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ABSTRACT. We prove the existence of a very singular solution to
ug — Au+ |[VulP =0 in (0,400) x RV,
when 1 <p < (N +2)/(N +1).

1. INTRODUCTION

We investigate the existence of a very singular solution at the origin to the
following viscous Hamilton-Jacobi equation

(1.1) uy — Au+|Vulf =0 in (0,4+00) x RV,

A very singular solution at the origin to (1.1) is a non-negative solution to (1.1)
which is smooth in (0, 4+00) x RY and fulfills the following two conditions

lim u(t, z) de = 400,
204 J{ja1<r}

lim u(t,z) de =0,

20t Jlal>ry
for every r € (0,+00). The name very singular solution has been introduced by
Brezis, Peletier and Terman [9] who proved the existence and uniqueness of a
self-similar very singular solution W to

(1.2) uy — Au+uP =0 in (0,400) x RY,

when 1 < p < 1+ 2/N. Such a name is justified by the fact that the singularity
of Win (¢,x) = (0,0) is stronger than the singularity in (¢,2) = (0,0) of the
fundamental solutions to (1.2), that is the solutions to (1.2) whose initial data is
cd, where ¢ € (0,+00) and 0 denotes the Dirac mass centered at x = 0. Indeed,
when 1 < p <1+2/N and ¢ € (0,4+00), (1.2) has a unique non-negative solution
W, such that W.(0) = ¢d [8] and W, satisfies

lim We(t,z) de = c < 400,
0% S (w1 <r}

while the very singular solution W satisfies

lim W (t,z) de = +o0.
20 lel<ry
In fact, if 1 < p < 1+ 2/N, Oswald has proved in [20] that the following
alternative holds : consider a non-negative solution u to (1.2) which is smooth in
([0, +00) x RV)\ {(0,0)} and singular in (¢, z) = (0,0) with u(0,2) = 0 if z # 0.
Then either v = W or there exists ¢ € (0,+00) such that u = W.. A complete
classification of the possible isolated singularities in (¢, z) = (0,0) of solutions to

(1.2) is thus available.
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Since the pioneering work of Brezis, Peletier and Terman [9], the existence,
uniqueness and non-existence of non-negative very singular solutions have been
extensively investigated for nonlinear parabolic equations with absorption of the
form

u — Au+uP =0 in (0,400) x RV,
where Au = Au [9, 13], Au = Au™, m > 1 [22, 16, 19], Au = Au™, (1 —
2/N)t < m < 1[21, 18], Au = div(|Vu|™2Vu), m > 2 [23, 11, 15] and
Au = div (|Vu|"?Vu), 2N/(N + 1) < m < 2 [12]. Besides the description of
the isolated singularities in (¢,2) = (0,0) the very singular solutions (when they
exist) also play an important role in the description of the large time behaviour
of the solutions to (1.2) (see, e.g., the survey paper [25]).

To our knowledge the existence of very singular solutions has not been con-
sidered for parabolic equations with absorption when the absorption term is a
non-negative function of Vu instead of being a non-negative function of u, as it
is the case for (1.1). Before stating our main result let us make more precise the
definition of a very singular solution to (1.1) we will use in this paper.

Definition 1.1. A very singular solution to (1.1) is a function
u € C((0,+00); L'(RY))
such that
u(t) >0 ae in RY and ue€ LP((s,t); W'P(RY))
for each t € (0,+00) and s € (0,t) which satisfies

(1.3) u(t) :G(t—s)u(s)—/ G(t — o) ([Vu(0)PP) do,

(1.4) lim u(t,x) dz = 400, 1€ (0,+00),
E=20+ J{jz|<r}

1.5 lim u(t,z) de =0, r e (0,+00).
(15) lig [t (0. +00)

Here, G(t) denotes the linear heat semigroup in RY.
Our result then reads as follows.

Theorem 1.2. Assume that1 <p < (N+2)/(N+1) and puta = (2—p)/(p—1).
There is at least one very singular solution U to (1.1). More precisely, there is a
non-negative and non-increasing function

f € LY(0,+00); ¥ tdr) N C>((0, +00))



such that
(1.6) Ut,z) =t % f(|z[t %), (t,z) € (0,4+00) x RY,
and f is a solution to the ordinary differential equation

N—-1 r a
R e RAG RSN (G TG T

r € (0,400),

with the boundary conditions

’ o . a _
(1.8) f'(0)=0 and rginoor f(r)=0.

