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Abstract. We prove the existence of a very singular solution to

ut ��u+ jrujp = 0 in (0;+1)� R
N
;

when 1 < p < (N + 2)=(N + 1).

1. Introduction

We investigate the existence of a very singular solution at the origin to the
following viscous Hamilton-Jacobi equation

ut ��u+ jrujp = 0 in (0;+1)� R
N
:(1.1)

A very singular solution at the origin to (1.1) is a non-negative solution to (1.1)
which is smooth in (0;+1)� R

N and ful�lls the following two conditions

lim
t!0+

Z
fjxj�rg

u(t; x) dx = +1;

lim
t!0+

Z
fjxj�rg

u(t; x) dx = 0;

for every r 2 (0;+1). The name very singular solution has been introduced by
Brezis, Peletier and Terman [9] who proved the existence and uniqueness of a
self-similar very singular solution W to

ut ��u+ u
p = 0 in (0;+1)� R

N
;(1.2)

when 1 < p < 1 + 2=N . Such a name is justi�ed by the fact that the singularity
of W in (t; x) = (0; 0) is stronger than the singularity in (t; x) = (0; 0) of the
fundamental solutions to (1.2), that is the solutions to (1.2) whose initial data is
cÆ, where c 2 (0;+1) and Æ denotes the Dirac mass centered at x = 0. Indeed,
when 1 < p < 1+2=N and c 2 (0;+1), (1.2) has a unique non-negative solution
Wc such that Wc(0) = cÆ [8] and Wc satis�es

lim
t!0+

Z
fjxj�rg

Wc(t; x) dx = c < +1;

while the very singular solution W satis�es

lim
t!0+

Z
fjxj�rg

W (t; x) dx = +1:

In fact, if 1 < p < 1 + 2=N , Oswald has proved in [20] that the following
alternative holds : consider a non-negative solution u to (1.2) which is smooth in�
[0;+1)� R

N
�
n f(0; 0)g and singular in (t; x) = (0; 0) with u(0; x) = 0 if x 6= 0.

Then either u � W or there exists c 2 (0;+1) such that u � Wc. A complete
classi�cation of the possible isolated singularities in (t; x) = (0; 0) of solutions to
(1.2) is thus available.

1



2

Since the pioneering work of Brezis, Peletier and Terman [9], the existence,
uniqueness and non-existence of non-negative very singular solutions have been
extensively investigated for nonlinear parabolic equations with absorption of the
form

ut �Au+ u
p = 0 in (0;+1)� R

N
;

where Au = �u [9, 13], Au = �um, m > 1 [22, 16, 19], Au = �um, (1 �
2=N)+ < m < 1 [21, 18], Au = div (jrujm�2ru), m > 2 [23, 11, 15] and
Au = div (jrujm�2ru), 2N=(N + 1) < m < 2 [12]. Besides the description of
the isolated singularities in (t; x) = (0; 0) the very singular solutions (when they
exist) also play an important role in the description of the large time behaviour
of the solutions to (1.2) (see, e.g., the survey paper [25]).
To our knowledge the existence of very singular solutions has not been con-

sidered for parabolic equations with absorption when the absorption term is a
non-negative function of ru instead of being a non-negative function of u, as it
is the case for (1.1). Before stating our main result let us make more precise the
de�nition of a very singular solution to (1.1) we will use in this paper.

De�nition 1.1. A very singular solution to (1.1) is a function

u 2 C((0;+1);L1(RN ))

such that

u(t) � 0 a.e. in R
N and u 2 L

p((s; t);W 1;p(RN ))

for each t 2 (0;+1) and s 2 (0; t) which satis�es

u(t) = G(t� s)u(s)�

Z t

s

G(t� �) (jru(�)jp) d�;(1.3)

lim
t!0+

Z
fjxj�rg

u(t; x) dx = +1; r 2 (0;+1);(1.4)

lim
t!0+

Z
fjxj�rg

u(t; x) dx = 0; r 2 (0;+1):(1.5)

Here, G(t) denotes the linear heat semigroup in RN .

Our result then reads as follows.

Theorem 1.2. Assume that 1 < p < (N+2)=(N+1) and put a = (2�p)=(p�1).
There is at least one very singular solution U to (1.1). More precisely, there is a

non-negative and non-increasing function

f 2 L
1((0;+1); rN�1dr) \ C1((0;+1))
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such that

U(t; x) = t
�a=2

f
�
jxjt

�1=2
�
; (t; x) 2 (0;+1)� R

N
;(1.6)

and f is a solution to the ordinary di�erential equation

f
00(r) +

�
N � 1

r
+
r

2

�
f
0(r) +

a

2
f(r)� jf 0(r)j

p
= 0;(1.7)

r 2 (0;+1);

with the boundary conditions

f
0(0) = 0 and lim

r!+1
r
a
f(r) = 0:(1.8)

Remark 1.3. Notice that the very singular solution to (1.1) we construct is self-
similar by (1.6).

