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Abstract. The problem of minimizing the di�culty of the inverse estimation of

some unknown element x0 from noisy observations y� = Ax0 + �� in dependence

of the nature of the random noise � is considered. It is shown that a combination

of a Tikhonov regularization estimator with a certain projection scheme is order

optimal in the sense of di�culty for a wide class of operators A acting along Hilbert

scales.

1. Introduction

Suppose we wish to recover an element x of some Hilbert space X, but we are only
able to observe data near y = Ax, where A is a compact linear operator from X to
X. Such linear inverse problems arise in scienti�c settings, ranging from stereological
microscopy (Abel's integral equation) and physical chemistry (Fujita's equation) to
satellite geodesy (gravity gradiometry equation).

Moreover, we assume that the data are noisy, so that we observe y� given by

y� = Ax+ ��; (1.1)

where � is some stochastic process and � is a small positive number, used for mea-
suring the noise level. Operator equation (1.1) with random noise is an example of a
statistical ill-posed inverse problem. Typically A is an integral operator of the form

Ax(t) =

1Z

0

a(t; � )x(� )d�; (1.2)

acting from X = L2(0; 1) to L2(0; 1) and x(t) is the probability density function
of some random variable that we cannot observe directly. The statistical prob-

lem we address is to estimate x(t) from noisy measurements (1.1). Such noisy
integral equations (1.1), (1.2) are considered throughout Wahba's work, see, e.g.
Wahba (1977). We further mention Nychka and Cox (1989), Johnstone and Silver-
man (1991), Donoho (1995), Mair and Ruymgaart (1996), Lukas (1998). For direct
density and regression estimation, when A is the identity operator I, the reader
is referred to Nussbaum (1985), Speckman (1985), Donoho and Johnstone (1991),
Kerkyacharian and Picard (1992).

Suppose further that even the observations (1.1) cannot be observed exactly but
they can only be observed in discretized or binned form. To be precise, assume that
instead of (1.1) we have only vector '(y�) = fy�;i = ('i; y�)gni=1 de�ned by

y�;i = ('i; y�) = (y; 'i) + ��i = (Ax;'i) + �(�; 'i); (1.3)

where (�; �) is the inner product in X and ' = f'i 2 X; i = 1; 2; : : : ; ng is the so-
called design of the statistical experiment consisting in obtaining the values (1.3).
In the sequel we denote by �n the set of all designs ' determined by collections
of at most n elements 'i 2 X. If we have the possibility to choose the design ',

then typically elements of the singular value decomposition or wavelet-vaguelette
decomposition of the operator A play the role of 'i. The methods for regularized
solution of integral equations (1.1), (1.2) from discrete noisy data (1.3) for such
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'i were recently studied by Johnstone, Silverman (1991) and Donoho (1995) and
Golubev, Khasiminskii (1997). But very often the design ' is �xed beforehand

and does not depend on the operator A. A simple example is that of estimating
a continuous probability density function x(t) from binned data or histogram for
y�(t). In the case of noisy integral equation (1.1), (1.2) we assume that the interval
[0; 1] is partitioned into histogram bins [ui�1;n; ui;n) with bin limits 0 = u0;n < u1;n <

: : : < un;n = 1 and instead of (1.1), (1.2) we have the vector with components

y�;i =
1

ui;n � ui�1;n

ui;nZ

ui�1;n

Ax(t)dt+ ��i; i = 1; 2; : : : ; n; (1.4)

having the form (1.3) for 'i(t) = (ui;n � ui�1;n)
�1
�i;n(t), where �i;n(t) is the char-

acteristic function of [ui�1;n; ui;n). The approximate solution of Abel's integral
equation based on histograms (1.4) was considered by Nychka and Cox (1989).
It is easy to see that �xed designs of normalized characteristic functions 'i(t) =
(ui;n�ui�1;n)

�1
�i;n(t) of histogram bins are not generated by the wavelet-vaguelette

decomposition of Abel's integral operator. Therefore, the powerful scheme proposed
by Donoho (1995) does not apply. It is the purpose of this paper to provide a com-

mon background for a variety of discretized observations (1.3). For this reason we
will only need that the design ' = f'i 2 X; i = 1; 2; : : : ; ng has good approxima-
tion properties, but does not necessarily depend on the operator A. Note, that for
' 2 �n the number n de�nes the amount of discrete information used for recovering
the unknown solution x0 of the equation Ax = y.

