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Abstract

The scattering matrix describes monolithic microwave integrated

circuits that are connected to transmission lines in terms of their wave

modes. Using a �nite-volume method the corresponding boundary

value problem of Maxwell's equations can be solved by means of a

two-step procedure. An eigenvalue problem for non-symmetric matri-

ces yields the wave modes. The eigenfunctions determine the boundary

values at the ports of the transmission lines for the calculation of the

�elds in the three dimensional structure. The electromagnetic �elds

and the matrix elements are achieved by the solution of large-scale sys-

tems of linear equations with inde�nite symmetric matrices. Improved

numerical solutions for the time and memory consuming problems are

treated in this paper. Numerical results are discussed for real life prob-

lems. The numerical e�ort could be reduced considerably. This paper

is a revised version of the preprint No. 378.

Contents

1 Introduction 2

2 Scattering Matrix 4

3 Boundary Value Problem 5

4 Matrix Representation of the

Maxwellian Equations 6

5 System of Linear Algebraic Equations 7

6 Eigenvalue Problem 11

7 Numerical Results 13

7.1 Numerical Example for the System of Linear Algebraic Equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.2 Numerical Examples for the Eigenvalue Problem . . . . . . . . 15

1



List of Figures

1 Example of discretized structure: coupled spiral inductors. x

direction on a larger scale . . . . . . . . . . . . . . . . . . . . 3

List of Tables

1 Performance comparisions of di�erent preconditioners com-

pared to the original version for the calculation of the scatter-

ing matrix of the right-hand side of the structure consisting of

coupled spiral inductors. . . . . . . . . . . . . . . . . . . . . . 15

2 Comparisions of computing times for the eigenvalue problem

between the original and the new version for a lossfree and a

lossy example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Introduction

The design of monolithic microwave integrated circuits (MMIC) requires e�-

cient CAD tools in order to avoid costly and time-consuming redesign cycles.

The electromagnetic characteristics of microwave circuits and packages

can be described by equivalent circuits in terms of voltages and currents or

by the scattering matrix. With growing frequencies the voltage and current

de�nitions become ambiguous and the scattering matrix approach is more

appropriate. In order to determine the scattering matrix, the circuit is in-

serted between transmission lines. As an example, Figure 1 shows a structure

consisting of two spiral inductors. The coupling between them had to be cal-

culated. The current is fed by four coplanar transmission lines. Only short

parts of them are shown in the �gure. For typical microwave packages one is

dealing with transmission lines of the microstrip or coplanar type. The scat-

tering matrix describes the structure in terms of wave modes on these lines.

In this way, a three dimensional boundary-value problem can be formulated

using the Maxwellian equations in frequency domain in order to compute the

electromagnetic �eld and, subsequently, the scattering matrix.

We solve the problem numerically by the so-called Finite Di�erence Meth-

od in Frequency Domain (FDFD) [1], [2], [3]. The �eld volume is subdivided

into rectangular cells, and the Maxwellian partial di�erential equations are

approximated by di�erence equations. They can be set up by the method of
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Figure 1: Example of discretized structure: coupled spiral inductors. x di-

rection on a larger scale

�nite integration, using the integral formulation of Maxwell's equations for

each cell.

Working in the frequency domain is superior to the more common time

domain approach in certain cases: The scattering matrix of a given structure

can be calculated for an arbitrary number of simultaneously excited modes.

For structures with electrically small geometric details the frequency domain

allows shorter computing times, because with the time domain small cell

sizes require an excessive number of small time steps for stability reasons.

The time domain approach does not provide mode separation in contrast to

FDFD.
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2 Scattering Matrix

The structure under investigation consists of in�nitely long transmission lines

and a discontinuity (see Figure 1). The transmission lines are assumed to

be longitudinally homogeneous. The discontinuity may have an arbitrary

structure. The �elds are computed in a rectangular volume, which contains

the discontinuity and short parts of the transmission lines. Ports are de-

�ned on the transmission lines. The remaining surface of the computational

volume is formed by electric or magnetic walls. The incoming modes al are

changed in the discontinuity. The changed outgoing modes are denoted with

bl. The scattering matrix S describes the energy exchange and phase relation

between all outgoing modes b
(p)
l and all incoming modes a

(p)
l [4]:

b�;� =

msX
�=1

S�;�a�;� ; S =

0
BB@

S11 S12 � � � S1ms

S21 S22 � � � S2ms

: : : : : : : : : : : : : : : : : : : : : : :

Sms1 Sms2 � � � Smsms

1
CCA = (S�;�); (1)

�; �; � = 1(1)ms; ms =

pX
p=1

m(p): (2)

m(p) is the number of modes which have to be taken into account on the port

p. p is the number of ports. The modes on a port p are numbered with l.