Remark 1.4. Let us mention at this point the related work [10] where solutions
to (1.1) with homogeneous Dirichlet boundary conditions on an open bounded
subset 
 of RN are constructed with initial data taking the value +1 on a closed
subset of 
 with non-empty interior when p 2 (1; 2). Theorem 1.2 shows that it
is also possible to construct solutions to (1.1) with initial data taking the value
+1 at only one point. Indeed the very singular solution to (1.1) we constructed
in the above theorem formally satis�es U(0; x) = 0 if x 6= 0 and U(0; 0) = +1.

There are basically two possible approaches to study the existence (and unique-
ness) of a very singular solution to (1.1) and both of them have actually been
employed for (1.2). The �rst approach relies on the fact that (1.2) is invariant
by a rescaling in both space and time. Such a property then ensures that, if
there is a unique very singular solution V to (1.2), it has to have a self-similar
form and to be radially symmetric as well. Therefore V shall be of the form
V (t; x) = t

��
v
�
jxjt

��
�
, where � and � are positive real numbers depending only

on N , m and p. Inserting this speci�c form of V into the equation (1.2) yields
an ordinary di�erential equation for the pro�le v which is similar to (1.7) with
boundary conditions similar to (1.8). Shooting methods are then used to prove
the existence of the pro�le v [9, 22, 23, 18, 19] and the uniqueness of the pro�le
may be studied by ordinary di�erential equations methods [9, 11]. Another pos-
sible approach is to construct a very singular solution to (1.2) as the limit of the
fundamental solutions to (1.2) (i.e. the solutions to (1.2) with initial data cÆ) as
the initial mass c increases to in�nity (when this limit exists) [13, 16, 21, 15, 12].
We will use this second approach to prove Theorem 1.2. The main step in this
method is to obtain an L1-estimate for the fundamental solutions which does not
depend on the initial mass. For (1.2) such an estimate follows from the existence

of a super-solution to (1.2) which depends only on time t 7! ((p � 1)t)�1=(p�1).
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Such a super-solution is not available for (1.1) and we have to proceed in a di�er-
ent way. Namely we derive an L1-estimate for the fundamental solutions which
do not depend on the initial mass with the help of an L1-estimate of ru(p�1)=p

obtained in [3] and a stationary super-solution to (1.1). This is done in Section 2.
Section 3 is devoted to the proof of Theorem 1.2. In the last section of the paper
we prove that there is no non-negative very singular solution to (1.1) when p = 1
(though there are fundamental solutions in that case [6]). We �nally mention that
some of the results presented above have been announced in [4]. Furthermore in
a paper which is yet to be completed we study the uniqueness of very singular
solutions to (1.1) [5].

2. Preliminaries

We �rst recall the well-posedness of (1.1) in the space of non-negative and
bounded measures M+

b (R
N ) [3, Theorem 1 & 3].

Theorem 2.1. Consider p 2 (1; (N + 2)=(N + 1)) and u0 2 M
+
b (R

N ). There is

a unique non-negative function

u 2 C((0; T );L1(RN )) \ Lp((0; T );W 1;p(RN )); T 2 (0;+1);

satisfying

u(t) = G(t� s)u(s)�

Z t

s

G(t� �) (jru(�)jp) d�; 0 < s � t;

lim
t!0+

Z
u(t; x)  (x) dx =

Z
 (x) du0(x);  2 BC(RN );

and 8>>><
>>>:

sup
t2(0;+1)

t
N=2

ku(t)kL1 � CH ;

sup
t2(0;+1)

t
(p(N+1)�N)=2p

ru(p�1)=p(t)
L1

� CH :

(2.1)

Here BC(RN ) denotes the space of bounded and continuous functions in R
N and

CH is a positive real number depending only on N , p and ku0kMb
.

In addition, there holds

sup
t2(0;+1)

t
1=p

ru(p�1)=p(t)
L1

� (p� 1)1�1=p p�1 := CHJ :(2.2)

We now derive additional estimates for solutions to (1.1) with non-negative
and compactly supported smooth initial data. Recall that (1.1) has a unique
non-negative classical solution when u0 is a non-negative function in D(R

N ) (see,
e.g., [17, 2]).
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For p 2 (1; 2) we put

�p(r) = p r
�a
; r 2 (0;+1);(2.3)

where

p = (p� 1)(p�2)=(p�1) (2� p)�1:(2.4)

Recall that a = (2� p)=(p� 1).

