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Abstract. We are interested in algorithms for constructing surfaces � of possibly

small measure that separate a given domain 
 into two regions of equal measure.

Using the integral formula for the total gradient variation, we show that such separa-

tors can be constructed approximatively by means of sign changing eigenfunctions of

the p-Laplacian, p! 1, under homogeneous Neumann boundary conditions. These

eigenfunctions are proven to be limits of continuous and discrete steepest descent

methods applied to suitable norm quotients.

1 Introduction

Let 
 � IR
n
; n � 1; be an open, bounded, connected Lipschitzian domain. There

is a practical interest [12] in algorithms for constructing surfaces � of possibly small

measure j�j which separate 
 into two regions of approximately equal measure, i.

e. , in solving minimum problems like

'1(E) = 2 P
(E) +

j jEj � j
 n Ej j

j
j
! min; E � 
; 
 > 0; (1)

where P
(E) = j�j is the perimeter of E relative to 
 and jEj is the measure of E.

This paper aims to solve the geometrical problem (1) by analytical tools. Roughly

speaking, we look for approximative solutions of the form E = fx 2 
; u(x) > 0g,

where u minimizes

F1(u) =

R

 jDuj+ 
j�uj

jjujj1
; 
 > 0; u 2 BV: (2)

Here jj � jjp is the norm in the Lebesgue space Lp = L
p(
), �u is the mean value of

u and
R

 jDuj has to be interpreted in the sense of the space BV of functions of

bounded variation on 
 [9], i.e.,Z


jDuj = sup

g

�Z


ur � g dx

�
; g 2 C

1
0 (
; IR

n); jg(x)j � 1; x 2 
:

(We have
R

 jDuj = kjrujk1, provided u belongs to the Sobolev space H1;1(
).)

The key idea for this approach is Federer's observation (comp. [4]), that the in�mum

of the functional

'(E) =
P
(E)

min(jEj
1

p� ; j
 n Ej
1

p� )
! min; E � 
; p

� =
n

n� 1
; (3)

coincides with that of

�(u) =

R

 jDuj

jju� t0(u)jjp�
! min; u 2 BV; (4)

where the functional t0 is de�ned by

t0(u) = sup ft : jEtj � j
 n Etjg ; Et = fx 2 
; u(x) > tg: (5)
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To specify the connection between (3) and (4) we quote some basic facts from [4],

[5]:

(i) Let u be locally integrable on 
. Then

Z


jDuj =

Z
1

�1

P
(Et)dt:

(ii) Let 
 � IR
n be an open, bounded and connected Lipschitzian domain. Then 


satis�es a relative isoperimetric inequality, i. e., there exists a constant Q = Q(
),

such that

min(jEj
1

p� ; j
� Ej
1

p� ) � QP
(E); p
� =

n

n� 1
: (6)

(iii) Let 
, Q be as in (ii) and let u be as in (i). Then

jju� t0jjp� � Q

Z


jDuj: (7)

A special case of (i) is Z


jD�Ej = P
(E);

where � is the characteristic function. Hence the map E ! �E � �
nE directly

connects (1) and (2). The inverse direction may be indicated by the map u ! Eu

with

Eu = fx 2 
; u(x) > 0g:

The functional F1 still is unpleasant from the algorithmical point of view. Therefore

we shall approximate F1 by (apart from zero) di�erentiable functionals

Fp(u) =
jjrujjp

p
+ 
j�ujp

jjujj
p
p

; u 2 H
1;p
; p 2 (1; 2]; 
 > 0: (8)

Remark 1 Our considerations can be generalized to the functionals

Fp;q(u) =
jjrujjp

p
+ 
j�ujp

jjujj
p
q

; q 2 (1;
np

n� p
]:

