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Abstract

A splitting finite difference scheme for an initial-boundary value problem
for a two-dimensional nonlinear evolutionary type equation is considered. The
problem is split into nonlinear and linear parts. The linear part is also split
into locally one-dimensional equations. The convergence and stability of the
scheme in L9 and C norms are proved.

1 Introduction.

We consider the initial-boundary value problem for multidimensional nonlinear evo-
lutionary equation of the type

2—7; = alAu + f(u).

Here a = aq+1as is a complex valued constant and A is the d-dimensional Laplacian.
We consider the following cases:

1. If a; = 0 and as # 0 we have the Schrodinger equation.

2. If a; > 0 and as # 0 we have the Kuramoto—Tsuzuki equation.

3. Ifa; > 0 and a; = 0 we have a heat equation.

Such linear and nonlinear equations appear in many models of nonlinear optics,
quantum mechanics, seismology, plasma physics, in the theory of turbulent flows
and many other fields of science.

Although evolutionary problems with only one spatial dimension have been investi-
gated during a long period, even recently there appear a lot of papers devoted to the
numerical solution of these problems [1] — [4]. As a rule, the difficulties in solving
such the problems arise due to the different kinds of nonlinearities.

Multi-dimensional nonlinear and linear evolutionary problems are even more com-
plicated. Frequently, solving such problems during small time step, one splits the
problem into nonlinear and linear parts [5], [6] or considers multidimensional linear
part as locally one-dimensional problems [5], [8], [9]

An object of this paper is the finite difference scheme that approximates the evo-
lutionary equation. There are many papers on finite difference schemes for initial—
boundary linear and nonlinear evolutionary problems. There are two—layered sche-
mes with weights [2], [5], [7], various three—layered schemes [2] — [4] and also splitting
schemes [5], [6], [8]

In the paper [6] the splitting of the equation into nonlinear and linear parts

au(nonl) .
ot = f(u(nonl)), uz(zgga)l = Uinitial
8u(l7'n) lin (lin) (nonl) (lin)
ot = adul®, Uinitial = Ufinal »  Ufinal = Ufinal



for a short evolution time 7 was used and a proof of the existence and stability of
the solution was given.

In a series of papers, for example in [5], locally one-dimensional finite difference
schemes for the solution of multidimensional linear evolutionary problems have been
constructed. These schemes have allowed to compute a value of the unknown so-
lution on the next time level using differential operators in different directions step
by step, i.e., splitting the d-dimensional linear part of the equation into the one-
dimensional problems:

Ou k) 2u®)
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The other method for splitting the linear d-dimensional heat equation into local
one-dimensional problems was investigated in [8]. When looking for the unknown
solution on the next time level, instead of solving step by step the one-dimensional
problems, one can solve all these problems simultaneously and get the solution on the
new time level from the obtained data afterwards. Such splitting can be described
as follows:
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It seems that such a splitting of the multidimensional problem can be very useful in
parallel computations.

A purpose of the present paper is to prove the convergence and stability of the locally
one-dimensional difference scheme for a broad class of two-dimensional nonlinear
evolutionary type equations. The evolutionary problem is split into nonlinear and
linear parts, as in [6]. A linear part of this problem is also split into locally one-
dimensional problems as it had been done in [8|.

The nonlinear evolutionary equations which are considered in this paper represent a
much broader class of equations than only linear heat equations that were considered
in [8]. The difference schemes require a more precise investigation due to nonlinearity
as well as to some specific properties of the Schrodinger and the Kuramoto-Tsuzuki
equations.

Therefore, our paper presents new results proving convergence and stability of the
splitting scheme for nonlinear evolutionary type equations. Doing so, we also show
convergence of another splitting scheme, where the fully explicit difference scheme
for the two-dimensional linear part is used.

It should be mentioned that to prove the convergence and stability of difference
schemes we use a new type of a priori estimates that were introduced and developed



in [6], [7]. This approach allows us to avoid any restrictions on the time and space
grid steps.

In Section 2 the differential problem and the corresponding finite difference schemes
are formulated. In Section 3 some grid embedding and multiplicative inequalities
are proved, and some formulae for the finite difference differentiation are derived.
In Section 4 some estimates for the nonlinear part of the equation are obtained.
Section 5 contains various properties of the difference schemes. Sections 6 and 7 are
devoted to a proof of the convergence of the two finite difference schemes. Section
8 contains an investigation of the stability for both schemes.

2 Formulation of the problem.

Let us consider an initial-boundary value problem with Dirichlet boundary condi-
tions for the nonlinear Schrédinger, Kuramoto—Tsuzuki or heat equation:

g—?:aAu—l—f(u,u*), (z,t) € Q;
u(z,0) = uo(z), =€ u(z,t) =0, (z,t) €0Q x[0,T]. (1)

Here z = (1, x2); u(z,t) is a complex-valued function; u* is the complex conjugate
function; i = v/—1; A = x% + % is the two-dimensional Laplacian; a = a; + tas,

— 2 — —
a; >0, |a] >0;,Q=10,1] x [0,1], @ = Q x [0, T].
Assume that the nonlinear function f(u,u*) satisfies the following conditions:
The partial derivatives of the function f(u,u*) with respect to u and u* are contin-
uous up to the second order and

O f (u, %)

Ouk1 dy*k2

< @(max{|u|7 |’U|}), ki + ko = |k| S {0’ L, 2}’ (2)
where ¢ is a continuous nondecreasing function;
Re(f(u,u")u*) <0. (3)

Condition (2) is necessary for the evaluation of the differentiated nonlinear function.
Estimate (3) allows to obtain the integral dissipation property ||u(t)||., < ||u(0)||z,,
t € [0,7]. This inequality can be proved multiplying both sides of (1) by 2u*,
integrating the obtained equation over (2, taking a real part and using the condition
a; — Rea > 0.