Lemma 2.2. Let p 2 (1; (N +2)=(N +1)) and consider a non-negative function

u0 in L1(RN ). We de�ne

R(u0) = inf fR > 0 ; jxja u0(x) � p a.e. in fjxj � Rgg;(2.5)

(R(u0) 2 [0;+1]), and denote by u the non-negative solution to (1.1) with initial

datum u0 given by Theorem 2.1. If R(u0) < +1 there holds

0 � u(t; x) � �p (jxj �R(u0)) ; x 2 R
N
; jxj > R(u0):(2.6)

Proof. We �rst assume that u0 2 D(R
N ), so that u is the unique non-negative

classical solution to (1.1) with initial datum u0. Note that as u0 is compactly
supported we have R(u0) < +1. Consider ! 2 S

N�1 where SN�1 denotes the
N � 1-dimensional unit sphere and put

D! = (0;+1)�
�
x 2 R

N
; x:! > R(u0)

	
#!(x) = �p(x:! �R(u0)); x 2 R

N
; x:! > R(u0):

On the one hand a straightforward computation yields that the function #! is a
stationary solution to (1.1) on D!.
On the other hand it follows from the de�nition of R(u0) that

u(0; x) = u0(x) � p jxj
�a =

�
x:! � R(u0)

jxj

�a

#!(x) � #!(x)

for every x 2 R
N such that x:! > R(u0). Also for t 2 (0;+1) and x 2 R

N

satisfying x:! = R(u0) there holds

u(t; x) < +1 = #!(x):

Consequently u � #! on the parabolic boundary of D! and the comparison
principle entails

u(t; x) � #!(x); (t; x) 2 D!:(2.7)

Now take t 2 (0;+1), x 2 R
N satisfying jxj > R(u0) and put !(x) = x=jxj.

Then (t; x) 2 D!(x) and (2.7) yields

u(t; x) � �p(x:!(x)� R(u0)) = �p(jxj � R(u0));

and the proof of the lemma is complete for u0 2 D(R
N ).
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We next consider a non-negative function u0 2 L
1(RN ) such that R(u0) de�ned

by (2.5) is �nite. We then construct a sequence of non-negative functions (u0;n)n
in D(RN ) such that (u0;n)n converges to u0 in L

1(RN ) and R(u0;n) � R(u0)+2=n.
Denoting by un the unique non-negative classical solution to (1.1) with initial
datum u0;n we proceed as in the proof of [3, Theorem 3] to show that (un)n
converges towards u in C([0; T ];L1(RN )) for every T 2 (0;+1). We now take
x 2 R

N with jxj > R(u0). For n large enough we have jxj > R(u0;n) hence, as
Lemma 2.2 holds true for (un)

0 � un(t; x) � �p (jxj � R(u0;n)) � �p

�
jxj � R(u0)�

2

n

�
:

The lemma then follows by letting n! +1 in the above inequality.

Remark 2.3. Let us mention at this point that the idea of using a stationary
solution to (1.1) to obtain (2.6) is borrowed from [15].

We now combine (2.2) and (2.6) to obtain temporal decay estimates for the
solutions to (1.1) with initial data in L1(RN ).

Proposition 2.4. Let p 2 (1; (N + 2)=(N + 1)) and consider a non-negative

function u0 in L
1(RN ). If u denotes the non-negative solution to (1.1) with initial

datum u0 given by Theorem 2.1 and R(u0) < +1 there holds

ku(t)kL1 � C1 t
�((N+2)�p(N+1))=(2(p�1))

;(2.8)

ku(t)kL1 � C1 t
�a=2

;(2.9)

kru(t)kL1 � C1 t
�1=(2(p�1))

;(2.10)

for each t > �(u0), where C1 is a positive real number depending only on N and

p and

�(u0) =

�
(N + 2)� p(N + 1)

(N + 1)p�N

�1�p

R(u0)
2
:(2.11)

Recall that R(u0) is de�ned in (2.5).

Proof. In the following we denote by C any positive real number depending only
on N and p. We �x t 2 (�(u0);+1).
By (2.6) we have for R � R(u0)

ku(t)kL1 �

Z
fjxj�2Rg

u(t; x) dx+

Z
fjxj>2Rg

u(t; x) dx

ku(t)kL1 � C R
N
ku(t)kL1 +

Z
fjxj>2Rg

�p(jxj � R(u0)) dx:(2.12)
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On the one hand we infer from the Gagliardo-Nirenberg inequality [17, Theo-
rem II.2.2] and (2.2) that

ku(t)kL1 � C
ru(p�1)=p(t)(Np)=((N+1)p�N)

L1

�

u(p�1)=p(t)p2=((p�1)((N+1)p�N))

Lp=(p�1)

ku(t)kL1 � C ku(t)k
p=((N+1)p�N)

L1 t
�N=((N+1)p�N)

:(2.13)

On the other hand, since �p is a non-increasing function, R > R(u0) and
p 2 (1; (N + 2)=(N + 1)) we haveZ

fjxj>2Rg

�p(jxj � R(u0)) dx

= C

Z
1

2R

�p(r � R(u0)) r
N�1

dr

� C

 
sup

r2[2R;+1)

r

r �R

!N�1 Z
1

2R

�p(r � R) (r � R)N�1 dr

ConsequentlyZ
fjxj>2Rg

�p(jxj � R(u0)) dx � C R
((N+1)p�(N+2))=(p�1)

