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Abstract. In this paper, we discuss stability and Tikhonov regularization

for the integral equation of the �rst kind with logarithmic kernel. Since the

kernel is analytic in our case, the problem is severely ill-posed. We prove a

convergence rate for the regularized solution and describe a method for its

numerical calculation.

1. Introduction

Many inverse problems from applications, such as tomography [11], geophysics

[10], non-destructive detection [7], inverse contact problems [4], give rise to integral

equations of the �rst kind with analytic kernels. Since these problems are severely

ill-posed, it will be very di�cult to �nd the numerical solution. In [3], [5], for certain

integral equations of the �rst kind with analytic kernels, a conditional stability

estimate could be proved, provided some a-priori information about the solution

was known.

The purpose of our paper is to study the Tikhonov regularization for integral

equations considered in [3], [5]. Applying the conditional stability estimate proved

there, we can obtain a convergence rate for the regularized solution.

In this paper, in order to explain our idea, we will consider the one dimensional

case only. But our method will work also for multi-dimensional problems [3], [4], [5]

and also for some nonlinear ill-posed problems, which we have stability estimates

from [1], [2] for. We will treat these problems in our forthcoming papers.

In the one dimensional case, we consider here the integral equation with loga-

rithmic kernel

Z 1

0

log(x� t)f(t)dt = g(x); x 2 [2; 3]:(1.1)

Since [0; 1] \ [2; 3] = ;, the kernel is analytic with respect to x; t. The integral

equation (1.1) is severely ill�posed in Hadamard's sense.
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Our main concern in this paper is conditional stability and Tikhonov regulariza-

tion. To this end we need regularity assumptions for the solution. We consider two

kinds of regularity assumptions: �rst, the solution is supposed to be H1
0 on [0; 1]

and second, the solution is supposed to be H1 in a neighborhood of one point.

The paper is organized as follows: In Section 2 we formulate the problem with

noisy right�hand sides in an abstract setting, and in Section 3 we discuss its condi-

tional stability. Regularized solutions are de�ned in Section 4, where a logarithmic

convergence rate is proved. In Section 5 a method is given for the numerical calcu-

lation of the regularized solution.

2. Formulation of the problem

We consider the following integral equation of the �rst kind with logarithmic

kernel

Af = g;(2.1)

where Af =
R 1
0
log(x� t)f(t)dt is an operator from L

2(0; 1) to L2(2; 3).

Since x 2 [2; 3] and t 2 [0; 1], the kernel log(x � t) is an analytic function.

Therefore this problem is severely ill-posed.

As to the right�hand side of the equation (2.1), let us suppose that we only know

an approximation g� of g in the sense kg � g�kL2(2;3) � �.

3. Conditional stability for the solution of (2.1)

In this section, we give some results concerning the conditional stability for the

solution of (2.1).

Let Hs and H
s
0 be the usual Sobolev spaces.
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Theorem 3.1. Suppose that f is the solution of (2.1) and kfkH1
0
(0;1) �M . Then

we have the following estimate

kfkL2(0;1) � C
1

j log 1
"
j
;(3.1)

where " = kgkH1(2;3) and C > 0 is a constant which depends on M

Outline of the proof:

1. Construct a new function

U(x; y) =
1

2

Z 1

0

log((x� t)2 + y
2)f(t)dt:(3.2)

It is easy to verify that

� U(x; y) is a harmonic function in R
2 n [0; 1]� f0g:

� U(x; 0) = g(x); @U
@y

(x; 0) = 0; x 2 [2; 3];

� @U
@y

(x; 0) = cf(x); x 2 [0; 1]:

2. Solve the Cauchy problem for the Laplace equation

(
@
2

@x2
+

@
2

@y2
)U(x; y) = 0; (x; y) 2 R

2 n [0; 1]� f0g;

U(x; 0) = g(x); x 2 [2; 3];

@U

@y
(x; 0) = 0; x 2 [2; 3]:

3. From U(x; y), we can obtain f . The estimate (3.1) is just the conditional

stability of the Cauchy problem for the Laplace equation.

The details can be found in [5].

In Theorem 3.1 we assumed that f 2 H
1
0 . This means that the case of a discon-

tinuous solution is not included. Concerning a piecewise continuous solution, we

give the following conditional stability estimate.
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Theorem 3.2. Suppose that f is the solution of (2.1) and x0 2 (0; 1) is �xed. If

kfkL2(0;1) �M

and there exists a neighborhood Or(x0) of x0 such that

kfkH1(Or(x0)) �M1:

Then we have the following local estimate

jf(x)j � C
1

j log 1
"
j

; jx� x0j � r1 < r;(3.3)

where " = kgkH1(2;3), C > 0 is a constant which depends on M , M1, r and r1 and


; 0 < 
 < 1; is a constant which depends on x0, r and r1.