Remark 1.3. Notice that the very singular solution to (1.1) we construct is self-
similar by (1.6).

Remark 1.4. Let us mention at this point the related work [10] where solutions
to (1.1) with homogeneous Dirichlet boundary conditions on an open bounded
subset  of RY are constructed with initial data taking the value +o00 on a closed
subset of © with non-empty interior when p € (1,2). Theorem 1.2 shows that it
is also possible to construct solutions to (1.1) with initial data taking the value
+o00o at only one point. Indeed the very singular solution to (1.1) we constructed
in the above theorem formally satisfies U(0,z) = 0 if z # 0 and U(0,0) = +oo.

There are basically two possible approaches to study the existence (and unique-
ness) of a very singular solution to (1.1) and both of them have actually been
employed for (1.2). The first approach relies on the fact that (1.2) is invariant
by a rescaling in both space and time. Such a property then ensures that, if
there is a unique very singular solution V' to (1.2), it has to have a self-similar
form and to be radially symmetric as well. Therefore V' shall be of the form
Vit,r)=t""v (|x|t*5), where « and § are positive real numbers depending only
on N, m and p. Inserting this specific form of V" into the equation (1.2) yields
an ordinary differential equation for the profile v which is similar to (1.7) with
boundary conditions similar to (1.8). Shooting methods are then used to prove
the existence of the profile v [9, 22, 23, 18, 19] and the uniqueness of the profile
may be studied by ordinary differential equations methods [9, 11]. Another pos-
sible approach is to construct a very singular solution to (1.2) as the limit of the
fundamental solutions to (1.2) (i.e. the solutions to (1.2) with initial data ¢d) as
the initial mass ¢ increases to infinity (when this limit exists) [13, 16, 21, 15, 12].
We will use this second approach to prove Theorem 1.2. The main step in this
method is to obtain an L*°-estimate for the fundamental solutions which does not
depend on the initial mass. For (1.2) such an estimate follows from the existence
of a super-solution to (1.2) which depends only on time ¢t — ((p — 1)t)~"/®=1),
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Such a super-solution is not available for (1.1) and we have to proceed in a differ-
ent way. Namely we derive an L*°-estimate for the fundamental solutions which
do not depend on the initial mass with the help of an L*®-estimate of Vu(®~1/P
obtained in [3] and a stationary super-solution to (1.1). This is done in Section 2.
Section 3 is devoted to the proof of Theorem 1.2. In the last section of the paper
we prove that there is no non-negative very singular solution to (1.1) when p =1
(though there are fundamental solutions in that case [6]). We finally mention that
some of the results presented above have been announced in [4]. Furthermore in
a paper which is yet to be completed we study the uniqueness of very singular
solutions to (1.1) [5].

2. PRELIMINARIES

We first recall the well-posedness of (1.1) in the space of non-negative and
bounded measures M, (RY) [3, Theorem 1 & 3].

Theorem 2.1. Consider p € (1,(N +2)/(N +1)) and ug € M, (RY). There is
a unique non-negative function

w € C((0,T); LY(RY)) N LP((0,T); WHP(RY)), T € (0, +o0),

satisfying
w(t) = Gt — s)u /Gt—a (IVu(o)]?) do, 0<s<t,
Jim [ () v(r) dr = /¢(x) dug(x), © € BC(RY),
and
sup "2 |lu(t)[|p~ < Ch,
te(0,+00)
(2.1)

< Cy.

sup PN |Gy eV <

t€(0,400)

Here BC(RY) denotes the space of bounded and continuous functions in RY and
Cy is a positive real number depending only on N, p and ||ug|| s, -

In addition, there holds
(2.2) sup t'/7 HVU(”*D/”(IS)HLOo <(p-DYYPpli=Cyy.

t€(0,400)

We now derive additional estimates for solutions to (1.1) with non-negative
and compactly supported smooth initial data. Recall that (1.1) has a unique
non-negative classical solution when ug is a non-negative function in D(RY) (see,

e.g., 17, 2]).



For p € (1,2) we put

(2.3) Lp(r)y =", r % 1€ (0,+00),
where
(2.4) o= (p— DD (2= ),

Recall that a = (2 —p)/(p — 1).