The next section contains notations and some results clarifying the connection be-

tween '1; F1 and Fp; p > 1. In Section 3 we analyse a continuous steepest descent

method for Fp. That leads to nonlinear nonlocal evolution equations which are

proven to have global solutions up. The asymptotic behavior of up is studied in

Section 4. It is shown that Fp(u(t)) tends monotonously decreasing to F (u�
p
), where

u
�

p
are sign changing eigenfunctions of p-Laplaciens. Moreover, we show that u�

p

approximates for p! 1 a function u� 2 BV with

F1(u
�) � lim inf

p
Fp(u

�

p
); u� = 0:

A time discretization of the evolution equations is established in the last section.
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2 Notations, Preliminaries

We denote by Lp
; BV; H

1;p
; H

1 = H
1;2
; (H1;p)� = H

�1;p0
; 1 � p � 2; p0 = p

p�1
the

usual spaces of functions de�ned on 
 and by (�; �) the pairing between spaces and

their duals. The norm in L
p is denoted by jj � jjp, jj � jj = jj � jj2. For t > 0 and a

Banach space X

L
2(0; T ;X); C(0; T ;X); Cw(0; T ;X); H

1(0; T ;X) = fu 2 L
2(0; T ;X); ut 2 L

2(0; T ;X)g

are the usual [6], [10] spaces of functions on [0; T ] with values in X.

Finally, for u 2 L
1 we de�ne the mean value

�u =
1

j
j

Z


u dx:

To prepare the replacement of '1 by Fp we state some explanatory facts.

Proposition 1 Let Q be the relative isoperimetric constant from (6). Then

jjujjp � 2
p�1

p

 
j
j

2

! 1

n

Qjjrujjp + j
j
1

p jt0(u)j; u 2 H
1;p
; p 2 [1;

n

n� 1
]: (9)

PROOF: By Hölder's inequality we get from (7)

jju� t0jjp � j
j
1

p
�

1

p�Q

Z


jDuj = j
j

1

p
�

1

p�Qjjrujj1:

However, an inspection of the proof of (7) (comp. the proof of Theorem 2 in [5])

shows, that herein j
j can be replaced by
j
j

2
. Thus, applying Hölder's inequality

once more, we get

jju� t0jjp � 2
p�1

p

 
j
j

2

! 1

n

Qjjrujjp;

and by the triangle inequality (9). 2

Remark 2 The inequality (9) speci�es the constant in Poincaré's inequality. For

p = 1, (9) is sharp. Indeed, suppose equality is attained in (6) for a set E with

jEj =
j
j

2
, as for example in the case of convex domains 
 (comp. [1]). Then

u = �E � �
nE 2 BV satis�es �u = t0(u) = 0 and

jjujj1 = j
j = 2

 
j
j

2

! 1

n

 
j
j

2

! 1

p�

= 2

 
j
j

2

! 1

n

QP
(E)

= 20
 
j
j

2

! 1

n

Q

Z


jDuj:

3



For convex domains 
 another speci�cation is well known [8]

jjujjp �

 
j
j

!n

!1�n

n

d
n
jjrujjp + j
j

1

p j�uj;

where !n is the volume of the unit sphere in IR
n and d is the diameter of 
.

The following result clari�es the connection between the functionals '1(E) and

F1(u).

Proposition 2 Let u1 be minimizer for F1. Then the set E1 = fx 2 
; u1(x) > 0g

is minimizer for '1.

PROOF:

Let E � 
 be an arbitrary set with P
(E) <1. We show '1(E) � '1(E1) in two

steps:

(i) De�ne v = �E � �
nE 2 BV . Then

'1(E)

j
j
=

2P
(E) +

j jEj�j
nEj j

j
j

j
j
=

R

 jDvj+ 
j�vj

jjvjj1
= F1(v) � F1(u1):

(ii) Let for " > 0

w"(x) = tanh (
u1(x)

"
):

Since u1 is minimizer of F1 and w" 2 BV , we have

1

jju1jj1
(jjw"jjBV + 
sign u1 w" � F1(u1)jjw"jj1) =

d

dt
F1(u1 + tw")jt=0 = 0:

Passing "! 0, the lower semicontinuity of the BV -norm [9] and Lebesgue's domi-

nated convergence theorem imply

2P
(E1) + 
sign u1 sign u1 � F1(u1)j
j: (10)