Note that in the case of the Schréodinger equation a = ias and condition (3) reads
as Re(f(u,u*)u*) = 0, the integral conservation law holds: ||u(t)||z, = ||u(0)||L,,
t€[0,T].

It should be also mentioned that more general a prior: estimates hold.



Remark 1 Suppose (2) and (3) are satisfied, uy € W3(Q) and there ezists a solution

u € C(Q) of problem (1). Then the following estimate holds:
lu@®)llwz < erlluollwz, t€[0,T), e =cale(lulleg) luollwy, T)-

Proof. The proof of this remark can be found in [7].

We assume that there exists a solution of (1) which satisfies the following condition:

82u(t) ‘

O*u(t O*u(t
max {7082 [ a2 o |22} < € < oo (1)

1
ox;

This smoothness is required to get a good approximation of the difference schemes.
Note that the estimate max,cpor ||u(t)||c < C also follows from (4).

Let us introduce a uniform grid in the domain Q:
w, = {t;j=757=0,...,.M -1, M1 =T}, wr ={t;;7=0,..., M},
Wy = {37: (xllUlez);lej :ljh,j,ljzl,...,Nj—l, j:1,2, Njh,jzl},
(Dz = {.’E: (x”l,xglz);lj:(),...,Nj, ]:1,2}
Denote Qpn, = wy X Wy, Qpr = @0y X @,. Let Ow, = &, \w, be the set of grid boundary

points on 9Q. We require 0 < 1/d < hy/hs < d < oo for hy, hy — 0. For simplicity
we assume h = hy < hy = dh.

In the sequel we use the notation

u=u(z,t;) = u(z1,z2,t;), ©=u(z,tjr1), v=(0+u)/2, u=(0—u)/r
I is the identity operator, T," and T, are shift operators, that is Ju = u and
Tiu = u(z + hyey, t;), where e; = (1,0) and e, = (0,1) are unit vectors. Let Dy,

be a first order grid differentiation operator and

uz, = (I =Ty )u/hg 2: Dy, u, Uy, = (T — Du/hy = Dy, T u,
Ugpzy, — thuzk = thT,:_u, Ahu = Uzq,z, + Uzyzs-

We associate problem (1) with two different splitting finite difference schemes.

The finite difference equation for the nonlinear part and the initial conditions are
the same for both of these schemes:

zi=f(2,2%), (z,t) €0, Xw,; z=np, p(z,0) = uo(z), = € ,. (5)

In general, the equation is nonlinear and we can solve it using iterations:

2t — o PAONNE z) ©)
- : P

5 , n — oo.
-

For the linear part of (1) we have two different finite difference equations.



First, we approximate the two-dimensional linear problem:

A~

gt = a Apg, (iL‘,t) €EQn; 9g=2%2,p=g ¢g=0 (iL‘,t) € Owg X wr. (6)

Second, we introduce the locally one-dimensional equations:

(k) _ (k)
g g g +g
— t -,
. 2T a( 2 )wkwk’ (:L', )E @n . )
g® =0, (z,t)€ dw, X wy, g=2%, p=g=(gY +g?¥)/2. (7)

It appears that we can exclude the functions g and ¢® in (7) and obtain the
following equivalent equation:

~ ~

9= ARG — 20° Tz 10000, (2,1) € Qurs 9=2, p=g; §=0, (z,t) € dw, X wy. (8)
Lemma 1 The finite difference equations (7) and (8) are equivalent.

Proof. Adding the equations (7) for £ = 1,2 and using the expression for g via
g™®) we obtain

a N

g—g9 a
— =3

Applying the finite difference operators (-)z,z, and (-)z, respectively to the equa-
tions in (7) where £ = 1 and k = 2 one can find that

9= g(Ahg +2A49) — g(AhQ +ar(g" + g + 2g)

ilil}]_izicz)'
It is exactly the same equation as (8). The lemma is proved.

Due to the equivalence of the schemes, all the results obtained for (8) are also valid
for (7).

3 Some properties of the grid functions.

Let us introduce grid analogues of some functional spaces. We shall say that the
grid function v belongs to some functional space if there exists hg such that for
all positive hy, hy < hy the corresponding norm of the function v is bounded by a
constant which does not depend on grid steps.

Let [ be any operator acting on some grid function. Denote by /(@,) the subset of
the grid @, where the operator [ is defined.

We shall define the L, = L,(w,) norm of the grid functions » or lu, and an inner
product in Ls as follows:

lully = (hahe 2 ()7 Nl = (e 32 10u)) (4,0) = iy wo

TCEWy z€l(wz) TCWy



For simplicity, we define || - || = || - ||-

Let us introduce the grid analogues of the Sobolev spaces W} = W(w,) with norms

1/p
lulipy=( > IDfulz)™, 1<p<oo, I=12,...
0<|k|<l

Here DF = D,(l k) D}'D;? are finite difference operators.

In the sequel we also use the shift operator 7% = T(k1:k2) = (T )k (T )k2, 1t is easy
to check that T"(vw) = T'wT'w, T'(v + w) = T'v + T'w. The operators T" and D¥
are commutative. Note that, due to a definition of the L,(w,) norm for the grid
function u, the estimate ||7*D%ul||, < ||D}ul|, holds.