:(2.14)

Combining (2.12)-(2.14) then yields

ku(t)kL1 � C R
N
ku(t)k

p=((N+1)p�N)

L1 t
�N=((N+1)p�N)

+ C R
((N+1)p�(N+2))=(p�1)

hence, thanks to the Young inequality,

ku(t)kL1 � C
�
t
�1=(p�1)

R
((N+1)p�N)=(p�1) +R

((N+1)p�(N+2))=(p�1)
�
:

The above inequality being valid for every R 2 (R(u0);+1) we �nally obtain

ku(t)kL1 � C inf
R>R(u0)

F(R; t);(2.15)

F(R; t) = R
((N+1)p�N)=(p�1)

�
t
�1=(p�1) +R

�2=(p�1)
�
:

Now, since t > �(u0) we have

R(u0) <

�
(N + 2)� p(N + 1)

(N + 1)p�N
t
1=(p�1)

�(p�1)=2

:= R(t);

and we may take R = R(t) in (2.15). We thus obtain

ku(t)kL1 � C t
�((N+2)�p(N+1))=(2(p�1))

;
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hence (2.8). Next, (2.9) follows at once from (2.13) and (2.8). Finally since

ru(t) =
p

p� 1
u(t)1=p ru(p�1)=p(t);

(2.10) is a consequence of (2.2) and (2.9).

Remark 2.5. As p 2 (1; (N + 2)=(N + 1)) we have

a

2
>
N

2
:

Consequently the L
1-norm of the non-negative solutions to (1.1) with non-

negative initial data in L
1(RN ) decays faster than the L

1-norm of the non-
negative solutions to the linear heat equation with the same initial data.

Remark 2.6. The temporal decay estimate (2.8) of the L1-norm of the solutions to
(1.1) with initial data satisfying R(u0) < +1 is in some sense optimal : indeed it
has been shown in [7, Corollary 3.5] that the L1-norm of a non-zero and integrable
solution to (1.1) cannot decay as t�� for � > ((N + 2)� p(N + 1))=(2(p� 1)).

3. Existence of a very singular solution

In this section we assume that p 2 (1; (N + 2)=(N + 1)) and we denote by
(Ci)i�2 any positive real number depending only on p and N . Let M 2 (0;+1).
SinceMÆ belongs toM+

b (R
N ) it follows from Theorem 2.1 that (1.1) has a unique

weak solution with initial datumMÆ which we denote by uM . In the next lemma
we gather some useful properties enjoyed by the family fuM ;M 2 (0;+1)g.

Lemma 3.1. There is a constant C2 depending only on p and N such that for

every M 2 (0;+1) and t 2 (0;+1) there holds

kuM(t)kL1 � C2 t
�((N+2)�p(N+1))=(2(p�1))

;(3.1)

kuM(t)kL1 � C2 t
�a=2

;(3.2)

kruM(t)kL1 � C2 t
�1=(2(p�1))

;(3.3)

0 � uM(t; x) � �p(jxj); x 2 R
N
n f0g;(3.4) Z

uM(t; x) %(x) dx � exp (C2t)� 1;(3.5)

where

%(x) = jxj
2�
�
1 + jxj2

���
; x 2 R

N
;(3.6)

and

� =
p

2(p� 1)
2 (1;+1):
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Proof. Let ' 2 D(RN ) be a non-negative and radially symmetric function with
support in fx 2 RN ; jxj � 1g and k'kL1 = 1. For n � 1 we put

'n(x) = n
N
'(nx); x 2 R

N
:

We �x M 2 (0;+1) and denote by vn;M the non-negative classical solution to
(1.1) with initial datum M'n. It follows from the analysis of [3, Section 3] that
for every t 2 (0;+1) and s 2 (0; t)8<

:
vn;M �! uM in C([s; t];L1(RN ));

rvn;M �! ruM in L
p((s; t)� R

N ):
(3.7)

As ' is radially symmetric the rotation-invariance of (1.1) and the uniqueness of
classical solutions to (1.1) ensure that

vn;M(t) is radially symmetric for each t 2 (0;+1):(3.8)

By (2.8), (2.9) and (2.10) we have

kvn;M(t)kL1 � C3 t
�((N+2)�p(N+1))=(2(p�1))

;(3.9)

kvn;M(t)kL1 � C3 t
�a=2

;(3.10)

krvn;M(t)kL1 � C3 t
�1=(2(p�1))

;(3.11)

0 � vn;M(t; x) � �p(jxj �R(M'n)); jxj > R(M'n);(3.12)

for every n � 1 and t 2 [tn;M ;+1), where

tn;M =

�
(N + 2)� p(N + 1)

