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Abstract. This paper gives a survey of an approximation method which was pro-

posed by V. Maz'ya as underlying procedure for numerical algorithms to solve initial

and boundary value problems of mathematical physics. Due to a greater 
exibility

in the choice of approximating functions it allows e�cient approximations of multi{

dimensional integral operators often occuring in applied problems. Its application

especially in connection with integral equation methods is very promising, which has

been proved already for di�erent classes of evolution equations. The survey describes

some basic results concerning error estimates for quasi{interpolation and cubature of

integral operators with singular kernels as well as a multiscale and wavelet approach

to approximate those operators over bounded domains. Finally a general numerical

method for solving nonlocal nonlinear evolution equations is presented.

1. Introduction

V. Maz'ya proposed the method of \Approximate Approximations" in the late 80s when deal-

ing with applied problems as chair of the division \Mathematical models in mechanics" of the

Leningrad Research Engineering Institute of the USSR Academy of Sciences (see some of its ap-

plications in [8], [20], [21], and the �rst announcement in English [9]). The main idea of this

method is based on the fact that the numerical solution of applied problems is always required

only within some prescribed accuracy. Therefore it is possible to use numerical algorithms which

provide good approximations only up to some prescribed error level, but do not converge in rigorous

mathematical sense. By this way one can

� enlarge the set of approximating functions signi�cantly

� obtain numerically cheap and accurate approximation formulas

� deduce e�ective formulas for the approximation of various integral and other pseudodi�eren-

tial operators of mathematical physics

For the �rst time I heard about this concept at a lecture of V. Maz'ya in 1991 and I became

interested in the rather unusual idea to use non{converging approximation methods in numerical

computations together with the wide area of possible applications. At the end of 1992 we began

our joint work on di�erent aspects of approximate approximations which is still in progress. The

present report gives an outline of some of the obtained results.

The starting point is the error analysis of approximate quasi{interpolation on uniform lattices.

The quasi{interpolants are linear combinations of scaled translates of a su�ciently smooth and

rapidly decaying basis function � and depend on two parameters, the \small" mesh width h and

the \large" parameter D to scale the Fourier image. Under quite general assumptions on � the

approximants converge if D !1 and the product
p
Dh! 0. However, in practical computations

it is advantageous to keep D �xed, which results in an approximation of some order N up to a

saturation error which can be made arbitrarily small if D is chosen large enough. The order N

is determined by the moments of the function � and can be increased to any integer value by

some analytic or algebraic transformations of the given basis function. Thus one derives a new

class of simple multi{variate formulas which behave in numerical computations like high order

approximations. This quasi{interpolation procedure was recently extended to the approximation

of functions on domains and manifolds with nonuniformly distributed nodes.

The great 
exibility in the choice of generating functions � makes it easier to �nd approximations

for which the action of a given operator can be e�ectively determined. For example, suppose one

has to evaluate the convolution with a singular radial kernel as in the case of many potentials in

mathematical physics. If the density is replaced by a quasi{interpolant with radial � then after

passing to spherical coordinates the convolution is approximated by one{dimensional integrals. For

many important integral operators K one can choose � even such that K� is analytically known,

which results in semi{analytic cubature formulas for these operators. The special structure of
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the quasi{interpolation error gives rise to an interesting e�ect. Since the saturation error is a

fast oscillating function and converges weakly to zero, the cubature formulas for potentials, for

example, converge even in rigorous sense.

The presence of the two scaling parameters h and D is also useful to develop a multiscale ap-

proach within the concept of approximate approximations. This approach enables the construction

of high order approximations to discontinuous functions and of accurate cubature formulas for in-

tegral operators over bounded domains. Here a two scale relation for generating functions from

the Schwartz class is used which is valid within any prescribed tolerance for su�ciently large D.
This relation allows also to perform an approximate multiresolution analysis of spaces generated

by those functions. Therefore a wavelet basis can be constructed in which elements of �ne scale

spaces are representable within a given tolerance. These approximate wavelets provide most of the

properties utilized in wavelet based numerical methods and possess additionally simple analytic

representations. Therefore the sparse approximation of important integral operators in the new

basis can be computed using special functions or simple quadrature.

The capability of approximate approximations to treat multi{dimensional integral operators

very e�ciently is very promising for new integral equation based numerical methods. In the last

section I present some examples of these methods which were developed by V. Maz'ya together

with V. Karlin to solve linear and nonlinear problems. In particular, numerical results for evolution

equations with nonlocal operators are given which cannot be solved by standard �nite{di�erence

or �nite{element methods.

2. Quasi{interpolation

2.1. Example

To illustrate the idea of approximate approximations let us consider the following example of a

simple quasi{interpolation formula in R1

Mhu(x) =
1

�
p
D

1X
m=�1

u(mh) sech
x�mhp
Dh

(2.1)

If u is 2{times continuously di�erentiable then the Taylor expansion

u(mh) = u(x) + u
0(x)(mh� x) + u

00(xm)
(mh � x)2

2

with some xm between x and mh leads to

Mhu(x) =
u(x)

�
p
D

1X
m=�1

sech
x�mhp
Dh

+
u
0(x)

�
p
D

1X
m=�1

(mh � x) sech x�mhp
Dh

+
1

2�
p
D

1X
m=�1

u
00(xm)(mh � x)2 sech

x�mhp
Dh

:

The Fourier transform of sech(x) is given as

(Fsech)(�) :=
Z
R1

sechx e�2�ix� dx = � sech �2� ;

therefore Poisson's summation formula results in the relations

1

�
p
D

1X
m=�1

sech
x�mp
D

= 1 + 2

1X
�=1

sech(�2
p
D�) cos(2��x) ;
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1

�

p
D

1X
m=�1

x�mp
D

sech
x�mp
D

= �

1X
�=1

sech(�2
p
D�) tanh(�2

p
D�) sin(2��x) :

It is clear that Mhu(x) does not converge to u(x). However, one has����� 1

�

p
D

1X
m=�1

sech
x�mp
D

� 1

����� � 2 "(
p
D) ;����� 1

�
p
D

1X
m=�1

x�mp
D

sech
x�mp
D

����� � � "(
p
D) ;

where the number

"(
p
D) :=

1X
�=1

sech(�2
p
D�)

can be made arbitrarily small by choosing D large enough. For example, if D = 4 then "(
p
D) =