On the other hand, as was indicated by Johnstone and Silverman (1991), there
is a substantial statistical literature which is concerned with such questions; how
many bins to use with a histogram estimator and a given noise intensity �. If we
concentrate on the case of linear estimators of x0 from discretized observations of
more general form (1.3) and it is a priori known that the unknown solution belongs
to some setM � X then the answer is connected with the behavior of the quantity

�n;�(A;M; �)2 := inf
'2�n

inf
S2Ln(X)

sup
x2M

Ekx� S � '(Ax+ ��)k2; (1.5)

where Ln(X) denotes the set of all linear mapping from R
n to X and E denotes the

expectation with respect to the noise �. Below we indicate designs and estimators
which are order optimal in the sense of (1.5) simultaneously for all operators A from
some su�ciently wide class. We note that a quantity, related to (1.5) was considered
earlier by Donoho et al. (1990) in the speci�c case when A = I and S � ' is the
orthogonal projector on span f'1; '2; : : : ; 'ng.
The recovery of the unknown solution x from indirect measurements (1.3), blurred by
random noise is usually studied under the assumption that prior knowledge regarding
the smoothness of the solution is available. For greater �exibility we embed the

general problem (1.1) into an abstract Hilbert scale. Regularization of ill-posed
problems in Hilbert scales was introduced by Natterer (1984). Statistical inverse
estimation in Hilbert scales has �rst been studied by Mair and Ruymgaart (1996).
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But in their asymptotic consideration these authors did not consider the case of
noisy discretized observations (1.3).

2. Setup

To be precise, a Hilbert scale fXsgs2R is a family of Hilbert spaces Xs with in-
ner product (x; y)s := (Ls

x;L
s
y), where L is some unbounded self-adjoint strictly

positive operator in a dense domain of X, and Xs is de�ned as the completion
of the intersection of domains of all operators

�
L
k
	
k2R

, endowed with the norm

kxks := (x; x)
1=2
s . A Hilbert scale satis�es the following interpolation inequalities

kxk0 � kxk
s

a+s

�a kxk
a

a+s
s ; x 2 Xs; (2.1)

where k � k0 = k � k is the norm in the initial Hilbert space X. Moreover, we assume
that the Hilbert scale fXsg is scaled as the Sobolev scale W

s
2 (0; 1). Namely, if

Js : Xs ! X is the canonical embedding, then we assume that

an(Js) := inffkJs � UkXs!X ; rank U < ng � n
�s
; (2.2)

where an is n-th approximation number (see Pietsch (1978)) and " � " means
equivalent in the sense of order.

We turn to properties required of the operator A. We assume that A acts along the
Hilbert scale in the following way: For some parameter a > 0 there exist constants
d;D > 0 such that

dkxk��a � kAxk� � Dkxk��a (2.3)

holds for all x 2 X��a and � 2 R. The parameter a in (2.3) can be interpreted as a
"degree of ill-posedness" of equations involving A, analytical in nature.

Moreover, in the sequel we will assume, that the exact solution x0 of the equation
Ax = y belongs to some �xed ball

X
R
� := fx; kx0k� � Rg (2.4)

for some X�.

Remark 2.1. We illustrate assumption (2.3) by introducing Symm's equationZ
�

log(ju� vj)z(v)dSv = g(u); u 2 �; (2.5)

arising from the Dirichlet boundary value problem for the Laplace equation in some
region with boundary curve �. Assuming that � admits a C

1�smooth 1�periodic
parameterization 
 : [0; 1]! � we can rewrite (2.5) as

(Ax)(t) :=

Z 1

0

log(j
(t)� 
(� )j)x(� )d� = y(t);

where x(t) := z(
(t)) j
 0(t)j and y(t) := g(
(t)). It can be seen that the operator A,

just de�ned obeys condition (2.3) with a = 1 within the scale Xs := ~W s
2 (0; 1); s 2 R,

of Sobolev spaces of 1�periodic functions, see e.g. Bruckner et al. (1995) for details.
We add that more generally, given an operator A that does not �t some standard
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Hilbert scale, one can often construct a scale, adapted to this operator. This is the
case when A : X ! X acts compactly and injectively in some Hilbert space X. Then

A meets condition (2.3) with a = 1=2 in the scale generated by L : = (A�
A)�1, see

Natterer (1984) and Hegland (1995) for further details.