Denote by I/f/é a subset of functions of the space W3 which have zeroes on the
boundary dw,, W =WiNW2. C=C (@,) is the space of the grid functions having
zeroes on the boundary and with norm ||u||c = max,cq, {|u|}-

We can prove some relations concerning different norms of the grid functions.

Lemma 2 Suppose that u is the grid function defined on w, with zero boundary
conditions and that || Dfu|| < C < oo for all positive hy, hy < hy. Then the following
estimates hold:

1Dy “ul| < || DFull,  kj>1, 0<ki ks <2 (9)

Proof.  Let us denote by wy,(z;) the functions v2sin(l;rz;), j = 1,2. Here
z = (x1, z2) is some point of the grid @,.

Since zero boundary conditions hold for the grid function v we can define the function
u on the grid @, as follows:

N1—1 N>—1

u(xl’xZ) = Z Z all,l2wll(xl)wlz(x2)'

I1=1 Ix=1

Due to completeness and orthogonality of the functions wy, (z1)w, (z2) in the space

[e]
W3, the Fourier coefficients ay, ;, can be found as
1 1
a1, = hiho Z Z u(xl’xZ)wll(xl)wlz(xZ)'
xr1=h1 To=h>

Due to Parsevall’s equality, the Ly, norm of the grid function u can be expressed as
follows:

2_hh Q_hh 1 1 2_N171N271 )
lul* = hihe Y- Ju(@)]? =hihe 30 D0 fu(@)*= D2 > lansl”
TEWg r1=h1 o=hso Ii=1 Ix=1



Let us introduce the eigenvalues of the operator —D,ZLJ_ Tf corresponding to the eigen-
functions wy, (z1)wy, (z2):

. N4 '

—(wn, (21)w (22)),, = A (wr, (21)wy (22)), A= sin (i /2), § = 1,2

J

Note that for h; small enough, say, h; < 2/7, we have

w0 = A ey s T
H}Jm{zj}—h—? n*(mh;/2) > =

Using the formula of summation by parts for the grid functions and the zero bound-
ary conditions, we have

1 1 1—hy 1
[Dnyull® = hiha 3 > IDnu(@)l® = —hihs 3 >~ uss(z)u’(z)
z1=hi £2=0 z1=h1 £2=0
Ni1—1 N3—1 Ni—1 Ny—1
> Z(Z >0 A an gy wi (1w (22))ut (@) =3 3 Ao [
z1=h1 zo=ho [1=1 Il2=1 I1=1 =1

Similarly, we can find the expressions for some other differentiated function norms
via the Fourier coefficients and eigenvalues:

N1—1N>—-1

| Dyull? = o> (A k2|all L% 0 <k ky <2

I1=1 I=1

Note that for other values of k this equality can be not satisfied, since D¥(@,) is
just a subset of the grid w,.

Finally, the estimates from below for the eigenvalues )\8 ) imply (9) where ¢, = v/2/7.
The lemma is proved.

Lemma 3 Let v, v be the grid functions defined on w,. Suppose that ly,ls are two
operators, Wy = l1(we) Nla(wz) = [[1h1, 1T ha] X [I3ho, I5he] C @o, (If — 15 +1)R; > 0.5,
Jj = 1,2 and || Dy, l1v1|], || Dpylave|| < C < oo for all positive hy,hy < hy. Then the
following inequality holds:

[l v1 Lo < 4|lyv || [l2va || ([l || + | Daylivr ) ([|iavel| + || Daglova]]) (10)

Proof. For any fixed grid point coordinate x5 we denote by Z;(z3) the value of z;
such that [[yv1(Z1(72), T2)| = ming, e, a1 {1101 (71, T2)|}. Therefore,

1'hy 1 hs
w1 (Z1(22), 22) P < 200 Y [hvi (21, 22) |5 he D o1 (81 (z2), 22) 2 < 2||lv1 ||
z1=l\h1 zo=l}ho
Similarly, We define .’ig(.’]?l), |l2’02(.’L'1,i'2(.’131))| = mileZe[llth’llzlhz}{|lg’l)2(.’131,.’L'Q)|}, and

have ]’Ll Zm =k |lg'l)2(.’131,.’22($1))|2 S 2”12'1)2”2.

7



Now we can have the following estimate:

Iy ha 1/hy
lvr bvsl® < by Y (Jhon(@a(@2), )P+ B D [ Difhvi(C,22) )
zz:l’zhz C:(l’l-i-l)hl
hy 15hy
X hl Z (|l2’l)2(.’L'1,.’ig(.’131))|2+h2 Z |Dh2|l2’02(.’131,7’])|2|).
$1:l’1h1 n:(l’2+l)h2

Estimate (10) follows from here. The lemma is proved.

A direct consequence of the two previous lemmas is the following corollary:

Corollary 1 Suppose that vi,ve are the grid functions defined on w, with zero
boundary conditions and that || D¥ vy ||, | DE" vs|| < C < oo for all positive hy, hy < hy.
Then the following inequalities hold:

_ _ _ _ 1/2
T DY~ 0, T"DE 0, < s (1 DF v [[[| DR v ||| DF v ||| DF w2

< CZC3||D2101||||DZ”1}2“’ ki’kg € {1’2}a kéakil € {Oa 1,2}. (11)

Proof. Let us denote I; = 77 D¥=1 [, = 77" D¥'~°2_ The first part of (11) follows
from (10), [|[T"v|| < ||v|| and (9). Here c¢3 = 2(1 + c2). The second part of this
estimate immediately follows from (9). The corollary is proved.

In the two-dimensional case the following multiplicative inequality and grid embed-
ding theorem holds:

ealul| 2 [u)| 5477, 0 <y <05,
12 D€ [27 00)7 C5 = C5(p). (12)

[ulle

<
lull, <

cs||u

Both estimates can be found in [7].