0:000000005351. Since

1

2�
p
D

�����
1X

m=�1
u
00(xm)

(mh� x)2

Dh2 sech
x�mhp
Dh

����� � 5

4
sup
t2R

ju00(t)j

the di�erence between u and Mhu can be estimated by

jMhu(x)� u(x)j �
5

4
Dh2 sup

R

ju00j+ "(
p
D)
�
2 ju(x)j+ �

p
Dh ju0(x)j

�
:

This means, above the tolerance "(
p
D)
�
2 ju(x)j+ �

p
Dh ju0(x)j

�
the quasi{interpolant Mhu ap-

proximates any 2-times continuously di�erentiable function like usual second order approximations

and any prescribed accuracy can be reached if D is chosen appropriately.

2.2. Quasi{interpolation with general basis functions

A similar approximation behavior as in the previous example can be obtained for quite arbitrary

basis functions in arbitrary space dimension n and approximation order N . Consider the quasi{

interpolation formula

Mhu(m) = D�n=2
X
m2Zn

u(hm) �
�x� hmp

Dh

�
(2.2)

with a continuous generating function � satisfying

A.1 Decay condition

j�(x)j � AK (1 + jxj2)�K=2 ; x 2 Rn
;(2.3)

for some constant AK , K > N + n and N � 1 is a given positive integer.

Denoting by

��(x;D) := D�n=2
X
m2Zn

�x �mp
D

��
�

�x �mp
D

�
;

��(x;D) := D�n=2
X
m2Zn

����x�mp
D

��
�

�x�mp
D

���� ;
one gets after substituting Taylors expansion of u into (2.2)

Mhu(x) =

N�1X
j�j=0

@
�
u(x)

�!
(�
p
Dh)j�j��(x=h;D) + RN (x;

p
Dh) ;(2.4)

where

jRN(x;
p
Dh)j � (

p
Dh)N

X
j�j=N

k@�ukL1(Rn)

�!
��(x=h;D)
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The application of Poisson's summation formula to �� yields the equality

��(x;D) =
�
i

2�

�j�j X
�2Zn

@
�F�(

p
D�) e2�i(�;x) ;

which holds if the sequence f@�F�(
p
D �)g 2 l1(Zn) (see e.g. [18]).

Thus Mhu would approximate a su�ciently smooth functions u with the order O((
p
Dh)N ) if

��(x;D) = �j�j0 for all x 2 Rn, �ik is the Kronecker symbol. These equalities imply the well{known

Strang{Fix condition

@
�F�(0) = �j�j0 ; @

�F�(
p
D�) = 0 ; � 2 Zn n f0g ; 0 � j�j � N � 1 :

The idea of approximate quasi{interpolation is to use generating functions � for which ��(x;D)
can be made arbitrarily close to �j�j0 by choosing appropriate values of D. Therefore � and its

Fourier transform F� have to satisfy

A.2 Moment conditionZ
Rn

�(y) dy = 1 ;

Z
Rn

y��(y) dy = 0; 8� ; 1 � j�j < N ;(2.5)

A.3 For any " > 0 there exists D > 0 so thatX
�2Znnf0g

j@�F�(
p
D�)j < " ; 8� ; 0 � j�j � N :(2.6)

In [17] it is shown that forM{times di�erentiable functions � (M the smallest integer greater than

n=2), which satisfy together with all derivatives @��, j�j �M , the decay condition A.1, assumption

A.2 is true.

Consequently, if the generating function � satis�es the assumptions A.1{3 one obtains from

(2.4) the error estimate

Theorem 2.1. ([14]) If u 2 CN (Rn) \WN
1(Rn) then for any " > 0 there exists D > 0 such that

jMhu(x) � u(x)j � c (
p
Dh)N

X
j�j=N

k@�ukL1(Rn)

�!
+ "

N�1X
j�j=0

(
p
Dh)j�j j@

�
u(x)j
�!

;

where the constant c depends only on �.

Similar error estimates for quasi{interpolation in the Lp{norm are proved in [15]. Note that for

u from the H�older class CL;�, 0 � L < N , 0 < � < 1, the error jMhu(x) � u(x)j is of the order
O((

p
Dh)L+�) plus small remainder terms.

The local nature of the quasi{interpolant Mh should be emphasised, its behaviour at a given

point x depends within some error level " only on the values of u at grid points in some neighbor-

hood of this point. Since in practice one has to truncate the summation in (2.2) it is important

that depending on " > 0 there exist Ns > 0 ensuring that the truncated quasi{interpolant

Ms
hu(x) = D�n=2

X
jx�hmj�Nsh

u(hm) �
�x � hmp

Dh

�
;(2.7)

shows the same approximation behaviour as Mhu. Thus, the number of summands in (2.7) does

not depend on the mesh size h.

One interesting consequence of Theorem 2.1 is that the quasi{interpolantMhu converges to u if

the parameter D is chosen depending on h with D(h)!1 as h! 0. For any generating functions

� satisfying the assumptions A.1{3 one can specify this dependence and determine the optimal
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convergence order, which is of course less than N . For special one{dimensional or tensor{product

generating functions this problem has been addressed in the literature ([19],[2],[1]).

We prefer to have D as additional parameter because this may be advantageous in some nu-

merical applications, where the quasi{interpolation is used, as well as for further developments of

approximate approximations mentioned in Sections 7 and 8.

2.3. Quasi{interpolation with variable nodes

The quasi{interpolation formula (2.2) is not restricted to the case of uniform spacing of the nodes

or grid points. In [17] an extension of this formula to the form

D�n=2
X
xm2


u(xm) �
�
x� xmp
D Vm

�
; x 2 
 ;(2.8)

is discussed, where 
 is some domain in Rn or an n{dimensional manifold in Rs and the nodes

xm 2 
 are the images of a lattice of width h under smooth parametrization of 
. To retain the

local character of the quasi{interpolant the scaling Vm should be proportional to h.