Outline of the proof:

The proof is almost the same as in the previous part. The di�erence is that, in

the third step, we will use some estimation in [6].

For details see [6].

4. Tikhonov regularization

4.1. Concerning a continuous solution. We consider the Tikhonov regulariza-

tion for the equation (2.1).

For � > 0 �xed and f 2 H
1
0 (0; 1), we de�ne the following functional

F�(f) = kAf � g�k2L2(2;3) + �kfk2H1
0
(0;1);(4.1)

where � is a positive parameter.

Since F�(f) > 0, there exists � � 0 such that

� = inf
f2H1

0
(0;1)

F�(f):
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Let f�� 2 H
1
0 (0; 1) satisfy

F�(f
�
�) � � + �

2
:(4.2)

We call this function a regularized solution for (2.1).

Since �2 is a positive constant, such an f
�
� exists.

Theorem 4.1. Suppose that the exact solution of equation (2.1) f0 2 H
1
0 (0; 1) and

� = �
2. Then the regularized solution converges to f0 and the following estimate

holds

kf�� � f0kL2(0;1) � C1

1

j log 1
�
j
;(4.3)

where C1 > 0 is a constant which depends on f0.

Proof. First we estimate kf ��kH1
0
:

�kf��kH1
0

� F�(f
�
�) � � + �

2

� F�(f0) + �
2

= kAf0 � g�k2L2(2;3) + �kf0k2H1
0
(0;1) + �

2

� 2�2 + �kf0k2H1
0
(0;1):

Therefore we have

kf��kH1
0
� 2

�
2

�
+ kf0kH1

0
:

We take � = �
2 and let M = 2 + kf0kH1

0
. Then we have that

kf��kH1
0
�M

and

kf0kH1
0
�M:
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Next we will check the di�erence between Af0 and Af��:

kA(f0 � f
�
�)kL2(2;3) � kAf0 � g�kL2(2;3) + kAf�� � g�kL2(2;3)

� � +

q
F�(f��)

� � +
p
F�(f0) + �2

� � +
q

2�2 + �kf0kH1
0
(0;1) =

�
1 +

q
2 + kf0kH1

0
(0;1)

�
�:

Here we used � = �
2.

We denote B = 1 +
q

2 + kf0kH1
0
(0;1). Then we have

kA(f0 � f
�
�)kL2(2;3) � B�:(4.4)

It is easy to verify that, for x 2 [2; 3],

���� ddx
Z 1

0

log(x� t)f(t)dt

���� � kfkL2(0;1);

���� d
2

dx2

Z 1

0

log(x� t)f(t)dt

���� � kfkL2(0;1):

By the Proposition in the Appendix, we have

kA(f0 � f
�
�)kC(2;3) � B1�

1

2 ;(4.5)

where B1 is a constant which only depends on B and M .

By Lemma 5.1 in [6], we have

kA(f0 � f
�
�)kC1(2;3) � 2

3
2 kA(f0 � f

�
�)k

1

2

C(2;3)
kA(f0 � f

�
�)k

1

2

C2(2;3)
:(4.6)

Therefore we obtain

kA(f0 � f
�
�)kH1(2;3) � B2�

1

4 ;(4.7)

where B2 > 0 is a constant which depends on B and M .
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Apply Theorem 3.1 to f0 � f
�
�, the solution of (2.1) with a di�erent right�hand

side. Then there exists a positive constant C which depends on M such that

kf�� � f0kL2(0;1) � C
4

j log(B2�)j
:(4.8)

The proof is complete.

4.2. Concerning a discontinuous solution. We consider the Tikhonov regular-

ization for the equation (2.1).

For � > 0 �xed and f 2 L
2(0; 1)\H1(Or(x0)) , we de�ne the following functional

G�(f) = kAf � g�k2L2(2;3) + �(kfk2L2(0;1) + kfk2H1(Or(x0))
);(4.9)

where � is a positive parameter.

Since G�(f) > 0, there exists �1 � 0 such that

�1 = inf
f2L2(0;1)\H1(Or(x0))

G�(f):

Let f�� 2 L
2(0; 1) \H

1(Or(x0)) satisfy

G�(f
�
�) � �1 + �

2
:(4.10)

We call this function a regularized solution for (2.1).

Since �2 is a positive constant, such f
�
� exists.