In the sequel we also use the results of the following lemma:

Lemma 4 In all points of the grid D¥(w,) the following formula for the function
D,"L’( io1 v]-) s valid:

- kilky! u i ;

k ) 1-h2 1)y, 41G-1) 1) ]

Dh(.”v]) > el [IT D", (13)
J=1 W 1) =f Llj=1¢1 -2 *j=1

Here 1) = (19 19 19 € {0,1,...,k:}, 1§ € {0,1,...,ks}, j=1,...,s.
Proof. Let us prove (13) for s = 2. We use the method of mathematical induction
with respect to k = (ki, k2). We must prove the formula

ko k!
VAN

(1) (1) (2)
DV v, TV DY .

Di(vive) = >

1) 412 =k

8



Note that here we have l;-Z) =k; — l;-l) and, therefore, % = Ck]j ,J =12

This formula is obvious in the case when £ = 0 = (0,0), k = e; = (1,0) and
k = ey = (0,1). Suppose that it is also valid for all r, 0 < r; < ky, 0 < 7y < k. Let
us consider this formula for Df ™ = DF':

k1 ko
11=012=0
k1 ko
= 3 S ChCB (Dl T Doy, 4 DHery THe DEyy)
11=012=0
ko k1 , , I I
= > Gy [Z( + C- M) Do, T'D¥ vy + vy D¥ vy + D¥ 0, T 1;2} .
I2=0 =1

Here the last expression is equivalent to the formula for D¥(v,vs) with k' instead
of k. We can complete the proof of the formula for Dk+32 in the same way and,
therefore, complete the proof of the induction step.

Now we can prove a general form of (13) using the mathematical induction with
respect to s.

Formula (13) is obvious for s = 1. We have also proved it above for s = 2. Suppose
that it is also valid for all r, 2 < r < s. Let us introduce w = szl v; and consider
this formula for Df(IT32] v;) = D (wvs1):

s+1 k 'k) 1
k k 1-h2: ro e et
Dh(H ’U]-) =Dp(wves1) = Y Ty (s+1)|D wl™D" " vgp
j=1 (s =k r!l Irally
kilksy!

st G-1) 1G)
HTl +...4+1Y DlJ .

= e e o 1

s+1
r D=k (W4 1= 1]}

According to this, (13) is valid for Dj(IT3Z] v;). It proves the induction step and,
therefore, (13) is valid. The lemma is proved.

4 Estimates of the nonlinear function.

We can also derive some estimates for the nonlinear part of the difference schemes.
First, we show some properties which can be obtained for the nonlinear functions
f(u,u*) due to requirement (2).

Lemma 5 Let (2) be satisfied. Then the following estimate holds:
£ (v,0%) = fw, w*)| < 2¢(max{|v], [w])})|v — w].

Proof. We have the following equalities:
f(’U,’U )—f(’U),’U )('U—’U))+

v —w v* — w*

f(v,v*)—f(w,w*) =



) 0
= %f(le,v*)(v —w) + %f(w,f)g)(v —w)".

Here 9; = 6;v+(1—0;)w, 0; € [0;1], j = 1,2. The supposition of this lemma follows
from (2).

Lemma 6 Assume that v € W and (2) is satisfied. Then the following estimates
are valid:

IDEf (v, o) < dillvllmz, |kl = 1,2, di = di(e([v]lc), [[vllk-12)-  (14)
If, additionally, condition (2) for the function f(u,u*) is valid up to the fourth order
derivatives, the following estimates are valid:
IDEf(, )| < di(IDF 2]+ IDZYo]l), ke {(1,2),(2, 1)},
IDE?f (0, v)l < day|DE0ll (15)

Here we suppose that the norms in the right-hand side of the inequalities are bounded
| D¥v|| < C < oo for all positive hy, hy < hy and

dk:{dk(¢(||v||c),||v||2,2) if ke{(1,2),(21)};
di(e(|[vlle), |1 DS 2ull, IDEVw]) if k= (2,2).

Proof. If |k| =1 the statement of this lemma follows from Lemma 5.

Assume |k| > 2. The finite difference differentiation D¥v can be written as

Dl = X @)= Y ew)l)

T kip k2
= hhY ) yeAL(a)
Here Ai(Z) = ([Z1 — kih1;Z1] X [Tz — kaho; T2]) N @, is the set of neighbouring
points of Z on which the differentiation D¥ is defined. For y € A(Z) we have
e(y) = 6(.’1_31 — llhl,fg — lghg) = (—1)|Z|C£:llcli22 and ZyeA(i) |6(y)| = 2|k‘

Using these notation and an expansion of the function f(v,v*) into the Taylor series
in the neighbourhood of 7 = v(Z) we get the following formula:

1
D,’jf(v,v*) T TRk Z e(y)f(v(y), v*(v))
T=T h‘ |d 2 yEAk(zE)
Ll sy T () =0 00) -
WS ey i<t 85;”;9(”“* | 51! 5!
1 *f(Ury, U3y) (v(y) — )" (v(y) — )"
saarredliD DI ) D vevervovers
hlkldk2 year(®) et O51p 0520 s1! 85!

= sl!lszlgzv(g’sf;z Di((v - )" (v ~ o))
- 0° f(U1y, 03,) ;v(y) — Uys1 0(y) — Ty *s2
F Y e T 1 [y y)( (y) ) ((y) )

k2c.1c,! S1 59 9%
Y AL () |s\=|k\d s1! syl O%1p 9520

10



Here we have set v, = 0,,v(Z) + (1 — 0;,)v(y), 0;, € [0,1], 7 =1,2.

