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Abstract 

As an extent of asymptotically absolute stability of numerical methods 
in deterministic situation, in this report the asymptotically absolute mea_n 
stability of the null solution for stochastic differential equations with respect 
to different criterions will be examined, both for the exact solution and for 
its numerical approximations. Among the considered criterions the mean 
square stability plays the main role in the examinations. For the class of 
scalar, bilinear, complex-valued stochastic differential equations, comparison 
studies for different numerical schemes are provided and show their different 
stability features. However the balanced implicit methods have proved to 
be rich enough to possess appropriately large stability domains. Finally, 
experiments for the Kubo oscillator indicate how efficient the asymptotical 
mean stability examinations could be for the reality. 
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1 Introduction 

After numerous publications on numerical methods for the treatment of stochastic 
differential equations (SDE's), see Pardoux & Talay ([21], 1985), Milstein ([17], 
1988) or Kloeden & Platen ([13], 1992), it is necessary to examine their qualitative 
behaviour, to distinguish between the schemes, not only w.r.t. given error criteri-
ons and orders, and to describe further qualitative characteristics of them. From 
practical interest, the question of stability of these schemes has to be solved. If one 
obtains a stable numerical method for the considered equation then one knows the 
range of time step sizes to be used to achieve control on the numerical behaviour of 
the approximation and one knows appropriate parameters involved in these meth-
ods. Stable numerical methods guarantee a kind of 'reasonable' behaviour, even 
for so-called 'real time step sizes', which replicates qualitative features of the ex-
act solution to be approximated. Especially, in stiff systems where one observes 
rapidly varying time scales (velocities) it is very important to know assertions 
about stability, both for the exact and the numerical solution. Furthermore stabil-
ity investigations are necessary to develope adaptive and intelligent algorithms up 
to their practical implementation, for instance algorithms which themselves select 
step size and some order (in deterministics such as LS ODE solver). 
We are going to restrict ourselves to the notion of asymptotically absolute stability 
(A-stability) formulated via the moments and analogously to Dahlquist and others 
who investigated it in deterministic numerics. So we will touch upon on briefly 
the problem of suitable test equations which still has to be solved in stochastic 
numerics. For our investigations we are modelling with multiplicative noise, see 
model 2.1. In some extent, this test equation may be considered to be represen-
tative for autonomous stochastic differential equations (time-independent) due to 
Haszminskij 's results [8] on st~bility and the connection of the linearized and the 
original equation, compare theorems 1.1 and 1.2 in chapter VII at page 299-300, if 
the first derivatives of the drift and diffusion are bounded. However, still it must be 
clarified which systems, in general, possess such linearizations of type 2.2 and their 
applications. It is apparent that the investigation includes the one-dimensional si-
tuation at least. Besides we remark the model 2.2 presents a class of processes with 
their linearization having commutative, but nondiagonalizable drift and diffusion 
matrices. This paper can be considered as a trial to gain a little more insight of 
the stability appearance of exact and numerical solutions for stochastic systems. 
Discussion on the topic of test equations and simultanous transformations we will 
provide in a later paper. 
There is a nonneglectable difference between the notion of stability in probability 
and the herein considered p-th mean stability. A corresponding theorem concern-
ing their relation for given linear systems, especially for constant coefficients, has 
been stated in Haszminskij ([8],chapter VI.4, 1969). The additive noise case has 
already been examined by Milstein ([17], 1988, page 60-67) and Kloeden & Platen 
((13],[14], 1992). There the investigations draw back to the deterministic part of 
the schemes, e.g. those parts influenced decisively by the drift of the considered 
model equation. Later we will see that this kind of asymptotical stability corres-
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ponds to asymptotically weak mean stability with small noise. In multiplicative 
noise cases, particulary in those cases where the stochastic part plays the decisive 
role (compare Milstein et al. ([19], 1992)), one cannot simply drop out the stocha-
stic parts of the schemes. First stability examinations for multiplicative noise have 
been done by Mitsui & Saito ([20], 1992), where they reduced it to the mean square 
stability (p = 2) under other restrictions to the model equation (There the com-
plex model is equivalent to a real model with noncommuting drift and diffusion 
matrices and the investigation is reducable to only one dimension.), and they do 
not include the pure-stochastic equation class (.:\ = 0, I <> 0, non-mean square, 
but weak mean stable case). Of course, in practice, it seems that this is the way 
to plot stability domains at all, e.g. to restrict to parameter simplifications. We 
note that the model 2.2 will also include the one-dimensional bilinear model they 
considered. Furthermore, for a special scheme class (weak approximations with 
simplified random variables having finite extremas ), Hofmann [10] has studied the 
stability of the corresponding numerical solutions, but it is used the essup criterion 
to classify the schemes w.r.t. their stability. Although this work is very useful, 
thereby this notion and formalism is not applicable to general and, in particular, 
strong approximations. No~ we are dealing with asymptotically absolute stabil-
ity in the mean sense, the weak and p-th mean stability of both strong and weak 
approximations and will stay within the Ito calculus. · 

2 Mean Stability for Stochastic Processes 

In this section it is discussed the asymptotical mean stability for stochastic pro-
cesses governed by special SDE's. The conditions guaranteeing mean stability for 
the exact solutions will ensure the sense of further stability investigations for the 
numerical solutions which should replicate the stability behaviour of the exact so-
lution. Analogously to Sasagawa & Willems ([19], 1991) we introduce the notion 
of p-th mean stability. For this purpose we consider the cl-dimensional real-valued 
stochastic process X = {X(t) : t ~ O} satisfying the bilinear Ito equation 

m 

dX(t) AX(t)dt + L Bi X(t)dWi(t) (2.1) 
i=l 

X(O) xo E JRd 

driven by am-dimensional standard Wiener process 

where A and .Bi are dxd-matrices with constant elements. 
Suppose Xo is a cl-dimensional random vector, independent of the a - algebra 
Ft= a{Wi(s); j = 1, · · · ,m, 0::; s::; t }, t E JR+. Furthermore, llxll denotes the 
Euclidean norm of a vector x and < ·, · > the inner scalar product of two vectors 
inscribed. In the following we assume that IEllxallP < +oo (p = 1, 2, ... ). 

Definition: (p-th mean stability) , p E JN+ 
The null solution x(t; 0) = 0 of 2.1 is called asymptotically p-th mean stable for the 
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process X = {X(t), t 2 O} satisfying 2.1 or shorter p-th mean stable if for each 
E > 0 there exists a 8 > 0 such that 

IE llX(t; xa)llP < E Yt E JR+/\ llxall < 8 
and IE llX(t; xo)llP -----t 0 as t ~ +oo for sufficiently small llxoll · 

To cover the stability investigation for the 'deterministic part' taking part in the 
dynamics of the stochastic processes we additionally introduce the notion of asymp-
totically weak mean stability, although it is a very 'weak' notion for stochastics. 

Definition : (weak mean stability) 
The null solution x( t; 0) = 0 of 2.1 is called asymptotically weak mean stable for 
the process X = {X(t), t 2 O} satisfying 2.1 or shorter weak mean stable if for 
each E > 0 there exists a 8 > 0 such that 

lllE X(t; xa)ll < E Vt E JR+/\ llxoll < 8 
and lllE X(t; xo)ll -----t 0 as t ~ +oo for sufficiently small llxall · 

In the special case p = 1 we also say strong mean stable and for p = 2 mean square 
stable. Furthermore, we make the convention that in the whole paper we are only 
talking about asymptotically absolute stability and leave out these two adjectives 
mostly unless we stress it explicitly. Stochastic processes w.r.t. their stability were 
studied by the school of Haszminskij ([8], 1969), Arnold ([1], 1974), Sasagawa ([24], 
1981), Sasagawa & Willems ([25], 1991) and many others. By the definition above 
one immediately obtains this assertion : 

Lemma I : p E JN+ 
If the null solution is p-th mean stable for the process X = {X(t), t 2 O}, then it 
is weak and (p-1 )-th mean stable too. 

which can be justified by the triangular and Lyapunov's inequality, respectively. 
Note that this stability is understood as a characterization of the asymptotically 
stable behaviour w.r.t. the null solution. A simple example which demonstrates 
that there is a basic difference between p-th and weak mean stability, and that it 
makes sense to differ between these notions, is provided by the one-dimensional 
stochastic process Z = {Z(t) : t 2 O} defined by Z(t) = tt:W(t) (e E JR, t 2 
t0 > 0) satisfying the nonautonomous SDE 

dZ(t) = e · Z(t) dt + te:dW(t). 
t 

From this process it can be easily concluded that 

1. Z( t) is weak mean stable, as well as the Wiener process itself, but not p-th 
mean stable for each e 2 - ~, p E JN+ . 

2. Z(t) is p-th mean stable iff e < -~ because of 
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and JEjlC~W(t)jjP = { ff· Til=1(2i) if p = 2q + 1 
ff· flf=1(2i-1) if p=2q forpEJN+ 

Moreover, one can state stochastic processes for which the null solution is p-th 
mean stable, but not (p+l)-th mean stable for any fix p E JN+ (compare Lemma 
2 below where the inequality 0 ~ Ar + ~(![ + f;P) < ~f; is fulfilled). 
For simplicity and to demonstrate the gist of asymptotical stability examinations 
we chose the test class of two-dimensional equations of structure 2.1 with one 
Wiener noise, e.g. d = 2 and m = 1 . To ensure for which parameters of model 
2.1 it makes sense to examine the stability behaviour of the approximations we 
are firstly dealing with stability for the exact solutions of our test class considered. 
Explicit solutions of 2.1 are only known if matrices A and Bi commute, e.g. 
ABi = Bi A. In such situations, for our two-dimensional system with one Wiener 
noise, we obtained as its explicit solution 

1 X(t) =exp{( A - 2B 2 )t + BW(t)} · X(O) 

and hence in componentwise description, if 

and B = (fr 
fi 

-fi) 
fr 

with A = Ar + iAi and f = fr + ifi E (C, the corresponding system 

X 1(t) == (X1 (0) cos((rrfi - Ai)t + fiWt) - X 2(0) · sin((rrfi ~ Ai)t + f'iWt)) 

· exp{ ( >.r - ~(!; - -yf))t + 'Yr W,} 

and 

( X 1 (0) sin(( frfi - Ai)t + fi Wt)+ X 2(0) ·cos(( frfi - Ai)t + fi Wt)) 

·exp{( Ar - ~(!; - -yl))t +'Yr W,} 

which is equivalent to X(t) = exp{(A-f2 /2)t +fW(t)}X(O) in complex notation, 
representing the solution of the system 

dX(t) = AX(t)dt + fX(t) dW(t) (2.2) 

where A, T' complex parameters, X(t) E (C and W(t) real-valued standard Wiener 
process. With i the imaginary unit of (C is denoted. For this system we are able 
to state some results concerning the mean stability of its null solution. 