Lemma 2.2. Letp € (1,(N +2)/(N +1)) and consider a non-negative function
ug in L'(RY). We define

(2.5) R(up) =inf {R >0, |z|" up(z) <7, a.e. in {|z| > R}},

(R(ug) € [0,400]), and denote by u the non-negative solution to (1.1) with initial
datum ug given by Theorem 2.1. If R(ug) < +oo there holds

(2.6) 0 <u(t,r) <T,(Jz| — R(uo)), 2 €RY, |z|> R(ug).

Proof. We first assume that uy € D(RY), so that u is the unique non-negative
classical solution to (1.1) with initial datum wuy. Note that as ug is compactly
supported we have R(ug) < +o0o. Consider w € SV~ where S¥~! denotes the
N — 1-dimensional unit sphere and put

D, = (0,+00) x {z € RN, z.w > R(uo)}

V(7)) =Tp(z.w — R(ug)), = €RY, xw> R(up).
On the one hand a straightforward computation yields that the function 9, is a

stationary solution to (1.1) on D,
On the other hand it follows from the definition of R(ug) that

z.w— R

(UO)>a 19w(l’) S 19w(l’)

u(0.2) = wfa) < lel = (
for every z € RY such that z.w > R(up). Also for t € (0,4+00) and x € RY
satisfying z.w = R(up) there holds

u(t,z) < 400 = J,(x).

Consequently v < 1, on the parabolic boundary of D, and the comparison
principle entails

(2.7) u(t,z) < 9,(x), (t,z) € D,.

Now take t € (0,+00), z € RY satisfying || > R(ug) and put w(z) = z/|z|.
Then (t,2) € Dy, and (2.7) yields

ut, ) < Tp(w.w(@) = Rlug)) = Tp(|z] = R(uo)),
and the proof of the lemma is complete for uy € D(RY).

|



We next consider a non-negative function uy € L*(RY) such that R(ug) defined
by (2.5) is finite. We then construct a sequence of non-negative functions (uo),
in D(RY) such that (ug,,), converges to ug in L(RY) and R(ug,) < R(ug)+2/n.
Denoting by wu, the unique non-negative classical solution to (1.1) with initial
datum wg, we proceed as in the proof of [3, Theorem 3] to show that (uy),
converges towards u in C([0,T]; L*(RY)) for every T € (0,+00). We now take
z € RY with |z| > R(ug). For n large enough we have |z| > R(ug,) hence, as
Lemma 2.2 holds true for (u,,)

2
0 < a(t2) < Ty (ol = Rluna)) < T (Jel = Rlun) = ).
The lemma then follows by letting n — +o00 in the above inequality. O

Remark 2.3. Let us mention at this point that the idea of using a stationary
solution to (1.1) to obtain (2.6) is borrowed from [15].

We now combine (2.2) and (2.6) to obtain temporal decay estimates for the
solutions to (1.1) with initial data in L'(RY).

Proposition 2.4. Let p € (1,(N + 2)/(N + 1)) and consider a non-negative
function ug in L'(RY). If u denotes the non-negative solution to (1.1) with initial
datum ug given by Theorem 2.1 and R(uy) < +oo there holds

(2.8) [u(t)||pr < €y ¢ ((NFD=P(N+1)/ =1
(2.9) Ju(t)|| e < Cy 72,
(2.10) [V u(t)|| e < Oy t=1/CE=1)

for each t > 7(ug), where Cy is a positive real number depending only on N and
p and

- (S
Recall that R(ug) is defined in (2.5).

Proof. In the following we denote by C' any positive real number depending only
on N and p. We fix t € (7(up), +00).
By (2.6) we have for R > R(uy)

() | g/ u(t, ) dm+/ u(t,z) do
{lz|<2R} {lz|>2R}

(2.12) lu@®llze < C R JJu(t)]|ze +/ Lp(la] = R(uo)) du.

{lz|>2R}
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On the one hand we infer from the Gagliardo-Nirenberg inequality [17, Theo-
rem I1.2.2] and (2.2) that

lu@®le= < C [|[VuV/

% Hup l/p H:;p//(ppl)l (N+1)p—N))

H ((N+1)p—N)

(213) Ju(®)lls= < C ul) D) VIO,

On the other hand, since I', is a non-increasing function, R > R(ug) and
pe (1,(N+2)/(N+1)) we have