Then the indices � (and �) are related to the mode l in the following way

� = l +

p�1X
q=1

m(q): (3)

The scattering matrix can be extracted from the orthogonal decomposition

of the electric �eld at a pair of two neighboring cross-sectional planes p and

p+�p (see Figure 1) on each waveguide for a number of linear independent

excitations of the transmission lines [4].
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3 Boundary Value Problem

We use the integral form of the Maxwellian equations in the frequency do-

main: I
@


1

~��0
~B � d~s =

Z



(|!~��0 ~E) � d~
;
I
[


(~��0 ~E) � d~
 = 0;

I
@


~E � d~s =

Z



(�|! ~B) � d~
;
I
[


~B � d~
 = 0

(4)

taking into account the constitutive relations

~B = � ~H; ~D = � ~E; with � = � +
�

|!
; � = ~��0; � = ~��0: (5)

The electric and the magnetic �eld intensity ~E and ~H, and the electric and

magnetic �ux density ~D and ~B, respectively, are complex functions of the

spatial coordinates only. ! is the angular frequency and |2 = �1. The

permeability �, the permittivity �, and the conductivity � are assumed to be

scalar functions of the spatial coordinates.

At the port p the transverse electric �eld ~Et(zp) is given by superposing all

transmission line modes ~Et;l(zp) with weighted mode-amplitude sums wl(zp):

~Et(zp) =

m(p)X
l=1

wl(zp) ~Et;l(zp): (6)

The transverse electric mode �elds ~E
(p)
t;l = ~Et;l(zp) are computed using an

eigenvalue problem for transmission lines (see section 6).

At all other parts of the enclosure the tangential electric or magnetic �eld

is assumed to be zero:

~Etang = 0 or ~Htang = 0: (7)

The transverse mode �elds ~Et;l(zp) satisfy an orthogonality relation

Z



( ~Et;l(zp)� ~Ht;m) � d~
 = �m�l;m: (8)
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The mode amplitudes of the transverse electric �elds are normalized:

j �m j= 1Watt: (9)

The orthogonality relation (8) is applied at two neighboring cross-sectional

planes zp and zp +�zp:

1
�m

R



( ~E
(p)
t � ~H

(p)
t;m) � d~
 = a

(p)
m + b

(p)
m = w

(p)
m ;

1
�m

R



( ~E
(p+�p)
t � ~H

(p)
t;m) � d~
 = a

(p+�p)
m + b

(p+�p)
m = w

(p+�p)
m :

(10)

The weighted mode-amplitude sums w
(p)
l are given. Because of

a(p+�p)
m = a(p)m e�|k

(p)
z
l
�zp; b(p+�p)

m = b(p)m e+|k
(p)
z
l
�zp (11)

we can compute the mode amplitudes a
(p)
m and b

(p)
m from (10), and subse-

quently, the scattering matrix (1). k
(p)
zl ; l = 1(1)m(p), are the propagation

constants (see section 6) at the port p.

4 Matrix Representation of the

Maxwellian Equations

The region is divided into elementary cells (see Figure 1) using a three dimen-

sional nonequidistant orthonormal Cartesian grid. We use staggered grids

[5], [6]. The electric �eld components are located at the centers of the edges

of the cell and the magnetic �ux density components are normal to the cen-

ters of the faces. Thus, the electric �eld components form a primary grid, and

the magnetic �ux density components a dual grid. We use the lowest-order

integration formulaeI
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (12)

in order to approximate Maxwellian equations (4). Thus, we get the matrix

representation of (4):

ATDs=~�
~b = |!�0�0DA~�

~e; BDA~�
~e = 0;

ADs~e = �|!DA
~b; BTDA

~b = 0:

(13)
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The vectors ~e and ~b contain the components of the electric �eld intensity

and the components of the magnetic �ux density of the elementary cells,

respectively. The diagonal matrices Ds=~�, DA~�
, Ds, and DA contain the

information on cell dimension and material for the speci�ed structure and

the corresponding mesh. A is de�ned as the operator of the line integral in

the second Maxwellian equation (left formula of the second row of (4)) using

the primary grid. B represents the surface integral of the divergence. A and

B are sparse, and contain the values 1, -1 and 0 only.

