with the observations. Hence, the estimation error b� � � is no more a Gaussian

vector and the bound (1.4) does not apply.

To analyze properties of the deviation b� � � for this situation, introduce a valued in

R
p process

Mt =

tX
s=1

Xs"s; t � 1:

Since Xt depends only on Y1; : : : ; Yt�1 , and since "t is independent of Y1; : : : ; Yt�1 , the

process (Mt)t�1 is a vector square integrable martingale with respect to the �ltration

generated by ("t)t�1. The predictable quadratic variation of this martingale reads as

follows

hMit = �2
tX

s=1

XsX
�
s ; t � 1;

so that W = hMiT . With this notation, on the set where hMiT is non singular, we have

b� � � = hMi�1T MT :

Therefore, the original statistical problem leads to evaluation of

P

�
jz�hMi�1T MT j > �

q
z�hMi�1T z

�
(1.6)

where z is a deterministic vector.

Example 1.2 (Di�usion model). Let the observed process Xt follow the Itô equation

(with respect to Wiener process wt)

dXt = ��ft dt+ �t dwt ; X0 = 0: (1.7)
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Here � 2 R
p is an unknown vector, ft 2 R

p and �t 2 R+ are observed random processes

such that for every t > 0 , it holds
R t
0
kfsk2��2s ds < 1 . The particular cases of (1.7)

are: the Orstein-Uhlenbeck model (p = 1)

dXt = �Xt dt+ dwt;

a nonlinear autoregression model

dXt = �h(Xt) dt+ s(Xt) dwt

and a model with delay, when h(Xt) and s(Xt) are replaced by h(Xt��) and s(Xt��),

� being the delay parameter.

The MLE estimate b� of � from (1.7) reads as follows:

b� = �Z T

0

ftf
�
t �

�2
t dt

��1 Z T

0

ft�
�2
t dXt

so that the error of estimation b� � � can be represented in the form

b� � � =

�Z T

0

ftf
�
t �

�2
t dt

��1 Z T

0

ft�
�2
t ( dXt � f�t � dt) = hMi�1T MT ; (1.8)

where

Mt =

Z t

0

fs�
�1
s dws; t � 0;

is a continuous vector martingale and

hMit =
Z t

0

fsf
�
s�

�2
s ds (1.9)

is its predictable quadratic variation.

We see that for both examples, the study of the properties of the MLE b� leads to

establishing a proper bound for probability of the form (1.6).

Some other examples where similar problems arise can be found in Liptser and Spokoiny

(1997) in context of adaptive nonparametric estimation of the drift function for two-scaled

di�usion systems and in H�ardle, Spokoiny and Teyssi�ere (1999) for estimation of param-

eters for time inhomogeneous �nancial data.

The majority of general martingale results (see e.g. Liptser and Shiryaev (1986), Jacod

and Shiryaev (1987)) concern only with asymptotic properties of MT , as T !1, under

some conditions on the behaviour of hMiT . Particularly, if for some deterministic factors

bT ! 0 as T !1 , random matrices bT hMiT converge to a non singular deterministic

matrix � , and also, for the discrete time case, the Lindeberg condition holds: for every

" > 0

lim
T!1

bTE

TX
t=1

�
Mt �Mt�1

�2
I(jMt �Mt�1j > ") = 0;
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then b
1=2
T MT is asymptotically, as T ! 1, normal with zero mean and the covariance

matrix � and the bound (1.4) holds in the following asymptotic sense (b�k = b�k(T ),
w
1=2
kk = w

1=2
kk (T )): for every �xed � > 0

lim
T!1

P

�
jb�k(T )� �kj > �w

1=2

kk (T )
�
� 2e�

�
2

2 : (1.10)

If bT hMiT converges in probability to a random matrix � , then the vector b
1=2
T MT is

asymptotically mixed normal in the sense that the pairs (b
1=2
T MT ; bT hMiT ) converge in

distribution to the pair (�1=2U;�) where U is an independent of � standard Gaussian

vector (see, e.g. Liptser and Shiryaev, 1988, Ch. 5). This again leads to the same asymp-

totic statement as in (1.10). Unfortunately, these results hold only under rather strong

conditions on asymptotic behaviour of hMiT as T !1 and do not serve e�ectively the

case of a �nite T or a large � .