Using (2), Newton’s binom and the expression of e(y) we have

S1 S92
‘D,’jf(v,v*)‘ S Z (“'UH (Z Z C:11C;'sznv*rzz—)ﬂfmz—)*szfrz)
1<|s|<|k] ST 82! r1=0 15=0
elllvlle)2™ S & on ot | S . ey 4 g 5= p, 70|
dk2|k|' Z Z Cle Z Dth 2y +d Z thT e
11=0152=0 r1=0 ro=0

Taking Ly(w,) norms, applying Holder’s inequality and taking into account that
|T* D} ul||, < ||D}ullp, we obtain the following estimates:

(4]k]d)/*

NI o
v v

> (|| IS ™ e Z gy 4

| — |
1<‘ |<\k|7‘1 0 ro—0 r1: TQ 81 7‘1) (82 7‘2).

* k k
|DEf(v,0%)]] < (lvllc) (kullDayvllg, + kol Dayvlloy, )

Assume that |k| = 2. Using (11) we find that p; < 32d%¢(||v]|c)c||v]]12]|v||22 and
p2 = 2¢(||v]|c)||Dfv||. This completes the proof of (14).

For k € {(1,2),(2,1),(2,2)} we estimate p; using the second inequality from (12)

and estimate (9):

(4]k|d)™
pr < W@(HUHC) |||U|||k\ 1(k1||Dh1’U||1’2—|—k‘2 v 1,2)

4\k|des)

(lkldes) ™ et e)esy/2 + B (ku DEVo| + ks [ DED0)
K| k!
(4|k|d05)‘ Lk ,

< Tl elvlie)y2 + & 1D

We write vy, v9, v3 instead of T"v or T"v*. We do not specify a value of the vector r
since || Dhv;|| < ||Dhv|| for any [ and r. Let I’ +1" = k and ||, [I"] > 1. For the given
k we can suppose that [} < k; and 5 < ko. Let us also set k; = max{ky, k2} = 2.
Then (11) and (9) lead to the following estimate:

| DY oy DY v || < cacs|| Db e[| DY +e2u]| < e "2es|| Dy ||| DEv]|.

For k = (2,2) we put [ +¢; + e, =k, € = (1,1) — e;. Using (10) we can derive the
estimate

1D} v1 Dy Ditvs|| < (|| Dyva Dytos | + || Do Dy )UQDelT%SH]
X || Dy va Dyt ws |2V 2es05]| D 0| < Vacse3|| DY ||||D Do) Dfv]).

Therefore, for k € {(1,2),(2,1),(2,2)} we can use (13) and obtain
| DEviws|| < (2]|0lle + (2% — 2)cy 5| Dy “0[|)|DFvl,  here k; = 2;

11



2,2 2,1 1,2 2,2
1Dy vpvs]| < (3]|]|%+6[7]|v]|c+6v2c3es || DI ll] ces || Dol ) | DIl

Let us suppose that k& € {(1,2),(2,1)}. Then we get the following estimate:

2ol infol + 3 30 35 PRIIE Ty
2 - v v .
| - ls|=2r1=0m>= OTI'TZ s1—71)l(sa—ra)!" "

< 2¢(|[vlle) (1 + 4llvllc + 6eacs|| Do) | Dfo]|
Due to the first inequality of (12) we obtain the first estimate of (15) with a corre-
sponding coefficient dj, for these values of k.

Finally, let us consider & = (2,2). Similarly as above we find that

2,2
ua < o([lvlle) (2+4lvllc+4llv|E) 1D vl + (vl o) @+4llvlle) | DY Porws|
4 2,2
+ 2ol 1D vrvausl] < 2(lollo) (1 -+ 4lvlle + 8]vll2

ckes 14+ 56][0llc -+ 243 3ckes | D] 1D 011 [ D2

Due to the first inequality of (12) and (9) this leads to (15). The lemma is proved.

5 General properties of the difference schemes.

In order to prove convergence and stability of difference schemes (5), (6) and (5),
(8) we use some auxiliary statements.

Lemma 7 Let g € W. Then there ezists a unique solution g € W of (6) (or (8))
and the following estimates are valid:

IDFgll < |DEgll,  0<|k|=F +ky <2

If, additionally, |D¥g|| < C < oo for all positive hy, hy < hgy then these estimates
are also valid for k € {(1,2),(2,1),(2,2)}.

Proof.  Analogously as in Lemma 2, for both cases of equations (6) and (7) we
define the following functions on the grid w,:

N1—1 Nx—1

glzi,za) = D Y aywy (T)wy(z2),
I1=1 =1
N1—1 Nx—1

=1 Ix=1
N;—1 N>—1

g(z1,72) = Z Z ql1,lzal1,lzwl1(x1)wlz(xZ)'

=1 Ix=1

12



For difference scheme (6) the constants g ,, [; = 1,...,N; — 1, j = 1,2 can be
found from the equations

ql1,lz -1

1 2
27_ = _a’()\l(l) + )\l(z))qlhlZ'

It follows from here and from the condition Rea — a; > 0 that
1 2 1

|ql 1 |2: — S 1.
U I ar QP A (1 ar AP AD)2 4 (ar (A AD))2

Similarly, in the case of difference scheme (7) we can find the constants

G = (@ +a2)/2,  L=1,2,...,N;—1, j=1,2,

where ql(J] ) can be derived from the equations

(a) = 1)/2r = =X +1)/2

L

It follows that

(4) (4)
|ql(.j)|2 _ ‘1 — aT)\lJ_. 2 . 4C.ll7')\l]_ oy
’ 1+ CLT>\§JJ_) (1+ alT)\l(j))Q + (G,QT)\Z(:))Q N

and
1 2
) < (a7 + a2 /2 < 1.

