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Abstract

We present a simple two-component model of a porous material based on

the constraint assumption that the so-called true components are incompress-

ible. In my previous work on this subject [1] I pointed out that many such

models are not thermodynamically admissible. Namely the second law of ther-

modynamics led to the conclusion that an additional �eld of reaction force on

the constraint cannot be introduced, and, consequently, the set of �eld equa-

tions was overdetermined. However I speculated as well that an extension

of the set of variables may lead to thermodynamic admissibility. Indeed an

example presented in this paper supports this speculation. According to re-

sults of this work it seems to be neccessary to introduce higher gradients to

multicomponent models with constraints in order to satisfy the second law of

thermodynamics.

1 Introduction

In the paper [1] I pointed out that constraint conditions in multicomponent sys-

tems may not lead to thermodynamically admissible models. I indicated that the

thermodynamic admissibility depends on a choice of constitutive variables, and I

speculated that some theories with higher gradients may lead to models in which

constraints such as the incompressibility of true components may be thermodynam-

ically admissible.

The above question has a practical bearing as numerous models of porous, and gran-

ular materials do indeed rely on such assumptions. In this note I present a simple

example of such a gradient theory of a two-component system which is thermody-

namically admissible in spite of incompressibility constraints for true components.

In order to appreciate better the argument the constitutive relations are chosen in

a particularly simple form.

We rely on a lagrangian description of motion of both components (e.g.: [2,3]). We

assume processes to be isothermal. In such a case the �elds of the model are as

follows

n - void fraction of the solid component (porosity),

v
F
k - velocity of the �uid component,

v
S
k - velocity of the solid component,

F
S
k� - deformation gradient of the solid component.

We use the cartesian reference systems for both lagrangian coordinatesX� (�=1,2,3),

and eulerian coordinates xk (k = 1; 2; 3). All �elds are assumed to be de�ned on a

reference con�guration of the solid component for which F S
k�=�k�.
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2 Balance equations

We construct �eld equations on the basis of partial balance equations.

Partial mass densities �St , �
F
t in a current con�guration, partial mass densities �S,

�
F in the reference con�guration, and the so-called true mass densities �SR, �FR are

connected by the relations

�
S
t = �

S
J
S�1 = (1� n) �SR; �

SR = const:; (2.1)

�
F
t = �

F
J
S�1 = n�

FR
; �

FR = const:; J
S := detF S

k�;

where the index t denotes the current con�guration. The assumption that the true

mass densities are constant introduces a constraint into the model.

The partial mass balance equations in the lagrangian description have the following

form

@�
S

@t
= 0;

@�
F

@t
+
@

�
�
F
X

0F
�

�
@X�

= 0; X
0F
� := F

S�1
�k

�
v
F
k � v

S
k

�
; (2.2)

where X 0F
� denotes the lagrangian velocity of the �uid with respect to the solid in

the reference con�guration. Bearing the constraint of constant true mass densities

speci�ed in (2.1) in mind we can reformulate these equations in the following manner

�

@n

@t
+ (1� n)F S�1

�k

@v
S
k

@X�
= 0; (2.3)

F
S�1
�k

@

@X�

�
(1� n) vSk + nv

F
k

�
= 0:

The momentum balance equations have the following form

�
S @v

S
k

@t
=

@P
S
k�

@X�
� p

�

k; (2.4)

�
F

�
@v

F
k

@t
+X

0F
�

@v
F
k

@X�

�
=

@P
F
k�

@X�
+ p

�

k:

In these equations P S
k�, and P

F
k� denote partial Piola-Kirchho� stress tensors in the

solid and �uid component, respectively, and p�k is the source of momentum.

The partial internal energy balance equations have, in general, the following form
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�
S @"

S

@t
+
@Q

S
�

@X�
= P

S
k�

@v
S
k

@X�
+ p

�

kv
S
k ; (2.5)

�
F

�
@"

F

@t
+X

0F
�

@"
F

@X�

�
+
@Q

F
�

@X�
= P

F
k�

@v
F
k

@X�
� p

�

kv
F
k ;

where QS
�, and Q

F
� denote the partial heat �ux vectors in the solid and �uid com-

ponent, respectively.