We turn to assumptions made for the noise. The �rst model of random noise was

initially considered by Bakushinskii (1969). Here � is supposed to be a centered
X-valued random vector de�ned on some probability space (
;�;P) with bounded
variance, i.e.,

E(�) = 0; Ek�k20 � 1: (2.6)

The second model is connected with Gaussian white noise. Here � is a weak or
generalized random element, such that for any f 2 X the inner product (f; �) is a
measurable function, mapping a probability space (
;�;P) into R equipped with
its Borel �-�eld. Moreover, for any f; g 2 X the functions (f; �); (g; �) are square-
summable with respect to the probability measure P and

E(f; �) = E(g; �) = 0; E(f; �)(g; �) = (f; g): (2.7)

We extend this to a parameterized family of noise by introducing �
� , where �

�

is such that for some constant c� and for some orthonormal basis fukg of X we

have �k = c�k
�(uk; �

�); k = 1; 2; : : : , are i.i.d N(0; 1). Note that for � = 0 and
c0 = 1 �

0 is Gaussian white noise with properties (2.7). On the other hand, for

arbitrary small " > 0 the noise �
1
2
+" is an X-valued random function satisfying

(2.6) for appropriate c�.

We note that noise introduces an additional degree of ill-posedness, this time of
statistical nature.

The notion of "degree of ill-posedness" has been coined by Wahba (1977) to quantify
the interplay between "nastiness" of operator A and "dimensionality" of the regu-
larizing set XR

� . On the other hand, we can expect additional in�uence of the noise
� on the degree of ill-posedness. This in�uence has been observed by Nussbaum
(1994) for the special case when the operator A is a-fold integration and the Hilbert
scale consists of Sobolev spaces, i.e. Xs = W

s
2 (0; 1). Namely, for deterministic noise

� 2 L2(0; 1); k�k � 1, the optimal order for recovering x0 2 W
�
2 (0; 1) from noisy

data (1.3) is �
�

�+a . On the other hand, it might be interesting to note that in the
example thus mentioned, but for Gaussian white noise �(t) the optimal (minimax)

rate of convergence for recovering x0 2 W
�
2 (0; 1) is �

�
�+a+1=2 , where the error criterion

is modi�ed appropriately.

In the present paper we obtain the same rates of convergence for the general case
of equations (1.1) with operators satisfying (2.3) and for di�erent type of random
noise which cover deterministic and Gaussian white noise.
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3. Discretized noisy observations as Galerkin data for

regularization in Hilbert scales

Below we derive an order optimal numerical scheme to solve problem (1.1).

3.1. Description of the method. For the sake of simplicity we assume that the
f'1; '2; : : : ; 'ng are orthonormal. Then

Qnf :=

nX
i=1

(f; 'i)'i

denotes the orthogonal projector onto span f'1; '2; : : : ; 'ng. Using Qn we can
rewrite (1.3) as

Qny� = Qn(Ax+ ��): (3.1)

This is the standard form of the Galerkin projection scheme for the approximate so-
lution of operator equation (1.1). But if (1.1) is ill-posed, regularization techniques

are required for solving (3.1). The most widely used method for regularization in
Hilbert scales is the Tikhonov method. In statistics this method is called regular-
ization estimator. Statistical justi�cation for such estimator has been given by Li
(1982) and Speckman (1985). Tikhonov regularization of the Galerkin method for
the approximate solution of (3.1), and hence of (1.1) is obtained by minimizing

kQnAx�Qny�k20 + �kxk2s (3.2)

over some �nite-dimensional subspace Vm of Xs, where we assume that the true
solution x0 2 X� � Xs for � � s.

It follows from Neubauer (1988) that the unique minimizer x��;n;m of (3.2) has the
form

x
�
�;n;m = x

�
�;n;m(�) = G�;n;my�; (3.3)

where

G�;n;m = (T#
n;mTn;m + �I)�1T#

n;m = L
�s(B�

n;mBn;m + �I)�1B�

n;m;

Tn;m = QnAPm;s; Bn;m = QnAPm;sL
�s
;

Pm;s is the orthogonal projector form Xs onto Vm and K
�
;K

# denote the adjoint
operators of K with respect to the corresponding inner products (�; �) and (�; �)s. In
particular

T
#
n;m = Pm;sL

�2s
A
�
Qn; B

�

n;m = L
s
Pm;sL

�2s
A
�
Qn:

Note that representation (3.3) is needed only for the analysis of the rate of conver-

gence. The construction of x��;n;m actually reduces to solving a system of minfm;ng
linear algebraic equations and is completely determined by the choice of design
' 2 �n, parameter s, �nite dimensional subspace Vm � Xs and �nally by choosing
the regularization parameter � in (3.2).