After applying a partition of unity it can be supposed that 
 = �(!), where ! � Rn is a

bounded domain and � = ('1; : : : ; 's) : R
n ! Rs, n � s is a su�ciently smooth and non-singular

one-to-one mapping. In particular,

j�0(y)j =
�X

(i)

(�(i)(y))
2
�1=2

> 0 ; y 2 ! ;

where �(i) denotes the minor of order n of the matrix �0(y) = (@'j=@yk)
s;n
j;k=1, corresponding to

indices i1 < : : : < in. The sum is extended over all distinct tuples (i) = (i1; : : : ; in), 1 � ip � s, of

this kind.

It turns out that if in (2.8) the nodes are given by xm = �(hm), hm 2 !, then this quasi{

interpolant has similar approximation properties as in the case of uniformly distributed nodes. For

the sake of simplicity we assume here that � belongs to the Schwartz class, � 2 S(Rs). Further

one has suppose that in the case s > n the generating function � is radial.

Theorem 2.2. ([17]) Assume that � satis�es the assumption A.2, � : ! ! 
 is in the class CN+1

with j�0(yj > 0, y 2 !, and the numbers Vm are chosen such that

j(h�1Vm)n � j�0(hm)j
�� � c h

N
:

If u 2 CN
0 (
), then for any " > 0 there exists D > 0 such that at any point x 2 


juh(x) � u(x)j � c� (
p
Dh)N kuk

CN (
)
+ "

N�1X
k=0

ck (
p
Dh)k ;(2.9)

where c� does not depend on u, h and D and the constants ck can be obtained from the values

@
�
u(x), j�j � k.

Consider as simple example a fourth order quasi{interpolation formula on a surface � in R3.

To de�ne the numbers Vm denote by Qj
m = hm + hQ

j, j = 1; 2, where Q1 = [�1; 1]2 and Q
2

is the sqaure with corners at the points (�1; 0) and (0;�1). Then formula (2.8) with �(jxj) =
�
�1(2 � jxj2) exp(�jxj2) provides approximate approximations with the order O(D2

h
4) on � if

one chooses

Vm =
p
meas(�(Q2

m)) �meas(�(Q1
m))=4 :
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3. Generating functions for quasi{interpolation of high order

In fact any su�ciently smooth and decaying function � with F�(0) 6= 0 can be used as generating

function for quasi{interpolation processes. One interesting feature of approximate approximations

is the possibility to construct from a given basis function � new generating functions �N satisfying

the assumptions A.2 on the moments for arbitrary given large N using di�erent analytic and

algebraic methods. Some of these methods are described in this section.

3.1. Examples of generating functions

The following table lists some examples of useful functions for which the Fourier transform is

known. The �rst number in each row indicates the space dimension. In the next section it is shown

how these functions can be modi�ed to generate high order quasi{interpolants.

�(x) F�(�)

1 �
�1 sech (x) sech (�2�)

1 2��2 x cosech (x) sech2 (�2�)

n �
�n=2 exp(�jxj2) exp(��2j�j2)

1
p
e=� exp(�x2) cos

p
2x exp(��2�2) cosh

p
2��

2
exp(�2�a

p
jxj2 + b2)p

jxj2 + b2

exp(�2�b
p
j�j2 + a2)p

j�j2 + a2

3 �
�4 sech (jxj) sinh (�2j�j) sech2 (�2j�j)

�2j�j

n
4

3�n+1=2
�(n+5

2
)

(1 + jxj2)(n+5)=2
(1 + 2�j�j+ 4

3
�
2j�j2) e�2�j�j

n (�1)k �
(n+1)=2

�(k + n+1
2
)

@
k

@�k

1p
�
e
�2�

p
�jxj
����
�=1

(1 + j�j2)�k�(n+1)=2

n
�(k + 1 + n

2
)

�n=2�(k + 1)
(1� jxj2)k �(x) �(k + 1 + n

2
)
Jk+n=2(2�j�j)
(�j�j)k+n=2

Here � denotes the characteristic function of the unit ball B(0; 1) and J� the Bessel function of

the �rst kind.

3.2. A general formula

If F�(0) 6= 0 then the function

�N (x) =

N�1X
j�j=0

@
�(F�)�1(0)
�! (2�i)j�j

@
�
�(x)(3.1)

satis�es the moment condition (2.5), where @�(F�)�1(0) := @
�
�
1=F�(�)

���
�=0

.

For radial basis functions �(x) = �(jxj) this construction leads to the function

�2M(x) = �
�n
2

�M�1X
j=0

�j(F�)�1(0)
j! (4�)2j �

�
j + n

2

� (��)j�(x)(3.2)
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satisfying the moment condition (2.5) with N = 2M and possessing the Fourier transform

F�2M(�) = F�(�) �
�n
2

�M�1X
j=0

�j(F�)�1(0)
j! 4j �

�
j + n

2

� j�j2j :
The additive structure of formula (3.2) allows to increase the order of a given quasi{interpolant by

adding a new formula of the form (2.2) with the next term of (3.2) as generating function.

An interesting example is provided by the Gaussian function �(x) = exp(�jxj2), where the

application of (3.2) leads to the generating function

�2M(x) =
1

�n=2
L
(n=2)

M�1(jxj
2) e�jxj

2

(3.3)

with the generalized Laguerre polynomial L
(n=2)

M�1 .

3.3. Symmetric generating functions

Here we list some other formulas for basis functions � with F�(0) = 1 which are symmetric with

respect to the coordinate planes xi = 0 ,

�(x1; : : : ; xi; : : : ; xn) = �(x1; : : : ;�xi; : : : ; xn) ; i = 1; : : : ; n :

For the resulting generating functions the moment condition (2.5) is valid with N = 2M .

(i) ~�D(x) :=

MX
j=1

MY
l=1

l6=j

DlDj
�n=2

Dl �Dj

�

� xp
Dj

�
for any M -tuple D = (D1; : : : ;DM) ; Dj > 0 ; Dj 6= Dl ; j 6= l .

(ii) ~�M(x) :=
(�1)M�1

(M � 1)!