(N + 1)p�N

�1�p

R(M'n)
2
:(3.13)

Now, as the support of 'n is included in fx 2 R
N
; jxj � 1=ng we have

lim
n!+1

tn;M = lim
n!+1

R(M'n) = 0;

and we infer from (3.7), (3.9)-(3.12) and the continuity of �p that uM enjoys the
properties (3.1)-(3.4).
We next check (3.5). Recalling that p < 2 we have � > 1 and % 2 C

2(RN )
de�ned by (3.6) satis�es

�%(x) � C4 %(x) jxj
�2
; x 2 R

N
:(3.14)

Let t 2 (0;+1) and s 2 (0; t). Also let � be a function in D(RN ) satisfying
0 � � � 1,

�(x) = 1 if jxj � 1 and �(x) = 0 if jxj � 2;
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and put �n(x) = �(x=n) for x 2 RN and n � 1. It follows from (1.1) thatZ
uM(t) % �n dx �

Z
uM(s) % �n dx

+

Z t

s

Z
uM(�) � (% �n) dxd�:

Since � (% �n) converges pointwisely to �% as n! +1 and is uniformly bounded
with respect to n � 1 we infer from the integrability (3.1) of uM on (s; t)� R

N

and the Lebesgue dominated convergence theorem that

lim
n!+1

Z t

s

Z
uM(�) � (% �n) dxd� =

Z t

s

Z
uM(�) �% dxd�:

Since �n converges pointwisely to 1 as n! +1 we may pass to the limit in the
previous inequality and use again (3.1) and the Lebesgue dominated convergence
theorem to obtain Z

uM(t) % dx �

Z
uM(s) % dx

+

Z t

s

Z
uM(�) �% dxd�:

It then follows from (3.14) thatZ
uM(t) % dx �

Z
uM(s) % dx(3.15)

+ C4

Z t

s

Z
uM(�) % jxj

�2
dxd�:

By (3.4) we haveZ
uM(�; x) %(x) jxj�2 dx

�

Z
fjxj�1g

uM(�; x) %(x) dx+

Z
fjxj�1g

�p(jxj) %(x) jxj
�2

dx

�

Z
uM(�; x) %(x) dx+ C5:

Recalling (3.15) we obtainZ
uM(t) % dx �

Z
uM(s) % dx

+ C6

Z t

s

�
1 +

Z
uM(�) % dx

�
d�:
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The Gronwall lemma then yieldsZ
uM(t) % dx �

�
1 +

Z
uM(s) % dx

�
exp (C6(t� s))� 1:

Finally, since % 2 BC(RN ) with %(0) = 0 we may let s! 0 in the above inequality
and obtain (3.5).

An obvious consequence of (3.7) and (2.2) is the following result.

Lemma 3.2. For each M 2 (0;+1) and t 2 (0;+1) there holds

sup
t2(0;+1)

t
1=p

ru(p�1)=pM (t)

L1

� CHJ :(3.16)

We next prove that the sequence (uM) is monotonic with respect to M .

Lemma 3.3. For each M 2 (0;+1) and t 2 (0;+1), uM(t) is a radially sym-

metric and non-increasing function and

M1 �M2 =) uM1
� uM2

:(3.17)

Proof. We �xM 2 (0;+1). For n � 1 we again denote by vn;M the non-negative
classical solution to (1.1) with initial datumM'n de�ned at the beginning of the
proof of Lemma 3.1. A straightforward consequence of (3.7) and (3.8) is that

uM(t) is radially symmetric for each t 2 (0;+1):

We next check that uM(t) is non-increasing with respect to the space variable.
Let n � 1 and consider (y; z) 2 R � R such that jyj + 2=n � jzj. We then
introduce the function wn;M de�ned by

wn;M(t; x1; x2; : : : ; xN) = vn;M(t; y + z � x1; x2; : : : ; xN)

for (t; x1; x2; : : : ; xN) 2 (0;+1)� R
N . We also put

E = (0;+1)�

�
x 2 R

N
;

�
x1 �

y + z

2

�
(z � y) � 0

�
:

We �rst observe that vn;M and wn;M are solutions to (1.1) on E and enjoy the
following properties on the parabolic boundary of E :

wn;M(0; x) = 0 � vn;M(0; x) if

�
x1 �

y + z

2

�
(z � y) � 0;

wn;M(t; x) = vn;M(t; x) if x1 =
y + z

2
:

We may then apply the comparison principle and conclude that

vn;M(t; x) � wn;M(t; x); (t; x) 2 E:
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In particular, taking x = (y; 0; : : : ; 0) we obtain

vn;M(t; y; 0; : : : ; 0) � vn;M(t; z; 0; : : : ; 0):(3.18)