Now using once more that u1 is minimizer of F1, we �nd

1

jju1jj1
(
sign u1 � F (u1)sign u1j
j) =

d

dt
F1(u1 + t�
)jt=0 = 0;

that is

sign u1 = sign sign u1:

Thus by (10) we have

2P
(E1) + 
jsign u1j � F1(u1)j
j:

Because of (i) the assertion follows. 2
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Now we turn to the functional

Fp(u) =
jjrujjp

p
+ 
j�ujp

jjujj
p
p

; u � H
1;p
; p 2 (1; 2]; 
 > 0

as regularization of F1 from (2). By Poincaré's inequality Fp is bounded from below.

Minimizers of Fp satisfy necessarily the Euler Lagrange equations, i. e., the nonlinear

eigenvalue problem (comp. [3])

Apu = Bpu; (11)

where the operators Ap; Bp 2 (H1;p ! (H1;p)�) are de�ned by

(Apu; h) = (jrujp�2ru;rh) + 
sign �uj�ujp�1�h; 8h 2 H1;p
;

Bpu = Fp(u)bp(u); bp(u) = juj
p�2

u:

(12)

Fp approximates F1 in the following sense.

Proposition 3 Let up 2 H
1;p
; 1 < p � 2, be minimizer for Fp, such that

1

jjupjj1
+ jjupjjp � c: (13)

Then a sequence p! 1 and a minimizer u 2 BV of F1 exist such that

ui := upi ! u in L
1
; Fpi

(ui)! � � F1(u): (14)

PROOF:

(i)Let w 2 H
1 be �xed. Using that up is minimizer and (13), we �nd

j
j1�pjjrupjj
p

1 � jjrupjj
p

p
+ 
jupj

p = Fp(up)jjupjj
p

p
� Fp(w)jjujj

p

p
� c:

Since H1;1 is compactly imbedded into L
1, a sequence pi ! 1 and u 2 BV exist

such that

ui := upi ! u in L1
; Fpi

(ui)! �:

(ii) Using the lower semicontinuity of the BV-norm, Hölder's and Young's inequali-

ties, we get from (11), setting p = pi temporaryly,Z


jDuj � lim inf

Z


jDuij = lim inf jjruijj1

� lim inf(j
j
p�1

p jjruijjp) � lim inf(
p� 1

p
j
j+

1

p
jjruijj

p

p
)

� lim inf jjruijj
p

p
= lim inf(Fp(ui)jjuijj

p

p
� 
j�uij

p)

= lim inf(Fp(ui)jjuijj
p

p
)� 
j�ujp) = � lim inf jjuijj

p

p
� 
j�ujp

� � lim inf(jjuijj
2�p
1 jjuijj

2(p�1))� 
j�ujp

� � lim inf((2� p)jjuijj1 + (p� 1)jjuijj
2)� 
j�ujp

= �jjujj1 � 
j�ujp
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and hence

F1(u) � �: (15)

(iii) Let v 2 BV; v 6= 0. We want to show that F1(u) � F1(v). To this end let

(vj) � C
1 be a sequence (comp. [9]) such that

vj ! v in L1
;

Z


jDvjj !

Z


jDvj: (16)

We have

F1(v) = F1(vj) + F1(v)� F1(vj) = Fp(vj) + F1(vj)� Fp(vj) + F1(v)� F1(vj)

� Fp(up)� jF1(vj)� Fp(vj)j � jF1(v)� F1(vj)j:

(17)

By (16) we can choose j such that for given " > 0

jF1(v)� F1(vj)j < ":

Further we have

jjrvjjj
p

p
� jjrvjjj1jjrvjjj

p�1
1 �

1

p
jjrvjjj

p

1 +
p� 1

p
jjrvjjj

p

1

� jjrvjjj1(1 + j
1

p
jjrvjjj

p�1
1 � 1j) +

p� 1

p
jjrvjjj

p

1

and

jjvjjj
p

p
�

1

p
jjvjjj

p

1 +
p� 1

p
jjvjjj

p

1 � jjvjjj1(1 + j
1

p
jjvjjj

p�1
1 � 1j) +

p� 1

p
jjvjjj

p

1:

Consequently, we can choose pi = pi(j) such that

jF1(vj)� Fpi
(vj)j < ":

Thus, using (14) and (15), we get from (17)

F1(u) � Fpi
(ui) � F1(v) + 2":

Passing to "! 0, we �nish the proof. 2

3 Continuous steepest descent method

Due to the Propositions 2,3 the original minimum problem (2) is approximatively

reduced to the construction of minimizers for the functionals Fp; p 2 (1; 2] from
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(8). Because of (11), these minimizers are steady states of the nonlinear, nonlocal

evolution problem

ut + Au = Bu; u(0) = u0 2 H
1
; (18)

where the operators A = Ap; Bp are de�ned by (12).

In this section we �x p and drop the index p in order to simplify the notation.

The initial value problem (18) can be understood as continuous steepest descent

method applied to the functional F = Fp from (8). Accordingly, F turns out to

be Lyapunov functional of (18). This will be essential as well for proving existence

of global solutions u to (18) in the present section, as for showing that u(ti) tends

to steady states u�, i. e., solutions to the nonlinear eigenvalue problem (11), for

suitable sequences ti !1, in the forthcoming section.

The function b and consequently the operator B are not Lipschitz continuous. The

inequalities (comp. [2])

0 � (jyjp�1 � jzj
p�1)(jyj � jzj) � (jyjp�2y � jzj

p�2
z; y � z) � c(p)jy � zj

p
; y; z 2 IR

n
;

(19)

imply only continuity and monotonicity of the operators A and B. We introduce

b"(u) = (u2 + ")p=2�1u; " > 0;

as Lipschitz continuous approximation of b. Accordingly we de�ne

B"u = F"(u)b"(u);

F"(u) =
jjrujjp

p
+ 
j�ujp

jj(u2 + ")
p

2 jj1
; (20)

and consider auxiliary problems

(u� "�u)t + Au = B"u; u(0) = u0 2 H
1
: (21)

Lemma 1 Let " > 0. Then the initial value problem (21) has a unique solution

u" 2 C
1(0; T ;H1). Moreover, for t 2 [0; T ] u" satis�es

jju"(t)jj
2
"
� jju0jj

2
"
; (22)

Z
t

0

jju"tjj
2
"

jj(u2
"
+ ")

p

2 jj1
ds+

1

p
(F"(u"(t))� F"(u0)) = 0; (23)

where

jjvjj
2
"
:= jjvjj

2 + "jjrvjj
2
:

PROOF:

(i) By (19) the operator A 2 (H1 ! H
�1) is continuous and monotone [6], [13]. Set

for K > 0

B
K

"
u = F

K

"
(u)b"(u); F

K

"
=

min(K; jjrujjp
p
) + 
j�ujp

jj(u2 + ")
p

2 jj1
:

7



Then B
K

"
2 (H1 ! H

�1) is Lipschitz continuous. Hence

C := A� B
K

"

is continuous and satis�es,

(Cu� Cv; v � w) � �c(K; "; p)jju� vjj
2
"
:

Consequently [7], the pseudo-parabolic initial value problem

(u� "�u)t + Cu = 0; u(0) = u0 2 H
1
; (24)

has a unique solution u 2 C
1(0; T ;H1).

(ii) Testing (24) with u gives

1

2
(jju(t)jj2

"
)t + jjrujj

p

p
+ 
j�ujp = (BK

"
u; u) � jjrujj

p

p
+ 
j�ujp

and, after integrating with respect to t, (22). From this we get

jjru(t)jjp
p
� j
j1�p=2jjru(t)jjp � j
j1�p=2"�

p

2 jju0jj
p

"
=: K0("):

Thus, choosing K � K0, we see that actually

B
K

"
(u(t)) = B"(u(t)):

Hence, u" := u
K

"
is the unique solution to (21).