Finally, the balance equations for partial entropies are

�
S @�

S

@t
+
@H

S
�

@X�
= �

�S
; (2.6)

�
F

�
@�

F

@t
+X

0F
�

@�
F

@X�

�
+
@H

F
�

@X�
= �

�F
;

where HS
� , and HF

� denote the partial entropy �uxes in the solid and �uid compo-

nent, and ��S; ��F are the partial entropy sources, respectively.

For the purpose of this work we make a simplifying assumption that partial heat

�uxes, and partial entropy �uxes are connected by the classical relations

H
S
� =

Q
S
�

T
; H

F
� =

Q
F
�

T
; (2.7)

where T denotes the absolute temperature.

For the future use we combine the entropy balance equations, and the energy balance

equations in the form of the following relation

�
S @ 

S

@t
+ �

F

�
@ 

F

@t
+X

0F
�

@ 
F

@X�

�
�

�P
S
k�

@v
S
k

@X�
� P

F
k�

@v
F
k

@X�
+ p

�

k

�
v
F
k � v

S
k

�
+ (2.8)

+�S�S
@T

@t
+ �

F
�
F

�
@T

@t
+X

0F
�

@T

@X�

�
�

1

T

�
Q
S
� +Q

F
�

� @T

@X�

= �T

�
�
�S + �

�F
�
;

where we have introduced the partial Helmholtz free energies

 
S := "

S
� T�

S
;  

F := "
F
� T�

F
: (2.9)
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3 Second law of thermodynamics

In order to formulate �eld equations for the �elds listed in the introduction we have to

close the problem by constitutive relations for the constitutive quantities appearing

in the equations (2.4), i.e. for Piola-Kirchho� stress tensors, and for the source of

momentum. Simultaneously the evaluation of the second law of thermodynamics

requires constitutive relations for the partial Helmholtz free energies  S and  
F

appearing in (2.8). We assume that these constitutive quantities are functions of

the following constitutive variables

�
n;

@n

@X�
; F

S
k�; L

F
k�; X

0F
�

�
; L

F
k� :=

@v
F
k

@X�
; (3.1)

i.e. the �uid component is assumed to introduce the viscosity into the model. Es-

sential properties of the model connected with the presence of constraints are not

in�uenced by the viscosity but it is introduced because many models of practical

bearing requires its presence.

For sake of simplicity we assume also that constitutive relations are linear with

respect to the vector variables @n
@X�

; X
0F
� . It can be shown that essential results which

we present further hold also under weaker assumptions (e.g. nonlinear dependence

on the relative velocity X 0F
� ).

Then for isotropic systems which we consider in this work stress tensors, and free

energies are independent of these vector variables, and the source of momentum has

the following structure

p
�

k = �F
S
k�

�
�0��� + �1C

S
�� + �2C

S
��C

S
��

�
X

0F
� � (3.2)

�F
S�1
�k

�
�0��� + �1C

S
�� + �2C

S
��C

S
��

� @n

@X�
;

where CS
�� � F

S
k�F

S
k� denotes the right Cauchy-Green deformation tensor of the solid

component. The minus signs are introduced for convenience. The coe�cients �0 to

�2 may sitll depend on the nonvectorial variables appearing in (3.1).

We simplify the relation (3.2) even further. Namely we consider solely moderate

deformations of the solid component which allows to leave out the nonlinear contri-

butions of the deformation gradient to (3.2) (i.e. C��
�= ��� in the brackets of this

relation). Then

p
�

k = ��
�
v
F
k � v

S
k

�
� �F

S�1
�k

@n

@X�
: (3.3)

where � � �0 + �1 + �2, and � � �0 + �1 + �2:
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Under these constitutive assumptions the set of balance equations (2.3) and (2.4)

becomes the set of �eld equations for the �elds n; vSk ; v
F
k . The �eld of deformation

gradient of the solid component must satisfy the following kinematical integrability

conditions

@F
S
k�

@t
=

@v
S
k

@X�
;

@F
S
k�

@X�
=
@F

S
k�

@X�
; (3.4)

which play the role of �eld equations for F S
k�.