5 System of Linear Algebraic Equations

Eliminating the components of the magnetic �ux density from the two equa-

tions of the left-hand side of (13) we get the system of linear algebraic equa-

tions

Q1~e = 0; Q1 = ATDs=~�D
�1
A ADs � k20DA~�

; k0 = !
p
�0�0: (14)

The ingoing wave modes at the ports of the structure act as sources for the

�eld inside the discontinuity. Thus, a source term has to be induced by

partitioning of the matrix Q1:

Q1 = Q1;A +Q1;r; Q1;A~e = �Q1;r~e; (15)

where Q1;r~e is known. Using ~r = �Q1;r~e the matrix Q1;A is transformed into

the symmetric matrix ~Q1;A, after some manipulations:

~Q1;A
~~e = D

1
2
s Q1;AD

�
1
2

s D
1
2
s ~e = �D

1
2
s Q1;r~e = D

1
2
s ~r = ~~r: (16)

Now, we take advantage of the fact that there is no space charge in our

volume, and therefore div(~��0 ~E) = 0. The gradient of the electric-�eld diver-

gence

~��0r(
1

(~��0)2
r � ~��0 ~E) = 0 (17)

is equivalent to the matrix equation

Q2~e = 0 with Q2 = D�1
s DA~�

BTD�1
V~�~�
BDA~�

: (18)
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The elements of the diagonal matrix DV~�~� contain the information on cell

dimension and material ~��0 for the 8 partial volumes of the dual elementary

cells used for the computation of (17) [4], [7].

We carry out a similar partitioning like (15) for Equation (18):

Q2 = Q2;A +Q2;r: (19)

Using Q2;r~e = 0 the matrix Q2;A is transformed into the symmetric matrix
~Q2;A, after some manipulations:

~Q2;A
~~e = D

1
2
s Q2;AD

�
1
2

s D
1
2
s ~e = �D

1
2
s Q2;r~e = 0; ~~e = D

1
2
s ~e: (20)

Adding Equation (20) to (16) the new system can be solved numerically

faster [1].

The high-dimensional inde�nite symmetric system of linear algebraic equa-

tions (see (14), (16), (20)) with multiple right hand sides

U~~e = ~~r; U = D
1
2
s Q1;AD

�
1
2

s = ~Q1;A; (21)

V~~e = 0; V = D
1
2
s Q2;AD

�
1
2

s = ~Q2;A (22)

is solved using iterative methods. The number of right hand sides is ms (see

(2)).

The convergence rate of iterative methods depends on spectral properties

of the coe�cient matrix U . Thus, we transform the linear system (21) into

one that is equivalent in the sense that is has the same solution but more

favorable spectral properties. A preconditioner M = M1M2 is a matrix that

performs such a transformation:

M�1
1 UM�1

2 (M2
~~e) = M�1

1
~~r (23)

We use four kinds of preconditioning:

1. The e�ect of the addition of the two equations (16) and (20) described

above can be interpreted as preconditioning. Using (22) we construct

a preconditioner M for the original system (21):

M�1
1 = I + V U�1; M1 = (I + V U�1)�1; M2 = I: (24)

Substituting (24) in (23) we get

(I + V U�1)U~~e = (I + V U�1)~~r ) (U + V )~~e = ~~r + V~~e = ~~r (25)
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or

~U~~e = ~~r with ~U = U + V: (26)

2. A commonly used approach for solving large sparse linear systems is to

�nd sets of unknowns which are independent. A set of such unknowns is

called an independent set. Independent set orderings are permutations
~P to transform the system (26) into the form

~P ~U ~P T~t =

�
~D ~ET

~E ~H

��
~t1
~t2

�
=

�
~s1
~s2

�
(27)

with

~t = ~P~~e =

�
~t1
~t2

�
; ~s = ~P~~r =

�
~s1
~s2

�
: (28)

~D is a diagonal matrix, ~E is a general sparse matrix, and ~H is a

quadratic sparse matrix. The unknowns of the independent set ~D are

eliminated to get the next reduced matrix

Û = ~H � ~E ~D�1 ~ET ; (29)

and we have to solve the system of linear equations

Û~t2 = ( ~H � ~E ~D�1 ~ET )~t2 = ~s2 � ~E ~D�1~s1 (30)

or

Û~̂e = ~̂r; Û = ~H � ~E ~D�1 ~ET ; ~̂e = ~t2; ~̂r = ~s2 � ~E ~D�1~s1: (31)

Thus, we get

~t1 = ~D�1(~s1 � ~ET~t2) = ~D�1(~s1 � ~ET~̂e): (32)

Then we have to permute the solution vector ~t (see (28)) back to the

vector ~~e (see (20), (26)).