�
d

d�

�M�1
�
�
�1�n=2

�

� xp
�

������
�=1

(iii) �̂(x) =

1Z
1

�

� xp
�

�
d�(� )

�n=2
with

1Z
1

�
k
d�(� ) = �0k ; k = 0; : : : ;M � 1 :

3.4. Linear combinations of translates

Suppose that � is symmetric and F�(0) 6= 0. From the solution fa�(D)g of the linear systemX
j�j<M

a�(D)�2� =
�
�

D
4�2

�j�j
@
2�(F�)�1(0) ; j�j < M :

one obtains a generating function satisfying condition A.2 with N = 2M by

~�M(x;D) =
X

[�]<M

2��(�)a�(D)
X

fjkjg=�

�

�
x� kp

D

�
(3.4)

Here fjkjg denotes the vector (jk1j; : : : ; jknj) and �(�) is the number of nonzero components of �.

Since

@
�F
�
~�M(�;D)

�
(
p
D�)=

X
���

�!

�! (�� �)!@
�F�(

p
D�) @���(F�)�1(0) ;

the saturation error of the quasi{interpolant generated by ~�M(x;D) satis�es assumption A.3. From

(3.4) follows immediately, that it can be written in the form

D�n=2
X
m2Zn

�

�x� hmp
Dh

�� X
[�]<M

2��(�)a�
X

fjkjg=�

u(h(m� k))

�
;

i.e. a linear combination of the translates of the basis function � can provide any given approxi-

mation order up to the saturation error.
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4. Semi{analytic cubature formulas

The numerical treatment of potentials and other integral operators with singular kernels arises as

a computational task in di�erent �elds. Since standard cubature methods are very time{consuming

there is an ongoing research to develop new e�ective algorithms like panel clustering, multipole

expansions or wavelet compression based on piecewise polynomial approximations of the density.

The e�ective treatment of integral operators is also one of the main applications of approximate

approximation. Here the density of a given integral operator

Ku(x) =
Z



g(x� y)u(y) dy :(4.1)

is replaced by a high order quasi{interpolant with a specially chosen generating function for which

the action of the integral operator can be e�ectively determined. For example, if � is chosen

such that an analytic expression of the integral K� is available, which is in general impossible for

piecewise polynomials or other �nite{element functions, then

Khu(x) := KMhu(x) = h
n
X
hm2


u(hm)

Z
Rn

g

�p
Dh
�
x� hm

h

p
D

� y

��
�(y) dy

is a semi{analytic cubature formula for the integral operator.

Consider for example the Newton potential

N3u(x) :=
1

4�

Z
R3

u(y)

jx� yj dy :

If the density u is replaced by the quasi{interpolant with the generating function �2M(x) =

�
�3=2

L
(3=2)
M�1(jxj2) e�jxj

2

one obtains the semi{analytic formula

N3;hu(x) :=
Dh2

4(�D)3=2
X
m2Z3

u(hm)

� p
�

jrmj
erf(jrmj) + e

�jrmj2
M�2X
j=0

L
(1=2)
j (jrmj2)
j + 1

�
;

with rm = (x=h�m)=
p
D and the error function erf.

Error estimates for these approximations can be obtained by estimating the quasi{interpolation

in weak Sobolev norms, for example. Here the saturation error, which is caused by fast oscillating

functions, tends to zero. Therefore the cubature formulas for smoothing integral operators, for

example pseudodi�erential operators of negative order, become converging. For the particular case

of the Newton potential the following estimate holds.

Theorem 4.1. If u 2 WN
p (R3) \WN

q (R3), 1 < p < 3=2, q = 3p=(3� 2p), 2 � L � 2M , then for

any " > 0 there exists D > 0 such that

kN3u� N3;hukLq(R3) � c� (
p
Dh)LkukWL

p
(R3) + "h

2kuk
W

L�1

p (R3)

and

krN3u�rN3;hukLq(R3) � c� (
p
Dh)LkukWL

p
(R3) + "hkuk

W
L�1

p (R3)
:

There exist several other important integral operators of mathematical physics and appropriate

basis functions leading to semi{analytic cubature formulas or to approximations which require

only simple one{dimensional quadratures of well{behaved functions (see [11], [15]). Here only two

simple examples are mentioned.

The action of the di�raction potential

K�2M(x) =
1

4�

Z
R3

e
ikjx�yj

jx� yj �2M(y) dy ; Im k � 0 ; x 2 R3
;(4.2)
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is given by the analytic formula

K�2M(x) =
e
�k2=4

4�jxj

�
i sin(kjxj) + Re

�
e
ikjxjerf

�
jxj+ ik

2

���M�1X
j=0

(k2=4)j

j!

+
e
�jxj2

�3=2

M�2X
j=0

(�1)j H2j+1(jxj)
22j+3 jxj

M�2�jX
r=0

(k2=4)r

(j + r + 1)!
;

where Hj(x) denotes the Hermite polynomials of order j.

Consider the integral operator of the screen problem

Vu(x) := 1

�

Z
R2

u(y)

jx� yj
dy ; x = (x0; x3) 2 R3

:(4.3)

The action of this operator on the function �2M(x) = �
�1
L
(1)

M�1(jxj2) e�jxj
2

can be computed with

the quadrature of the one{dimensional integral

V�2m(x) =
2

�

1Z
0

J0(jx0j�) exp(��2 � jx3j�)
M�1X
j=0

�
2j

j!
d� ;

where J0 is the Bessel function.

5. Cubature of integral operators over bounded domains

Often the computation of potentials is required for �nding in some domain a particular solution

of a partial di�erential equation with inhomogeneous right{hand side u. If this function can be

extended smoothly outside the domain then the cubature method considered in the previous section

provides a high order approximation of such a solution. Here we brie
y describe how this method

can be extended to the computation of integral operators over a given bounded domain 
. Since in

general the quasi{interpolantMhu with uniformly distributed nodes does not approximate u near

@
 one has to re�ne the mesh towards the boundary. In view of the simplicity of the formulas for

Mh it is useful to take a sequence of uniformmeshes in certain boundary layers. In the joint paper

with T. Ivanov [3] such a multiscale approximation formula was constructed which is numerically

stable for Lipschitz domains. The approximant behaves likeMhu with the same basis function and

compactly supported, smooth functions u if the error is measured in Lp, 1 � p <1, or in negative

Sobolev{norms. This method was modi�ed in [4] for polyhedral domains where anisotropic mesh

re�nement leads to a considerable reduction of the numerical costs.