[ Tyllel - R do
{lz|>2R}
= C /2R L,(r — R(ug)) rV=" dr

N-1
< C ( sup TR> / T,(r—R) (r— RN 'dr
- 2

re[2R,+o00) T R

Consequently
(2.14) / L,(Jz| — R(uo)) do < € RUNFTDp=(N+2))/(=1)
{lz|>2R}

Combining (2.12)-(2.14) then yields
[u@)ll < € RY Ju(e)|pi 0N NN
4 ¢ RNFIP=(N+2)/(p-1)
hence, thanks to the Young inequality,
u(t)]| < C ( —1/(p=1) R(IN+1)p=N)/(p=1) | R((N+1)p—(N+2))/(p—1)) i
The above inequality being valid for every R € (R(uo), +00) we finally obtain
2.1 t < inf t
(2.15) l®)ller < € inf F(R2),

F(R,t) = R(N+Dp=N)/(p—1) (tfl/(pfl) + R*2/(”’1)) )
Now, since ¢t > 7(ug) we have
Rl(ug) < <(N+ 2) —p(N+1) tl/(p—1)>(p_1)/2
(N+1Dp—N
and we may take R = R(t) in (2.15). We thus obtain
lu(®)|| < C ¢ (N+2)=p(N+1))/(2(p—1))

= R(t),

)
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hence (2.8). Next, (2.9) follows at once from (2.13) and (2.8). Finally since

vult) = - () (@),

(2.10) is a consequence of (2.2) and (2.9). O

Remark 2.5. Asp € (1,(N +2)/(N + 1)) we have
a_ N

2 ~ 2
Consequently the L*-norm of the non-negative solutions to (1.1) with non-
negative initial data in L'(R") decays faster than the L*-norm of the non-
negative solutions to the linear heat equation with the same initial data.

Remark 2.6. The temporal decay estimate (2.8) of the L'-norm of the solutions to
(1.1) with initial data satisfying R(ug) < 400 is in some sense optimal : indeed it
has been shown in [7, Corollary 3.5 that the L'-norm of a non-zero and integrable
solution to (1.1) cannot decay as t~* for a > ((N +2) —p(N +1))/(2(p — 1)).

3. EXISTENCE OF A VERY SINGULAR SOLUTION

In this section we assume that p € (1,(N 4+ 2)/(N + 1)) and we denote by
(Ci)i>2 any positive real number depending only on p and N. Let M € (0, +00).
Since M§ belongs to M, (RY) it follows from Theorem 2.1 that (1.1) has a unique
weak solution with initial datum M which we denote by uy;. In the next lemma
we gather some useful properties enjoyed by the family {uy;, M € (0,400)}.

Lemma 3.1. There is a constant Cy depending only on p and N such that for
every M € (0,4+00) and t € (0,400) there holds

(3.1) unr(®)][ 1 < Cp ¢~ (N4D=P(N+1)/2(p=1)

Y

(3.2) lurr ()l < Cy t722,
(3.3) 1V (t)|| g < Oy ¢t~ HEP=D),
(3.4) 0 < un(t, @) < Ty(lz)), =€ R\ {0},
(3.5) /uM(t, z) o(x) dx < exp (Cyt) — 1,
where
(3.6 ola) = [oP* (1+]s) ", weRY,
and

o=t €(1,400).

2(p—1)
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Proof. Let ¢ € D(RY) be a non-negative and radially symmetric function with
support in {z € R, |z| < 1} and ||¢[|;1 = 1. For n > 1 we put

on(z) =n" p(nz), =RV,

We fix M € (0,400) and denote by v, )y the non-negative classical solution to
(1.1) with initial datum M, . It follows from the analysis of [3, Section 3] that
for every t € (0,+00) and s € (0,¢)

Uny — upr in C([s, t]; LY(RY)),
(3.7)

VUH’M — Vuyr in Lp((S,t) X RN)

As ¢ is radially symmetric the rotation-invariance of (1.1) and the uniqueness of
classical solutions to (1.1) ensure that

. v (t) 18 radially symmetric for each ¢ € (0, +00).
3.8 , is radiall ic f h 0

By (2.8), (2.9) and (2.10) we have

(3.9) [mns (8)][ 1 < Cy ¢~ (N+2-p(N+1)/Co-1)
(310) ||Un,M(t)||L°° S 03 tia/2,

(3.11) Vv (t) || oo < Cy ¢ /EE=1)

(312) 0= unulte) < Tylle] - ROM), ol > R(Me,),

for every n > 1 and ¢ € [t, ar, +00), where

P ((N—i—?)—p(N—i—l)
M = (N+1)p—N

(3.13) ) 7 R(Mgn)?.