(iii) For proving (23), we test (21) with ut=jj(u
2 + ")p=2jj1 to get

jjut(t)jj
2
"
=jj(u2 + ")p=2jj1 +

1

p

d

dt
F"(u) = 0:

Integration over t yields (23). 2

Now we will let "! 0 in order to obtain existence for (18).

Theorem 1 Let u" be the solution to (21). Then a sequence "i ! 0 and a solution

u 2 C(0; T ;H1;p) \H1(0; T ;L2) to (18) exists such that

ui := u"i ! u in C(0; T ;L2
\H

1;p) (25)

and

ku(t)k = jju0jj; t 2 [0; T ]; (26)Z
t

0
jjutjj

2
=jjujj

p

p
ds+

1

p
(F (u(t))� F (u0)) � 0: (27)

Moreover, the function t! F (u(t)) is decreasing.

8



PROOF:

(i) (22), (23) along with the compactness of the imbedding ([10])

W = L
2(0; T ;H1;p) \H

1(0; T ;L2) � L
2(0; T ;Lp)

and the continuity of the imbedding of H1(0; T ;Lp) into C(0; T ;Lp) guarantee exis-

tence of a sequence "i ! 0 and of a function u 2 W such that

ui := u"i ! u in C(0; T ;Lp); (28)

ui * u in L
2(0; T ;L2) and L

2(0; T ;H1;p); ku(t)k � ku0k; t 2 [0; T ]; (29)

uit * ut in L
2(0; T ;L2): (30)

Further the relation (23) shows, that the function family

�"(t) = F"(u"(t))

is uniformly bounded and decreasing with respect to t. Thus we can suppose [11],

that

�i(t) := �"i(t)! �(t) 8 t 2 [0; T ]; (31)

where the limit function � is also bounded and decreasing. Because the weak lower

semicontinuity of the Lp norm and (29), we have in addition

F (u(t)) � �(t): (32)

(ii) For passing "! 0 we apply the usual monotonicity arguments. De�ne

g = �b(u)

Now, (28) and (31) imply

lim sup
i!1

Z
t

0
(uit + Aui; ui) ds = lim sup

i!1

Z
t

0
(jjruijj

p

p
+ 
j�uij

p) ds+ "i(kru0k
2
� kru"ik

2)

� lim
i!1

Z
t

0
�ijjuijj

p

p
ds =

Z
t

0
�jjujj

p

p
ds =

Z
t

0
(g; u) ds

(33)

and, due to the continuity of b (comp. (19)), (22)), (30) and (31),

lim
i!1

Z
t

0
(uit + Aui; h) ds = lim

i!1

Z
t

0
("i�uit + g; h) ds =

Z
t

0
(g; h) ds; h 2 L

2(0; t;H1):

Since H1 lies densely in H
1;p and uit + Aui is bounded in L

2(0; T ; (H1;p)�), that

means

uit + Aui * g in L
2(0; T ; (H1;p)�): (34)

9



Since A 2 (L(0; T ;H1;p)! L
2(0; T ; (H1;p)�) is continuous and monotone, (29), (33)

and (34) imply (comp. [6], [10])

ut + Au = g: (35)

Testing (35) with u and using (32) yield

d

2dt
kuk

2+

Z
t

0
(Au; u) ds =

Z
t

0
(g; u) ds =

Z
t

0
�jjujj

p

p
ds �

Z
t

0
F (u)jjujjp

p
ds =

Z
t

0
(Au; u) ds:

This implies jju(t)jj � jju0jj and by (29)

jju(t)jj = jju0jj; i:e:;
d

dt
jjujj = 0;

and

� = F (u): (36)

From this and (35) the equation (18) follows.

Finally (28), (31) and (36) show that

jjrui(t)jjp ! jjru(t)jjp:

Since H1;p is uniformly convex, this along with (30) prove (25) and (27). 2

4 Global behavior

In this section we shall show that the trajectories up(t) of the initial value problem

(18) for t ! 1 tend to solutions u�
p
of the nonlinear eigenvalue problem (11).