Now take (x; �x) 2 R
N
� R

N satisfying j�xj � jxj + 2=n. Owing to (3.8) and
(3.18) there holds

vn;M(t; x) = vn;M(t; jxj; 0; : : : ; 0) � vn;M(t; j�xj; 0; : : : ; 0) = vn;M(t; �x):

Consequently, for every (x; �x) 2 RN � R
N there holds

j�xj � jxj+ 2=n =) vn;M(t; x) � vn;M(t; �x); t 2 (0;+1):(3.19)

We may then let n ! +1 in (3.19) and use (3.7) to conclude that uM(t) is
non-increasing with respect to the space variable for each t 2 (0;+1).
Finally, if M1 � M2 we clearly have M1'n � M2'n and the comparison prin-

ciple entails vn;M1
� vn;M2

for each n � 1. This fact and (3.7) at once yields
(3.17).

We are now ready to prove Theorem 1.2. Let t 2 (0;+1). Owing to (3.1) and
(3.17), (uM(t))M>0 is a non-decreasing sequence of functions in L

1(RN ) which is

bounded in L1(RN ). The monotone convergence theorem then entails that

U(t; x) = sup
M2(0;+1)

uM(t; x); x 2 R
N
;(3.20)

belongs to L1(RN ) and

lim
M!+1

kuM(t)� U(t)kL1 = 0:(3.21)

Now proceeding along the lines of [3, Section 3] and using (3.1)-(3.4) and (3.21)
we prove that for each t 2 (0;+1) and s 2 (0; t), we have

U(t) � 0 a.e. in R
N and U 2 L

p((s; t);W 1;p(RN ))

and U satis�es

U(t) = G(t� s)U(s)�

Z t

s

G(t� �) (jrU(�)jp) d�:

Also, by (3.2)-(3.3) we have that both U and rU belong to L1((s; t) � R
N ).

Therefore classical parabolic regularity results and a bootstrap argument entail

that U 2 C
1;2
t;x (K) for any compact subset K of (0;+1) � R

N . Furthermore we

infer from Lemma 3.3 and (3.21) that

U(t) is radially symmetric and non-increasing for each
t 2 (0;+1).

(3.22)
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It remains to check that U has the expected behaviour as t ! 0. Fix r 2

(0;+1) and let � 2 D(RN ) be a non-negative function such that 0 � � � 1 and

�(x) = 0 if jxj � r and �(x) = 1 if jxj � r=2:

By (3.20) we have Z
fjxj�rg

U(t; x) dx �

Z
uM(t; x) �(x) dx

for every M 2 (0;+1). Letting t! 0 in the above inequality yields

lim inf
t!0

Z
fjxj�rg

U(t; x) dx �M for every M 2 (0;+1):

Therefore

lim
t!0

Z
fjxj�rg

U(t; x) dx = +1:(3.23)

It next follows from (3.5) and (3.21) thatZ
U(t; x) %(x) dx � exp (C2t)� 1; t 2 (0;+1):

ConsequentlyZ
fjxj�rg

U(t; x) dx �

�
1 + r

2

r2

�� Z
fjxj�rg

U(t; x) %(x) dx

�

�
1 + r

2

r2

��

(exp (C2t)� 1) ;

hence

lim
t!0

Z
fjxj�rg

U(t; x) dx = 0:(3.24)

Summing up we have proved that U de�ned by (3.20) is a very singular solution
to (1.1) in the sense of De�nition 1.1 and that U(t) is radially symmetric and
non-increasing for each t 2 (0;+1). In addition we infer from Lemma 3.2 and
(3.21) that

sup
t2(0;+1)

t
1=p

rU (p�1)=p(t)

L1

� CHJ :(3.25)

We now prove that U has the self-similar form (1.6). For � 2 (0;+1) and
M 2 (0;+1) we de�ne

u
�
M(t; x) = �

a
uM

�
�
2
t; �x

�
; (t; x) 2 (0;+1)� R

N
;

�(�;M) = �
((N+2)�p(N+1))=(p�1)

M:
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Recall that a = (2� p)=(p� 1).
It is straightforward to check that u�M is a solution to (1.1) with initial datum
�(�;M)Æ in the sense of Theorem 2.1. Such a solution being unique by Theo-
rem 2.1 we conclude that

u
�
M = u�(�;M):(3.26)

We then infer from (3.20) and (3.26) that

�
a
U
�
�
2
t; �x

�
= U(t; x):

As this equality is valid for every (�; t; x) 2 (0;+1)2 � R
N it is easy to deduce

from (3.22) that

U(t; x) = t
�a=2

f
�
jxjt

�1=2
�
; (t; x) 2 (0;+1)� R

N
;(3.27)

where

f(r) = U(1; r; 0; : : : ; 0); r 2 (0;+1):

Observe that by (3.22)

f is a non-increasing function on (0;+1):(3.28)