To estimate the performance of the approximating x
�
�;n;m additional properties of

the design ' 2 �n as well as of the choice of spaces Vm are required.
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To be precise, we assume that for all x 2 Xa+�

inf
g2spanf'1;'2;::: ;'ng

kx� gk0 � cn
�(a+�)kxka+�; � � s; (3.4)

where c is some positive constant (for simplicity we often use the same symbol c for
possibly di�erent constants). Note, that from (2.2) we deduce that the best possible
order of approximating elements from Xa+� in X0 by linear combinations of at most
n design elements is n�(a+�). Thus we assume in (3.4) that this order is achieved by
the chosen design ' 2 �n.

Moreover, as in Neubauer (1988) we require, that the �nite-dimensional space Vm
obeys

inf
g2Vm

kx� gks � cm
�(a+s)kxka+2s; x 2 Xa+2s: (3.5)

Conditions (3.4) and (3.5) can be written in the form

kI �QnkXa+�!X � c n
�(a+�)

; � � s; (3.6)

and

kI � Pm;skXa+2s!Xs � c m
�(a+s)

: (3.7)

If (3.7) is ful�lled and s � (� � a)=2 then standard interpolation techniques, we
refer to Babu�ska and Aziz (1972) for details, yield inequality

k(I � Pm;s)x0ks � c m
�(��s) (3.8)

whenever x0 2 X
R
� , which will be useful below.

The performance of the Tikhonov regularization estimator x��;n;m will be based on

the risk Ekx0 � x
�
�;n;m(�)k2. Making use of (2.6) or (2.7), respectively, this can be

rewritten

Ekx0 � x
�
�;n;m(�)k2 = Ek(G�;n;mA� I)x0 + �G�;n;m�k2

= Ek(G�;n;mA� I)x0k2
� 2�E(G�

�;n;m(G�;n;mA� I)x0; �)

+ �
2
EkG�;n;m�k2

= k(G�;n;mA� I)x0k2 + �
2
EkG�;n;m�k2:

(3.9)

In the sequel the terms

b
2
�;n;m(x0) := k(G�;n;mA� I)x0k2; v�;n;m(�) := �

2
EkG�;n;m�k2

will be considered as bias and variance of the risk, respectively. Now we turn to
estimate these quantities separately.
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3.2. Estimate of the bias. The bias is bounded from above in

Lemma 3.1. Let the assumptions (2.3), (2.4), (3.7), (3.6) be ful�lled. Assume that

for some { < 1

kI �QnkXa!X � { D
�1(2ads)

1
a+s�

a
2(a+s) ; (3.10)

where D; d are the constants from (2.3). Then

b�;n;m(x0)�c

h
�

�
2(a+s) +m

�s
�
1 +m

�a
�
�

a
2(a+s)

��
�

��s
2(a+s) + k(I � Pm;s)x0ks

�i
:

Proof. Let y0 = Ax0 be the true free term of our equation. Consider the elements
x
0
�;n;m = G�;n;my0 and

x
0
�;m = (T#

mTm + �I)�1T#
my0;

where Tm = APm;s; T
#
m = Pm;sL

�2s
A
�. It follows from Lemma 2.2, Lemma 3.2 by

Neubauer (1988) that

k(T#
mTm + �I)�1T#

mkX!X � (2ads)�
1

a+s�
�

a
2(a+s) ; (3.11)

and

kx0 � x
0
�;mk

� c

h
�

�
2(a+s) +m

�s
�
1 +m

�a
�
�

a
2(a+s)

��
�

��s
2(a+s) + k(I � Pm;s)x0ks

�i
:

(3.12)

Note that

b�;n;m(x0) = kx0 � x
0
�;n;mk � kx0 � x

0
�;mk+ kx0�;m � x

0
�;n;mk: (3.13)