Further the behavior of u�
p
for p! 1 is studied.

Theorem 2 Let u be a solution to (18) as guaranteed by Theorem 1 and let be

�
� = lim

t!1
F (u(t)):

Then a sequence (ti)!1 and a solution u
� 2 L

2 \H
1;p to (11) exist such that

ui := u(ti) ! u
� in L

2
\H

1;p
; (37)

jju
�
jj = jju0jj; F (u�) = �

�
;

uti ! 0 in L
2
:

PROOF:

(i) By (26), (27) we have

jju(t)jj2 +

Z
t

0
jjutjj

2
ds � c; jju(t)jj = jju0jj; t � 0:

10



Testing (18) with juj2�pu gives

1

4� p
(jjujj

4�p
4�p)t + (

p

2
)p(3� p)jjrjuj

2

p jj
p

p
= F (u)jjujj2� 
sign �uj�ujp�1juj2�pu

� F (u0)jju0jj
2 +




j
jp
jjujj

p�1
1 jjujj

3�p
3�p

� (F (u0) +



j
j
)jju0jj

2
:

By integrating over t we get

Z
t

0
jjrjuj

2

p jj
p

p
ds � c(1 + t):

(ii) Since H1;p is compactly imbedded into Lp, these a priori estimates ensure the

existence of a sequence (ti)!1 and a function u� 2 L
2 \H

1;p, such that

ui := u(ti) ! u
� in L

p and a: e: in 
; (38)

juij
2

p ! ju
�
j
2

p in L
p
; ui * u

� in L
2
; (39)

uti ! 0 in L
2
; ui * u

� in H
1;p
: (40)

Further, (39) implies

ui ! u
� in L2 and jju

�
jj = jju0jj:

Moreover, since F (ui) is decreasing, we have

F (ui) # �
�
: (41)

(iii) In order to show that u� is solution to (11), we repeat the monotonicity argu-

ments of step (ii) in the proof of Theorem 1:

De�ne

g = �
�
b(u�);

then (20) and (38) yield

lim
i!1

(Aui; ui) = lim
i!1

(jjruijj
p

p
+ 
j�uij

p) = lim
i!1

(F (ui)jjuijj
p

p
)

= �
�
jju

�
jj
p

p
= (g; u�): (42)

Further, using the continuity of b, (38), Lebesgue's dominated convergence theorem

(40) and (41), we get

Aui * g: (43)

Since A 2 (H1;p ! (H1;p)�) is continuous and monotone, (40), (42) and (43) imply

Au
� = g:

Testing this equation with u� yields

jjru
�
jj
p

p
+ 
j �u�jp = (Au�; u�) = (g; u�) = �

�
jju

�
jj
p

p
;

11



that means

�
� = F (u�); (44)

and that u� satis�es (11):

Au
� = F (u�)b(u�):

Finally, (38), (41), and (44) imply

jjruijjp ! jjru
�
jjp;

thus, in view of (40) and the uniform convexity of H1;p, (37) follows. 2

The next result gives a condition ensuring that u� changes the sign in 
 (comp.

Proposition 2).

Theorem 3 Let F (u0) <



j
j
. Let

Eu� = fx 2 
; u�(x) > 0g:

Then 0 < jEu�j < j
j.

PROOF: Suppose jEu�j = 0 or jEu�j = j
j. Then, testing (11) with 1, we get


j
j1�pjju�jj
p�1
1 = F (u�)

Z


ju
�
j
p�1

dx � F (u0)jju
�
jj
p�1

j
j2�p;

but this contradicts our assumption. 2

Finally we study the behavior of solutions u�
p
of (11) for p! 1.