In the case of a scalar unknown parameter, the time-scale arguments, see e.g. Rootzen

(1983), help to get some non-asymptotic results but only for the case of scalar parameter

� and for specially introduced random time moments T . An application of this idea to

statistical problems for autoregressive and di�usion models leads to the so called sequen-

tial estimation, when the underlying parameter is estimated from the sample Y1; : : : ; Y�

with a specially de�ned stopping time � , see e.g. Novikov (1972) for the case of a

linear di�usion model and Grambsch (1983), Lai and Siegmund (1983), Shiryaev and

Spokoiny (1997) for the Ornstein-Uhlenbeck model. Some generalizations to the vector

autoregression in the special context of guaranteed estimation can be found in Konev

and Pergamanshchikov (1996).

There exists also vast literature devoted speci�cally to the problem of estimating the

parameter � for autoregressive and linear di�usion models. Here again, the asymptotic

approach based on a preliminary study of asymptotic properties of the process hMit as

t!1 , is usually used. For instance, for the �rst order autoregression (1.6), one distin-

guishes between three essentially di�erent cases depending on the value of the unknown

parameter �1 : ergodic for j�1j < 1 , unstable for j�1j = 1 and explosive for j�1j > 1 .

In the ergodic case, the quantity T�1hMiT = T�1
PT

t=1 Y
2
t�1 converges to a �xed value

and the MLE is asymptotically normal. For j�1j > 1 , the quadratic variation hMiT
grows exponentially with T so that e�2T j�1jhMiT converges in probability to some ran-

dom variable � . The sums MT =
PT

t=1 Yt�1"t normalized by eT j�1j , turns out to be

asymptotically mixed normal in the sense�
e�T j�1jMT ; e

�2T j�1jhMiT
� w�! (�1=2U;�)

where U is standard normal and independent of � . Hence, the normalized estimation

error eT j�1j(b�(T ) � �) = eT j�1jhMi�1T MT is also asymptotically mixed normal and the

bound (1.4) applies in the asymptotic case, see White (1958). But for j�1j = 1 , the

quadratic variation hMiT grows as T 2 in the sense that T�2hMiT converges in law
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to some non degenerated distribution, and the deviation T (b� � �) weakly converges

to some special law which is neither normal nor mixed normal. Similar results for the

autoregression of order p > 1 can be found in Basawa and Scott (1983), Chan and Wei

(1988), Jeganathan (1988) or Cox and Llatas (1991).

In this paper, we aim to state an exponential upper bound for the probability from

(1.6) for a general vector case and in the non asymptotic set-up. This, of course, makes

the problem much more complicated and in particular, we are not able to establish the

required bound exactly in the form given in (1.4). Our basic result, presented in the next

section, describes a bound of the following type

P

�
jz�hMi�1T MT j > �

q
z�hMi�1T z; hMi�1T is non singular

�
� P (�)e��

2=2

where P (�) is a polynomial of the degree p whose coe�cients are connected to regularity

conditions on the matrix hMiT .
Section 3 contains some statistical applications.

2. Deviation probability for martingales

Let U be a zero mean Gaussian random vector valued in R
p with a positively de�nite

covariance matrix V : EU = 0 , EUU� = V . Then V �1U is also a Gaussian random

vector with parameters (0; V �1) . In particular, for every �xed vector z 2 R
p , the scalar

product z�V �1U is a zero mean Gaussian random variable with the variance z�V �1z

and therefore

P

�
jz�V �1U j > �

p
z�V �1z

�
� 2e�

�
2

2 ; � > 0:

In this section, we present a similar result for a random non Gaussian vector U . More

precisely, given a square integrable vector martingale (Mt)t�0 with M0 = 0 ( hMit ,
t � 0 , denotes its predictable quadratic variation), we establish an exponential upper

bound for the probability of the event

fz�hMi�1T MT > �

q
z�hMi�1T z; hMiT is nonsingularg:

We consider here two di�erent cases. The �rst one corresponds to discrete time martin-

gales with conditionally Gaussian increments while the second one concerns with contin-

uous martingales.