As U is a solution to (1.1) a standard computation shows that f is a solution
to the ordinary di�erential equation (1.7) and (3.22) and the smoothness of U
yield f 0(0) = 0. Also, owing to (3.27) and (3.28) we haveZ

fjxj�1g

U(t; x) dx = t
(N�a)=2

Z
fjyj�t�1=2g

f(jyj) dy

� t
(N�a)=2

Z
f2t�1=2�jyj�t�1=2g

f(jyj) dy

� C7 t
�a=2

f
�
2t�1=2

�
� C8

�
2t�1=2

�a
f
�
2t�1=2

�
:

Consequently for r 2 (0;+1)

r
a
f(r) � C9

Z
fjxj�1g

U
�
4r�2; x

�
dx;

and (3.24) entails that

lim
r!+1

r
a
f(r) = 0:(3.29)

Thus f ful�lls the boundary conditions (1.8).



15

We �nally check that f 2 C1((0;+1)). Classical arguments �rst ensure that
f 2 C

2((0;+1)). Also as U is not identically zero by (1.4) the function f is not
identically zero. In fact we claim that

f(r) > 0; r 2 (0;+1):(3.30)

Indeed arguing by contradiction we assume that f(r0) = 0 for some r0 > 0.
Since f is non-increasing we obtain that f and thus f 0 vanish identically on
[r0;+1). Then r 7! (f(r0 � r);�f 0(r0 � r)) is a solution on (0; r0) to a second-
order ordinary di�erential equation with Lipschitz continuous non-linearities and
initial data (0; 0) which entails f � 0 and a contradiction. We next prove that

f
0(r) < 0; r 2 (0;+1):(3.31)

Indeed de�ne

S = fr 2 (0;+1); f 0 < 0 in [0; r)g :

Since f > 0 on (0;+1) and is non-increasing, f(0) > 0 and thus f 00(0) =
�(a=2N) f(0) < 0. Consequently S is non-empty and we put

� = supS:

If � < +1 we necessarily have f 0(�) = 0 and it follows from (1.7) and (3.30)
that f 00(�) < 0. But then f

0 has to be positive on some interval (� � �; �) for
some � > 0, hence a contradiction. Consequently � = +1 and the claim (3.31)
is proved.
Now as r 7! jrj

p is C1-smooth on compact subsets of (0;+1) the smoothness
of f follows from (1.7) and (3.31) by classical arguments.

4. Non-existence of very singular solutions for p = 1

In this section we consider the case p = 1, i.e.

ut ��u+ jruj = 0 in (0;+1)� R
N
:(4.1)

Note that (4.1) is a nonlinear parabolic equation but has the same homogeneity
as the linear heat equation. We �rst recall the well-posedness of (4.1) inM+

b (R
N )

[6].

Proposition 4.1. Let u0 2 M
+
b (R

N ). There exists a unique non-negative func-

tion

u 2 C([0;+1);M+
b (R

N )) \ L1(0;+1;W 1;1(RN ))

satisfying

u(t) = G(t)u0 �

Z t

0

G(t� s) (jru(s)j) ds; t 2 [0;+1):(4.2)
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Notice that since u(t) belongs to L1(RN ) for almost every t 2 (0;+1) we have
in fact u 2 C((0;+1);L1(RN )). We now supplement Proposition 4.1 with some
further properties enjoyed by u.

Lemma 4.2. Let u0 2 M
+
b (R

N ) and denote by u the solution to (4.1) with

u(0) = u0 given by Proposition 4.1. For each T 2 (0;+1) and t 2 (0; T ) we have

ru 2 L
1((t; T );L1(RN ) \ L1(RN ))

and there is a positive constant C1(T ) depending only on N and T such that

kru(t)kL1 � C1(T ) ku0kMb
t
�1=2

;(4.3)

kru(t)kL1 � C1(T ) ku0kMb
t
�(N+1)=2

:(4.4)

Proof. Let T 2 (0;+1) and t 2 (0; T ). By the Duhamel formula (4.2) we have

kru(t)kL1 � C1 t
�1=2

ku0kMb
+ C1

Z t

0

(t� s)�1=2 kru(s)kL1 ds;

and a singular Gronwall lemma (see, e.g., [1, Theorem II.3.3.1]) yields (4.3). We
next use again the Duhamel formula (4.2) to obtain

kru(t)kL1 � C1 t
�(N+1)=2

ku0kMb

+ C1

Z t=2

0

(t� s)�(N+1)=2
kru(s)kL1 ds

+ C1

Z t

t=2

(t� s)�1=2 kru(s)kL1 ds

Thanks to (4.3) we deduce

kru(t)kL1 � C1 t
�(N+1)=2

ku0kMb
+ C1

Z t

0

(t� s)�1=2 kru(s)kL1 ds:

We apply again a singular Gronwall lemma and obtain (4.4).

We now state and prove the main result of this section.

Proposition 4.3. There is no very singular solution to (4.1) in the sense of

De�nition 1.1.