Now, as the support of ¢, is included in {x € R",|z| < 1/n} we have

lim t, v = lirf R(Myp,) =0,
n—-+0o0

n——+00
and we infer from (3.7), (3.9)-(3.12) and the continuity of I', that u,; enjoys the
properties (3.1)-(3.4).
We next check (3.5). Recalling that p < 2 we have @ > 1 and ¢ € C?*(RY)
defined by (3.6) satisfies

(3.14) Ao(z) < Cy o(x) |z|7%, 2 € RN,

Let t € (0,400) and s € (0,¢). Also let & be a function in D(RY) satisfying
0<¢<1,
E(z)y=1 if |z|<1 and &(z)=0 if |z]| > 2,
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and put &,(z) = (z/n) for z € RY and n > 1. It follows from (1.1) that

/uM(t) 0& dr < /UM(S) 0 & dx

/ / up(0) Ao &) dado.

Since A (¢ &,) converges pointwisely to Ap as n — 400 and is uniformly bounded
with respect to n > 1 we infer from the integrability (3.1) of uys on (s,t) x RY
and the Lebesgue dominated convergence theorem that

lim / /uM Ao &) dxda—/ /uM Ap dxdo.
n——+00

Since &, converges pointwisely to 1 as n — 400 we may pass to the limit in the
previous inequality and use again (3.1) and the Lebesgue dominated convergence

theorem to obtain
/uM(t) odr < /uM(s) o dx

t
/ /uM(a) Ap dxdo.
It then follows from (3.14) that

(3.15) /UM(t) odr < /UM(S) o dx

¢
+ / /uM(J) o |z|™? dxdo.
By (3.4) we have

/’LLM(U, z) o(x) |z| % dx

unp (o, 7) o(z) dx Iy(lz r) |z|7? da
< [ oo des [ e o) b
< /’LLM(U, z) o(x) dx + Cs.

Recalling (3.15) we obtain

/uM(t)gdx < /uM(s)gdx
+ G /St <1+/uM(a) de> do.
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The Gronwall lemma then yields

/UM(t) odr < <1 +/uM(s) 0 dx) exp (Ce(t — s)) — 1.

Finally, since 0 € BC(RY) with o(0) = 0 we may let s — 0 in the above inequality
and obtain (3.5). O

An obvious consequence of (3.7) and (2.2) is the following result.

Lemma 3.2. For each M € (0,+00) and t € (0,+00) there holds

(3.16) sup /P
t€(0,400)

‘Vugﬁ_l)/p(t)H S CHJ.
LOO

We next prove that the sequence (uys) is monotonic with respect to M.

Lemma 3.3. For each M € (0,4+00) and t € (0,+00), upn(t) is a radially sym-
metric and non-increasing function and

(317) M, < M) = Upr, < Upg,.

Proof. We fix M € (0,400). For n > 1 we again denote by v, 5s the non-negative
classical solution to (1.1) with initial datum M, defined at the beginning of the
proof of Lemma 3.1. A straightforward consequence of (3.7) and (3.8) is that

up(t) is radially symmetric for each ¢ € (0, 4+00).

We next check that uy(t) is non-increasing with respect to the space variable.
Let n > 1 and consider (y,z) € R x R such that |y| + 2/n < |z]. We then
introduce the function wy, s defined by

Wo o (t, 1, %o, ..y IN) =V (t, Yy +2 — 21, T2, ... ,ZN)

for (t,x1,2,... ,7x) € (0,+00) x RY. We also put

£ = (0, +00) x {xGRN,<x1—y;Z> (z—y)go}.

We first observe that v,y and w,, s are solutions to (1.1) on £ and enjoy the
following properties on the parabolic boundary of £ :

Wo(0,2) =0 < v, r(0,2) if <x1 Y ; Z) (z—y) <0,
wo v (t,x) = vy m(t,x) if x = y—gz

We may then apply the comparison principle and conclude that

Var(t, ) > wu i (t,x), (t,x) €E.
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In particular, taking = = (y,0,...,0) we obtain
(3.18) U (8,9,0,...,0) > v, (2, 2,0,...,0).

Now take (z,7) € RY x RY satisfying |z| > |z| + 2/n. Owing to (3.8) and
(3.18) there holds

vnm(t, ) = v (t, 2],0,...,0) < vy, ]2],0,...,0) = v, m(t, T).