Lemma 2: 
Suppose it is given a system of the form 2.2 with its solution X( t ). 
Then it holds 
(i) : The null solution is weak mean stable iff Ar < 0. 
(ii) : The null solution is p-th mean stable iff Ar+ ~(rt+ f;(p - 1)) < 0. 
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Proof : The first assertion can be concluded immediately from the deterministic 
differential equation for the first moment dlE(X(t)IX(O)) = Ar JE(X(t)IX(O)) dt. 
The second follows from 

f[X(O)ff P ·exp{ (Ar - ~(r; - 'Yl)) pt}· lEexi>{nr W(t)} 

ff X(O)fJP ·exp{ (Ar+~ ( 'Yf + 'Y;(p - 1))) pt} 

We note that 

A( xo; p) := lim sup~ log 1EllX( t, xo) llP = p( Ar + ~( rl + ,;(p - 1))) 
t-too t 2 

which is called the p-th mean Lyapunov exponent of X(t). Thereby, one of the 
results (proposition 1, Sasagawa & Willems ( [25], 1991)) has confirmed which also 
says that the system 2.1 (2.2) is p-th mean stable iff the p-th mean Lyapunov 
exponent is negative via the notion of exponential p-stability and its relation to 
the considered system (see Lemma 4.3 in Haszminskij ([8], page 255, 1969). With 
these results in mind, it only makes sense to examine weak and p-th mean stability 
for the approximations of system 2.1 in those cases where the null solution is mean 
stable, resp., too. Thus, from now on we assume Ar < 0 or 

1 2 1 2( ) . Ar + 2ri + 2fr P - 1 < 0 (2.3) 

for systems as 2.2 whenever p E JN+. To illustrate graphically how such region 
determined by 2.3 looks like we add the figure 1. In this figure the border plane 
for p = 2 (mean square stability domain) is plotted. The region 2.3 establishes 
the set of all tripels (.;\r, {r, ri) which are located under the grid hyperplane. Note 
that the values of Ai plays no role for the stability in the mean sense. 

-1 

-2 

-2 

Re( Gamma) lm(Gamma) 

Figure 1 : Hyperplane for the mean square stability domain 2.3 
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3 Numerical Solutions of Model 2.1 

Before we will start with the stability investigation for numerical solutions we 
declare what is meant by discrete time approximations with weak and stron:g order 
q E JR+ called shortly weak and strong approximations in Kloeden & Platen [9] in 
order to classify additionally the approximations, their schemes or methods w.r.t. 
their convergence order against the exact solution. For this purpose we consider 
an equidistant time discretization of a given time interval [O, T] : 

0 = To :::; T1 :::; ... :::; TnT = T 

Suppose y6. = (Yn) = (Y( Tn))n=0,1, ... ,nT is a sequence of random values corre-
sponding to the discretization points Tn where .6. = Tn+i - Tn. 
Definition : (strong approximation, numerical solution) 
Such Sequences y6. with step size .6. are called discrete time approximations of 
the solution or numerical solutions of 2.1 with strong order q ~ 0 if it holds 

(3.1) 

where the constant K is only depending on T. 

Approximations of this form can be settled by numerical schemes of the form 

Yn+l = q, (Tn, .6., Yn, Yn+i), n = 0, 1, ... 'nT - 1. 

Analogously, the notion of discrete time approximations (numerical solutions) with 
weak order q ~ 0 is introduced via the requirement 

(3.2) 

w .r. t a class of sufficiently smooth functions g bounded by polynomial growth 
(g E 0:0). Simple examples of such numerical solutions are provided by the family 
of implicit Euler schemes with weak order 1.0 and strong order 0.5 which takes the 
form for model 2.2 stated in Kloeden & Platen ( [9], [10]) for a E (0, 1] 

Yn+l = Yn + {aAYn+l + (1- a)AYn}.6. + BYn.6.Wn, (3.3) 

the family of implicit Milstein schemes with weak order 1.0 and strong order 1.0 
evaluated for model 2.2 

Yn+i = Yn + {aAYn+i + (1- a)A Yn}.6. + B Yn .6.Wn + !B2Yn((.6.Wn) 2 
- .6.) (3.4) 

2 
for a E [O, 1] or the balanced implicit methods with weak and strong order 0.5 
introduced by Milstein et al.([14], 1992) and, for model 2.2, described by 

Yn+l = Yn + AYn .6. + B Yn .6.Wn + C(Tn, Yn)(Yn - Yn+i) (3.5) 

where C( Tn, Yn) = c0 ( Tn, Yn).6. + c1 ( Tn, Yn)l.6. Wnl with 2 x 2 matrices c0 and c1 

which may be chosen as stochastically bounded matrices such that the inverse of 
I+ C(t, x) always exist and is uniformly bounded w.r.t the pair (t, x). In 3.3 - 3.5 
we supposed one noise source ( m = 1) and identified .6. Wn = W( Tn+i) - W( Tn) 
with the increment of the standard Wiener noise where n = 0, 1, ... , nT - 1. For 
further methods, see [4], [6], (12], [13], (17], (21], (26) or (27]. 
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4 Weak Mean Stability for Numerical Solutions 

Analogously to the definition of weak mean stability for stochastic processes X 
we introduced the asymptotically absolute stability in the weak mean· sense for nu-
merical solutions. For this purpose we substituted llJEX(t; xo)ll by llJEY( Tni Yo)ll 
at each time point Tn and as Tn -7 oo, resp., in the corresponding definition of 
chapter 2. For simplicity we only considered equidistant approximations. Suppose 
it is given an approximation of system 2.1 which provides a numerical solution 
(Yn) at the time points Tn = n.6. (Yn as 'described in section 3). 

Definition : (weak mean stability of numerical solutions) 
Assume that the step size .6. of the numerical solution is fixed. Then the null 
solution x(t; 0) - 0 of 2.1 is called asymptotically weak mean stable for the nume-
rical solution (Yn) (method, scheme, approximation) of system 2.1 or shorter the 
numerical solution (Yn) is weak mean stable if for each € > 0 there exists a 5 > 0 
such that 

lllE Y(rn; Yo)ll < € Vn E IN/\ llYall < 5 
and llJE Y( Tn; Yo)ll ~ 0 as Tn -7 +oo for sufficiently small !!Ya II· 

Consider model 2.2. If in the above definition the requirements are true for all 
step sizes .6. and parameter Ar < 0 then we call the numerical solution (method, 
scheme, approximation) weak mean A-stable. This corresponds to a stochastic ver-
sion of the notion of A-stability as known through Dahlquist in deterministic nu-
merics. In modells with small noise intensities, weak mean stability for numerical 
solutions described in the previous section corresponds to' asymptotical stability 
of their 'deterministic parts', e.g. those parts being left if one averages out the 
stochastic influence in them (Nonlinear modells with large noise require further 
special examinations). For the solutions using one of the implicit Euler 3.3 or Mil-
stein schemes 3.4, these investigations coincide with the stability investigations of 
their deterministic counterparts determined only by the drift part of model 2.2. If 
the weight function c1 ( t, x) - 0 for all ( t, x) E [O, oo) x JRd in the balanced meth-
ods 3.5 then one could also point to the stability behaviour of their deterministic 
counterparts. That's why we will draw the attention to deduce recommendations 
for nonzero matrices c1( t, x) in the balanced methods. 

4.1 The Notion of Stability Function and Domain 

Before we will start with investigating of stability we declare what is meant by a 
stability function of a numerical solution for model 2.2 and its corresponding sta-
bility domain. Suppose that it is given a scheme form Yn+i = <P(.X.6., 1Vf5.., en)Yn 
where <P is a 2 x 2 real-valued matrix or a random complex-valued function map-
ping on (C x (C to (C and en represents the noise influence involved in the scheme 
at time Tn (for Euler, this is only the current Wiener noise increment). Note that 
schemes 3.3 - 3.5 can be written in this form for model 2.2. Then we call the 

7 



real-valued function 

R(µ, v) := jjJE'i>(µ, v, e)ll forµ, v E (ff ( 4.1) 

the weak mean stability function. Obviously, it holds llIEYnll ~ 0 as T;,, ~ co 
iff llIE'i>(µ, v, 011 < 1. Thereby, one obtains assertions about the weak mean 
stability of the numerical solution y.6. via the investigation of the positive real-
valued function R(µ, v) depending on complex variables µ, v E (ff. More precisely 
speaking, the deterministic complex region 

r : = {( µ, v) E (ff x (ff : R( µ, v) < 1} (4.2) 

corresponding to a given numerical solution and its scheme with random function 
'1> : (ff x (ff ~ (ff provides us just the domain where the numerical solution behaves 
weak mean stable. It can be calculated using the connection between the parame-
ters and step size of the numerical solution and the complex pairs (µ, v) Er. Such 
a region r is called weak mean stability domain of the numerical solution. Now we 
are interested in the description and structure of such stability domains r for the 
numerical solutions 3.3 - 3.5. 

4.2 Weak Mean Stability of Euler and Milstein Schemes 

It is easy to see that these scheme families 3.3 and 3.4 with a E [O, 1] even possess 
the same weak mean stability behaviour. Obviously, this fact is due to the property 
of the expectation of Ito-processes taking out the diffusion influence and hence the 
difference between these schemes. For the stability investigatio!l we rewrote formula 
3.3 to 

(I - o:~Ar1 (I+ (1 - o:)~A + B~Wn) Yn 
(1 - o:.X~t1 (1 + (1 - o:).X~ + 1'1Een) Yn 
'i>a( .X~, 1'1E., en) Yn 

( 4.3) 

where ~ Wn = VE.en and e is the current standard Gaussian noise. Thereby we 
obtained for µ = .X~, v = 1'1E. E (ff 

11 JE'i>a(µ, v, 0 II 

1

1 + (1 - o:)µ I =:Ra(µ). 
1- o:µ 

Furthermore we set µ = µr + iµi, v == Vr + Zl/i and splitted up the term inside the 
stability function Ra(µ) in real and imaginary parts. This leads to 

( 4.4) 

where i represents the imaginary unit in (ff. Therefore Ra(µ) < 1 is fulfilled iff 
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By quadrating this inequality and rearranging terms one immediately gains this 
assertion. 