Theorem 4.2. Suppose for the exact solution of the equation (2.1) f0 2 L
2(0; 1)\

H
1(Or(x0)) and � = �

2. Then the regularized solution converges to f0 in some

neighborhood of x0; and the following estimate holds

jf��(x) � f0(x)j � C1

1

j log 1
�
j

; jx� x0j � r1 < r;(4.11)
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where C1 > 0 is a constant which depends on f0, r and r1.

The proof goes along the same lines as the proof of Theorem 4.1.

The next result concerns the discontinuity points of the solution.

Theorem 4.3. Suppose that the exact solution f0 is a piecewise smooth function

and x0 is a discontinuity point such that f0 2 C
2((x0 � �; x0), f0 2 C

2(x0; x0 + �)

and f0(x0 + 0) 6= f0(x0 � 0). Let f�� be a regularized solution of the equation (2.1)

as de�ned in (4.10). Then we have

lim
�!0

kf��kH1(Or(x0)) =1:(4.12)

Proof. We assume that the conclusion is not true, i.e.

kf��kH1(Or(x0)) � C;(4.13)

where C > 0 is a constant which is independent of �.

Without loss of generality, we assume that there is only one discontinuity point

x0 in Or(x0).

Let c = f0(x0 + 0)� f0(x0 � 0) 6= 0. For � su�ciently small, we consider a new

function

f1 =

8>>><
>>>:

c

2�
1
2

(x� x0); x 2 (x0 � �
1
2 ; x0 + �

1
2 )

f0; x 2 (0; 1) n (x0 � �
1

2 ; x0 + �
1

2 ):

It is easy to verify that f1(x) 2 H
1(Or(x0)) and f1 2 L

2(0; 1).

By the de�nition of f��, we have for � = �
2

kAf�� � g�k2L2(2;3) � G�(f
�
�) � � + �

2

� G�(f1) + �
2 = kAf1 � g�k2L2(2;3) + c1�

2kf1k2H1(Or(x0))
+ �

2
:
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We can verify directly that

kAf1 � g�kL2(2;3) � kAf1 �Af0kL2(2;3) + kAf0 � g�kL2(2;3)

� � + kAf1 �Af0kL2(2;3) � D1�
1
2 + � � D�

1
2 ;

where D > 0 is a constant which is independent of �.

Applying the conditional stability results (Theorem 3.2) for f��(x) � f0(x), x 2

(x0 � �; x0) and x 2 (x0; x0 + �), we have that

lim
�!0

f
�
�(x) = f0(x); x 2 (x0 � �; x0 + �) n fx0g:(4.14)

This means that f��(x) converges to f0(x) for almost every x 2 Or(x0). Since f0 is

not a function in H
1(Or(x0)) and f

�
� 2 H

1(Or(x0)), the assumption (4.13) is not

true.

The proof is complete.

Thus from Theorems 4.2 and 4.3 we obtain the following corollary:

Theorem 4.4. Let Or be an open subinterval of [0; 1]. There is a discontinuity

point of the solution f0 in Or if and only if for the regularized solution f
�
� de�ned

in (4.10) holds kf��kH1(Or) is unbounded for � = �
2 and � ! 0.

Remark 4.5. Comparing with other results for the standard Tikhonov regulariza-

tion [8], [9], if one wants to obtain a convergence rate, an assumption of the kind

g 2 R(A�) is necessary. Otherwise the convergence rate can be as slow as possible.

In our case, we know that, for any v 2 L
2(2; 3), A�v is an analytic function in

(0; 1). This means that only in the case where the solution is an analytic function,

the convergence rate can be obtained. But this is not reasonable in applications.
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Our result does not need this strong assumption. But the convergence rate is

weak. Only a log type convergence rate can be obtained. Even if the solution is not

a continuous function, we can only prove a local convergence rate in a neighborhood

of x0. Outside this neighborhood we have no information.

5. Numerical Analysis

We assume f0 2 H
1
0 throughout this section.

Here we �x the positive numbers � and � and give a method for the computation

of a regularized solution f
�
� de�ned in (4.2).

To this end, let n be a natural number and consider in the interval [0,1] the

equidistant discretization

ti = i=n; i = 1; � � � ; n� 1:

De�ne the �nite-dimensional subspace Xn of H1
0 as

Xn = spanfdi; i = 1; � � � ; n� 1g;

where di is linear and continuous with di(tj) = 1 for j = i and = 0 for j 6= i; i =

1; � � � ; n� 1: (I.e., we consider the so�called hat-functions.)