Thus, similarly as in Lemma 2, for both schemes (6) and (7) and for all 0 < kq, ko < 2
we have

N1—1N3—1

A D\kr /3 (1) \ko
IDEgI? = 3 S OO span, 1,
1 2
< Y Y D) ay, g, 2 = (| DEg.

Since the coefficients ¢;, ;, and ¢q;, ;, exist and can be written in unique way for all
l; ={1,2,...,N; — 1}, j = 1,2, the unique function g exists in the case of both
schemes. The function § belongs to the space W due to the estimates derived above.
The lemma is proved.

Lemma 8 Let (2) and (3) be satisfied and z eC (@z). Then there is a constant T,
such that for all positive T < 1y there is a unique solution of (5) 2 eC (W) and the
estimate |2| < |z| holds.

Proof. See in [6].

13



Lemma 9 Let (2) and (8) be satisfied and z € W. Then there is a constant T,
such that for all positive T < 1y a solution of (5) 2 € W and the following estimates
hold:

12llik2 < (X4 2d i) |2l k1,2, die) = digg(e(ll2lle), l|2|lk-12)  |E] = 1,2.

If, additionally, condition (2) for the function f(u,u*) is valid up to the fourth order
derivatives and ||D22’2)z|| < C < oo for all positive hy, hy < hy, then the following
estimates also hold:

1,2) 4 2,1) 5112\ 1/2 1/2
(1D 212 + | DV z)1?) :

2,2) »
D) z]|

1,2 2,1
(1 + 2d57) (|| DS 2212 + | DIV 2)1?)

<
< (14 2d,7)||[DP? 2]

Here d = ds(¢(||2]|c), ||2]l2.0) and ds = da(p(||2]|0), | DS 2|, IDSVz])).

Proof. Let us denote the coeflicients

d]]ﬂ = Z dk’; |k| = ]_, 2, Jg = rnax{d(l,g), d(2,1)}/2, J4 = d(g,g).

1<k [<]k|
Here dy = di/(2) are the coefficients from Lemma 6 with the function Z instead of
v.
Let us apply the operator D on both sides of equation (5), multiply scalarly both
sides of the equation by 27D¥z and take real parts. We obtain
|IDR2|1°= || Dyz||* + 27 Re(Dy f (2, 2°), Dyz) <|| D)+ 27| Dy £ (2, 2°) || D2 -

Let us summate these equations for all &, |k'| < |k| < 2 and apply the estimate
||| < ||z|| which follows from Lemma 8. Using (14) we obtain

N 7 . N 27’6{]‘,
12l 5 < ol + 27dig 2150 = N2lR. < (1+—2—
1

JLE

It follows from Lemmas 6 and 8 that dy = dy (¢(||2]|c)) < di(e(]|2]|c)) = di(e(]|2]|c))-
Taking 7 < 1y = 1/2d, we find that [|2]|12 < (1 + 2d17)]|2]]12-

— TOlk|

Due to this estimate we can introduce the coefficient dy = da(¢0(||2]|c), [|2/|1,2) such
that dy = da(@(||2]|c), [|2]]1,2) < d2. Now for all positive 7 < 75 = 1/2dy we have the
estimate [|2][22 < (1 4 2da7)|2[[2,2. This estimate completes the proof of the first
part of this lemma.

Similarly, using the lower order grid derivative estimates, we can find the estimates

for (|D{22|? + [DZV22)"” and | D2z where dj = diy(z) > dj(2). The
lemma is proved.

14



Corollary 2 Let (2) and (3) hold and a solution of (5), (6), or (5), (8) satisfy the
estimate ||p(t)||lc < o, 1 =0,1,...,5. Then for any ug € W there is a constant T,
such that for all positive T < 1y the following estimate is valid:

[p(t)ll22 < lg)ll22 < colluollazs  1=0,1,....5.

If, additionally, condition (2) for the function f(u,u*) is valid up to the fourth order

derivatives, and the norm ||D22’2)u0|| < C < o0 is bounded for all hy,he < hy, the
following estimate is also valid:

2,2 2,2 2,2 .
1D p(t141)|| < [|IDEPg(t)]| < el Do, 1=0,1,...,4.

Here cg = cg(p(a), 2), g = cgle(a), ||D§Ll’2)u0||, ||D22’1)u0||). Both these con-
stants do not depend on the grid steps.

Proof. ~ We consider p = p(ti11) = g(t1), g = g(tr) = 2(t), 2(t;) = p(t)) = p.
Therefore, the results of Lemmas 7 and 9 lead to the estimates

1Bll12 < llglliz < (14 2d17)|Ipll2 < (14 2di7)"H|uoll12 < exp(2diT)||uo|1,2-

Here d; = di(p(a)) and | = 0,...,7. Thus, we have shown that ||p(¢;41)|12 is
bounded with a constant, which depends only on ||ug||;2 and ().

Applying the same idea for ||p(t)||2,2 we obtain analogous result:
[p(t141)[l22 < lg(tr)l22 < exp(2doT) ||uollz2, 1=0,1,...,].

Here ds depends on ¢(«) and, due to Lemma 9 and the previous result, on

max, {lIp(t) 12} < exp(2di)lfuo]z

A first statement of the corollary follows from here with cg = exp(2d,T).

Using the lower order grid derivative estimates, similarly we can find similar esti-

1/2
mates for (|| D}"?p(t)[2 + || Dyp(t)[|?) * and | DEVp() | with ¢ = exp(2dz 7).
The corollary is proved.