Moreover, from (3.10), (3.11) and (2.3) it follows that

kx0�;m � x
0
�;n;mk

= k(T#
mTm + �I)�1[(T#

m � T
#
n;m)y0 � (T#

mTm � T
#
n;mTn;m)x

0
�;n;m]k

= k(T#
mTm + �I)�1T#

m [(I �Qn)y0 � (I �Qn)APm;sx
0
�;n;m]k

= k(T#
mTm + �I)�1T#

m (I �Qn)A(x0 � x
0
�;n;m)k

� (2ads)�
1

a+s�
�

a
2(a+s)kI �QnkXa!X0

kA(x0� x
0
�;n;m)ka

� D(2ads)�
1

a+s�
�

a
2(a+s)kI �QnkXa!X0

b�;n;m(x0)

� {b�;n;m(x0):

(3.14)

Combining (3.13) and (3.14) we obtain

b�;n;m(x0) � (1� {)�1kx0 � x
0
�;mk: (3.15)

The assertion of the lemma follows from (3.12) and (3.15).
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3.3. Estimate of the variance. We turn to bounding the variance. The basic
step towards this goal is given by

Lemma 3.2. Let the assumptions (2.3), (2.4), (3.7), (3.6) be ful�lled. If n � m �
�
�

1
2(a+s) then

kG�;n;mkX!X � c�
�

a
2(a+s) ;

where c does not depend on �; n;m.

Proof. It is well known that for an arbitrary compact operator B from X to X

k(B�
B + �I)�1B�kX!X � 1

2
p
�
; kB(B�

B + �I)�1B�kX!X � 1: (3.16)

In particular we have for any f 2 X the bound

kG�;n;mfks = kLs
G�;n;mfk

= k(B�

n;mBn;m + �I)�1B�

n;mfk �
1

2
p
�
kfk: (3.17)

Moreover, from (2.3) and (3.16) it follows that

kG�;n;mfk�a � d
�1kAG�;n;mfk

= d
�1kAL�s(B�

n;mBn;m + �I)�1B�

n;mfk
� d

�1kBn;m(B
�

n;mBn;m + �I)�1B�

n;mfk
+ d

�1k(AL�s �Bn;m)(B
�

n;mBn;m + �I)�1B�

n;mfk
� d

�1
�
1 +

1

2
p
�
kAL�s �Bn;mkX!X

�
kfk:

(3.18)

Now we derive an estimate for kAL�s �Bn;mk:
kAL�s �Bn;mkX!X � kAL�s �APm;sL

�skX!X

+ kAPm;sL
�s �QnAPm;sL

�skX!X :
(3.19)

By (2.3) and (3.7) we can continue

kAL�s �APm;sL
�skX!X � k(I � Pm;s)L

�skX!X
�a

= kL�a(I � Pm;s)L
�skX!X

= kLs
L
�s�a(I � Pm;s)L

�skX!X

= kL�s�a(I � Pm;s)kXs!Xs

= k(I � Pm;s)L
�s�akXs!Xs

= k(I � Pm;s)kX2s+a!Xs

� c m
�(s+a)

:

(3.20)
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(Note that L�� : Xt ! Xt is self-adjoint for � � t). Further, using (2.3) and (3.6)
we �nd

kAPm;sL
�s �QnAPm;sL

�skX!X � kI �QnkXa+s!XkAPm;sL
�skX!Xa+s

� c n
�(a+s)kPm;sL

�skX!Xs

� n
�(a+s)kPm;skXs!Xs = n

�(a+s)
:

(3.21)

If n � m � �
�

1
2(a+s) then (3.18)�(3.21) imply

kG�;n;mfk�a � c kfk:
Together with (2.1) and (3.17) this yields

kG�;n;mfk0 � kG�;n;mfk
a

a+s
s kG�;n;mfk

s
a+s

�a � c �
�

a
2(a+s)kfk:

The lemma is proved.

Now we are in a position to estimate the variance v�;n;m(�) for X-valued random
noise � meeting the conditions (2.6). Namely, from Lemma 3.2 it follows that for

n � m � �
�

1
2(a+s)

v�;n;m(�) = �
2
EkG�;n;m�k2 � �

2kG�;n;mk2X!XEk�k2

� c �
2
�
�

a
(a+s) :

(3.22)

But such straightforward way is unsuitable for generalized white noise � satisfying
(2.7) because in this case Ek�k2 = 1. Instead we note that G�;n;m� = G�;n;mQn�,
and we conclude

v�;n;m(�) = �
2
EkG�;n;mQn�k2 � �

2kG�;n;mk2X!XEkQn�k2:
Using (2.7) and keeping in mind that f'ig is an orthonormal system we have
E('i; �)

2 = ('i; 'i) = 1; i = 1; 2; : : : ; n, such that, applying Lemma 3.2 again,
we arrive at

v�;n;m(�) � c �
2
�
�

a
(a+s)E

� nX
k=1

('i; �)
2
�
= c �

2
�
�

a
(a+s)n (3.23)

for n � m � �
�

1
2(a+s) .