Theorem 4 Let

Fp(u0) <



j
j
: (45)

Let u�
p
; 1 < p � 2; be a solution to (11) as guaranteed by Theorem 2. Then there

exists a sequence (pi)! 1 and a function u
� 2 BV such that

u
�

i
:= u

�

pi
! u

� in L
1
; (46)

ju�i j ! ju�j = 0; (47)

Fi(u
�

i
) ! �

�
� F1(u

�): (48)

PROOF:

(i) By Theorem 2 we have

jju
�

p
jj = jju0jj; Fp(u

�

p
) � Fp(u0) � c(u0)

and hence Z


jDu

�

p
j � c:

Since BV is compactly imbedded into L1 [9], there exist a sequence (pi)! 1 and a

function u� 2 BV such that

u
�

i
:= u

�

pi
! u

� in L
1 and a:e: in 
;

12



Fpi
(u�

i
)! �

�
:

(ii) Testing the equation

Au
�

i
= Fpi

(u�
i
)ju�

i
j
pi�2u

�

i

with sign u�i , we get


j�u�
i
j
pi�1 = Fpi

(u�
i
)j

Z


ju
�

i
j
pi�2u

�

i
dxj

� Fpi
(u�

i
)jju�

i
jj
pi�1j
j3=2�pi=2

� Fpi
(u�0)jju

�

0jj
pi�1j
j3=2�pi=2

and hence

j�u�
i
j �

 
Fpi

(u0)j
j




! 1

p
i
�1

jju0jjj
j
�1

2 :

Letting pi ! 1 and taking into account (45) and (46) we get (47).

(iii) For proving that F1(u
�) � �

�, we can proceed as in step (ii) of the proof of

Proposition 3. 2

5 Time discretization

In this section we establish a (discrete) steepest descent method for solving (11). To

this end we consider the following time discrete version of (18):

ui � ui�1

�
+ Aui = Bui�1; i = 1; 2; :::; ui=0 = u0; � > 0: (49)

Theorem 5 Problem (49) has a unique solution ui 2 L
2 \ H

1;p. The sequence

(F (ui)) is decreasing. Let �� = limi!1 F (ui). Let �F (u0) < 1. Then a subsequence

(uj) and a solution u
� 2 L

2 \H1;p to (11) exist such that

uj ! u
� in L2

\H
1;p
; F (u�) = �

�
: (50)

PROOF: (i) The operator A 2 (L2 \ H
1;p ! (L2 \ (H1;p)�) is continuous, strictly

monotone and coercitiv. The operator B maps H1;p into (L2 \ H
1;p)�. Thus the

Browder-Minty theorem ensures existence of a unique solution ui 2 L
2 \ H

1;p for

given ui�1 2 H
1;p.

(ii) Testing (49) with ui � ui�1, applying Hölder's and Young's inequalities, we get

jjui � ui�1jj
2

�
+ (Aui; ui) = (Aui; ui�1) + F (ui�1)

Z


jui�1j

p�2
ui�1(ui � ui�1) dx

� jjruijj
p�1
p

jjrui�1jjp + 
juij
p�1

jui�1j+ F (ui�1)(jjui�1jj
p�1
p

jjuijjp � jjui�1jj
p

p
)

�
1

p
[(p� 1)jjruijj

p

p
+ jjrui�1jj

p

p
+ 
((p� 1)juij

p + jui�1j
p)

+ F (ui�1)(jjuijj
p

p
� jjui�1jj

p

p
)] =

jjuijj
p

p

p
((p� 1)F (ui) + F (ui�1))

13



and hence
jjui � ui�1jj

2

� jjuijj
p
p

+
1

p
(F (ui)� F (ui�1)) � 0: (51)

Testing (49) with ui gives

jjuijj
2

�
+ (Aui; ui) =

(ui�1; ui)

�
+ F (ui�1)

Z


jui�1j

p�2
ui�1ui dx

�
1

2�
(jjuijj

2 + jjui�1jj
2) +

F (ui�1)

p
((p� 1)jjui�1jj

p

p
+ jjuijj

p

p
)

=
1

2�
(jjuijj

2 + jjui�1jj
2) + (Aui�1; ui�1)