Consequently, for every (z,z) € RY x RN there holds
(3.19) |Z| > |z| 4+ 2/n = v m(t, ) > v, (t,Z), t € (0,400).

We may then let n — 400 in (3.19) and use (3.7) to conclude that uy,(t) is
non-increasing with respect to the space variable for each ¢ € (0, +00).

Finally, if M; < M, we clearly have My, < Msyp, and the comparison prin-
ciple entails vy, pr, < v, for each n > 1. This fact and (3.7) at once yields
(3.17). O

We are now ready to prove Theorem 1.2. Let ¢ € (0, +00). Owing to (3.1) and
(3.17), (upn(t)) s is @ non-decreasing sequence of functions in L'(R"Y) which is
bounded in L'(RY). The monotone convergence theorem then entails that

(3.20) Ut,z) = sup up(t,z), zcRY,
Me(0,+00)

belongs to L'(RY) and
(3.21) lim [Juse(t) = U(8)][10 = 0.

M —+00
Now proceeding along the lines of [3, Section 3] and using (3.1)-(3.4) and (3.21)
we prove that for each t € (0,4+00) and s € (0,¢), we have
U) >0 ae. in RY and U € LP((s,t); W"P(RY))
and U satisfies

U(t) = Gt — )U(s) — / G(t — o) (|VU()]) do.

Also, by (3.2)-(3.3) we have that both U and VU belong to L*((s,t) x RY).
Therefore classical parabolic regularity results and a bootstrap argument entail
that U € Ctlf (K) for any compact subset K of (0,+o00) x RY. Furthermore we
infer from Lemma 3.3 and (3.21) that

U(t) is radially symmetric and non-increasing for each

(3.22) t € (0,400).
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It remains to check that U has the expected behaviour as t — 0. Fix r €
(0, +00) and let ¢ € D(RY) be a non-negative function such that 0 < ¢ <1 and

C(z)=0 if |z|>r and ((x)=1 if |z| <r/2.
By (3.20) we have

/ U(t,z) do > /uM(t,x) ((z) dx

{lz|<r}

for every M € (0, +00). Letting ¢ — 0 in the above inequality yields
t—0

lim inf/ U(t,z) dv > M for every M € (0,+00).
{lw|<r}

Therefore
(3.23) lim U(t,x) de = +o0.

20 Hlal<ry
It next follows from (3.5) and (3.21) that
/ U(t,7) ox) da < exp (Cat) — 1, £ € (0, +00).

Consequently

1 2\~
| Ui < ( 2’“) | Ut ofw) do
{lz|>r} r {lz|>r}

IA
7N
—_
Ll
=
N
N——
Q
)
»
T
&2
=
|
=

hence
(3.24) lim U(t,z) de = 0.
=20 J{jz|>r}

Summing up we have proved that U defined by (3.20) is a very singular solution
to (1.1) in the sense of Definition 1.1 and that U(t) is radially symmetric and
non-increasing for each ¢ € (0, +o0). In addition we infer from Lemma 3.2 and
(3.21) that

(3.25) sup t'/7 HVU(I”’I)/I”(t)HLoo < Chy.
t€(0,400)

We now prove that U has the self-similar form (1.6). For A € (0,+o0) and
M € (0,+00) we define

wy(t,z) = A% upr (Nt Az),  (t,z) € (0,+00) x RY,
(X, M) = A(NF2)=p(N+1))/(p—=1) pf.
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Recall that a = (2 —p)/(p — 1).

It is straightforward to check that uj, is a solution to (1.1) with initial datum
p(A, M)d in the sense of Theorem 2.1. Such a solution being unique by Theo-
rem 2.1 we conclude that

(3.26) Uy = Up(a,01)-
We then infer from (3.20) and (3.26) that
AU (Nt dx) = U(t, ).

As this equality is valid for every (\,¢,x) € (0,+00)? x RV it is easy to deduce
from (3.22) that

(3.27) Ut,z) =t % f(Jz[t ), (t,2) € (0, +00) x RY,
where

f(ry=U1,r,0,...,0), re(0,+00).
Observe that by (3.22)

(3.28) f is a non-increasing function on (0, +00).