5.1. Approximate re�nement equation

The construction of the boundary layer approximants is based on the following

Theorem 5.1. ([16]) Suppose that the Fourier transform of � 2 S(Rn) does not vanish, F� 6= 0,

and that for given � 2 (0; 1) the function ~� = F�1
�
F�(�)=F�(��)

�
belongs also to S(Rn). Then

for any " > 0 there exists D > 0 such that

�

�
xp
D

�
= D�n=2

X
m2Zn

~�
�
�mp
D

�
�

�x� �mp
D�

�
+R�;�;D(x) ;(5.1)

where R�;�;D 2 S(Rn) ful�lls jR�;�;Dj < ".

Relation (5.1) is the approximate counterpart of the two{scale or re�nement equation which

is well-known from wavelet theory. In the next section the approximate re�nement equation is

9



used to perform an approximate multiresolution decomposition of linear spaces generated by the

translates of �. It leads also to an approximate factorization of quasi{interpolation operators which

is the basis of multiscale approximation schemes.

Corollary 5.2. ([3]) If ��1 2 N then (5.1) implies the factorization of the quasi{interpolation

operator (2.2)

Mh =M�h
fMh +Rh ; kRh;�k < " ;(5.2)

with the quasi-interpolant

fMhu(x) := D�n=2
X
m2Zn

u(hm) ~�
�x� hmp

Dh

�
:

Since ~� satis�es together with � the assumptions A.1{3 the quasi{interpolation fMh provides

the same approximation properties as Mh.

5.2. Isotropic boundary layer approximate approximation

The isotropic boundary layer approximation is derived by the iterative application of the fac-

torization (5.2) in boundary layers Qk � 
 where the quasi{interpolation on the given uniform

mesh of size hk�1 = �
k�1

h, ��1 2 N, becomes worse. Here we switch to the �ner uniform

mesh of size hk = hk�1=� and approximate u �Mhk�1u by a linear combination of the functions

�((� � hkm)=hk
p
D), where the nodes hkm 2 Qk. Since in view of (5.2)Mhk�1u can be expressed

in terms of these functions with the accuracy " the approximation error is determined by the dif-

ference of u �Mhku, which is large only at some sublayer Qk+1 near the boundary. Thus one

obtains a boundary layer approximant of the form

BLu(x) = D�n=2
LX
k=0

X
hkm2Qk

ck;m �

�
x� hkm

hk

p
D

�
;(5.3)

where the coe�cients ck;m are given by

ck;m =

�
u(h0m); k = 0;

u(hkm)� (fMhk�1u)(hkm); k � 1:
(5.4)

Note that ck;m is a linear combination of values of u near the point hkm with coe�cients not

depending on h and the number of the boundary layer. Indeed,

(fMhk�1u)(hkm)= D�n=2
X

j�m�jj�eNs

u(hk�1j) ~�
�
�m� jp

D

�
;

therefore the coe�cients ~�
�
(�m� j)=

p
D
�
can be precomputed and used for any initial mesh size

h and k � 1. Furthermore, the width of the boundary layers Qk is proportional to hk with some

factor depending only on the basis function �.

A detailed analysis of this multiscale approximation together with numerical results is contained

in [3], where the following theorem has been proven.

Theorem 5.3. Suppose that 
 is a bounded domain with Lipschitz boundary and let u 2 WN
p (
)

with N > n=p. If � 2 S(Rn) satis�es the assumptions of Theorem 5.1 and the moment condition

A.2 then the boundary layer approximant BL approximates u with the error

ku� BLukLp(Rn) � c1(Dh)NkrNukLp(
) + c2(�
L
h)1=pkukL1(
) + "kukWN

p
(
) :

Thus, by choosing the number of boundary layers L so that �L = O(hNp�1) the error for the
boundary layer approximation BLu is of the form O((Dh)N )) + ".

10



The cubature formula Khu for an integral operator over the bounded domain 


Ku(x) =
Z



k(x � y)u(y)dy ;

is obtained from the boundary layer approximation of the density u by

Khu(x) := KBLu(x) = D�n=2
LX
k=0

X
hkm2Qk

ck;m

Z
Rn

k(x � y)�

�
y � hkm
hk

p
D

�
dy :

Theorem 5.4. ([3]) Let u 2 W
N
p (
) with N > n=p and the integral operator K maps Lp(
)

boundedly into W
m
p (
1). Under the assumptions made above for any " > 0 there exists D > 0

such that

kKu�KhukWm
p
(
1) � c1(Dh)

NkrNukLp(
) + c2(�
L
h)1=pkukL1(
) + "kukWN�1

p (
) :

If additionally K 2 L((Wm
p=(p�1)(
))

0
; Lp(
1)) then

kKu�KhukLp(
1) � (c1(Dh)
N + c2(�

L
h)1=p+r)kukWN

p
(
) + " h

m kuk
W

N�1

p (
)
;

where 0 < r < m=n; r � (p� 1)=p.

5.3. Anisotropic boundary layer approximate approximation

The cubature method based on isotropic boundary layer approximations has the advantage, that

one gets immediately e�ective formulas for integrals over Lipschitz domains if only K� is known.

On the other hand, the re�nement in all directions may lead to a large number of summands in

these formulas. But the approximation error increases in the direction towards the boundary, thus

one actually needs re�nement only in this direction. Therefore a considerable reduction of data

points in the boundary layer approximation (5.3) can be derived by anisotropic mesh re�nement.

This is discussed in [4] for the example of a polyhedral domain 
 in R3.