+
1

p

�
jjuijj

p

p
(F (ui�1)� F (ui)) + jjuijj

p

p
F (ui)� jjui�1jj

p

p
F (ui�1)

�
;

that is

1

2�
(jjuijj

2
� jjui�1jj

2) +
p� 1

p
((Aui; ui)� (Aui�1; ui�1)) �

jjuijj
p

p

p
(F (ui�1)� F (ui)):

Summing over i = 1; j and taking into account that (F (ui)) is decreasing by (51),

we get

jjujjj
2

2�
+

p� 1

p
(Auj; uj) �

jju0jj
2

2�
+
p� 1

p
(Au0; u0) +

1

p
max

i
fjjuijj

p

p
g(F (u0)� F (uj))

�
jju0jj

2

2�
+
p� 1

p
(Au0; u0) +

1

p
max

i

f
p

2
jjuijj

2 +
(2� p)

2
j
jg(F (u0)� F (uj)):

Since this holds for all j, we conclude

max
i

fjjuijj
2
g �

1

1� �F (u0)

 
jju0jj

2 +
2�

p
[(p� 1)(Au0; u0) + (2� p)j
jF (u0)]

!

and thus

jjujjj
2 +

2�(p� 1)

p
(Auj; uj) � jju0jj

2 + c�: (52)

(iv) Testing (49) with juij
2�p

ui yields

1

�
(jjuijj

4�p
4�p) + (

p

2
)p(3� p)jjrjuij

2

p jj
p

p
=

1

�
(ui�1; juij

2�p
ui)

� 
sign uijuij
p�1

juij2�pui + F(ui�1)

Z


jui�1j

p�2ui�1juij
2�pui dx

�
1

�(4� p)
((3� p)jjuijj

4�p
4�p + jjui�1jj

4�p
4�p) +




j
jp
jjuijj

p�1
1 jjuijj

3�p
3�p

+ F (u0)jjui�1jj
p�1

jjuijj
3�p

and by (52)

1

�(4� p)
(jjuijj

4�p
4�p � jjui�1jj

4�p
4�p) + (

p

2
)p(3� p)jjrjuij

2

p jj
p

p
� c: (53)

(v) Using (51)-(53), we can proceed as in the steps (ii) and (iii) of the proof of

Theorem 2, in order to prove (50). 2

14



References

[1] Cianchi, A., On relative isoperimetric inequalities in the plane, Bollettino

U.M.I. (7) 3 - 13 (1989)

[2] Di Benedetto, E., Degenerate parabolic equations, Springer-Verlag (1993)

[3] Drábek, P., A. Kufner, F. Nicolosi, Quasilinear elliptic equations with degen-

erations and singularities, Walter de Gruyter, Berlin, New York (1997)

[4] Federer, H., W.H. Flemming, Normal and integral currents, Ann. of. Math 72

(1960), 458 -520.

[5] Flemming, W.H., R. Rishel, An integral formula for total gradient variation,

Arch. Math. XI (1960), 218 - 222

[6] Gajewski, H., K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen ond

Operatordi�erentialgleichungen, Akademie-Verlag , Berlin, (1974)

[7] Gajewski, H., K. Zacharias, Zur Konvergenz des Galerkin-Verfahrens bei einer

Klasse nichtlinearer Di�erentialgleichungen im Hilbert-Raum, Math. Nachr. 51

(1971), 269 -278.

[8] Gilbarg, D., N.S. Trudinger, Elliptic partial di�erential equations of second

order, Springer-Verlag (1983)

[9] Giusti, E., Minimal surfaces and functions of bounded variation, Birkhäuser-

Verlag (1984)

[10] Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non

linéaires, Dunod, Paris (1969)

[11] Natanson, I.P., Theorie der Funktionen einer reellen Veränderlichen, Akademie-

Verlag, Berlin (1961)

[12] Schenk, O., W. Fichtner, K. Gärtner, ETH-Zurich, Technical Report No. 97/17

[13] Zeidler, E., Nonlinear functional Analysis and its applications II/B, Springer-

Verlag (1983)

15