3.4. Parameter choice and convergence rates. In order to optimize the rate
of convergence for the global risk we will determine � = �(�) in such a way that
the rates of bias and variance in (3.9) are of the same order as � ! 0. This is
accomplished in

Theorem 3.1. Let the assumptions (2.3), (2.4), (3.7), (3.6) be ful�lled and s �
(� � a)=2.

If the random noise � satis�es the conditions (2.6) then for � � �
2(a+s)

a+� , n � m �
�
�

1
2(a+s) � �

�
1

a+�

Ekx0 � x
�
�;n;m(�)k2 � c �

2�
�+a : (3.24)
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In the case of generalized white noise � satisfying (2.7) for � � �
2(a+s)

a+�+1=2 , n � m �
�
�

1
2(a+s) � �

�
1

a+�+1=2

Ekx0 � x
�
�;n;m(�)k2 � c �

2�
�+a+1=2 : (3.25)

In (3.24) and (3.25) the constant c does not depend on �; �; n;m.

Proof. We prove only (3.25). The estimate (3.24) is established in a similar manner.

From (3.6) it follows that for some n � �
�

1
2(a+s) condition (3.10) is ful�lled. Then,

using Lemma 3.1 and (3.23) for n � m � �
�

1
2(a+s) , � � �

2(a+s)

a+�+1=2 we obtain

Ekx0 � x
�
�;n;m(�)k2 � c �

�
a+s + c n �

2
�
�

a
a+s

� c
�
�

�
a+s + �

2
�
�

2a+1
2(a+s)

� � �
2�

a+�+1=2 ;

which yields the required result.

4. Lower bounds for �n;�(A;M; �)

In this section we obtain lower bounds in Hilbert scales under additional assump-
tions, relating properties of the operator A to the generator L of the Hilbert scale.

Following Mair and Ruymgaart (1996) we assume that the eigenvectors of the opera-

tor L generating the Hilbert scale fXsg coincide with the eigenvectors of A�
A. This

means that both the operator L�1 and the operator A from (1.1) can be represented
in the form

L
�1
g =

1X
k=1

lk(g; fk)fk; Ag =

1X
k=1


k(g; fk)uk; (4.1)

where ffkg; fukg are some orthonormal bases of X. >From (4.1), (2.2) and (2.3)
it follows, in particular, that

lk � k
�1
; 
k � k

�a
: (4.2)

Now we can state

Theorem 4.1. Let the assumptions (2.2) � (2.4) and (4.1) be ful�lled. Then

�n;�(A;X
R
� ; �

�) � cfn�� + �
�

�+a��+1=2 g

We rely on the following Lemma, originally proven in Korostelev and Tsybakov
(1993), Chapt. 9.

Lemma 4.1. Suppose we are given

vk = �k + ��k�k; k = 1; 2; : : : ; (4.3)

where �k are i.i.d N(0; 1), �k � k
b and � = (�1; �2; : : : ) is unknown, but belongs to

B
R
� := f� :

X
k

�
2
k�

2
k � R

2
; �k � k

�g:
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Then

inf
�̂(v)

sup
�2BR

�

Ek� � �̂(v)k2l2 � �
2�

�+b+1=2 ;

where the inf is taken over all estimators �̂(v) based on observations (4.3).

Proof of Theorem 4.1. We observe that the composition S � ' is a linear mapping
in X with rank at most n. Then by (2.7) and arguing as in (3.9) we obtain

Ekx� S � '(Ax+ ��
�)k2 = kx� S � '(Ax)k2 + �

2
EkS � '(��)k2

� kx� S � '(Ax)k2:
Uniformly for x 2 X

R
� this yields

�n;�(A;X
R
� ; �

�)2 � inf
'2�n

inf
S2Ln(X)

sup
x2XR

�

kx� S � '(Ax)k2

� R
2a2n+1(J�) � n

�2�
;

(4.4)

where we used (2.2) for the last asymptotics. On the other hand, it follows from the

very de�nition that

�n;�(A;X
R
� ; �

�)2 � inf
x̂

sup
x2XR

�

Ekx� x̂k2; (4.5)

where the inf is taken over all estimators based on observations

y� = Ax+ ��
� (4.6)