Lemma 3: 
Suppose it is given a system of the form 2.2. 
Then the numerical solutions based on the implicit Euler 3.3 and Milstein schemes 
3.4 are weak mean stable iff 

(4.5) 

for µ = .:\.6. and .A Ere, or in another words, they possess the weak mean stability 
domain 

ra := {(µ, v) Ere : 2µr + (µ; + µ;)(1 - 2a) < 0 } . 

Analysing 4.5, for 0 ~ a < ~ one can rewrite this as 

( 4.6) 

Thus, the weak mean stability domain of implicit Euler 3.3 and Milstein ~chemes 3.4 
is the interrior of the circle of radius (1-2a)-1 which is centered at ((2a-1)-1 ,0), 
when 0 ~ a < ~ . Otherwise, for ~ ~ a ~ 1 , inequality 4.5 is trivially satisfied 
for all complex µ with Re(µ) == µr < 0 . Therefore the corresponding numerical 
solutions 3.3 and 3.4 are weak mean A-stable for model 2.2. Figure 2 shows the 
complement of the weak mean stability domain of the both methods using implicit-
ness a = 1. This domain is bounded by the plotted curve <!-nd excludes all values 
belonging to the curve itself and its included area (hatched in figure 2). 

1 

0.5 

//" .· /"/ 0.5 

/ . 

"'/ 

Re(Mu) 

-0.5 

-1 

Figure 2 : Complementary set of the weak mean stability domain r1 
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For these scheme families 3.3 and 3.4, these results coincide with the results of 
Kloeden & Platen [14] in the additive noise case. So, here the weak mean stability 
investigation for the families of implicit Euler and Milstein schemes does not depend 
on the additivity or rnultiplicativity of the noise corning up in the considered model 
equation. Obviously, not suprisingly, this fact is due to the given simple linear 
model 2.1, the special criterion structure of weak mean stability and its property 
projecting to the deterministic case. Moreover, as it has been indicated at the 
beginning, there is no need to provide the weak mean stability investigation for 
small noise or such linearizations as model 2.1 because these cases are covered by 
the extensive stability examinations in deterministic numerics, but we let them in 
this paper as a supplement, to remind the reader or to give occasion and a tool for 
examinations in the 'large noise case'. 

4.3 Weak Mean Stability of Balanced Implicit Methods 

Although one has already obtained weak mean stable schemes (implicit Euler or 
Milstein schemes for a E [ ~, 1]), now we are going to examine the weak mean 
stability of balanced implicit schemes, just for completeness. For this purpose we 
rewrote formula 3.5 and got 

Yn+i =(I+ c0 f). + c1 ~lenlt1 (J + (c0 + A)f). + (c1 !enl +Ben)~) Yn (4.7) 

using matrices c0 and c1 such that the inverse of I+ c0 /). + c1 lenl always exists. 
Thereby we obtained 

as a random complex-valued mapping for c0 , c1 , \ 1 E (C where e is standard 
Gaussian distributed random variable. To make this description possible we restrict 
to the special choice of such weight matrices c0 and c1 in the balanced methods 
that the real parts of c0 and c1 are nonnegative. Another choice, for example 
the choice of positive definite 2 x 2 matrices C, within this subclass would require 
that these real parts are positive and the matrices are of diagonal form (purely 
real case). This can be easily checked by examination under which conditions 
< Cx, x > 2:: 0 holds when x E JR,2. Once again we set µ = A/). = µr + iµi E 
(C , v .= 1V"E = Vr + Wi E (£ and identified z0 = c0 

/). = z~ + iz? E (£ and 
z1 = c1 v;5,. = z; +iz[ E rt. Then the weak mean stability function of the balanced 
methods comes to 

Rz• ·" (µ, v) = IJEq;····' (µ, v, e)I = IIE (1: :0 z~: :1 ~;iel) I =: IIE('Pr ~ icp;) I 

with 'Pr = 1 + µr(l + z~ + z; !el)+ µi(z? + zJ !el) 
and 'Pi = µr(z? + zllel) + µi(l + z~ + z;lel). 

( 4.8) 

With Q = (1 + z~ + z;lel)2 + (z? + ztlel) 2 it is denoted the lower denominator 
in 4.8. Obviously, it is hard to calculate exactly such expressions for any complex 
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parameters, but by analysing the real and imaginary part inside the stability func-
tion 4.8 and a suitable choice of z0 and z1 E (C we will find estimates for the 
expectation value in 4.8. At first we examined the real part in Rz0 

,z
1 (µ, v) and 

obtained 

O::; (cpr) 2 (1 + µr(l + z~ + z;lel) + µi(z? + zf lel)) 2 

< 1 + µ~(1 + z~ + z;1e1)2 + µ~(z? + ztlel)2 + 2µi(z? + zllel) 

if sign(z?) = sign(zJ) = sign(µi) or µi = 0 or z? = zl = 0 ( 4.9) 

Note that -µr, z~ and z: are supposed to be nonnegative. Analogously one 
examines the imaginary part in Rz0 

,z
1 (µ, v) : 

0::; (cpi) 2 (µr(z? + zllel) + µi(l + z~ + z;1el)) 2 

::; µ;( z? + zl 1e1 )2 + µt(l + z~ + z; 1e1 )2 

under the condition 4.9. Hence, for the sum of these squares one receives 

0 < ('Pr )2 + ( 'Pi) 2 

< 1 + llµll 2 (l + z~ + z; 1e1)2 + llµll 2 (z? + zl 1el)2 + 2µi(z? + zl lei) 
< (1 + 11µ11 2 )(1 + z~ + z; 1e1)2 + 2(1 + llµll 2 /2)(z? + zJ 1el)2 

< Q2 

( 4.10) 

Thereby, we are able to estimate the absolute amount of the weak mean stability 
function 4.8 under the conditions 4.9 and 4.10 such that Rz0 ,z1 (µ, v) < 1 for all 
µ, v E (C with µr < 0. Analogously one considers sign(z?) =·~ign(z[) = -sign(µi) 
and obtains finally 

Lemma 4: 
Suppose the null solution is weak mean stable for the system 2.2. 
If one of the conditions 

(i) 
(ii) 

(iii) 

sign(c~2 ) = sign(ci2 ) and c~1 2:: !!All and lc~2 1 > 2j,\ij 
Ai = 0 and c~1 2:: !IA II 

and c~1 2:: !IA II 
is satisfied then the balanced implicit methods using matrices 

with nonnegative constants c~1 and ci1 are weak mean stable. 

( 4.11) 

With the help of the Lemma 4 one immediately finds suitable matrices c0 and c1 

for the balanced methods to be weak mean stable. It turns out that they are even 
weak mean A-stable using these recommendations. So we suggested, for example, 
to use 

and ( 4.12) 
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with nonnegative coefficients cii (i,j = 1, 2). Of course, the simplest choice for the 
weights in the balanced methods would be to take c1 as the zero matrix which also 
guarantees weak mean stable numerical solutions based on these balanced meth-
ods, and hence it shows there is no need to introduce stochastic corrections· by the 
weights c1 provided that the system has a weak mean stable null solution as in 
2.2. Moreover, following the steps above, one can find such recommendations for 
the balanced methods such that their weak mean stability domain for model 2.2 
includes the domain ra with a E [ ~, 1] stated in chapter 4.2, the weak mean sta-
bility domain of methods 3.3 and 3.4 with implicitness parameter a. This situation 
is achieved by the use of the zero matrix c1 . Under this assumption we obtained 
the recommendation to take the constant matrix 

co= (c~ 
co 2 

-c~) 
co 1 

with 

where c~ ~ 2IAr I or c~ ~ 21Ai I in the balanced methods. By the way, then this 
methods even possess the whole complex plane (C x (C as their weak mean stability 
domain covering obviously t~e domain ra for any a. Moreover, the simplest choice 
is to take c1 = 0, c~ = -Ar and c~ = -Ai. Such a balanced method is weak mean 
A-stable what one immediately concludes from the structure of the corresponding 
mapping ~ stated under the formula 4. 7. This recommendation coincides with 
that of the implicit Euler method with a = 1 for model 2.2. The only drawback 
of all these methods as well as the methods 3.3 and 3.4 with implicitness a > 0.5, , 
they do not replicate the unstable behaviour of the exact solutions of 2.2 w.r.t. the 
null solution, e.g. if Ar > 0, but this we did not want to be guaranteed. Besides, 
in these cases one should prefer other weight matrices for the b~lanced methods 
which preserve the unstable behaviour of the numerical solution, too. In any case, 
this would require further investigations dealing with instability what we omit here. 
Finally, we saw each of the three methods 3.3 - 3.5 possesses a suitable subclass of 
numerical schemes being weak mean A-stable. 