As U is a solution to (1.1) a standard computation shows that f is a solution
to the ordinary differential equation (1.7) and (3.22) and the smoothness of U
yield f'(0) = 0. Also, owing to (3.27) and (3.28) we have

| vttayae = @ or [ gy ay
{lz[>1} {lyl>t=1/2}

()2 / £(y)) dy
{2t=1/2>|y|>t—1/2}

07 tfa/2 f (21:_71/2)
Co (2012)° 1 (261)

v

v 1V

Consequently for r € (0, +00)
r® f(r) < Cy / U (4r~2 ) du,
{lz[>1}
and (3.24) entails that
(3.29) lim r* f(r) =0.

r—+00

Thus f fulfills the boundary conditions (1.8).
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We finally check that f € C*°((0,400)). Classical arguments first ensure that
f € C%*((0,400)). Also as U is not identically zero by (1.4) the function f is not
identically zero. In fact we claim that

(3.30) f(r) >0, re(0,+0c0).

Indeed arguing by contradiction we assume that f(rg) = 0 for some ry > 0.
Since f is non-increasing we obtain that f and thus f’ vanish identically on
[rg, +00). Then r — (f(ro — ), —f'(ro — r)) is a solution on (0,7) to a second-
order ordinary differential equation with Lipschitz continuous non-linearities and
initial data (0,0) which entails f = 0 and a contradiction. We next prove that

(3.31) f'(r) <0, re(0,+00).
Indeed define
S={re(0,+00),f <0 in [0,r)}.
Since f > 0 on (0,+0c) and is non-increasing, f(0) > 0 and thus f”(0) =
—(a/2N) f(0) < 0. Consequently S is non-empty and we put
p=-supS.

If p < 400 we necessarily have f'(p) = 0 and it follows from (1.7) and (3.30)
that f”(p) < 0. But then f’ has to be positive on some interval (p — 7, p) for
some 1 > 0, hence a contradiction. Consequently p = +oo and the claim (3.31)
is proved.

Now as 1+ |r[P is C*-smooth on compact subsets of (0,+00) the smoothness
of f follows from (1.7) and (3.31) by classical arguments.

4. NON-EXISTENCE OF VERY SINGULAR SOLUTIONS FOR p =1
In this section we consider the case p =1, i.e.
(4.1) ug — Au+ |[Vu| =0 in (0,+00) x RV,

Note that (4.1) is a nonlinear parabolic equation but has the same homogeneity
as the linear heat equation. We first recall the well-posedness of (4.1) in M, (RY)

[6].

Proposition 4.1. Let ug € M (RY). There exists a unique non-negative func-
tion

u € C((0, +00); My (R™)) N L(0, +-00; WH(RY))
satisfying

(4.2) u(t) = G(t)ug — /0 G(t—s) (|[Vu(s)|) ds, te]0,+00).
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Notice that since u(t) belongs to L*(RY) for almost every ¢ € (0, +00) we have
in fact u € C((0, +00); L*(RY)). We now supplement Proposition 4.1 with some
further properties enjoyed by u.

Lemma 4.2. Let ug € M (RY) and denote by u the solution to (4.1) with
u(0) = wgy given by Proposition 4.1. For each T € (0,4+00) andt € (0,T) we have

Vu e L¥((t,T); L"(RY) N L>®(RY))
and there is a positive constant C1(T) depending only on N and T such that

(4.3) IVu@)ller < CUT) lluollag, t77,
(4.4) IVu(®)le= < CoT) [Juollag, £+,

Proof. Let T € (0,4+00) and ¢ € (0,T). By the Duhamel formula (4.2) we have
¢
IVu(®llzr < Cr 712 Jluollw, + Co / (t= )" [Vu(s)]lz: ds,
0

and a singular Gronwall lemma (see, e.g., [1, Theorem 11.3.3.1]) yields (4.3). We
next use again the Duhamel formula (4.2) to obtain

IVu(®)le= < Cot” D2 Jlug| g,

t/2
+ O / (t—s)_(NJrl)/2 |IVu(s)||: ds
0

¢
+ O / (t—s)_l/2 IVu(s)| L~ ds
12

Thanks to (4.3) we deduce
t
IVu(®) |z < Co t= D2 Jug| g, + Co / (t =) [IVu(s) |~ ds.
0

We apply again a singular Gronwall lemma and obtain (4.4). O

We now state and prove the main result of this section.

Proposition 4.3. There is no very singular solution to (4.1) in the sense of
Definition 1.1.