It is easy to notice that the set of �eld equations is overdetermined. This is due

to the presence of two equations (2.3) for the singe �eld of porosity. This problem

appears in all models with constraints, and it is solved by introducing an additional

�eld of the reaction force on constraints. Such a force must be orthogonal to the

hypersurface in the space of solutions, de�ned by the constraint condition if the con-

dition describes a so-called holonomic constraint. For such constraints the reaction

force does no work in real processes. The geometric constraint considered in this

work is such a constraint. We introduce this reaction force by means of the second

law of thermodynamics.

Solutions of �eld equations are assumed to satisfy identically the entropy inequality

which has in the present case the following form

�
�S + �

�F
� 0: (3.5)

We use Lagrange multipliers to eliminate the limitation of this inequality to solutions

of �eld equations. Bearing the relation (2.8) for isothermal processes in mind we

obtain the following inequality

�
S @ 

S

@t
+ �

F

�
@ 

F

@t
+X

0F
�

@ 
F

@X�

�
�

�P
S
k�

@v
S
k

@X�
� P

F
k�

@v
F
k

@X�
+ p

�

k

�
v
F
k � v

S
k

�
�

��

�
�

@n

@t
+ (1� n)F S�1

�k

@v
S
k

@X�

�
�

��F
S�1
�k

@

@X�

�
(1� n) vSk + nv

F
k

�
� (3.6)

��S
k

�
�
S @v

S
k

@t
�

@P
S
k�

@X�
+ p

�

k

�
�

��F
k

�
�
F

�
@v

F
k

@t
+X

0F
�

@v
F
k

@X�

�
�

@P
F
k�

@X�
� p

�

k

�
�

��k�

�
@F

S
k�

@t
�

@v
S
k

@X�

�
� 0:

This inequality must hold for arbitrary �elds with the deformation gradient satisfy-

ing the symmetry condition (3.4)2.
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The exploitation of this inequality is standard. It is based on the Liu's Theorem

on the existence of multipliers (e.g. see: [3]). Making use of the chain rule of

di�erentiation we obtain the inequality linear with repect to derivatives listed on

the left-hand side of the relations (3.7). Consequently their coe�cients must vanish,

and it follows

@n

@t
: � = �

�
�
S @ 

S

@n
+ �

F @ 
F

@n

�
;

@v
S
k

@t
;
@v

F
k

@t
: �S

k = �F
k = 0; (3.7)

@F
S
k�

@t
: �k� = �

S @ 
S

@F
S
k�

;

@L
F
k�

@t
: �

S @ 
S

@L
F
k�

+ �
F @ 

F

@L
F
k�

= 0;

@n

@X�
: �+ � = �

F @ 
F

@n
;

@v
S
k

@X�
: P

S
k� = � (1� n)�F S�1

�k � (1� n) �F S�1
�k + �k�;

@F
S
k�

@X�
: sym

�;�

(
�
F
X

0F
�

@ 
F

@F
S
k�

)
= 0; (3.7cont)

@L
F
k�

@X�
: sym

�;�

(
�
F
X

0F
�

@ 
F

@L
F
k�

)
= 0;

and there remains a residual inequality which describes the dissipation in the system

P
F
k�L

F
k� + �

�
v
F
K � v

S
K

� �
v
F
K � v

S
K

�
+ �nF

S�1
�k L

F
k� � 0: (3.8)

Consequently all but one multipliers are determined by the constitutive relations for

the partial free energies. Solely the multiplier � may be constitutively undetermined

provided the coe�cient � consists of two contributions following from the relation

(3.7)5. In such a case we can extend the set of �elds on � which then plays the role

of reaction force on the constraint.