5 P-th Mean Stability for Numerical Solutions 

At first we state the notion of p-th mean stability of numerical solutions. Suppose it 
is given an equidistant approximation started in the deterministic point y0 E ffld 

and providing a numerical solution (Yn) for the system 2.1 at the time points 
Tn = n/;:,. (Yn as described in section 3). For a given p E JN+ we define 

Definition : (p-th mean stability of numerical solutions) 
Assume that .the step size /;:,,. of the numerical solution is fixed. Then the null 
solution x( t; 0) = 0 of 2.1 is called asymptotically p-th mean stable for the nume-
rical solution (Yn) (method, scheme, approximation) of system 2.1 or shorter the 
numerical solution (Yn) is p-th mean stable if for each € > 0 there exists a 5 > 0 
such that 

IE llY( Tni Yo)llP < € Vn E JN/\. llYoll < 5 
and IE llY( Tni Yo)llP --t 0 as Tn --t +oo for sufficien~ly small !IYoll · 
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Consider model 2.2. If in the above definition the requirements are true for all 
step sizes ti and complex parameters (A, 1') satisfying the condition 2.3 then we 
call the numerical solution (method, scheme, approximation) p-th mean A-stable. 
This corresponds to a further extention of the notion of deterministic A-stability 
to stochastic numerics and is a much stronger condition as in the case of weak 
mean A-stability. To explore the p-th mean stability for numerical solutions it is 
very helpful to introduce the notions of p-th mean stability function and domain. 
Suppose that it is given a scheme form Yn+i = <I>( .:\ti, ,VE,., <n)Yn where <I> is a 2 x 
2 real-valued matrix or a random complex-valued function mapping on (C x (C to (C 
and en represents the noise at the time Tn· Then we call the positive real-valued 
function 

RP(µ, v) := 1Ell<I>(µ, v, e)llP forµ, v E (C (5.1) 

the p-th mean stability function. Obviously, it holds JEllYnllP ~ 0 as Tn ~ 
oo iff JEll<I>(µ, v, OllP < 1. Thereby, one obtains assertions about the p-th 
mean stability of the numerical solution y..6. via the investigation of the positive 
real-valued function RP(µ, v) depending on complex variables µ, v E (C. The 
deterministic complex region 

rp : = {( µ, v) E re x re : RP ( µ, v) < 1} (5.2) 

corresponding to a given numerical solution and its scheme with random function 
<I> : (C x(C ~ (C provides us just the domain where the numerical solution behaves p-
th mean stable. Such a region is called p-th mean stability domain of the numerical 
solution. In practise, it is very difficult to calculate the p-th mean stability domain 
of a given numerical solution based on general numerical methods for any p E JN+. 
Already assertions on bounds for their p-th mean stability function and subregions 
included in their stability domain have proved to be very useful. Those functions 
R~(µ, v) which estimate the original p-th mean stability function for fixed p E JN+ 
in such a way that RP(µ, v) :::; R~(µ, v) for each (µ, v) E M ~ (C x (C we call 
dominating p-th mean stability functions for RP(µ, v) and given numerical solution. 
In general, it is sufficient to find a function R~ for RP in the sense such that from 
R~(µ, v) < 1 it follows RP(µ, v) < 1 on M. Thus, then we will also make use of 
the title 'dominating stability function'. Hence, if one requires R~(µ, v) < 1 for 
fixed p E JN+, one obtains a subregion rd ~ M of the p-th mean stability domain 
r. At least, this allows to formulate sufficient conditions for p-th mean stability 
of nu~erical solutions, e.g. to say for which parameters laying in rd ~ r the 
numerical solution based on the considered method is p-th mean stable. Naturally 
we have to require the validity of inequality 2.3 for that p E JN+ we use in the 
stability investigations in the p-th mean sense. In this section we will see that the 
case p = 2, the mean square stability, plays a special role in our examinations. 
This is just the case where stability domains can be exactly calculated in an easier 
way (also the case where pis even). Besides, if R(µ, v) > 1 for p = 2 then it 
follows RP(µ, v) > 1 for all p E JN\ {O, 1}, e.g. the p-th mean instability of the 
numerical solution (compare Lemma 1 ). Therefore we will be able to formulate 
necessary and sufficient conditions for the p-th mean stability. 
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5.1 P-th Mean Stability of Implicit Euler Schemes 

At first we recall the function if?CX(µ, 11, e) stated in chapter 4.2 which determines the 
numerical solutions based on the implicit Euler scheme with parameter a E (0, 1] 
for the model 2.2. There we have received 

(5.3) 

for any complex µ, 11 and standard Gaussian random variable e (see at mark 4.3). 
Now we are specially interested in the structure and for estimates of llif?a(µ, 11, e)ll 2 • 

Using this expression allows to estimate the p-th mean stability function RP(µ, 11) 
P. = 1E(llif?a(µ,11,e)ll2 ) 2 by R~(µ,11) = R 2(µ,11) for any p E JN+. In case of strong 

mean stability R 2(µ, 11) can be used as dominating stability function and to for-
mulate sufficient conditions, in case of p-th mean stability with p larger than 2, for 
providing of necessary conditions to have a p-th mean stable numerical solution. 
The answere concerning mean square stability is given by the following lemma. 

Lemma 5: 
Suppose it is given a system of the form 2.2 with (.:\r, Ai) <> (( a~r1 , 0). 
Then the family of implicit Euler schemes with implicitness parameter a E [O, 1] 
is mean square stable i:ff it holds 

2µr + llvll 2 + (1 - 2a)llµll 2 < 0 (5.4) 

for µ( = A~) = µr + iµi and 11( = ,VE..) = llr + Wi E re. 

Proof : Identify µ = µr + iµi and 11 = llr + Wi E (C. Thereby we obtained 

if?a(µ, v, O = 1 + (1 - a)µr +lire+ i((l - a)µi +vie) = 
1 - aµr - ia.µi 

1 + (1 - 2a)µr - a(l - a)llµll 2 + e(vr - aµrllr - aµivi) 
1 - 2aµr + a2llµll2 

µi + e( Iii - aµrlli + aµillr) +i---------
1 - 2aµr + a2 llµll 2 

for any random e . This leads to 

llif?a(µ, 11, 011 2 · (1- 2aµr + a2!1µ11 2)2 = (1+(1-2a)µr - a(l - a)llµll 2)2 + µ; + 2( 

( (vr - aµrllr - aµivi)(l + (1 - 2a)µr - a(l - a)llµll 2) + µi(lli - aµrlli + aµillr)) 

+e2 ( ( llr - aµr llr - aµi Iii )2 + (Iii - .aµr Iii + aµi llr )2
) 

So R 2 (µ, 11) = lE II if?CX(µ, 11, e) II 2 < 1 is satisfied for Gaussian white noise e i:ff the 
complex pair (µ, 11) fulfills the inequality 

(1 + (1 - 2a)µr - a(l - a)llµll 2)2 + µ: + (vr(l - aµr) - aµivi) 2 

+(vi(l - aµr) - avrµi)2 < (1 - 2aµr + a2 llµll 2)2 
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which is equivalent to 

2(µr - al1µll 2 )(l - 2aµr + a2 llµll 2
) + (µr - allµll 2

)
2 

+µ~ + llvll 2 (l - 2aµr + a2 llµll 2
) < 0 · 

After rearranging this expression one comes across the equivalent inequality 

Consequently, because of 1 - 2aµr + a2llµll 2 > 0 (which is guaranteed by Ar <> 
(a.6.r1 or Ai <> 0 ), we received that the Euler schemes 3.3 for the system 2.2 

. are mean square stable iff 

which is equivalent to the inequality 5.4 of Lemma 4. 

Conclusions : From special interest, in the case a = 0, the nonimplicit Euler 
scheme, 5.4 simplifies to 

(5.5) 

Therefore the amount of µi plays a role for the mean square stability of that 
scheme, in contrast to the situation for the exact solution where Ai = µi/ .6. has no 
influence on the stability (p = 2) of the null solution. Furthermore 5.5 is equivalent 
to 

(5.6) 
Obviously this inequality describes the interior of the unit balJ in JR4 with midpoint 
(-1, 0, 0, 0) and hence the mean square stability domain r6. On the other hand, for 
the mean square stability domain of the numerical solutions 3.3 with implicitness 
a = 1, the class of 'deterministic fully implicit' Euler schemes, the inequality 5.4 
takes the form 

(5.7) 
Consequently, the equivalent relation 

(5.8) 

must be fulfilled to have mean square stable solutions of the form 3.3 with a = 1. 
The domain I'i defined by 5.8 can be considered as the outside of a hyperboloid 
in JR3 shifted from the origin to the point (1, 0, 0). To visualize the stability 
domains r6 and ri established by 5.6 and 5.8 it is drawn surfaces w.r.t. the tripel 
(µr, µi, llvll) which present the boundary of these domains. The corresponding 
regions are visible in figure 3 and 4. Note that the domain for the 'deterministic 
half-implicit' Euler schemes has already been plotted by the figure 1 (multiply scales 
with .6., \/'E). In the plane llvll = 0, the well-known results from the deterministic 
numeric are confirmed by the both figures. In the asymptotical sense of step 
sizes used, for very small step sizes, the inequality 5.4 is almost identical with 
the inequality 2.3. For any parameter a E (0, 1], thereby the Euler schemes 3.3 
asymptotically replicate the mean square stability behaviour of the null solution. 
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Re(Mu) 

Figure 3 : Boundary of the mean square stability domain r~ of methods 3.3 
with implicitness a = 0 

Im(Mu) 

2 

1 
Norm(Nu) 

Figure 4 : Boundary of the mean square stability domain r~ of methods 3.3 
with implicitness a = 1 
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Moreover, looking once again at the condition 5.4, it turns out that one finds the 
following relation between the inequalities of the type 5.4 for different implicitness 
parameters a E [O, 1] : 

or the equivalent expression in terms of the system parameters (A, I) 

Thereby it is possible to state necessary and sufficient conditions for the mean 
square stability of the family of implicit Euler schemes. The domain f'~ defined 
by 

f'~ := {(µ, v) Ere x re : 2µr + llvll 2 
- llµll 2 ~ 0} (5.9) 

is a 'necessary mean square stability domain' for this family, the domain r6 fixed 
by 

(5.10) 
a 'sufficient mean square stability domain'. By the way, it is not hard to recognize 
that for the family of the mean square stability domains r! of the schemes 3.3 it 
holds 

e.g. we obtained the 'monotonous inclusion property' of the stability domains. 
In practise, among the implicit Euler schemes, we suggest to prefer the scheme 
with implicitness a = 0.5 because for this scheme the stability behaviour of the 
numerical solution exactly coincides with that of the null solution for the system 
2.2. Only then the conditions 5.4 and 2.3 are equivalent, only then the amount 
of µi plays no role in the mean square stability examination for the numerical 
solution. 
Furthermore, another interesting conclusion we have achieved for the pure-stocha-
stic model equation 

dX(t) = aX(t)dW(t) (5.11) 
where a is any positive real parameter and its numerical solutions of type 3.3. 
Both for the exact solution and the numerical solutions 3.3, the null solution is not 
mean square stable (also not p-th mean stable for p ~ 2), hence these numerical 
solutions replicate in the mean square sense the stability behaviour of the exact 
solution of equation 5.11. 