Using a partition of unity the function u is decomposed into the sum of functions with support

in the interior, near corners, near edges and near faces of 
, respectively. The approximation of the

function with compact support in the interior of 
 can be performed by the usual quasi{interpolant

(2.2) with a suitable generating function, whereas for the approximation of the functions supported

near the corners of 
 the approximation operator (5.3) can be used. The reduction of data points

is reached by constructing the boundary layer approximants for the functions near edges and faces

using mesh re�nement only in the direction normal to the boundary. Consider for example in

R3
+ = fx = (x0; x3) 2 R3 : x3 � 0g a su�ciently smooth function u with bounded support and

u(x0; 0) 6� 0. The construction of high order approximants to u with respect to the sequence of

anisotropically distributed mesh points f(hm0
; �

k
hm3) : (m

0
;m3) 2 Z3

+g is based on a generating

function of the tensor product form

�3(x
0
; x3) = �2(x

0) �1(x3)(5.5)

where �2 is a suitable generating function and �1 satis�es the conditions of Theorem 5.1. The

approximate re�nement equation for this function results in the factorization

Mh;� =Mh;�2
fMh;� +Rh;� ; kRh;�k < " ;

where now

Mh;�u(x) := D�3=2
X
m2Z3

u(hm) �3

�
x
0 � hm0

h

p
D

;
x3 � �hm3

�h

p
D

�
fMh;�u(x) := D�3=2

X
m2Z3

u(hm) �2

�
x
0 � hm

0
p
Dh0

�
~�1

�
x3 � �hm3

�h

p
D

�
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with the dual function ~�1 from the re�nement equation for �1. Analogously to the isotropic case

the approximant is de�ned as

D�3=2
LX
k=0

X
(hm0;�khm3)2Qk

ck;m �3

�
x
0 � hm0

h

p
D

;
x3 � �

k
hm3

�kh

p
D

�
(5.6)

with the coe�cients

ck;m =

�
u(hm0

; hm3); k = 0

u(hm0
; �

k
hm3)� (fMh;�k�1u)(hm

0
; �

k
hm3); k � 1

where Qk are layers in R3 parallel to the plane fx3 = 0g. In [4] it is shown that the assertion of

Theorem 5.3 remains true for the approximation (5.6) if � satis�es the moment condition (2.5) for

given N .

The quasi{interpolation for edge supported functions with the order O((Dh)N ) can be per-

formed using generating functions of the form (5.5) with �2 satisfying the conditions of Theorem

5.1. The wedge under consideration is a�nely transformed to a wedge with right inner angle,

and here the construction of the boundary layer approximant is a straightforward extension of the

above construction.

Let us note that it is possible to �nd tensor product generating functions (5.5) where the action

of potentials can be computed by simple one{dimensional quadrature (see [4]).

6. Approximate wavelets

The application of wavelet methods to the representation of integral and di�erential operators

is one of the actual research topics in the numerical analysis of solution methods for corresponding

operator equations. These methods are based on the multiresolution analysis for �ne scale spaces.

In numerical procedures one starts with a �nite sequence of nested closed subspaces

V0 � V1 � : : : � Vd � L2(R
n)(6.1)

with the properties

(i) f(x) 2 V0 if and only if f(x �m) 2 V0 for any m 2 Zn;

(ii) f(x) 2 Vj if and only if f(2x) 2 Vj+1 for any j = 0; : : : ; d� 1;

(iii) there exists � such that f�(� �m)gm2Zn is an L2{stable basis in V0.

Then the spaces Vj are spanned by the dilated shifts �(2j � �m), m 2 Zn, of the scaling function

�. The main goal of the multiresolution is to determine a new basis of the space Vd corresponding

to the �nest grid. To this end Vd is decomposed into the orthogonal sum

Vn = V0

dM
j=1

Wj ;(6.2)

where the wavelet space Wj is the orthogonal complement Wj = Vj 	 Vj�1. There exist 2n � 1

functions  v 2 W1, called prewavelets, with the property that the shifts f v(2j � �x);m 2 Zn; v 2
V0g form an L2{stable basis in the space Wj+1. Here the prewavelets  v are indexed by the set

V0 = Vnf0g with V denoting the set of vertices of the cube [0; 1]n. Thus one obtains a basis of Vd
consisting of

f�(� �m);m 2 Zng and f v(2j � �m);m 2 Zd; v 2 V0; j = 0; : : : ; d� 1g :
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The elements of Vd and operators acting on them are now expanded into the new basis and

the computations take place in this system of coordinates, where one hopes to achieve that the

computation is faster than in the original system. Since in view of (ii) the scaling function � has to

satisfy an exact re�nement equation as a rule the approximating functions for the above mentioned

applications of wavelet based numerical methods are piecewise polynomials.

The generating functions considered in approximate approximations do not ful�l an exact re-

�nement equation. But in view of Theorem 5.1 a large class of these functions satisfy approximate

re�nement equations and the error can be controlled by the parameter D. Therefore it is possible
to perform an approximate multiresolution analysis of �ne scale spaces spanned by the translates

of theses functions, i.e. to decompose a �ne scale space within some given tolerance into a direct

sum of a coarse scale space and wavelet spaces. Then elements of the �ne scale space and operators

acting on them can be represented within the given tolerance in this new base. The advantage

of this approximate wavelet approach lies in the possibility to get e�ciently computable sparse

approximations for important integral operators, as shown in [16].

6.1. Approximate multiresolution analysis

Consider the closed linear subspaces of L2(R
n)

Vj :=
n X
m2Zn

am �D(2
j � �m) ; famg 2 `2(Zn)

o
;

where �D := �(�=
p
D) satis�es the assumptions of Theorem 5.1. Since F�D 6= 0 the family of

translates f�D(2j � �m)gm2Zn is an L2{stable basis in Vj . From the approximate re�nement

equation (5.1) it is clear that for any l < j the space Vl is almost included in Vj . In particular, if

� = 1=2 then any element

'j =
X
m2Zn

am�D(2
jx �m) 2 Vj

can be perturbed such that

'j �
X
m2Zn

amR�;2;D(2
j � �m) 2 Vj+1 :

The norm of the perturbation is small for D large enough, hence for any " > 0 there exists D such

that

k'j � Pj+1'jk2 � " k'jk2 ;(6.3)

where Pj+1 denotes the L2{orthogonal projection onto Vj+1.