6 Convergence of the scheme (5, 6).

Let us introduce a truncation error ® on the grid @,:

utjn) — u(t;) u(tin) +uty) u(tin) +u'(t;)
- —alpu(tjs) — f( 5 : 5 )

Here and below u(z,t) is the solution of (1). This error satisfies the estimate

max{[|®(t)||} < er(7 + h?)

tcw,

®(t;) =

if condition (4) holds.

Now we can show, that finite difference scheme (5), (6) converges to the solution of

(1).

15



Theorem 1 Let (2), (3) and (4) be satisfied and uy € W. Then there exist hyg
and Ty such that for all positive hy,hys < hy and T < 7y the solution of difference
scheme (5), (6) converges to the solution of differential problem (1) and the following
estimates hold:

max{[[p(t) —u(®)ll} < ecs(r+h?),
max{||p(t) — u(t)llc} < (r"* + A0,y € (0,0.5) (16)

Here cg, cg depend only on cz, |a|, a = 2||lulgg), ©(a), T, ||uoll22. cg depends also
on c4. Both these coefficients do not depend on the grid steps.

Proof. Adding equations (5) and (6) we get the scheme
pe = alpp + f(‘éa Z.*)-
We have the following difference scheme for the error of the solution € = u — p:

g1 = alApé+ (f(u,0*) — f(2,2%) + @, (z,t) € Qnr,
g(z,t) =0, (z,t) € Ow, X @,, €(z,0)=0, = € w,. (17)

Let as denote the constant o = 2||u||c(g). By mathematical induction we can show
that there exist constants 7y and hg such that for all positive 7 < 7y, hy, hs < hyg
and for all ¢ € @, the estimate ||p(t)||c < a holds.

It is clear, that ||p(¢y)||c < a. Suppose that for all [ = 0,1,...,; the estimate
Ip(t1)||c < a holds. Then from Corollary 2 and from (12) we know that the estimate
Ip(t1)||2,2 < cglluo||22 foralll =0,1,...,5+1is valid. Note also that, due to Lemma
5 and to (6), we have the following estimates:

1f(@,u") = f(2,2)] < 2e(max{[[ullc), [Ipllc}) (€]l + 0.57(g:])
< 2¢(@)([lell + 7lales[luollz2)-

Multiplying scalarly (17) by 7€, taking real parts, applying Cauchy inequalities,
using the property Rea = a; > 0, we can obtain the following inequalities:

IEI* < Tlell el + TNl + £ (i, &) — £(2, 2) Il
From here and from the estimates for ||®|| and || f(%,a*) — f(2, 2*)|| it follows:
1]l < llell + 2m(a) lE]] + Ter (7 + h?) + 277 alcs | uo| 2290 (c)-
Taking time step 7 < 75 = 1/2¢(«), we obtain
€]l < (1 + 4p(a)7)llell + (267 + 4(a)|ales|uoll22) (T + b7).

Adding these estimates for time layers, using the grid Gronwall’s inequality and
knowing that ||e(¢y)|| = 0, we can obtain

le(tj+o)ll < es(r +h%) — 0.
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Remark 1, condition (4) and the induction’s supposition lead to

le(tj41)

Thus, from multiplicative inequality (12) we have

20 < ||lu(tjsn)ll2e + l[p(tj11)ll22 < (e1 + cs)|uol|2,2-

||€(tj+1)||c < c,8(7—+h2)(1/2*’7) oo

Therefore, taking time and spatial grid steps small enough we can achieve that
Ip(tjs1)lle < 2||u(tjt1)|lc < a. Thus, a step of induction is completed. Therefore,
the estimates for the L, and C norms of €(¢;1) are valid for all time layers and (16)
holds. The theorem is proved.

7 Convergence of the scheme (5, 7).

Now we can switch to the investigation of the other difference scheme. As it was
mentioned earlier, it is enough to investigate the scheme (5), (8).

Using similar ideas as earlier we can prove the following theorem:

Theorem 2 Let the assumptions of Theorem 1 be satisfied. Then there exist hy
and Ty such that for all positive hy,hys < hy and T < 7y the solution of difference
scheme (5), (8) converges to the solution of differential problem (1) and the following
estimates are satisfied:
max{[[p(t) — u(®)[} < eo(r"? + A,
max{|[p(t) —u(®)|c} < (" + A7),y e (0,025).  (18)

If, additionally, condition (2) for the function f(u,u*) is valid up to the fourth order
derivatives and ||D,(L2’2)u0|| < C < oo for all positive hy, hy < hy, then (16) holds.

Coefficients cog, cy, cs, cy depend on cq, lal, o = 2||u

lc@@y, (@), T, |lugllz2- ¢y, cy
additionally depend on c4; cg,cy depend also on ||D22’2)u0||. All these coefficients do
not depend on the grid steps.

Proof. Let us denote by p/, 2', ¢’ the solution of (5), (6) and p, z, g the solution of
(5), (8). Let us also denote by ¢, €,, €, the differences between these two solutions
p' —p, 2 — z and ¢’ — g respectively.

We have the following difference scheme for ¢, ¢, and €,:

2, €= € z,t) € Ow, X wy; €(z,0) =0, z € @,. (19)

(6z)t - f(z.,a Z,*) - f(Z, Z*)’ (gg)t = aAhég + 27—&2(9)512813—:23:2, (:I?,t) € QhT;
= ég; 07

m
N
I
M
m
Q
™,

Denote again o = 2||u[/¢(g). Due to Theorem 1 we have the estimates [|p'(¢)|[c < a
and ||p,(t) 2,2 S CG||U0||2,2 for all ¢t € Wr.
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Following Theorem 1 we suppose that ||p(¢;)||c < aholdsforalll =0,1,...,5. Anal-
ogously as earlier, the estimate ||p(;)||2,2 < cs||uo|2,2 holds for alll =0,1,...,7+1.