Let �k = (x; fk) and vk = (y�; uk)

�1
k ; k = 1; 2; : : : . We can represent (4.6) in the

equivalent form

vk = �k + ��k�k; �k = c�k
��


�1
k � k

a��
; k = 1; 2; : : : (4.7)

and any estimator �̂ based on (4.7) gives the estimator x̂ =
P

k �̂kfk for x, and

conversely. Applying Lemma 4.1 with b = a� �; �k = l
��
k � k

� we obtain

inf
x̂

sup
x2XR

�

Ekx� x̂k2 � inf
�̂

sup
�2BR

�

Ek� � �̂k2l2 � �
2�

�+a��+1=2 (4.8)

The assertion of the theorem follows from (4.4), (4.5), (4.8).

Remark 4.1. As in Donoho et al. (1990) the number n can be understood as the

di�culty of the estimator S�'(Ax+��) based on the design ' 2 �n. For � = 1=2+",
" > 0 arbitrarily small, the noise �� is X�valued and satis�es conditions (2.6). Then

Theorem 4.1 and Lemmas 3.1 and 3.2 yield for m � �
�1=(2(a+s)) � �

�1=(a+�) and
su�ciently large n � c�

�1=(a+�) the estimate

c1�
2�

�+a�" � �n;�(A;X
R
� ; �

�)2 � sup
x2XR

�

Ekx� x
�
�;n;m(�

�)k2 � c2�
2�
�+a :

For such noise the lower bound for the di�culty of estimation with optimal precision
�
�=(�+a�") is ��1=(�+a�"). The estimator x��;n;m(�

�) however has di�culty �
�1=(�+a)

at precision �
�=(�+a), which is close to being optimal. We stress that within the

framework of Tikhonov regularization (3.2) and (3.3), the precision will not change

by enlarging the design beyond �
�1=(�+a).
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For Gaussian white noise �0 the situation is di�erent. Theorems 3.1 and 4.1 imply
for n � m � �

�1=(2(a+s)) the bounds

c1(n
�2� + �

2�
�+a+1=2 ) � �n;�(A;X

R
� ; �

0)2

� sup
x2XR

�

Ekx� x
�
�;n;m(�

0)k2

� c2(�
�=(a+s) + n�

2
�
�a=(a+s));

and the corresponding estimator x��;n;m(�
0) with n � �

�1=(2(a+s)) � �
�1=(�+a+1=2)

attains the lower bound for the di�culty nopt � �
�1=(�+a+1=2) of estimation with

optimal precision simultaneously for all operators A meeting conditions (2.3) and

(4.1). But using designs larger than nopt can spoil the precision of the Tikhonov
regularization estimator.

Remark 4.2. If we allow the randomness to be degenerate then for n � m �
�
�

1
a+� , � � �

2(a+s)

a+� and for deterministic noise �; k�k � 1, from (3.9), Lemma 3.1,
Lemma 3.2 it follows that

kx0 � x
�
�;n;m(�)k � k(G�;n;mA� I)x0k+ �kG�;n;m�k � �

�
�+a : (4.9)

Formally (4.9) coincides with the classical nonrandom result by Natterer (1984)
and Neubauer (1988). But in Natterer (1984) the discretization e�ects in ill-posed
problems were not considered. Neubauer (1988) studied only semi-discrete schemes,
that is when we pass from equation Ax = y� to APm;sx = y�. Therefore, it seems
that estimate (4.9) is new even in the deterministic case.

5. Application to Abel's equation

Here we apply the results of the previous sections to the regularization of his-
tograms (1.4), where A is Abel's integral operator of the form

Ax(t) :=
1

�

1Z

t

x(� )d�p
� � t

; t 2 (0; 1): (5.1)

Noisy Abel's equation (1.1), with operator (5.1) arises from a diverse range of ap-
plications in the physical sciences and in stereological microscopy. Some pertinent

references are Nychka and Cox (1989), Johnstone and Silverman (1991) and Donoho
(1995).