2.1. The model in discrete time. Let M = (Mt)t2N , N = f0; 1; 2; : : : g , be a square

integrable martingale with M0 = 0 , valued in R
p , p � 1 , de�ned on a probability

space (
;F ;P ) supplied with �ltration F = (Ft)t2N (i.e. E (Mt j Ft�1) = Mt�1 and

EkMtk2 <1 for all t 2 N ). The predictable quadratic variation hMi of M is de�ned

via increments �t =Mt �Mt�1 :
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�t = E (�t�
�
t j Ft�1) ;

hMit =

tX
s=1

�s:

Obviously, hMit is the predictable random process (i.e. hMit is Ft�1 measurable)

valued in the set of p � p symmetric non negatively de�nite matrices (for more details

see e.g. Liptser and Shiryaev [13], Ch.1 x8). Our main assumption is that for each t , the

increment �t = Mt �Mt�1 is conditionally, given Ft�1 , Gaussian random vector with

conditional parameters (0;�t) : for every  2 R
p and t � 1

E

�
e

��t
���Ft�1

�
= exp

�
1

2
��t

�
P � a.s. (2.1)

Note that (2.1) does not imply that M is a Gaussian process. A speci�c example of

a martingale, obeying (2.1), is delivered by autoregressive processes from Example 1.1.

The condition (2.1) implies that the process

Zt() = exp

�
�Mt �

1

2
�hMit

�
; t 2 N

is a martingale. In fact,

Zt() = Zt�1() exp

�
��t �

1

2
��t

�
and (2.1) provides E(Zt()jFt�1) = Zt�1() , P -a.s. Hence EZt() = 1 for every

t 2 N . This also implies for every stopping time T

EZT () � 1 (2.2)

see Problem 1.4.4. in Liptser and Shiryaev [13].

2.2. The model in continuous time. Let M = (Mt)t2R+ be a continuous vector

martingale in R
p with M0 = 0 , de�ned on a probability space (
;F ;P ) supplied with

�ltration F = (Ft)t�0 complying with, so called general conditions, see Liptser and

Shiryaev [13], Ch.1. By hMi = (hMit)t�0 we denote the predictable quadratic variation

of M , see again [13], Ch.1 x1 and x8). As in the discrete time case, introduce the positive

process

Zt() = exp

�
�Mt �

1

2
�hMit

�
:

By the Itô formula dZt() = Zt()
�dMt , and hence the process Zt is a continuous

positive local martingale and simultaneously, by Problem 1.4.4. in Liptser and Shiryaev

[13]), a supermartingale. Due to the supermartingale property, for every stopping time

T
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EZT () � 1: (2.3)

2.3. Bound for scalar martingale. We �rst examine the case when (Mt)t�0 is a

scalar martingale. Since the proof is based only on (2.2) and (2.3), we do not specify

here whether t runs over N or R+ .

The result is of independent interest and it will be essentially used when studying the

general vector case.

Theorem 2.1. Let T be �xed or stopping time. For every b > 0 , S � 1 and � � 1

P

�
jMT j > �

p
hMiT ; b �

p
hMiT � bS

�
� 4

p
e� (1 + log S) e�

�
2

2 :

Proof. The statement follows from

P

�
MT > �

p
hMiT ; b �

p
hMiT � bS

�
� 2

p
e� (1 + logS) e�

�
2

2 (2.4)

and from the similar result for �MT . So, it su�ces to check (2.4) only.

Given a > 1 , introduce the geometric series bk = bak and de�ne random events

Ck = fbk �
p
hMiT < bk+1g , k = 0; 1; : : : ;K , where K stands for the integer part of

loga S . Obviously

P

�
MT > �

p
hMiT ; b �

p
hMiT � bS

�
(2.5)

�
KX
k�0

P

�
MT > �

p
hMiT ; b �

p
hMiT � bS; Ck

�
:

For every  , (2.2) (or (2.3)) implies

EI

�
MT > �

p
hMiT ; Ck

�
exp

�
MT �

2

2
hMiT

�
� 1:

Next, taking k =
�
bk
, we obtain

1 � E exp

�
�

bk
MT �

�2

2bk
hMiT

�
I

�
MT > �

p
hMiT ; Ck

�
� E exp

�
�2

bk

p
hMiT �

�2

2bk
hMiT

�
I

�
MT > �

p
hMiT ; Ck

�
� E exp

�
inf

bk�v�bk+1

�
�2v

bk
� �2v2

2b2k

��
I

�
MT > �

p
hMiT ; Ck

�
and, since \ infbk�v�bk+1 " is attained at the point v = bk+1 = abk , we end up with

P

�
MT > �

p
hMiT ; Ck

�
� exp

�
��2

�
a� a2

2

��
:
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Inserting this bound in (2.5) and using that K � loga S , we get

P

�
MT > �

p
hMiT ; b �

p
hMiT � bS

�
� (1 + loga S) exp

�
��2

�
a� a2

2

��
:

Finally, since the left side of this inequality does not depend on a , we may pick a to

make the right side possibly small. This leads to the choice a = 1 + 1=� so that

�2
�
a� a2

2

�
= �2

(
1 +

1

�
� 1

2

�
1 +

1

�

�2)
=

1

2
(�2 � 1):

Since also log(1 + 1=�) � 1=(2�) for � � 1 , we obtain loga S � 2� log S and (2.4)

follows.

2.4. Bound for vector martingale. For the convenience of notation, set p = d + 1

so that we consider martingale M = (Mt) valued in R
d+1 , d � 1 . Let T be �xed or

stopping time. De�ne V = hMiT and let W stand for the inverse matrix of V on the

set, where V is non singular, W = hMi�1T . We deal with the random vector

U =WMT

�
= hMi�1T MT

�
:

Hereafter, the elements of the matrix W (resp. of the vector U ) are denoted by

wij ; i; j = 0; : : : ; d (resp. Ui; i = 0; : : : ; d ). Given a vector z from R
d+1 , we es-

tablish an upper bound for the probability of the event fjz�U j > �
p
z�Wzg restricted

to a set A , where the matrix V satis�es some regularity conditions given below. We

start with the vector z of the form z = (1; 0; : : : ; 0)� and postpone the general case

until Subsection 2.5.

With the speci�ed z we have

fjz�U j > �
p
z�Wzg = fjU0j > �

p
w00g:

For some positive constants b , S � , r , de�ne

A =

8>>>>>>><>>>>>>>:

b � w�100 � bS;

w00kV k1 � r;

jw0k=w00j � �; 8k = 1; : : : ; d

9>>>>>>>=>>>>>>>;
;

where kV k1 = sup
f�2Rd+1:k�k=1g

kV �k is the norm of the matrix V .

In many cases, the values b , S , � and r can be chosen such that the probability of

A is closed to 1 for su�ciently large T , see Subsection 2.6.
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Theorem 2.2. Let T be �xed or stopping time. For every b > 0 , S � 1 � > 0 , r � 1 ,

and � �
p
2

P (jU0j > �
p
w00; A) � 4e log(4S)

�
1 + 2�

p
rd �

�d
�e�

�
2

2 :

Proof. Set vk = w0;k=w00 , k = 1; : : : ; d . On the set A , we have jvkj � � . De�ne the

random vector v = (1; v1; : : : ; vd)
� and note that

P (jU0j > �
p
w00;A) = P

�
jv�MT j > �

q
w�100 ;A

�
:

Set also � = 1

�
p
rd

and introduce the discrete grid D� = f� = k� : k 2 N; j�j � �g in the

interval [��; �] . Let �k;+ (respectively �k;� ) be the (random) point from D� closest

to vk from above (respectively from below), i.e. �k;� � vk � �k;+ and j�k;� � vkj � �:

Denote by D(v) the collection of random vectors � of the form (1; �1; : : : ; �d)
�; where

�k coincides either with �k;+ of with �k;� , k = 1; : : : ; d . Then, obviously,

max
�2D(v)

j��MT j � jv�MT j : (2.6)

We show now that for every � 2 D(v) , it holds on A :

w�100 � ��V � � (1 + ��2)w�100 : (2.7)

Let � 2 D(V ) . Then the vector � = ��v = (0; �1�v1; : : : ; �d�vd)� ful�lls k�k2 � d�2 .