Due to Lemmas 5 and 8, the first equation of (19) leads to the estimate
€21 < llex[l + 27 (max{||pllc, [[P'llc DIIE:Il < [le=l + 27(c) [[€:]-
For all positive 7 < 79 = 1/2¢(a) we can find that
€=l < (1 +4p())llell = ll&[* < (1+ 16p(a)7) le]l*.

Note that the following estimates for grid functions v, w on @, with zero boundary
conditions are valid:

|(Ui'1w1i'2z2’w)| = |(vi1117wiﬂ2)| < ||Ui1£1|| ||wi2£2|| < ||’U||2’2||U) 2,2-

Thus, multiplying scalarly the second equation of (19) by 7€,, taking real parts,
applying Cauchy inequalities we can obtain the estimates

l€gl* < llegll lIEgN + 27%[alllgll22llEgll22 < [l + 27°al*[|p + 2|22/l — B

2,2

Using the results of Lemma 9, Corollary 2 and the previous estimate for ||€,||, we

have

2

I€]1* < (1 + 160 (a)7)lel|* + 8cglal[[uo|3 7

Similarly as in Theorem 1 this leads to the estimate
le(tjsa)ll < &r'/? — 0.
This estimate, (12) and boundedness of ||e(¢;11)]|2,2 lead to
le(tjs1)lle < &4 =0, e (0,0.25).
It follows from here, that for all 7 small enough ||p(¢;+1)||c < o and, therefore, the

induction step is proved.

Since |u —p| < Ju —p'| + |p' — p| — 0, (18) is valid. The convergence rates for
the C or Ly norms of the first term at the right-side of the estimate were found in
Theorem (1), and the convergence rates for the second term were obtained above in
this theorem.

Suppose that condition (2) is satisfied for the functions f(u,u*) up to the fourth
order derivatives and ||D,(f’2)u0|| < C < oo for all hy,hy < hg. Similarly we can
prove the second part of the theorem and obtain (16).

Assume that ||p(t)||lc < @, 1 =0,1,...,5. Then ||p(t;)|22 < cslluoll2,2 and, due to
Corollary 2, ||D&?p(t)|| < c4l| D ug|| for all I = 0,1,...,5+ 1.

From the first and the second equations of (19) we have the estimates
. . . 2,2
lell < L+ ap(@m)ell, 1€l < €Il + 2¢5lall| Dy uoll .
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From these two estimates, the grid Gronwall’s inequality and multiplicative inequal-
ities (12) we find

le(ti)ll <& —0,  [le(tj)lle <&r"*™ —0, v€(0,05).

Analogously as above, these estimates lead to (16), where coefficients cg and cg
satisfy the supposition of our theorem. The theorem is proved.

8 Stability of the difference schemes.

Suppose that p; and p, are the two solutions of the same difference scheme with
different initial conditions ug; and wug 2 respectively. We shall say that the scheme
is stable in the norm of the space B, if the inequality

max{[[p1(t) — p2(t)ll8} < clluoy — wosll, v € (0,1].

holds for all positive 7 < 7, hi,hs < hy. Here we suppose that constant ¢ is not
dependent on the grid steps.

Theorem 3 Let the conditions of Theorem 1 be satisfied. Then difference schemes
(5), (6) and (5), (7) (or (8)) are stable in the norm of the spaces Ly and C and the
following estimates hold:

max{[|p(t) =p2 (D[} < crolluoy — uoz

Y

&P, ye(0,05).  (20)

max{[|p1(t) —p2(t)llc} < cholluos — woz

here co, ¢y depend on T, o = 2max{||lui||c(q), [|uallcg)}, @(a). ¢y additionally
depends on cy, ||uo1||2.2+ ||uoz2l|22. Both these coefficients do not depend on the grid
steps.

Proof. We shall investigate both schemes together. Analogously as in Theorem 2
we denote € = p; — P2, €, = 21 — 22, € = g1 — g2. The difference schemes for ¢, ¢,
and g, can be written as follows:

(€Z)t: f(’él’ ZI) - f(’é?’ z;)’ (gy)t: aAhég_ 2’17—@2(5:9)@1101@21027 (‘T’ t) € Qnr;
€, =¢€,6, =6, =&y €=0,2 € 0w, Xw,, €(z,0) =up1— U2, T E ;.
Here k = 0 in a case of difference scheme (5), (6) and x =1 in a case of (5), (8).

Analogously as in Theorem 2, from the first equation we can obtain the estimate
[€:]] < (14 47(a))le]] for 7 < 70 = 1/2¢(c).

Due to Lemma 7, the second equation for both difference schemes leads to the
estimate ||€]| < ||&4].
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Combining both these estimates, adding them for all time layers and applying Gron-
wall’s inequality we came to the first inequality of (20) indicating stability in Ly norm
with the parameter v = 1 and ¢;9p = exp(4o(a)T).

Due to multiplicative inequality (12) and the boundedness of ||pi(t)||2,2 + ||p2(t)|l2,2,

the stability in L, norm leads also to the stability in C' norm with the coefficient
1/24y
)

Clo = ST (cﬁ(||u0,1 l2.2 + [Juozl|2,2 and the parameter v = 1/2 — . The

theorem is proved.
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