Relation to p-th mean stability : 
The result of Lemma 5 provides us necessary and sufficient conditions for p-th 
mean stability. If the inequality 5.4 is satisfied then one knows that the numerical 
solutions 3.3 are strong mean stable (p = 1) too. Thus 5.4 is sufficient for strong 
mean stability, the strong mean stability domain must include the p-th mean sta-
bility domains I'P for p E JN+. Otherwise, if the left part in 5.4 is larger than zero 
then we also obtained that the numerical solutions 3.3 are not p-th mean stable 
for p ~ 2 (p E JN+), e.g. the validity of inequality 5.4 is necessary for p-th mean 
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stability of these numerical solutions (p ~ 2). This can be easily concluded from 
Lyapunov's inequality which says 

for any LP+l_integrable function <.t> . Further investigations could be done for the 
p-th mean stability with p larger than 2, and especially for p = 2q. Of course, f'~ 
is also a 'necessary domain' for the p-th mean stability (p > 2), and r~ describes 
a 'sufficient domain' for the strong mean stability. In detail, further examinations 
concerning the p-th mean stability we omit here. 

5.2 P-th Mean Stability of Implicit Milstein Schemes 

In contrast to the investigations for weak mean stability, the p-th mean stability 
behaviour of the Euler 3.3 and Milstein schemes 3.4 do not coincide for the model 
equation 2.2. Here the corresponding investigations are quite more complicated. 
For the model 2.2 the implicit Milstein schemes with implicitness a E (0, 1] can be 
written in the following scheme fo!m 

Yn+i (I - aLiAt1(I + (1 - a)AA + B..fE.en + ~B2(e~ - l)Li) Yn 
<.t>cx(ALi, ,..;E., en) Yn 

with the complex mapping 

where Li Wn = VE.en corresponds to the current Wiener noise increment. Identify 
µ = µr + iµi = Ali and v = Vr + tVi = ,..;E., and hence as complex numbers. 
To formulate a corresponding assertion about the stability of the implicit Milstein 
schemes 3.4 we used the abbreviation 

F(µ, v, a) = F(µri µ;, Vr, v;, a) = 2µr + llvll2 + (1 - 2a)llµll 2 + ~llvll 4 • (5.13) 

Once again the case p = 2 plays a special role in our examinations. By means of 
the function F it is possible to decide whether the corresponding implicit Milstein 
scheme is mean square stable or not. The following lemma gives the answere on 
the mean square stability of numerical solutions 3.4 and hence necessary conditions 
for p-th mean stability of them for p ~ 2, as well as sufficient conditions for their 
strong mean stability. 

Lemma 6: 
Suppose it is given a system of the form 2.2 with (Ar, Ai)<> ((aLir1

, 0). 
Then the family of implicit Milstein schemes with implicitness parameter a E (0, 1] 
is mean square stable iff it holds 

F(µ,v,a) < 0 (5.14) 
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for the mapping F : (C x rt x (0, 1] ~ 'JR defined by 5.13 for complex µ = 
.:\~, v = 1v1/S. and a E [O, l]. Moreover, the mean square stability of the implicit 
Euler scheme with a E [O, 1] is necessary for the mean square stability of the 
corresponding implicit Milstein scheme using the same implicitness a. 
Proof : Identify µ = µr + iµi and v = Vr + Wi E (C . By rearranging terms 
one obtains for the random mapping cpa 

<Pa(µ, v, 0 = 1 + (1 - a)µ+ ve + ~v2 (e2 - 1) = 
l -aµ 

(5.15) 

1 + (1 - a)µr + vre + Hv; - vl)(e2 - 1) + i((l - a)µi +vie+ vrvi(e2 - 1)) 
1 - aµr - iaµi 

After multiplying this expression with its conjugate complex denominator 1-aµr + 
iaµi in order to receive a real denominator and splitting up in the real and imagi-
nary part of cpa one encounters with the real part Re( <Pa) which takes the relation 

Re(<Pa) · (1 - 2aµr + a 2llµll 2) = 1 + (1 - 2a)µr - a(l - a)ljµjj 2 

2 1 2 2 - ) +e( Vr(l - aµr) - aµivi) + ( e - 1)(2( l/r - Vi )(1 - aµr) - aµiVrl/i 

Therefore we have the identity that 

1E(Re(<Pa))2 
• (1- 2aµr + a 2jlµll2)2 = (1+(1-2a)µr - a(l - a)llµll 2)2 

+ (vr(l - aµr) - aµ;v;)2 + 2( ~( v,7 - vf)(l - aµr) --., aµ;vrv;)2 (5.16) 

In analogous way, the part of IEll<Pall 2 determined by the imaginary part of cpa 
is derived and comes up in the relation 

(5.17) 

Denoting with R! E the mean square stability function of the implicit Euler scheme 
and with R! M the mean square stability function of the implicit Milstein scheme 
using the sa~e implicitness a E [O, 1] one can conclude that R! M = 

I 

2 (Hv; - vl)(l - aµr) - aµivrvi)2 + (Hv; - vl)aµi + (1 - aµr)vrvi)2 

Ra,E + 2 (1 - 2aµr + a211µ1j2)2 

= R2 + llvll 4 /2 
a,E 1 - 2aµr + a2 llµll2 ' (5.18) 

and hence the necessity that the corresponding implicit Euler scheme must be 
mean square stable (the stability functions only differ through a quadratic term). 
Furthermore, the condition 
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on the stability function R!,M(µ, v) is fulfilled iff 

IE Re2( <I>a) + IE lm2( <I>a) < 1 (5.19) 

is valid. Naturally, this equivalence is also true for the mean square stability of 
other numerical solutions. Exploiting the equalities 5.16, 5.17, 5.18, using steps of 
the proof of Lemma 5 and rearranging terms occured in the inequality 5.19 it follows 
that the inequalities 5.14 and 5.19 are equivalent, what confirms the assertion of 
Lemma 6. 

Remarks and asymptotical sufficiency : Concerning mean square stability, 
as the result of this lemma, one cannot recommend the family of implicit Milstein 
schemes 3.4 in order to provide mean square stable numerical solutions. Any scheme 
of the Euler family 3.3 does it more efficiently. However, the stability function R!,M 
can be used as a dominating mean square stability function of the corresponding 
Euler scheme, e.g. R!,M dominates R!,E· These statements are proved by the 
equality 5.18. Otherwise it also means, if one rises the convergence order then one 
looses stability of the approximation. Anyway, the Milstein family 3.4 is not mean 
square A-stable. If one desires to use them though, for computer simulations with 
fixed parameters .A and I in the model 2.2, one has to check the validity of the 
condition 5.14 and find suitable step sizes for the approximation. The domains 
which describe the region of these suitable step sizes ~ for the Milstein family 3.4 
are given by the mean square stability domains 

I'!,M := {(µ, v) E (C x (C : F(µ, v, a) < 0} 

Note that µ = .A~ and v = 1V/5... In general, here it is also possible to deduce the 
'monotonous inclusion' of the stability domains r!,M like for the Euler family in 
chapter 5.1, e.g. within the family of implicit Milstein schemes 3.4 for the model 2.2 
the Milstein scheme with implicitness parameter a = 1 provides the most stable 
numerical solution in the mean square sense. To visualize these domains we identi-
fied llvll as one variable. Then the boundaries of r~ M and q M are represented 
in figure 5 and 6. In figure 5 the domain r~ M can be

1 

identified ~ith the interior of 
the drawn surface, and in figure 6 n M is 

1

described by the outside of the plotted 
tube. We remark that the domains r! M must be included in the domains r; E' 

I I 

the mean square stability domains of the corresponding Euler schemes. Naturally, 
in the plane llvll = 0, the deterministic situation, the results coincide with those of 
the im:plicit Euler family, and hence the well-known stability domains in determin-
istic numerics are confirmed by these two figures too. The stability domain r~ M 

seems to be almost identical with the domain r~ of the nonimplicit Euler sche~e 
plotted in subsection 5.1, not suprisingly, their stability functions only differ from 
the amount of llvll 4 /2 ~ 0. Analogously to subsection 5.1 one finds necessary as 
well as sufficient p-th mean stability domains, just by simplification and estima-
tion of the 'stability indicator' F(µ, v, a) in 5.14, e.g. by lower and upper bounds 
for the function F. This work is omitted here. Nevertheless, another interesting 
property of these schemes consists in the 'asymptotical sufficiency' for their mean 
square stability. That is we want to examine the asymptotical behaviour of the 
'stability indicator' F(µ, v, a) . 
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Figure 5 : Boundary of the mean square stability domain r~ M of methods 3.4 
I 

with implicitness a = 0 

Re(Mu) 

Figure 6 : Boundary of the mean square stability domain rtM of methods 3.4 
with implicitness a = 1 
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For this purpose we investigated the following expression 

( ) 1. F(µ, v, a) s µ,v,a := im A 
.6.-+0 L.l 

. (5.20) 

which surely exists because of F(µ, v, a) = CJ(.6). Such mappings s : (C x (C x 
[O, 1] ~ JR we call asymptotical sufficiency indicators for the p-th mean stability 
of the numerical solution considered. For the implicit Milstein schemes 3.4 it turns 
out that 

s(µ, v, a) s(Ar,,\,{r,')'i,a) = 2µr+v;+vf 
(2Ar + ,; + ,?) .6 . 

(5.21) 

Particularly in more complicated situations, with the help of this mapping one is 
able to decide whether the numerical solution is p-th mean stable in asymptot-
ical sense of step sizes, e.g. p-th mean stability for small enough step sizes .6, 
or not. Of course, this property is a mixture between the assertion of stability 
and an asymptotical behaviour for very small step sizes, but numerical solutions 
without the property s(µ, v, a) < 0 do not possess stability domains including 
environments of the zero point (0, 0) in (C x (C which are sufficiently small. Such 
cases replicate a poor numerical stability behaviour. For the implicit Milstein 
schemes, as we have already seen for the implicit Euler schemes in subsection 5.1, 
s(µ, v, a) = (2Ar + 111'11 2 ) .6 < 0 coincides with the condition 2.3 for the exact 
solution. Thereby 

A < -llrll2 
r 2 (5.22) 

must be fulfilled for the asymptotical sufficiency of the numerical solutions 3.4. 
That's why the family of implicit Milstein schemes 3.4 is asymptotically sufficient 
for mean square stable numerical solutions at least. Analogously one could in-
vestigate the remainder term F(µ:,o:) - s(µ, v, a) to formulate further results 
for asymptotical sufficiency of the higher order terms in F(µ, v, a), but this we 
omit here. The asymptotical sufficiency indicators form a further possibility to 
characterize the numerical stability behaviour and are effective to check necessary 
stability conditions, although one should expect that the 'asymptotical sufficiency 
of first order' is necessary for the convergence of the numerical solution to the exact 
solution. 