Recall now that W = V �1 and (w00; w01; : : : ; w0d) is the �rst row of the matrix W ,

that is,

v�V = w�100 (w00; w01; : : : ; w0d)V = w�100 (1; 0; : : : ; 0):

Hence v�V v = w�100 , v�V� = ��V v = 0 , v�V v = w�100 and

��V � = (v +�)�V (v +�) = w�100 +��V�:

Since ��V� � 0 , we get ��V � � w�100 . Moreover, on A

w00�
�V� � w00kV k k�k2 � rd�2

and (2.7) follows in view of the de�nition of � .

Next, being restricted to the set A , the variable w00 ful�lls b � w�100 � bS , so that

on A , we get for every � 2 D(v)

b � ��V � � (1 + ��2)bS: (2.8)

Now (2.6) and (2.7) imply
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�
jv�MT j > �

q
w�100 ; A

�
�

[
�2D(v)

�
j��MT j > �

q
(1 + ��2)�1 ��V � ; A

�
;

and the use of (2.8) with A� =
�
b � ��V � � (1 + ��2)bS

	
provides

�
jv�MT j > �

q
w�100 ; A

�
�

[
�2D(v)

�
j��MT j > �

q
(1 + ��2)�1 ��V � ; A�

�

�
[

�2D�

�
j��MT j > �

q
(1 + ��2)�1 ��V � ; A�

�
:

Therefore,

P

�
jv�MT j > �

q
w�100 ; A

�
�
X
�2D�

P

�
j��MT j > �

p
(1 + �2)�1��V � ; A�

�
:

For every � 2 D� , the process ��Mt is the scalar square integrable martingale with

h��MiT = ��V � . Then the application of Theorem 2.1 provides

P

�
j��MT j > �

p
(1 + ��2)�1��V � ; A�

�
� 4

�
1 + logS(1 + ��2)

� �p
1 + ��2

exp

�
� �2

2(1 + ��2)
+

1

2

�
:

Since the number of di�erent elements in D� is at most (1 + 2���1)d , we conclude

P

�
jv�MT j > �

q
w�100 ;A

�
� 4

�
1 + 2���1

�d �
1 + logS(1 + ��2)

�
� exp

�
� �2

2(1 + ��2)
+

1

2

�
:

Substituting here ��1 =
p
rd � and using �2

1+��2
� �2 � 1 for ��2 � 1=2 , we derive

P

�
jv�MT j > �

q
w�100

�
� 4e

�
1 + log(3S=2)

� �
1 + 2�

p
rd �

�d
�e�

�
2

2

� 4e log(4S)
�
1 + 2�

p
rd �

�d
�e�

�
2

2

as required.

2.5. Coordinate free form. In the previous section we state the bound for the prob-

ability from (1.6) for the special vector z = (1; 0; : : : ; 0)� . Here we consider the general
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case when z is an arbitrary vector from R
d+1 with kzk = 1. Set

Az =

8>>>>>>>>>><>>>>>>>>>>:

b � 1

z�hMi�1T z
� bS;

z�hMi�1T z khMiT k � r;

sup
y2Rd+1 : jyj=1

jy�hMi�1T zj
z�hMi�1T z

� �;

9>>>>>>>>>>=>>>>>>>>>>;
:

Theorem 2.3. Let T be �xed or stopping time. Then, for every positive constants

b > 0 , S � 1 , � > 0 , r � 1 , and � �
p
2

P

�
jz�hMi�1T MT j > �

q
z�hMi�1T z; Az

�
� 4e log(4S)

�
1 + 2�

p
rd�

�d
�e�

�
2

2 :

Proof. For z = (1; 0; : : : ; 0)� , the statement holds by Theorem 2.2. The general case

can be reduced to that one simply by changing the coordinate system in the way that z

becomes the �rst coordinate vector.