In order to prove Proposition 4.3 we shall follow the classical approach which
is to prove that a very singular solution (if it exists) is necessarily above every
fundamental solution. More precisely we have the following result.
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Lemma 4.4. Let M € (0,+00) and denote by uy the non-negative solution to
(4.1) with initial datum Mo which is given by Proposition 4.1. If v is a very
singular solution to (4.1) there holds

(4.5) up(t, ) < wv(t,x), (t,2) € (0,4+00) x RY.
Proof. By (1.4)-(1.5) we have
i (@)l = o
By a suitable truncation it is then possible to construct a sequence of non-negative
functions (vo)k>k, Where ks is a large integer such that
(4.6) vor(z) <v(l/k,z), v €RN, k>ky and |vogllp = M.

We next denote by v, the unique non-negative solution to (4.1) with initial datum
vox given by Proposition 4.1. Owing to (4.6) and (4.4) we may proceed as in the
proof of [3, Theorem 3] to show that there is a subsequence of (vy) (not relabeled)
and a non-negative function w € C((0, +00); L' (RY)) such that

(4.7) v — w in C((s,t); L*(RY)) n L (s, t; WHH(RY))
for every t € (0,400) and s € (0,¢). Passing to the limit in (4.2) then yields
t
w(t) =Gt —s)w(s)— | Gt —o)(|Vw(o)]) do, 0<s<t.

S

It remains to identify the initial datum taken by w. For ¢ € D(RY) and
t € (0,1) we infer from (4.1), (4.3) and (4.6) that

/vk(t) ¢ do — /"U[)yk ¢ dx
t t
< Il /0 / oe dads + ||l /0 / V| duds

< |[Cllwaee (Mt +2C3(1) M £42).
It also follows from (4.6) that for each r € (0, +00) there holds

/Ug’k ¢ dz — M ((0)

(4.8)

+2 [|¢]| / v(1/k,x) dz.
{lz|zr}

We first let & — 400 in the above estimate and use (1.5) to obtain

/ vog € dz — M C(0)] < M sup |¢(x) — C(0)].

lz|<r

lim sup
k— 400
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As the above inequality is valid for every r € (0, +00) the continuity of ¢ allows
to conclude that

(4.9) lim [ wvox ¢ dv =M ((0).

k——+o00

Owing to (4.7) and (4.9) we may let £ — +oo in (4.8) and obtain
‘/w(t) Cdr— M C(O)‘ < |I¢llweee (Mt +2C, (1) M 12) .

Consequently

(4.10) lim [ w(t,z) ((z) do = M ¢(0)

t—0+

for every ¢ € D(RY). As w is a subsolution to the heat equation it can be proved
that (4.10) actually holds for every ¢ € BC(RY). It then follows from (4.10) and
the properties of the linear heat semigroup that in fact

Jim [Jao(t) — Mol = 0,

which together with Proposition 4.1 yields w = uy,.
Finally, as vox < v(1/k) by (4.6) the comparison principle entails

ve(t, ) <w(t+1/k,z), (t,7) € (0,4+00) x RV,

As v € C((0,+00); L*(RY)) by Definition 1.1 we may let k¥ — +o0 in the above
inequality and obtain (4.5). O

We may now prove Proposition 4.3. Assume for contradiction that there is a
very singular solution v to (4.1) in the sense of Definition 1.1. By Lemma 4.4
there holds

up(t,z) <w(t,x), (t,x) € (0,4+00) x RY
for every M € (0, +00). But a simple homogeneity argument and Proposition 4.1
yield that uy; = M u;. Consequently on the one hand

(4.11) M u(t,x) <wv(t,x), (t,)€ (0,+00) x RY

for every M € (0,400). On the other hand a maximum principle argument
entails that u,(t,z) > 0 for (t,z) € (0,+00) x RV [24, p. 173]. We may then let
M — +o0 in (4.11) and obtain that v is identically equal to +oco in (0, +0c) x RV,
hence a contradiction. The proof of Proposition 4.3 is then complete.

Remark 4.5. We conjecture that if p > (N + 2)/(N + 1) there does not exist
very singular solutions to (1.1). At least the method we have used to prove The-
orem 1.2 and which is based on suitable properties of the fundamental solutions
ups to (1.1) does not work. Indeed, if p > (N + 2)/(N + 1) we have proved in
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[3, Theorem 4] that there is no fundamental solution to (1.1) (i.e. solutions with
initial data MJ).
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