In order to prove Proposition 4.3 we shall follow the classical approach which
is to prove that a very singular solution (if it exists) is necessarily above every
fundamental solution. More precisely we have the following result.



17

Lemma 4.4. Let M 2 (0;+1) and denote by uM the non-negative solution to

(4.1) with initial datum MÆ which is given by Proposition 4.1. If v is a very

singular solution to (4.1) there holds

uM(t; x) � v(t; x); (t; x) 2 (0;+1)� R
N
:(4.5)

Proof. By (1.4)-(1.5) we have

lim
t!0+

kv(t)kL1 = +1:

By a suitable truncation it is then possible to construct a sequence of non-negative
functions (v0;k)k�kM where kM is a large integer such that

v0;k(x) � v(1=k; x); x 2 R
N
; k � kM and kv0;kkL1 =M:(4.6)

We next denote by vk the unique non-negative solution to (4.1) with initial datum
v0;k given by Proposition 4.1. Owing to (4.6) and (4.4) we may proceed as in the
proof of [3, Theorem 3] to show that there is a subsequence of (vk) (not relabeled)
and a non-negative function w 2 C((0;+1);L1(RN )) such that

vk �! w in C((s; t);L1(RN )) \ L1(s; t;W 1;1(RN ))(4.7)

for every t 2 (0;+1) and s 2 (0; t). Passing to the limit in (4.2) then yields

w(t) = G(t� s)w(s)�

Z t

s

G(t� �) (jrw(�)j) d�; 0 < s < t:

It remains to identify the initial datum taken by w. For � 2 D(RN ) and
t 2 (0; 1) we infer from (4.1), (4.3) and (4.6) that����

Z
vk(t) � dx�

Z
v0;k � dx

����(4.8)

� k�kW 2;1

Z t

0

Z
vk dxds+ k�kL1

Z t

0

Z
jrvkj dxds

� k�kW 2;1

�
Mt + 2C1(1) M t

1=2
�
:

It also follows from (4.6) that for each r 2 (0;+1) there holds����
Z
v0;k � dx�M �(0)

���� � M sup
jxj�r

j�(x)� �(0)j

+2 k�kL1

Z
fjxj�rg

v(1=k; x) dx:

We �rst let k ! +1 in the above estimate and use (1.5) to obtain

lim sup
k!+1

����
Z
v0;k � dx�M �(0)

���� �M sup
jxj�r

j�(x)� �(0)j :



18

As the above inequality is valid for every r 2 (0;+1) the continuity of � allows
to conclude that

lim
k!+1

Z
v0;k � dx =M �(0):(4.9)

Owing to (4.7) and (4.9) we may let k! +1 in (4.8) and obtain����
Z
w(t) � dx�M �(0)

���� � k�kW 2;1

�
Mt + 2C1(1) M t

1=2
�
:

Consequently

lim
t!0+

Z
w(t; x) �(x) dx =M �(0)(4.10)

for every � 2 D(RN ). As w is a subsolution to the heat equation it can be proved
that (4.10) actually holds for every � 2 BC(RN ). It then follows from (4.10) and
the properties of the linear heat semigroup that in fact

lim
t!0+

kw(t)�MÆkMb
= 0;

which together with Proposition 4.1 yields w = uM .
Finally, as v0;k � v(1=k) by (4.6) the comparison principle entails

vk(t; x) � v(t+ 1=k; x); (t; x) 2 (0;+1)� R
N
:

As v 2 C((0;+1);L1(RN )) by De�nition 1.1 we may let k ! +1 in the above
inequality and obtain (4.5).

We may now prove Proposition 4.3. Assume for contradiction that there is a
very singular solution v to (4.1) in the sense of De�nition 1.1. By Lemma 4.4
there holds

uM(t; x) � v(t; x); (t; x) 2 (0;+1)� R
N

for everyM 2 (0;+1). But a simple homogeneity argument and Proposition 4.1
yield that uM =M u1. Consequently on the one hand

M u1(t; x) � v(t; x); (t; x) 2 (0;+1)� R
N(4.11)

for every M 2 (0;+1). On the other hand a maximum principle argument
entails that u1(t; x) > 0 for (t; x) 2 (0;+1)� R

N [24, p. 173]. We may then let
M ! +1 in (4.11) and obtain that v is identically equal to +1 in (0;+1)�RN ,
hence a contradiction. The proof of Proposition 4.3 is then complete.

Remark 4.5. We conjecture that if p � (N + 2)=(N + 1) there does not exist
very singular solutions to (1.1). At least the method we have used to prove The-
orem 1.2 and which is based on suitable properties of the fundamental solutions
uM to (1.1) does not work. Indeed, if p � (N + 2)=(N + 1) we have proved in
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[3, Theorem 4] that there is no fundamental solution to (1.1) (i.e. solutions with
initial data MÆ).
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