5.3 P-th Mean Stability of Balanced Implicit Methods 

Finally, we want to formulate a fully-implicit scheme for model 2.2 with its stability 
domain covering 'as much as possible' the region 

(5.23) 

which is just the domain where the system 2.2 behaves p-th mean stable w.r. t. its 
null solution (see section 2). At least, for p 2: 2, in the case of mean square stability 
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it will turn out that the balanced implicit methods 3.5 possess a subclass which is 
p-th mean A-stable, hence its stability domain includes the domain r 2 . For this 
purpose we examined the function 1> : (C x (C ~ (C with 

(5.24) 

for any µ, v E (C and standard Gaussian distributed random variable e . Here, 
with the choice of parameters z 0 and z1 E (C, we can achieve control on the 
total amount of 1> . Then for the convergence of the balanced implicit methods we 
required that both z 0 and z1 have positive real parts (compare Milstein et a([14]) 
as in the case of weak mean stability. In general, it is sufficient to require z; ~ 0, 
but then one restricts oneselves to small enough step sizes ~ in order to achieve 
invertibility of the correction term (hence no mean A-stability). At first we state 
a result concerning mean square stability and providing us suitable parameters 
involved in the proposed balanced implicit methods. 

Lemma 7: 
Suppose it is given a system of the form 2.2, and the complex pair ( z 0 , z1 ) 1s 
nonrandom with z0 = 0( ~) and z1 = 0( ~ 1/ 2) and nonnegative real parts. 
Then the balanced implicit methods with matrices 

co= (z~ 
z9 

i 

- z?) . ~ -1 
zO r 

are mean square stable iff it holds 

(

zl 
and c1 = r 

z~ 
i 

( F().~,1-/E.) =) F(µ, v) < 0 

- zf) . ~ -1/2 
zl r 

(5.25) 

(5.26) 

F( ) - la+oo llµll 2 + llvll 2x 2 + 2(1 + z~ + z;x )µr + 2(z? + zfx )µi {- x2 }d 
µ, v - ( ( 0 1 exp x . 

o 1 + z~ + z;x )2 + zi + zi x )2 2 

Proof : Identifying the real and imaginary parts of µ, v, z0 and z1 with those 
forms as in subsection 4.3 the real part in formula 5.24 is rewritten to Re( 1>) = 

(1 + Z~ + µr + Vre + z; lel)(l + Z~ + z; lei)+ (z? + µi +Vie+ zl lel)(z? + zf lei) 
(1 + z~ + z; 1{1)2 + (z? + z[ lel)2 

and the imaginary part in 5.24 to Im( 1>) = 

(1 + Z~ + z;1el)(z? + µi +Vie+ ztlel) - (1 + Z~ + µr + Vre + z:lel)(z? + ztlel) 
(1 + z~ + z;1e1)2 + (z? + zllel)2 

For the further investigation we introduced the following abbreviations 

Note that a must be positive and b can have any values. In the next step we 
investigate 111>(µ, v, 011 2 for any complex µ, v and random variable ( Thereby 
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one obtains 

ll<I>(µ, v, e)ll 2 = Re2
( <I>(µ, v, e)) + Im2(<I>(µ, v, e)) 

(a+ µr + vre)2 a2 + 2( a+ µr + vre)a(b + µi + vie)b + (b + µi + vie)2-b2 

( a2 + b2)2 
a2 (b + µi + vie)2 - 2a(b + µi + Vie)(a + µr + vre)b +(a+ µr + vre)2b2 

+ (a2 + b2)2 

(a+ µr + Vre)2 + ( b + µi + Vi02 

a2 + b2 

This expression is equivalent to 

(a + µT )2 + ( b + µi) 2 + 11v11 2 e2 + 2( a + µT) Vre + 2( b + µi) Vie 
a2 + b2 

1 + 11µ11 2 + llvll 2e2 + 2(aµr + bµi) + 2(a + µr)vre + 2(b + µi)vie 
a2 + b2 

(5.27) 

Assuming that the complex pair ( z0 , z1 ) is nonrandom and using the symmetry 
property of Gaussian random variables the mean square stability function R1(µ, v) 
takes the values 

R1(µ, v) JEll<I>(µ, v, 011 2 

1 + lE ( 11µ11 2 + 11v11 2 e2 + 2( aµr + b µi)) 
a2 + b2 (5.28) 

So R1(µ, v) < 1 , and hence the mean square stability of the given balanced 
methods based on the complex pair ( z0 , z1) , is satisfied i:ff 

is negative. After rewriting this expression the equivalence of F(µ, v) with the 
integral form 5.26 and Lemma 7 is confirmed. 

Note that F(µ, v) ~ -;;12 for all µ, v E (C. This follows from formula 5.28 
directly. 

Conclusions : Integrals of the form 5.26 can be exactly calculated very rarely. 
Mostly one has to integrate them numerically by appropriate approximation pro-
cedures. Only in some special cases, there are nice conclusions, but sufficiently 
enough to make stability assertions. Nevertheless, we will find a subclass of the 
balanced implicit methods 3.5 where F(µ, v) is negative. For this pupose we have 
to estimate the integral term in 5.26. Obviously, in the inequality 5.26 the integrand 
has both positive and negative values and cannot be simply bounded for all µ and 
v. From more practical interest, it turns out to investigate both <I>(µ, v, e) and 
F(µ, v) under appropriate assumptions further. Therefore we looked at formula 
5.27 once again and obtained immediately the special structure 

(5.29) 

24 



where z~ = lµrl, z? = -µi and b = -µi + zJlel (5.30) 

for the complex pairs (µ, v) ( = ( .\6., 1VZS.)) satisfying the condition 2.3. Under 
these assumptions the corresponding stability function R~(µ, v) has. the form 

R~(µ, v) IE ll<I>(µ, v)ll 2 

IE (1 + z;lel)2 + (zf )2 e2 + llvll 2 e2 
(1 + z;lel) 2 + (zl) 2e2 + 2lµrl + llµll 2 + 2(z;lµrl - z[µi)lel · 

Assuming 
(5.31) 

then the expression R1(µ, v) can be estimated by R~(µ, v) with 

Thereby, if R~(µ, v) < 1, for example one of the conditions 

(i) z; = 0, lzJI :::; llµll and sign(~l) = -sign(µi) 

(ii) zI = 0 and 0 ~ (2/3; + z;)z; ~ If µll 2 

(iii) z; = zJ = 0 , 

or equivalently written in terms of the system parameters (.X, /, 6.) 

(i)' ci1 = 0, lci2 1:::; l!All~ and sign(ci2 ) = -sign(.Xi) 

(ii)' c~2 = 0 and 0 ~ (2/3; + c~1 ~)c~1 ~ If .\lf 2.6.312 

(1'1'1' )' 1 1 0 C11 = C12 = ' 
is fulfilled, the balanced methods using the matrices 

with nonnegative coefficient ci1 provide mean square stable numerical solutions 
for the model 2.2. These conditions are direct conclusions from 5.30 and 5.31. 
Consequently, under the assumption that c1 ¢. 0 and 

to obtain a good replication of the mean square stability behaviour of the syst_em 2.2 
by the numerical solutions 3.5, we recommend to use the balanced methods where 
just ci2 = -sign(.Xi)l!AllVZS. and ci1 = 0, hence a special form satisfying (i)'. 
Then this balanced method is mean square A-stable. Besides, its stability domain 
is 'relatively close' to the region defined by 2.3 with p = 2, at least for small enough 
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step sizes. Summarizing these conditions (i) - (iii), an 'optimal recommendation' 
leads more or less to the choice c1 as the zero matrix. However, the trivial choice 
c1 = 0 can be concluded immediately from the stability indicator F(µ, v) given 
by 5.26. Returning to that formula we obtained 

F (· ) _ V'j; llµll 2 + llvll 2 + 2(1+z~)µr+2zP µi 
zl=O µ, v - 7r (1 + z~)2 + (zf)2 . (5.32) 

Then it holds Fz1 = 0(µ, v) < 0 iff 

2µr + llvll 2 +11µ11 2 + 2(z~µr + z? µi) < 0 

which is equivalent to 

(5.33) 

With the condition 5.33 we received a very effective recommendation for the ba-
lanced methods. Firstly, we achieved mean square stability of the numerical so-
lutions. Secondly, mean square A-stability of them is exactly guaranteed by the 
requirement ll.-\11 2 + 2(c~1 .-\r + c~2 .-\i) ~ Q, Thirdly, an 'optimal choice'-is to take 
the coefficients of c0 such that 

0. (5.34) 

Just with the recommendation c1 = 0 and 5.34 the balanced methods are mean 
square stable iff the null solution is mean square stable for the system 2.2. Thereby, 
one could use 

(
_h + ~) 

~ = 2 2 
-~ _h 

2 2 
and c1 = 0 ( 5.35) 

or, if .,\r =/= 0, the 'pure-diagonal choice' 

(
-(h+K.) 0) O 2 2,\r 

c = 
0 - (h + ~) 2 2,\r 

and c1 0 (5.36) 

or, if .,\i =/= 0, the 'pure-codiagonal choice' 

(
0 +(~+~)) 0 2 2,\i c = - (~ + R) 0 2 2,\i 

and c1 0. (5.37) 

For these recommendations there is no need to visualize the corresponding mean 
square stability domain r~. It has already been plotted in the figure 1 (multiply 
the scales with .6. and ./E, resp.), because the corresponding mean square stability 
domains of the methods 3.5 with one of the choices 5.35 - 5.37 are identical with 
I'2 , the domain for which the null solution is mean square stable. This appearence 
is guaranteed by the requirement 5.34. By the way, the recommendation 5.35 co-
incides with that of the Euler scheme using implicitness a = 0.5. Moreover, the 
balanced methods include the implicit Euler family what we have already seen in 
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Milstein et al.[19], too. Obviously, the class of balanced methods is much more 
general and permits to choose a variety of appropriate numerical methods in order 
to treat mean square stabilities and instabilities for the system 2.2 (for an illus-
trative example see section 6). For mean square stability one is not forced to use 
the 'stochastic control term' c1 in them! In contrast to that one has to correct 
stochastically the numerical solutions by the weight matrices d (j = 1, 2, ... , m) in 
the instable situation, compare Milstein et al. (19]. 