3. Using a preconditioner M̂ = M̂1M̂2 Equation (31) can be written as

M̂�1
1 ÛM̂�1

2 (M̂2
~̂e) = M̂�1

1
~̂r: (33)
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Let be

M̂1 = D̂
1
2

Û
; M̂2 = D̂

1
2

Û
; D̂Û = diag(Û): (34)

Combining (33) and (34) with (31) we obtain

�U~�e = ~�r; �U = D̂
�

1
2

Û
ÛD̂

�
1
2

Û
; ~�e = D̂

1
2

Û
~̂e; ~�r = D̂

�
1
2

Û
~̂r: (35)

4. We construct an SSOR preconditioner for the matrix �U (see (35)) [13]

with a parameter !. If the matrix �U is decomposed as

�U = I + L + LT (36)

in its diagonal, strict lower, and strict upper triangular part, the SSOR

matrices are de�ned as

�M1 = (I + !L); �M2 = (I + !LT ) with 0 < ! < 2: (37)

We have to solve the system of linear algebraic equations

�M�1
1

�U �M�1
2 ( �M2

~�e) = �M�1
1
~�r: (38)

We use Eisenstat's trick [14]. Because of (see (36))

�M�1
1

�U �M�1
2 =

1

!
((I + !LT )�1 + (I + !L)�1(I � (2� !)(I + !LT )�1))

the matrix vector product ( �M�1
1

�U �M�1
2 )v, for any vector v, requires two

solves [15] with the triangular matrices (I + !L) and (I + !LT ) plus

a few arithmetical operations.

The Equations (38) are solved with Krylov subspace methods described in

[16], [17], [18].

At present, we can handle structures with up to 3 million unknowns on

modern workstations with a memory of half a GByte. The computing time

for the solution of the linear algebraic equations are reduced compared to the

original version [1], [3] by a factor of 10 (see section 7).
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6 Eigenvalue Problem

The transverse electric mode �elds ~E
(p)
t;l at the ports have to be computed

before we can solve the system of linear equations. Because the transmission

lines are longitudinally homogeneous any �eld can be expanded into a sum

of so-called modal �elds

~E(x; y; z � 2h) = ~E(x; y; z)e�|kz2h; (39)

which vary exponentially in the longitudinal direction. kz is the propagation

constant. 2h is the length of an elementary cell in z-direction. We consider

the �eld components in three consecutive elementary cells. The electric �eld

components of the vector ~e (see Equation (14)) Exi;j;k+1
, Exi;j;k�1 , Eyi;j;k+1

,

Eyi;j;k�1 , Ezi;j;k�1, Ezi+1;j;k�1
, and Ezi;j+1;k�1

are expressed by the values of cell

k using ansatz (39). The longitudinal electric �eld components Ez can be

eliminated by means of the equation BDA~�
~e = 0 (see (13)) [7] . Thus, we

get an eigenvalue problem for the transverse electric �eld on the transmission

line region:

C~e = 
~e : (40)

~e consists of components Exi;j;k and Eyi;j;k , k = const, of the eigenfunctions.

Thus, the problem for the transmission line is reduced to a two dimensional

problem. The sparse matrix C is non-symmetric or non-Hermitian in the

lossless or the lossy case, respectively. The order of C is 2nxny � nb. nxny
is the number of elementary cells at the port. The size of nb depends on the

boundary conditions at the port. The relations between the eigenvalues 


and the propagation constants kz are


 = e�|kz2h + e+|kz2h � 2 = �4 sin2(kzh) = u+ |v; (41)

kz =
|

2h
ln

�



2
+ 1 +

r



2

�

2
+ 2
��

= � � |�: (42)

A propagation constant kz and its corresponding eigenfunction is called a

mode. The energy of the complex and evanescent modes decreases expo-

nentially with the distance from the discontinuity. Thus, in technical ap-

plications most of the modes can be neglected within the limit of accuracy.