In order to apply our results we let X = L2(0; 1). Then as mentioned in Remark 2.1

we generate a Hilbert scale via L = (A�
A)�1. In this case the conditions (2.3) are

ful�lled for a = 1=2. For simplicity we let � = 1 in (2.4) . This means that x0(t)
can be represented in the form

x0(t) = A
�
Ag0(t); (5.2)
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where g0(t) 2 L2(0; 1). Using Corollary 1 in Samko (1968) we obtain the following
representations

Af(t) = A
�
V f(t); A

�
f(t) =

1

�

tZ

0

f(� )d�p
t� �

; (5.3)

and the operator

V f(t) :=
1

�
p
t

1Z

0

p
�f(� )d�

� � t

acts boundedly from L2(0; 1) into the space L2;2"(0; 1) of functions that are square-
summable on (0,1) with weight t2", where " > 0 is arbitrarily small. This means
that for any f 2 L2(0; 1) there exists f" 2 L2(0; 1) such that

V f(t) = t
�"
f"(t) and kf"k � ckfk: (5.4)

Moreover, from the properties of fractional integration we have

A
�
A
�
f(t) =

tZ

0

f(� )d�: (5.5)

Then (5.2)�(5.5) imply that

x0(t) = A
�
Ag0(t) = A

�
A
�
V g0(t) =

tZ

0

�
�"
g0;"(� )d�: (5.6)

Thus, x0 has derivative x
0

0 2 L2;2"(0; 1) for any small " > 0. In terms of the modulus
of continuity

!2(f; h) =
n
sup
0<t�h

1�tZ

0

jf(t+ � )� f(� )j2d�
o1=2

; 0 < h < 1;

for functions f 2 L2(0; 1) we can estimate the smoothness of the solution x0 by

!2(x0; h) = O
�
h
1�"
�

(5.7)

for any small " > 0.

As in Nychka and Cox (1989) we assume that bin limits of histograms (1.4) obey

max
1�i�n

(ui;n � ui�1;n) � min
1�i�n

(ui;n � ui�1;n) � n
�1
: (5.8)

As before we represent (1.4) in the form (3.1), where Qn is the orthogonal projector
on the subspace of piecewise constant functions having discontinuities at the points
fui;ng. It is well known (see, e.g. Plato (1998)) that under (5.8) we have

k(I �Qn)AkL2!L2
� c n

�1=2
; k(I �Qn)A

�kL2!L2
� c n

�1=2
:

This is just the condition (3.6) for a = 1=2 and � = 0.

A straightforward application of Theorem 3.1 in the present case requires to take
s � ��a

2
= 1

4
. On the other hand, it is inconvenient to use Tikhonov estimator (3.2),
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(3.3) when s has the form of a fraction. But for s = 1 the condition (3.6) breaks
down for our case because using Qn we cannot obtain an accuracy being superior to

O(n�1). Therefore we let s = 0. Then condition s � ��a

2
is violated, but if we only

slightly change the value m (m = �
�

1
1�" instead of m = �

�1) then estimate (5.7)

allows to obtain the same order of global risk as in Theorem 3.1.

Since s = 0, we let Pm;0 = Qm, the orthogonal projector like Qn but corresponding
to m bins. Estimate (5.7) implies

k(I � Pm;0)x0k0 = k(I �Qm)x0kL2
� c!2(x0;m

�1) � cm
�1+"

; (5.9)

for any small " > 0. Using (5.9) instead of (3.8) we arrive at

Theorem 5.1. Let us suppose that the exact solution of Abel's equation (1.1), (5.1)
satis�es the condition (5.2), and let x

�
�;n;m(�) be a regularized solution obtained

from noisy histogram data (1.4), (5.8) within the framework of Tikhonov regular-

ization (3.2), (3.3) for Pm;0 = Qm. If the random noise � satis�es condition (2.6)

then for � � �
2=3
; n � �

�2=3
; m � �

�2=3(1�"), where 0 < " < 1, the following

estimate holds true

Ekx0 � x
�
�;n;m(�)k2 � c �

4=3
:

In the case of generalized white noise � satisfying (2.7), for � � �
1=2, n � �

�1=2
; m �

�
�1=2(1�")

Ekx0 � x
�
�;n;m(�)k2 � c �:

Remark 5.1. Under condition (5.2), which means � = 1, for Abel's integral equation
(1.1), (5.1) with generalized white noise we obtained the same order of precision �

as in Donoho (1995), where wavelet-vaguelette estimator was used. But we can
not apply the Theorem 4.1 for estimating the di�culty because the exact order of

the eigenvalues of operator L�1 = A
�
A is unknown (see, for example, Nychka, Cox

(1989)).
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