Relation to p-th mean stability : Instead of a discussion on conclusions 
for p-th mean stability domains as in the previous subsections we are going to 
concentrate on the construction of p-th mean stable numerical solutions with p 
larger than 2. It seems to be a hard task to construct a numerical method which 
provides p-th mean stable solutions as long as it is valid for the null solution of 
the system 2.2 for a given p E JN\ {O, 1, 2}. In the following we will discuss this 
subject, but will not give a completely satisfactory answere. By the way, during the 
discussion it also rises the interesting question whether do higher order methods 
which are p-th mean A-stable for the system 2.2 with p > 2 really exist or not? 
Consider the special class of balanced methods 3.5 using the weight matrices 

co= (91(>.(,ll1
11

11,
11
p)) -92((>.,1

1
1
1
11

1
1
1
,p))) and cl = 0. 

+92 ).., ' ,p 91 ).., ' ,p 
(5.38) 

where 91 and 92 are real-valued functions to be chosen and 91 is nonnegative (to 
ensure convergence one needs boundedness of these functions), e.g. not to make 
use of 'stochastic correction terms' in them. For the model 2.2, such methods are 
also characterized by the mapping <P stated in formula 5.24. To use that formalism 
for the proposed methods with 5.38 we identified the complex pair (z0 , z1 ) with 
z0 = (91 .6., 92 .6.) and z1 = 0. Then one investigates the function <P~ with 

<P~(µ, 11, 0 = (1 + z0t 1(1+z0 +µ+11e) (5.39) 

for any (µ, 11) E I'P and standard Gaussian distributed random variable e . Thus, 
as a climax of this article, it is possible to state numerical methods which provide 
p-th mean stable numerical solutions. Unfortunately, it turns out that they are not 
p-th mean A-stable for the general system 2.2 due to a remarkable loss of accuracy. 
Only under some restrictions on the model class 2.2 we achieve p-th mean stability 
of them for any step size .6.. Because these investigations seem to be so difficult, 
even for this simple class 2.2, we suspect it does not exist any implicit Euler scheme 
3.3 which is p-th mean A-stable for this model class with p larger than 2. With the 
above preparations in mind, we will make use of the complex function R1JJ mapping 
on I'P C re X re to JR+ and defined by 

(5.40) 

as the p-th mean stability function for the balanced implicit methods using a re-
commendation of type 5 .38. 
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Lemma 8: 
Suppose it is given a system of the form 2.2 for which its null solution is p-th 
mean stable for a fixed p E JN\ {O, 1 }, e.g. condition 2.3 is valid for this p, and the 
nonrandom complex number z0 = O(~) has nonnegative real part. 
Then the balanced implicit method 3.5 with matrices 

co= (z~ - z?) 
+z~ z~ 

· ~ -l and c1 0 (5.41) 

is p-th mean stable too if it holds 

(5.42) 
whereas (µ, v) = ( ).~, 1.JE) E I'P, the 'p-th mean stability domain 5.23 of the null 
solution'. 

Such expressions Ft3 (µ, 11, p) we call 'dominating p-th mean stability indicators' for 
the proposed balanced method. By the help of this lemma we will be able to state 
some 'appropriately' balanced methods. At least, under the conditions lli = 0 or 
2lµrl 2:: ll1111 2(p-l), the recommendations should behave reasonably and accurately 
enough (a kind of 'conditionally p_-th mean A-stability'). 

Proof : Suppose (µ, v) = ( ).~, 1.JE) E I'P for a given p 2: 2. Because of 
the symmetry property of standard Gaussian distributed random variables e one 
comes _up the identity 

Furthermore, we assumed that 1 + z0 + µ :j:. 0. This is justified as it makes no 
sense to take z~ = -1 - µr :j:. '?(~), and it would contradict to the requirements 
for the convergence of any balanced method. Using these facts the p-th mean 
stability function R~ of the numerical methods proposed by 5.38 and given in 
5.40 is rearranged and estimated in such a way that 

RP ( 11) = 11 + za +µIp IE 11 + 1J elp 
B µ, 1 + z0 1 + z0 + µ 

+z +µ ·- IE l+ v e +IE 1- 11 e 1 ° p 1 ( p Ip) 
1 + z0 2 1 + z0 + µ 1 + z0 + µ 

1 + za + µ p. ! (IE 1 + 1 11 JP=T e p + IE 1 - 1 1J JP=T e p) 
1 + z0 2 JP=T 1 + z0 + µ JP=T 1 + z0 + µ 

< 11 + za +µIp· (!IE 11 + 11JP=T e12+ !IE 11 - vJP=T e12)p/2 (5.43J 
- .1 + z0 2 1 + z0 + µ 2 1 + z0 + µ 

:::; 11 + za +µIp. (IE 11 + 11JP=T e12) p/2 (5.44) 
1 + z0 1 + z0 + µ 

Note, for the estimate in 5.43, we used an inequality stated by the corollary l.e.15 
in Lindenstrauss & Tzafriri [15] (1979, at page 76) which is, in general, valid on 
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Banach spaces and due to Beckner [3]. Naturally, the occured inequalities above 
are equalities for p = 2. Because of the identity 

IE 11 + vfp=T el2 1 ( 1) ff vff2 
1 + zo + µ = + p - 111 + zO + µII 2 (5.45) 

the relation 5.44 simplifies to 

R~(µ,v) == IEll<I>~(µ,v,OllP ~ (!B(µ,v,z0,p))Pf2 (5.46) 

where f ( o ) - lll+zo+µll2+(p-l)llvll2 
B µ, 1J' Z 'p - 111 + zO 112 . (5.4 7) 

Consequently, it holds IE II <I>g (µ, v, e) llP < 1 if the condition fB(µ, v, z0, p) < 1 
is satisfied. The rearrangement of the latter relation leads to the equivalence 

f (µ, v, z 0
' p) < 1 {=::::::} 

Ft1(µ, v,p) == 2 < 1 + z 0
, µ > +11µ11 2 + (p - l)llvll2 < 0, 

which coincides with the expression 5.42, hence the assertion of the Lemma 8 has 
been proved. 

Some recommendations for the balanced methods : Of course, in the case 
p == 2 the obtained relation 5.42 is equivalent to the condition 5.33 derived itself 
as an application of the Lemma 7. For p > 2, concluding from the received sharp 
estimation in the proof of the Lemma 8, one may not expect to have simultanously 
the p-th mean A-stability and the theorectically predicted convergence order of the 
proposed balanced methods using the weights of the form S.38 for the considered 
test model, although, it still has to be proved a corresponding 'if and only if' 
relation for the p-th mean stability of them. By the use of the transformation 

(5.48) 

one obtains the equivalent expression 

(5.49) 

for the dominating stability indicator Ft/ given in 5.42. Thereby, on I'P it holds 
Ft1 (µ, v, p) < 0 iff the requirement 

2 < z0 ,µ > +(p-2)vf ~ 0 (5.50) 

is fulfilled. Thus, in general, evaluating this fact it is not possible to construct p-th 
mean A-stable balanced methods within the class 5.38 for p larger than 2. However, 
for large step sizes ti, one can formulate an 'appropriate' recommendation for them 
in order to achieve p-th mean stability for a given p > 2. For example, take the 
transformation 

(5.51) 
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for a real number K > 0. Then the relation 5.50 comes to vl :::; Kllµll 2 , hence 
on the domain I'P we obtained a p-th mean stable numerical solution under this 
restriction, although it is useless to achieve stability for very small step sizes. In 
terms of the system tripel (A, I, ..6.), summarizing the transformations 5.50 and 
5.51 and the last conclusions, that is we suggested to take the balanced methods 
using the matrices 

c0 = ~(1+K(p-2)) (-;r 
2 -A· i 

+ Ai) and c1 = 0 -Ar (5.52) 

where K is any nonnegative real constant. Furthermore, returning to the formula 
5.49, it follows immediately the following statement. If the condition 

(5.53) 

is true then the balanced method using the matrices 

0 1 ) (-Ar c = -(1 + K 
2 -Ai (5.54) 

where K is a given real number with K 2:: 0 is p-th mean stable for all step sizes 
..6. and exponents p 2:: 2. In the latter recommendation one should prefer the choice 
K = 0 under the restriction 5.53, which coincides with that of the 'deterministically 
half-implicit' Euler scheme. So finally we received reasonable recommendations 
for balanced methods under the additional restriction llvll 2(p - 1) :::; 2lµrl, e.g. 
the parameter A must be able to compensate uniformly the squared norm of the 
noise intensity j(p - 1 )/21 by its real part, roughly speaking, in. contrast to the 
situation for the exact solution (compare with the condition 2.3). To summarize, 
the above discussion has once again shown the difference between the requirements 
of p-th mean stability (p > 2) and the convergence order (convergence at all) of 
the balanced methods, and hence for all up to now known numerical methods 
of lowest accuracy order. It still must be clarified whether there always is a p-
th mean A-stable numerical method (p > 2) for systems of the form 2.2 or not. 
Similar discussions one could do for other interesting subclasses of the balanced 
methods, in concern with p-th mean stability, for example, for the additional use 
of stochastic corrections controlled by the choice of the matrix c1 in them. Further 
examinations we leave out in this respect here. 
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6 Experiments for the Kubo Oscillator 

The following example has been taken from Honerkamp ([11],1990). Driven by the 
one-dimensional Wiener noise W(t), the system is given by a complex ·stratonovich 
stochastic differential equation of the form ( i denotes the imaginary unit) 

dX(t) = iX(t) dt + ipX(t) o dW(t) (6.1) 

for the variable X(t) with llX(t)ll = 1 and parameter p E JR1 on the time interval 
[O, T]. This system describes the movement of the Kubo-Oscillator on the unit 
circle. The equation 6.1 is explicitly solvable and has the solution 

X(t) = exp{ipZ(t) +it} = cos(pZ(t) + t) + i sin(pZ(t) + t) 

where Z(t) =lo' W(s) ds . 