Generally speaking, the larger the magnitude of the imaginary part of kz the

11



stronger the decay. Therefore, to sort the propagation constants according

to their importance in our problem, we use the

Criterion: The propagation constants kz are sorted in ascending order of

j � j. In the case that some j � j have the same value the constants kz are

sorted in descending order of j � j.
Computing the wanted propagation constants and the corresponding ei-

genfunctions the transverse electric �elds ~E
(p)
t;l , l = 1(1)m(p), are known at

the ports p, and the boundary condition (6) can be built superposing the

transmission line modes. In an earlier version of the method [3], [12] the

complete set of eigenvalues and of corresponding propagation constants was

computed and sorted in order to select the interesting propagation constants.

The sparse matrix was stored as a dense matrix.

We avoid the computation of all eigenvalues to �nd the few required

propagation constants using the implicitly restarted Arnoldi method [8],

[9]. The sparse storage technique is applied.

The Arnoldi algorithm is called iteratively to solve the standard eigen-

value problem using the inverse mode C�1x = 1


x with the solution of linear

algebraic equations. In general the method does not converge using the reg-

ular mode for our eigenvalue problem. We use a combined unifrontal/multi-

frontal method [10] for the solution of large sparse sets of ill-conditioned

unsymmetric linear equations.

By means of the Arnoldi iteration we can compute a set of eigenvalues

of largest or smallest magnitude, real part or imaginary part, but we cannot

�nd in one step the set of eigenvalues according to our criterion. Therefore,

we must proceed in two steps.

In a �rst run we compute a subset E of eigenvalues 
 of smallest mag-

nitude using the Arnoldi method in inverse mode looking for eigenvalues of

largest magnitude, and compute the corresponding subset �E of propagation

constants. However, we have to �nd a subset �A of propagation constants

with the smallest magnitude of the imaginary part, but possibly with large

real part. In general, we have �A \ �E 6= ; but �A 6� �E.
To search for the corresponding additional eigenvalues, we use a second

run of the Arnoldi method with a modi�ed matrix.

The wave number

kf = !
p
�� = k0

p
~�~� (43)

is an upper bound for the interesting propagation constants of undamped

modes in a waveguide. Using the maximum wave number k(max) of the cells

12



we extend the matrix C by a diagonal matrix which consists of the negative

elements


(a)� = 
(max)(1 +
�

10
); � = 1(1)ma; 
(max) = �4(hk(max))2: (44)

In a second run we compute a subset E l ofma+mr eigenvalues of smallest

real part of the extended matrix C� using the Arnoldi method in inverse

mode. mr is the number of negative eigenvalues of the subset E computed

in the �rst run. Separating the mn new eigenvalues of E l and computing the

corresponding propagation constants we have found all propagation constants

according to our criterion if mn < ma. Otherwise we have to increase ma for

a new computation [11].

The modes satisfy the orthogonality relation (8) if kzl 6= �kzm . In the

case of multiple eigenvalues the eigenfunctions are orthogonalized according

to (8) using the method of Gram-Schmidt.

7 Numerical Results

The main steps of the Finite Di�erence Method in Frequency Domain

1. Generation of the two dimensional (port) and three dimensional (dis-

continuity) geometric structure and of the material dates,

2. Solution of the eigenmode problem,

3. Solution of the three dimensional boundary value problem (system of

linear algebraic equations) and calculation of the scattering matrix

are implemented in apart programs. The time and memory consuming parts

are the solution of the eigenmode problem and the solution of the system of

linear algebraic equations. The number of eigenvalue problems to be solved

depends on the number of ports (see Figure 1). The number of systems of

linear algebraic equations to be solved depends on the number of ports and

of modes. In general the steps (2.) and (3.) have to be done for several

frequencies ! (see Eqn. (4)).

The reduction of the computing time is demonstrated calculating the

scattering matrix of a structure consisting of coupled spiral inductors. The

structure is assumed to be lossfree. The structure represented in Figure 1 is

symmetric along the z-direction. Using appropriate boundary conditions it

13



will do to discretize the right-hand side of the structure only. The right-hand

side of the structure is divided into nxyz = nxnynz = 239 040 elementary cells

with nx = 30, ny = 83, and nz = 96.

For the eigenmode problem the reduction of the computing time is demon-

strated too by a second application using the algorithms in complex arith-

metics (lossy case).

The time data in the Tables 1 and 2 refer to a SGI-Server Origin2000

with a memory of 4 GBytes. The execution times are given in seconds.