On the other hand the reaction force on the constraint cannot contribute to the

residual inequality because there is no dissipation due to holonomic constraints. It

means that the partial Piola-Kirchho� stress tensor P F
k� must contain the contribu-

tion of the �eld � of the following form

P
F
k� = �n�F S�1

�k + ~P F
k�

�
n; F

S
k�; L

F
k�

�
: (3.9)

Finally combining the remaining identities (3.7) we obtain the following constitutive

relations for free energy functions
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S =  

S
�
n; F

S
k�

�
;  

F =  
F (n) : (3.10)

The most important conclusion from the above considerations concerns the possi-

bility of the existence of a thermodynamically admissible additional �eld � similar

to the reaction pressure in one-component models of incompressible materials. Its

existence in the case considered in this note requires a contribution of the gradient

of porosity to the source of momentum. Otherwise, for � � 0, this quantity would

be constitutively determined, and could not serve the purpose of an additional �eld.

4 Eulerian description

We summarize the results of the previous section in the eulerian description typical

for models of porous, and granular materials as well as for suspentions. The balance

equations have the following form

@ (1� n)

@t
+

@

@xk

�
(1� n) vSk

�
= 0;

@

@xk

�
(1� n) vSk + nv

F
k

�
= 0;

(1� n) �SR
�
@v

S
k

@t
+ v

S
l

@v
S
k

@xl

�
=

@T
S
kl

@xl
+ �

�
v
F
k � v

S
k

�
+ �

@n

@xk
; (4.1)

n�
FR

�
@v

F
k

@t
+ v

F
l

@v
F
k

@xl

�
=

@T
F
kl

@xl
� �

�
v
F
k � v

S
k

�
� �

@n

@xk
:

In these equations T S
kl , and T

F
kl denote partial Cauchy stress tensors.

We skip here the discussion of the material objectivity which is standard. In addition

we use the assumption of isotropy which has been already mentioned earlier in this

work. Then for the quantities appearing in the above equations we have the following

constitutive relations

T
S
kl = J

S�1
P
S
k�F

S
l� = � (1� n)��kl + =0�kl + =1B

S
kl + =�1B

S�1
kl ; (4.2)

T
F
kl = J

S�1
P
F
k�F

S
l� = �n��kl + ~T F

kl

�
n;D

F
kl

�
;

where the coe�cients of the Cauchy stress tensor in the solid component are de�ned

by the derivatives of the partial Helmholtz free energy  S in the following way
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=0 : = (1� n)

�
(1� n) �SR

@ 
S

@n
+ n�

FR@ 
F

@n
+

+2�SR
�
@ 

S

@II
II +

@ 
S

@III
III

��
; (4.3)

=1 : = 2 (1� n) �SR
@ 

S

@I
; =

�1 := �2 (1� n) �SR
@ 

S

@II
III:

The left Cauchy-Green deformation tensor BS
kl , its invariants, and the symmetric

part of the velocity gradient in the �uid component DF
kl are de�ned as follows

B
S
kl : = F

S
k�F

S
l�; I := B

S
kk; II :=

1

2

�
I
2
� B

S
klB

S
kl

�
;

III : = detBS
kl = J

S2
; (4.4)

D
F
kl : = sym

�
L
F
k�F

S�1
�l

�
:

The contribution ~T F
kl

�
n;D

F
kl

�
to the stress tensor in the �uid is, of course, due to

the viscosity of the �uid component on the macroscopic level.

Bearing the relations (3.9) in mind we have the following constitutive relations for

the partial Helmholtz free energies, and for the coe�cient in the contribution of

porosity gradient to the source of momentum

 
S =  

S (n; I; II; III) ;  
F =  

F (n) ; (4.5)

� = �� + n�
FR@ 

F

@n
:

Let us notice that in the case of free energy in the �uid component independent

of porosity the coe�cient � reduces to ��. If in addition the free energy  
S is

independent of porosity as well then the model presented above is identical, for

instance, with the model used in some theories of sedimentation (e.g. [4]). It is

di�cult to say if such an assumption is indeed physically justi�ed. In such a case

the multiplier � plays the role of the pore pressure of classical models of soils.

On the other hand if the coe�cient � were identically zero the relation (4.5)3 would

reduce to the constitutive law for the multiplier �, as we have already mentioned.