Another interesting fact occurs, with the Kubo oscillator we studied a system where 
all p-th mean Lyapunov exponents ,\( x 0 ; p) = 0 ( x 0 =J 0). Because of 

one knows that the first moment is converg.ing to zero as t ~ oo, e.g. in the weak 
mean sense the null solution is stable for this system. The Ito-version of 6.1 has 
the form . 1 

dX(t) = (i - 2p2 )X(t) dt + ipX(t) dW~t) 

or in componentwise description 

(-~pi X 1(t) - X 2 (t)) dt - pX2(t) dW(t) 

( X 1(t) - ~p2 X 2(t)) dt + pX1(t) dW(t) . 

(6.2) 

That is in our system notation of 2.2 we have the drift and diffusion matrices 

(
-!p2 

A= 2 
+1 

-1) 
- ~p2 (

0 - p) 
and B = p 0 

(6.3) 

Obviously the condition of weak mean stability, here Ar = -~p2 < 0 (p -f:. 0), is 
always fulfilled. To check the condition 2.3 for strong and mean square stability 
one obtains 

1 2 1 2( ) 1 2 1 2 Ar+2!i+2/rp-l =-2p +2p =0, (6.4) 

hence the null solution is not p-th mean stable for any p, although it holds 

JE(X(t)) 2 = exp{-2p2t + 2it}, 

it can be easily concluded that IEllX(t)ll = IEllX(t)ll 2 = 1. For experiments we 
chose the following three schemes taken from the famili~s 3.3 - 3.5 for the model 
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system 6.2 with p f= 0 : 
(i) The Euler method with implicitness a= ~ 

1 1 1 ( 1 2 ( 1 1) 2 2) 2 Yn+l Yn - 2 2p Yn+l + Yn + Yn+l + Yn .6. - pYn .6. Wn 

2 2 1 ( 1 1 1 2 ( 2 2 )) 1 Yn+l Yn + 2 Yn+l + Yn - 2,P Yn+1 + Yn .6. + pYn .6. Wn 

(ii) The Milstein method with implicitness a = ~ 

1 1 1 ( 1 2 1 1 2 2) 2 Yn+l = Yn - 2 2p (Yn+l + Yn) + Yn+l + Yn .6. - pYn .6.Wn 

-~p2Y~((b.Wn)2 
- b.) 

2 2 1 ( 1 1 1 2( 2 2)) 1 Yn+l Yn + 2 Yn+l + Yn - 2,P Yn+l + Yn .6. + pYn .6. Wn 

-~p2Y,?((b. Wn) 2 
- b.) 

(iii) The balanced method with matrices 

( 
lp2 

co - 4 - _l 
2 

or c0 = ( ~p
2 + :2 . 0) 

0 lp2 + l 4 p2 

and c1 - 0 

which possesses the scheme structure in matrix notation 

Thereby, the method (iii) using the first choice of c0 is identical with the method 
(i) for this model. Thus, in the following simulations we will draw more attention 
to the second form of the balanced method stated in (iii), just the balanced method 
with the 'pure-diagonal correction' c0 • Although the three methods are weak mean 
A-stable (can be concluded from Lemma 3, formula 4. 7 and Lemma 4), the methods 
(i) and (iii) do not provide both mean square stable and instable numerical solutions 
(check conditions 5.4 in Lemma 5 and 5.33 as a conclusion of Lemma 7), which 
replicate the behaviour of the null solution for the system 6.2 in this respect. In 
contrast to them the method (ii) produces mean square instable numerical solutions 
for all step sizes (except for one step size!) since 5.13 leads to 

for the corresponding mean square stability indicator F(µ, v, a). Even for the 'fully 
drift-implicit' Milstein scheme for the system 2.2 it is not getting better. Then we 
obtained for the corresponding stability indicator 

F(µ, v, 1) 
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if the value IPI > {14" is sufficiently large, for example p = 10. On the other 
hand, for smaller values IPI, for example p = 1, their stability indicator F(µ, v, 1) 
becomes negative, e.g. their stability indicator changes its sign, although this is 
not true for the exact solution where the (top) p-th mean Lyapunov exponent 
can be considered as its stability indicator ().(x 0 ;p) = A(x0 ; 2) = 0 if x0 ::f. 0) .. 
Consequently, the implicit Milstein schemes 3.4 with fixed implicitness a do not 
replicate the mean square stability behaviour of the null solution for the system 
6.2. To compare the methods (i) - (iii) experimentally we plotted estimates for 
the second moments 1EllYnll 2 at the time points Tn on the time interval (0, 1] and 
interpolated linearly the data to be visualized. The corresponding results are visible 
in figure 7. There the dotted line corresponds to the exact level to be expected 
trivially at the height 1.0. Distinctly, the methods (i) and (ii) provide better 
approximations concerning the mean square stability. They are able to control the 
second moment much longer than the method (iii). Moreover, the .second moment 
of the implicit Milstein approximation even seems to 'explode'. Of course, the 
difference depends on the amount of the parameter p, but is still observable for 
a quite large range of these parameters. Note that these experiments bear more 
experimental character, demonstrating some numerical effects (explicit solution is 
known here, but it must be approximated the term Z(t)). 

5 

lritplicit Hilstein approximation ~ 

0 0.2 0.4 0.6 o.e titte t 
J. 

Figure 7 : The estimates of 1EllYnll 2 of methods (i)-(iii) using the step size 
~ = 10-2 with p = 4 started in (1, 0) 

Additionally, for the special model 6.1 one could be tricky. Concerning the infor-
mation llX(t)ll = 1 for all t E (0, T], by the use of Yn := Yn/llYnll as the appro-
ximation value for the Kubo oscillator at the time Tn the condition llY( Tn)ll = 1 
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would be trivially fulfilled, too. But it assumes that llX(t)ll is always a constant. 
Consequently, only in movements on the circle one can apply this trick. In practise, 
such a 'normalization' does not help in the general situation. Moreover, it would 
ruin the 'goodness' of the approximation. 

Other applications for model 2.2 : In Markov chain :filtering we found some 
models which possess the linearization of type 2.2. A plenty of further very inter-
esting applications can be found in quantum mechanics. Among them, for example, 
Smith & Gardiner ([26],1989) investigated a model of a harmonic oscillator damped 
by both one photon and two photon absorption. They arrived at Ito SDE's where 
their linearization fits in our stability examinations, for example, the nonlinear Ito 
SDE for the intensity of the cavity mode N(t) 

1 
dN(t) = -( "2/3 + N(t)) N(t) dt + i N(t) dW(t) . 

Here, the notion of weak mean stability has proved to be too 'weak' in order to 
treat numerically, accurately enough and hence successfully the problem of esti-
mating the mean value function of the cavity mode N(t). Although it is a statis-
tical problem, we suggest to introduce and examine this model with the so-called 
'explosion-stable' or 'spikes-stable' numerical solutions, with the hope of qualita-
tive improvements in the estimates. A corresponding report is being worked out 
by Gerlach & Schurz. Recently Gardiner, Gilchrist & Drummond ([5],1993) offered 
several models possessing also the considered linerization form 2.2. Perhaps, one 
could explain the numerical problem of having 'spikes' in the plots for the photon 
numbers during the use of the positive P-representation. The field of laser equa-
tions seems to form a further area to deal with stability (see Schack & Schenzle, 
1991 ), although it requires new approaches. Thus, it made use to study the numer-
ical stability behaviour for that special model 2.2. However, we want to encourage 
the reader to go deeper in the stability problem of stochastic numerics, explore its 
application and help to answere on how reliable the approximations are in compare 
with the exact solution. 

7 Summary 

Of course, we know we are still quite far away from the final aim to provide numer-
ical solutions satisfying the stability principle 'Small initial perturbations should 
cause small terminal errors' in stochastic numerics. However, some introductional 
work for multi-dimensional stochastic systems and the investigation of the mean 
stability of their numerical solution has been done in this paper. Systematically 
it could be introduced the notion and examined the world of stability depending 
on the moments. At least, the results are useful to provide a 'reasonable' approx-
imation for the stochastic Kubo oscillator possessing both a kind of stability and 
instability. Further applications can be found in quantum mechanics. Naturally 
it is still the task to extend the examination to more general modells than 2.2. 
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At first one should stay in the class of SDE's with linearization of type 2.1 with 
more general matrices A and Bi, then even for nonautonomous systems. Further-
more, the studies for systems with multi-dimensional noise could be done straight 
forward, analogously to this paper, but consequently with much more parameters 
involved in them. Surely, the class of commutative matrices A and Bi, would be 
very interesting, but restricts the problem to perhaps a too small class. Within this 
field it is worth to get more insight of the problem of test equations. Therein the 
idea of simultanous transformations to systems which have an equivalent stability 
behaviour like the original system plays a special role. Concerning this work we 
point to a later paper on 'Test equations and simultanous transformations' which 
we are going to be published in this preprint series and will require more algebraic 
background. The herein introduced notions have proved to be effective, but maybe 
not efficiently enough to destinguish numerical methods with respect to their sta-
bility behaviour. The three considered scheme classes 3.3 - 3.5 possess subclasses 
providing both weak and mean square stable numerical solutions. The balanced 
methods seem to be the richest class at the moment in order to treat stabilities and 
instabilities in stochastic sy~tems numerically and successfully. Under the assump-
tion of having mean square stable null solution it turns out that to achieve also 
mean square stability of the numerical solution by the balanced methods it is not 
necessary to correct with stochastic weights controlled ·by the choice of the matrices 
d (j == 1, 2, . ., m). Therefore the simple choice , d = 0 in them can be prefered. 
By some further restrictions (lbll 2 ~ 21.-\rl/(p-l) or {i == 0, see section 5.3) to the 
considered model class one also obtains reasonable recommendations for them such 
that their numerical solutions are even p-th mean A-stable. Furthermore, much 
more work must be done to treat more accurately and reli.ably instable systems, 
for example in such systems where the first moment behaves stable, but the second 
moment not. 
The asymptotical mean stability is one notion to classify schemes with respect to 
qualitative features, another way would be to consider the Lyapunov exponents of 
the corresponding discrete system. Obviously, this is much more complicated and 
requires further extensive studies. Actually, in this respect, what we also did by 
this paper was the trial to use the sign of the top Lyapunov exponent of the discrete 
system governed by a given numerical method. Its sign has been made visible and 
exploited by the considered stability indicators F(µ, v). However, the knowledge 
about stability and instability of numerical solutions is still in its infancy. 
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