7.1 Numerical Example for the System of Linear Alge-

braic Equations

The order of the system of linear algebraic equations is n = 3nxyz = 717 120.

The total number of nonzeros of the matrix ~U (26) amounts to 4 501 636

for this example where only nnz = 2 609 378 elements are stored. We apply

an independent set ordering to the matrix ~U (27) to obtain the reduced

matrix Û(29). The order of the reduced system of linear equations (30) is

nr = 323 982. The total number of nonzeros of the matrix Û amounts to

5 909 142. The number of stored nonzeros is nnzr = 3 116 562.

The structure under investigation contains two ports. We take into ac-

count one mode at each port. Thus, we have to solve two systems of linear

algebraic equations with the same coe�cient matrix.

We now consider four possibilities of preconditioning for the given coe�-

cient matrix ~U to solve the linear system of equations (26).

1. The Eqn. (26) is to be solved with Jacobi-preconditioning.

~D
�

1
2

~U
~U ~D

�
1
2

~U
( ~D

1
2
~U
~e) = ~D

�
1
2

~U
~r ; ~D ~U = diag( ~U):

2. The Eqn. (35) is to be solved.

D̂
�

1
2

Û
ÛD̂

�
1
2

Û
(D̂

1
2

Û
ê) = D̂

�
1
2

Û
r̂ ; D̂Û = diag(Û):

3. The Eqn. (38) is to be solved with ! = 1; 51.

�M�1
1

�U �M�1
2 ( �M2

~�e) = �M�1
1
~�r ; �MT

2 = �M1 = (I + !L):

4. The Eqn. (38) is to be solved with the parameter ! = 1; 51 by using

Eisenstat's trick [14].
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Original Version Version Version Version

version 1 2 3 4

Iterations 5333 5374 3150 935 935

Iteration time [s] 6541 3316 1406 914 633

Total time [s] 6549 3329 1429 936 657

Table 1: Performance comparisions of di�erent preconditioners compared to

the original version for the calculation of the scattering matrix of the right-

hand side of the structure consisting of coupled spiral inductors.

We compare the performance of the four di�erent preconditioners with the

original version described in [1] and [3]. The number of iterations and exe-

cutions times are given in Table 1. The systems of algebraic equations were

solved by the algorithm described in [17]. The stopping criterion was in each

case a reduction of the norm of the residual by 10�8 for the four kinds of

preconditioning and the original version, respectively. Both the time for the

iteration algorithm and the total time for the subroutine call are given. The

SSOR preconditioner combined with the independent set ordering is very

e�ective in solving the linear systems of equations. Furthermore, Eisenstat's

trick reduces the time for the iteration algorithm.

7.2 Numerical Examples for the Eigenvalue Problem

The computation of all eigenvalues with the QR algorithm and the calcu-

lation of the eigenfunctions of the wanted propagation constants by solving

systems of linear homogeneous algebraic equations in the original version [1],

[3], [12] is very time and memory consuming. Computing the wanted prop-

agation constants only, using of the sparse storage technique, and neglecting

relatively small elements in the matrix C (see (40)) reduce the computing

time considerably.

Detailed comparisions between the original and the new version are pre-

sented for two applications in Table 2.

The �rst example refers to the coupled spiral inductors (see Figure 1 and

section 7.1). The eigenvalue problem is solved for one port. We take into

account three modes at the port. The sparse matrix C of the eigenvalue

problem (see (40)) is non-symmetric.

The second application concerns a di�erent structure with lossy material.
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The corresponding matrix of (40) is non-Hermitian. The number of modes

which have to be computed is four.

The dimensions of the eigenvalue problems are given in the second column

of Table 2. The maximum number of nonzeros in a row of C is 9. The total

number nze of nonzero elements of the matrix C is given in the third column

of Table 2. The time measurements involve matrix generation, solving the

eigenvalue problem and computation the mode �elds.

Dimension nze Original version New version

[s] [s]

lossfree case 4366 21136 9491 2

lossy case 5286 29906 79040 331

Table 2: Comparisions of computing times for the eigenvalue problem be-

tween the original and the new version for a lossfree and a lossy example.

Taking into account that an eigenmode problem generally is to be solved

for some angular frequencies ! (see section 3) and for more than one port the

computing time is reduced from days to minutes for a non-Hermitian matrix

C of order 2nxny � nb = 5286 (see (40)). The total storage requirement is

reduced by a factor 18 in the new version for this example.
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