It is well�known that, given a function � 2 H
1
0 , its approximation �n =

Pn�1
i=1 �(ti)di

will converge to � for n!1: Moreover, if � 2 H
1+� we have

k�� �nkH1
0
� c � n��k�kH1+� :(5.1)

Now, consider the functional on H
1
0

F (f) = F�(f) = kAf � g�k2L2 + �kfk2H1
0

:
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>From the identity

F (cf + (1� c)g) = cF (f) + (1� c)F (g)� c(1� c)fkAf �Agk2L2 + �kf � gk2H1
0

g;

where 0 � c � 1, we see that F is strongly convex. Besides, F is locally Lipschitz

continuous and weakly lower semicontinuous. Hence there is a unique f
� 2 H

1
0

with the property

F (f�) = inf
f2H1

0

F (f):

>From the same reason, there is a unique f�n 2 Xn with

F (f�n) = inf
fn2Xn

F (fn):

Let f� 2 H
1
0 have the property F (f�) � inff2H1

0
F (f)+�

2
: (I.e., f� is a regularized

solution in the sense of (4.2).)

Theorem 5.1. For n > n(�) the choice

f
� = f

�

n

is possible.

Proof. It su�ces to show that

F (f�n) �! F (f�) (n!1):

To this end take fn 2 Xn such that fn ! f
� in H

1
0 in the strong sense. Then the

continuity of F implies F (fn) ! F (f�): Going to the limit in the obvious inequality

F (f�) � F (f�n) � F (fn); we get the assertion.

Remark 5.2. Using jF (f�)� F (f�n)j � jF (f�)� F (fn)j , the local Lipschitz conti-

nuity of F and (5.1), we can obtain an estimate for n(�).
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To conclude this section, let us calculate f�n, the solution of the uniquely solvable

optimization problem

min
f2Xn

fkAf � g�k2L2 + �(kfk2L2 + kf 0k2L2)g:

Set

f =

n�1X
i=1

xidi; Adi = �i;

and let (�; �) denote the scalar product in L
2. Then we have equivalently to solve

min
x2Rn�1

�(x);(5.2)

where

�(x) =
X
i;j

xixj(�i; �j)� 2
X
i

xi(�i; g�)

+(g�; g�) + �

0
@X

i;j

xixj((di; dj) + (d0i; d
0

j))

1
A

= <Wx+ u;x > + b:

Here x is the vector with entries xi, W is the matrix with entries

Wi;j = (�i; �j) + �((di; dj) + (d0i; d
0

j));

u is the vector with entries ui = �2(�i; g�); b = (g�; g�), and < �; � > is the scalar

product in R
n�1. After di�erentiating

lim
t!0

�(x+ th)��(x)

t
=< (W+W�)x+ u;h >;

and taking into account the symmetry of W; we obtain as a necessary (and su�-

cient) condition for a minimum

2Wx+ u = 0:
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But that means that the solution x0 of (5.2) can be calculated from a linear system.

We obtain

x0 = �W�1
u=2:

A regularized solution in the discontinuous case (Section 4.2) can be calculated

analogously.

6. Appendix

In this appendix, we will prove

Proposition 6.1. Let be h 2 C
1[2; 3] and � a small positive constant. If jhkL1[2;3] �

� and khkC1[2;3] � M (M is a constant), then there exists a constant B which de-

pends on M such that

khkC[0;1] � C�
1
2 :(6.1)

Proof. Since jhj is a continuous function on [2; 3], there exists a point x0 2 [2; 3]

such that jh(x)j attends the maximum at x = x0.

Let us consider two lines which cross (x0; jh(x0)j):

l1 : y � jh(x0)j = 2M(x� x0);

l2 : y � jh(x0)j = �2M(x� x0):

Then y = jh(x)j and l1 have no intersection point for x 2 [0; x0]; and y = jh(x)j

and l2 have no intersection point for x 2 [x0; 1].

If l1 and l2 do not intersect with [0; 1]� fy = 0g, then we have

1

2
jh(x0)j �

Z 1

0

jh(t)jdt � �;
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i.e.

jh(x0)j � 2�:(6.2)

If l1 or l2 intersect with [0; 1] � fy = 0g, without loss of generality we assume

that l1 intersects with [0; 1]� fy = 0g. Then we have

1

2

jh(x0)j
2M

jh(x0)j �
Z 1

0

jh(t)jdt � �;

i.e.

jh(x0)j � 2
p
M
p
�:(6.3)

Combining ((6.2)) and ((6.3)), we have the conclusion. The proof is complete.
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