2.6. The ergodic case. Assume the increments of the martingale M form an ergodic

process in a sense that

P � lim
T!1

hMiT
T

= V ; (2.9)

where V is a nonsingular deterministic matrix. Denote by W = (wij; i; j = 0; : : : ; d)

the inverse of V . The ergodic property implies that, for su�ciently large T , the random

matrix T hMi�1T falls outside any small open vicinity of the limit matrix W with a very

small probability. This particularly yields that for large T the probability of the event

AT =

8>>>>>>>>><>>>>>>>>>:

1

2w00

� T

w00
� 2

w00

;

w00khMiT k � 2w00kV k;

max
k=1;::: ;d

jw0kj
w00

� 2 max
k=1;::: ;d

jw0kj
w00

9>>>>>>>>>=>>>>>>>>>;
is closed to 1 and therefore P (Ac

T ) = 1 � P (AT ) is small. In this case, the following

result can be useful.

Proposition 2.1. Assume (2.9) with the nonsingular matrix V . Then there exist con-

stants C1 and C2 , depending on V only, such that for all � �
p
2

P

�
jz�hMi�1T MT j > �

q
z�hMi�1T z

�
� C1(1 + C2�)

d�e�
�
2

2 + P (Ac
T ):
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3. Statistical applications

We revert now to the statistical examples from Section 1. First we consider the discrete

time model which generalizes Example 1.1. Assume we observe a process Yt , t 2 N , and

Ft denotes the � -�eld generated by the observations Ys with s � t . We also suppose

that the observations Yt follow the equation

Yt = f�t � + �t"t; t = 1; : : : ; T; (3.1)

where the errors "t are independent standard normal random variables and ft (resp.

�t ) is a R
p -valued (resp. R+ -valued) predictable process w.r.t. the �ltration (Ft)t2N ,

that is, ft and �t are completely determined by the observations Y1; : : : ; Yt�1 . We

additionally assume that

E��2t jftj2 <1; 8t:

Note that the autoregressive model, see Example 1.1, is a particular case of (3.1) with

ft = (Yt�1; : : : ; Yt�p)� . Similarly to that case, the MLE estimate of the unknown pa-

rameter � 2 R
p from the observations Yt , t � T , for the model (3.1) reads as follows:

b� =  TX
t=1

��2t ftf
�
t

!�1 TX
t=1

��2t ftYt

and it holds for the estimation error

b� � � =

 
TX
t=1

��2t ftf
�
t

!�1 TX
t=1

��1t ft"t = hMi�1T MT ; (3.2)

where

Mt =

tX
s=1

��1s fs"s and hMit =
tX

s=1

��2s fsf
�
s : (3.3)

It is straightforward to check that (Mt ; t 2 N) is a square integrable martingale with

conditionally Gaussian increments and (hMit ; t 2 N) is its predictable quadratic varia-

tion.

The second application corresponds to the continuous time linear di�usion model (1.7)

from Example 1.2.

In the statement below, we treat both models (3.1) and (1.7) simultaneously. Let T be

a stopping time w.r.t. the �ltration (Ft) and b� be the MLE of the unknown parameter

� from the observations Yt , t � T . Let then hMiT be from (1.9) or (3.3). De�ne

V = hMiT and let W stand for the inverse of V . By wk;k0 we denote the elements of

the matrix W = V �1 , k; k0 = 1; : : : ; p .

We formulate the result concerning the �rst coordinate b�1 � �1 of the vector b� � � .

The other components of this vector can be treated in a similar way. The assertion is

the direct application of Theorem 2.2.
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Theorem 3.1. Let b� be the maximum likelihood estimate of the parameter � from ob-

servations Yt , t � T , for the model (3.1) (resp. for the model (1.7)) due to (3.2) (resp.

(1.8)). For positive constants b > 0 , S � 1 � > 0 and r � 1 , introduce the event

A =

8>>>>>>><>>>>>>>:

b � w�111 � bS;

w11kV k � r;

jw1k=w11j � �; 8k = 2; : : : ; p

9>>>>>>>=>>>>>>>;
:

Then, with any positive � �
p
2 , it holds

P

�
jb�1 � �1j > �

p
w11; A

�
� 4e log(4S)

�
1 + 2�

p
r(p� 1) �

�p�1
�e�

�
2

2 :
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