Furthermore, we allow also a small perturbation of the wavelet basis which spans the closed

subspace of all functions inVj+1 which are orthogonal to Vj. We assume the existence of functions

 D;v, v 2 V0, such that the space W1 spanned by their integer translates has the property that if

'1 2 V1 and '1 ? V0 then

k'1 �Q1'1k2 � " k'1k2 ;(6.4)

where Q1 is the L2{orthoprojection onto W1.

Then it can be easily seen that for �xed d any 'd 2 Vd can be represented within some

prescribed tolerance as an element of the multiresolution structureeVd := V0 _+W1 _+ : : : _+Wd :(6.5)

More precisely, under the assumptions (6.3) and (6.4) the following estimate holds:




'd � P0'd � dX
j=1

Qj'd





2
� d

3" � "2
1� "

k'dk2 :(6.6)

Hence the approximate multiresolution analysis allows to combine the 
exible choice of basis

functions used in approximate approximations with the interesting features of wavelets, as the

localization in both space and frequency domains and vanishing moment properties.
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6.2. Example

To illustrate the above approach we consider the example of the one{dimensional Gaussian function

�D(x) = exp(�x2=D) providing the approximate re�nement equation

�D(x) =
2p
3�D

1X
m=�1

e
�m2=3D

�D(2x�m)� �D(x)
X
� 6=0

e
�3�2D�2=4

e
3�ix�

:

To �nd an approximate wavelet we start with the element of V1

1X
m=�1

(�1)m�1�m�1�D(2x�m) with �m =

Z
R

�D(x) �D(2x+m) dx ;(6.7)

which is orthogonal to all integer shifts of the scaling function �D and has the Fourier transform

cD e
��i�

e
��2D�2=4

1X
k=�1

exp(�5�2D(� + 2k + 1)2=4)

with some factor cD. It can be easily seen that for D su�ciently large the function with the Fourier

transform

cD e
��i�

e
��2D�2=4

�
exp(�5�2D(� + 1)2=4) + exp(�5�2D(�� 1)2=4)

�
provides a very accurate smooth approximation of (6.7). Therefore the approximate wavelet can

be de�ned as

 D(x) := e
�(2x�1)2=6D cos

5�

6
(2x� 1) ;(6.8)

which perturbs the corresponding function in V1 orthogonal to V0 by

RD(x) = e
�(2x�1)2=6D

1X
k=1

cos
5�

6
(2k + 1)(2x� 1) e�5�

2D(k2+k)=6 = O(e�5�
2D=3) :

Hence, any element 'd 2 Vd, which approximates some function up to a prescribed accuracy with

the order O(2�dN ), can be expanded within the same accuracy into the new basis

f�D(� �m);m 2 Zg and f D(2j � �m); m 2 Z; j = 0; : : : ; d� 1g :

Analytic representations of the projection operators P0 and Q1 are given in [16].

Besides the good localization the approximate wavelets have an interesting feature. In general

its power moments do not vanish, but they are very small and decrease as D increases. This implies

in particular fast decay of integral operators K applied to them if the kernel k(x;y) satis�es

j@�yk(x;y)j � c� jx� yj�(
+j�j) for some 
 > 0 :

This e�ect is shown in Figure 1 giving the graphs of the approximate wavelet  3 and of the Hilbert

transform of  3

H D(x) =
1

�

1Z
�1

 D(y)

y � x dy

=
ie
�25�2D=24

4

�
W

�5�D � 2i(2x� 1)

2
p
6D

�
�W

�5�D + 2i(2x� 1)

2
p
6D

��
;

where the function W is de�ned by

W (z) := e
z2 (erfc(z)� erfc(�z)) :
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Figure 1: Graph of the approximate wavelet  3 (left) and its Hilbert transform (right)

6.3. The multivariate case

As mentioned above in d dimensions the wavelet space W1 is spanned by the integer shifts of 2d�1

prewavelets  v. If the scaling function �D used in the approximate resolution analysis is a tensor

product of one-dimensional functions

�D(x) =

dY
j=1

�D(xj) ;

as for example the Gaussian, then the approximate wavelets are obtained as the tensor products

 D;v(x) = wv1(x1) � � �wvd(xd) ; v = (v1; � � � ; vd) 2 V0 ;

where w0(x) = �D(x) and w1(x) =  D(x) denotes the one{dimensional approximate wavelet

function associated with �D. Note that for di�erent v 2 V the principal shift invariant spaces

Xv := f D;v(� �m); m 2 Zdg are nearly orthogonal. Thus the space of approximate wavelets

is the direct sum of the spaces Xv, v 2 V0. For more general basis functions the approximate

wavelets can be determined by using the extension of formula (6.7)X
m2Zd

(�1)(m;v)
�m �D(2x �m� v) ; v 2 V0 ;

where �m =

Z
Rd

�D(x) �D(2x+m) dx ;

which gives elements from V1 orthogonal to V0. Again, appropriate truncation of the in�nite

series representations of the Fourier transform of these functions leads to small perturbations. The

resulting functions, the multivariate approximate wavelets, have compact analytic representations.

7. Numerical algorithms based upon approximate approximations

The real power of approximate approximations is in the capability to treat multi{dimensional

integral operators very e�ciently. Therefore it is natural to use it as underlying approximation

method in numerical algorithms for solving problems with integro{di�erential equations. Another

very important application of approximate approximations is in the large �eld of integral equations

methods for solving initial and boundary value problems for partial di�erential equations. V.