Certainly in such a case the multiplier cannot be an additional �eld, and the system

of �eld equations becomes overdetermined. This was the case for all models without

contributions of higher gradients which I consider in the paper [1].
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5 A simple example

In order to demonstrate �aws and discrepancies of models with and without higher

gradients we consider a simple example. We compare results following from the

model mentioned in the last part of the previous section with results of a model

with compressible components . Let us investigate a static state of a tube of length

L containing a granular material with a given varying porosity n (x), where x is

the variable along the tube. The tube is loaded by an equal pressure head p0 at

both ends. The momentum balance equations of the above discussed model with an

inviscid �uid component yield

�

@p
F

@x
+ �

@n

@x
� �n

@�

@x
= 0; T F

kl = �p
F
�kl =) � = p0; p

F = np0; (5.1)

@�
S

@x
� �

@n

@x
� � (1� n)

@�

@x
= 0 =) �

S = � (1� n) p0;

where �S is the component T S
11
of the Cauchy stress in the solid component. Hence

the problem is statically determined. The mass density of the �uid component is

determined by the real (constant) mass density: �Ft = n�
FR, and it is independent

of the loading. Similarly deformations of the solid follow alone from the constitutive

law: �St = n�
SR , and they are independent of the loading as well.

The problem is more involved in the case of a compressible model. The momen-

tum balance equations and the simplest constitutive relations have in this case the

following form (e.g. [7])

@p
F

@x
= 0;

@�
S

@x
= 0; (5.2)

p
F = c

F2 (n) �Ft ; �
S = E

S (n) �S;

where cF is the material parameter connected with the propagation of sound in

the �uid component, and ES is the elasticity coe�cient of the solid component. �S

denotes the elongation. The boundary conditions for the tube in the static case

reduce to the following relations

p
F
� �

S
��
x=0

= p
F
� �

S
��
x=L

= p0; (5.3)

p
F
� np0

��
x=0

= p
F
� np0

��
x=L

= 0;

where the last two relations follow from kinematic boundary conditions for the static

case (e.g. see the formula (3.5) in [8]) This problem has a solution solely under the

assumption
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n (x = 0) = n (x = L) : (5.4)

Otherwise a static solution does not exist. If the condition (5.4) is satis�ed we obtain

immediately

p
F = n (x = 0) p0; �

F
t =

n (x = 0)

ncF2 (n)
p0; (5.5)

�
S = � (1� n (x = 0)) p0; �

S = �
(1� n (x = 0))

ES (n)
p0:

Hence both models deliver certain artefacts: the �rst one predicts constant mass

densities of components in spite of the varying partial pressure and the partial stress,

the second one requires the condition (5.4) for variations of porosity. However the

results for the partial pressure in the �uid component, and for the partial stress in

the solid component agree on the boundaries. It is di�cult to predict how big would

be discrepancies inside of the tube as such an experimental comparison was never

performed.

6 Concluding remarks

Results presented in this note show that some models of multicomponent systems

with the condition of incompressibility of real components can be made thermo-

dynamically admissible. In order to achieve this result we had to introduce the

gradient of porosity as a constitutive variable. Constitutive results remind these

used in many papers on the subject of �ows through porous or granular materials

even though there are some modi�cations connected with a possible dependence

of free energies on the porosity. However even in the simple version of the model

presented in this work this assumption is connected with problems in the formu-

lation of boundary conditions as dynamical compatibility conditions for momenta

contain an explicit contribution of the jump of porosity. This requires an extension

of the notion of porosity to an exterior which is usually connected with di�cult

considerations of boundary layers (see: [5]).

Apart from this typical weakness of a model with higher gradients we should not for-

get that practical applications of models of porous, and granular materials frequently

require the compressibility of real components because some of them are either gases

or mixtures of �uids with vapours. In such cases we need a �eld equation for the

porosity anyway in order to close the system. This may be an evolution equation

or some balance equation as proposed, for instance, by Goodman and Cowin [6], or

by myself [7]. Such models do not require higher gradients as constitutive variables

in order to be thermodynamically admissible.
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