Maz'ya developed numerical algorithms for some typical examples, which can be found in [11],

[10], [12], [5], [6]. Here I brie
y describe the approach of Maz'ya and Karlin to solve evolution

equations with nonlocal operators based upon approximate approximations
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7.1. Nonlocal evolution equations

In [6] V. Maz'ya and V. Karlin considered the Cauchy-Problem for equations of the general form

ut � P1(Dx)u = P2(Dx)F (x; t; u; P3(Dx)u) ; t > 0 ; x 2 Rd
; u(x; 0) = '(x) ;

where Dx = (�i@=@x1; : : : ;�i@=@xn). The operators Pj(Dx) are convolutions with the symbol

Pj(2��) and F is supposed to be a smooth function. The equation is discretized in time by a

two{parameter �nite{di�erence approximation with time step � . Then u(x; t) is approximated by

a sequence of functions un(x) = u(x; n� ), n = 0; 1; 2; : : :, satisfying

�
�1(un � un�1)� �1P1(Dx)un � (1� �1)P1(Dx)un�1

= P2(Dx)[((1 + �2)Fn�1(x) � �2Fn�2(x)] ;

where Fn(x) = F (x; n�; un; P3(Dx)un) and 0 < �i � 1. For �1 = �2 = 1=2 the scheme is of second

order accuracy. With the notations

� = ��1 ; y = un + (��11 � 1)un�1 ;

f = �
�1
1 un�1 ; g = � [(1 + �2)Fn�1 � �2Fn�2]

one derives the following linear problem

��P1(Dx)y + y = f + P2(Dx)g ; x 2 Rd
;

providing the solution

y = f + (R� I)f + P2Rg with R = (I � �P1)
�1

:

Replacing f and g by its quasi{interpolants (2.2) one obtains the approximate solution

yh = f + (R � I)Mhf + P2RMhg

= f + D�d=2
X
m2Zd

f(hm)[(R�)
�x � hmp

Dh
�
� �
�x� hmp

Dh
�
]

+ D�d=2
X
m2Zd

g(hm)(P2R�)
�x� hmp

Dh
�
:

Thus the values of yh at the grid points xk = hk are linear combinations of

(R�)
�k�mp

D
�

and (P2R�)
�k�mp

D
�
;

which may be e�ectively computed if the generating function � is suitably chosen. By this way

Maz'ya and Karlin derive the following explicit scheme to compute the approximate solution un;h
of the Cauchy problem:

un;h = un�1;h + �
�1
1 (R� I)Mhun�1;h + �P2RMh[(1 + �2)Fn�1 � �2Fn�2] :

Compared with other explicit schemes for solving time{dependent problems the proposed method

is very robust with respect to variations of the ratio between time and spatial discretization.

Numerous numerical tests for di�erent equations have shown, that of course the non{linearity in

the original equation imposes restrictions to the time step � , but there exists no strict connection

between � and the mesh size h. In these tests the present method provides an accuracy of O(�2+
�h

N ) at each time step, where N is the approximation order of the approximate quasi{interpolation

with the generating function �. For �1 = �2 = 1=2 the numerical accuracy increases to O(�3+�hN ).
However, the rigorous error analysis of this quite general method remains open. The estimation of

the saturation errors, which occur at each time step, is rather involved and understood at present

only for some special equations. Here again for D su�ciently large the saturations errors can be

kept below a given error level, as expected also from the numerical experiments.
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7.2. Examples

In [6] the method is applied to di�erent nonlinear nonlocal evolution equations, here two examples

will be mentioned. The �rst concerns the Joseph equation

ut + �
�1
ux + (2�)�1

1Z
�1

uyy coth
�(y � x)

2�
dy = �(u2)x ;(7.1)

which describes the unidirectional propagation of small{amplitude, nonlinear, dispersive, long

waves in strati�ed 
uids. Note that the shallow water approximation (� << 1) of (7.1) is the

Korteweg{de{Vries equation, whereas the deep water approximation (� >> 1) is the Benjamin{

Ono equation

ut +Huxx = �(u2)x
with the Hilbert transformH. In Figure 2 the computational results for Joseph's equation with the

initial data '(x) = � exp(�x2) for � = 0:1; 0:333; 1; and 10, corresponding to shallow, intermediate,

and deep water, are shown. In these computations � was the Gaussian function, D = 3, h = 0:1

and � = 0:001.
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Figure 2: Solution of the Joseph equation for di�erent �

Another interesting example which is di�cult to solve by using �nite{di�erence or �nite{element

methods represents the two{dimensional equation of 
ame front propagation

ut + a�2
u+ ��u+ b�

Z
R2

u(y; t)

jx� yj dy+ cu = �1

2
(ru)2 ; t > 0 ; x 2 R2

:(7.2)
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Here

P1(�) = �aj�j4 + �j�j2 + bj�j � c; P2(�) = 1; P3(�) = i�; F (x; t; u;v) = �jvj2=2 :

With the two{dimensional generating functions (3.3) the occuring integrals are transformed to the

zero{order Hankel transform with smooth and rapidly decaying integrands and may be done by

using a standard quadrature procedure. In Figure 3 the results of the numerical solution of (7.2)

with the initial data

'(x) = 1 +
1

2
sin 2x1 sin 2x2

and the parameters a = 10�4, � = 0:05, b = 0:005 and c = 1=6 are given for di�erent time values.

The 2�{periodic solution was computed for the discretization parameters h = �=32 and � = 10�3.
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Figure 3: Level lines of the surface of the 
ame front for di�erent t

The given parameters correspond to a linear 
ame instability and the computations result in a

corrugated 
ame front.

7.3. Further applications

Finally I mention some other problems for which algorithms based on approximate approxima-

tions have been applied successfully. The algorithm described above was used to solve non{linear

parabolic di�erential equations. The papers [11], [12], [5] contain also numerical results for di�erent

model equations, among them the two{dimensional Navier{Stokes problem.
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Approximate approximations were successfully used in [7] to solve hypersingular integral equa-

tions of the Peierls type

1Z
�1

K(x� y)u(y) dy = F (u(x)) ; K(x) = �x�2 + �(x) ;

with � being smooth and the integral de�ned in the �nite part Hadamard sense. Integral equations

of this type occur in dislocation theory. Due to the e�cient cubature formulas critical Peierls

stresses were calculated at very high accuracy for a variety of dislocations.

A further application of approximate approximations is an extension of the Boundary Element

Method. While usually the numerical solution of boundary integral equations is sought in form of

piecewise polynomial functions the so{called Boundary Point Method uses suitable basis functions

for which the boundary integrals can be e�ectively computed. Representing the numerical solution

as linear combination of translates of this basis function similar to the quasi{interpolant (2.8)

the discretization of the boundary integral equations requires only the computation of boundary

potentials whose densities are the basis functions. In [10], [11] the Boundary Point Method is

applied to two{ and three{dimensional potential problems with smooth boundary, where the surface

integration is replaces by the integration over the tangent plane. The obtained second order

approximation rate corresponds to the theoretically expected results.
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