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Abstract. We investigate the �uctuations of the order parameter in the Hop�eld

model of spin glasses and neural networks at the critical temperature 1=�c = 1.

The number of patternsM(N) is allowed to grow with the number N of spins but

the growth rate is subject to the constraintM(N)15=N ! 0. As the system size N
increases, on a set of large probability the distribution of the appropriately scaled

order parameter under the Gibbs measure comes arbitrarily close (in a metric

which generates the weak topology) to a non-Gaussian measure which depends on

the realization of the random patterns. This random measure is given explicitly

by its (random) density.

1. Introduction

In 1977, Pastur and Figotin introduced and discussed a disordered version of

the Curie�Weiss model of ferromagnets (see [29], [30]). Later their model became

popular under the name Hop�eld model because of its impact on the theory of neural

networks achieved by its rediscovery and reinterpretation by Hop�eld [21]. This

versatility of the Hop�eld model�namely that it can be regarded as a very simple

model of the brain on one hand, and as a so-called spin glass (i. e., a disordered spin

system) on the other hand�has been the driving force for its popularity and the

e�orts which have been undertaken to obtain a better understanding of the model.

The neural network point of view has been taken in the original paper by Hop�eld

[21] for instance, as well as in the papers [27], [28], [23], [25], [26], and many others

while in the seminal paper [29], as well as in [7], [8], [9], [3], [16], [17], [4], [5], and [31]

the statistical-mechanics and thus the spin-glass aspect of the model have been in

the centre of interest. Of course, it would be very di�cult to give a complete list of

all important papers in this area. For an overview of recent results on the Hop�eld

model and related models and results which deeply in�uenced our understanding of

the model and even were able to justify some of the physicists' predictions (see [1],

e. g.) we refer the reader to [31] and [11] and, in particular, [6] therein.

To be more speci�c, let us now de�ne the Hop�eld model. First of all we choose

two numbers N;M 2 N which will denote the number of spins or �neurons� and

the number of so-called patterns, respectively. In contrast to a previous paper [20],

we shall now treat the case where M = M(N) may depend on N . Henceforth, we

shall write M and thus drop its dependency on N whenever there is no danger of

confusion and we shall refer explicitly to this dependency only when necessary. The

random function

HN(�) = � 1

2N

MX
�=1

NX
i;j=1

�i�j�
�
i �

�
j ; � 2 f�1;+1gN ; (1.1)

denotes the Hamiltonian of the Hop�eld model, which is a function of the spin

con�guration � 2 f�1;+1gN . The strength of the pair interaction is random as

the variables �
�
i 2 f�1;+1g with ��i denoting the ith component of the �th pattern

are random. In this paper we shall assume that the �
�
i are i.i.d. unbiased random

variables, i. e., that at given system size N , the family of random variables f ��i : i 2
f1; : : : ; Ng; � 2 f1; : : : ;M(N)g g is independent with

P(�
�
i = +1) = P(�

�
i = �1) = 1

2
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for all i and �. Expectations with respect to P will be denoted by E . Whenever

convenient, we shall write � for the (N �M)-matrix consisting of the (�
�
i )i;�, while

�i = (�1i ; : : : ; �
M
i ) and �� = (�

�
1
; : : : ; �

�
N), respectively, stand for the ith row and the

�th column of this matrix, respectively.

The spin variables are assumed to be independent with an unbiased a priori dis-

tribution P, i. e.,

P(�i = +1) = P(�i = �1) = 1

2

for all i 2 N . In addition, we shall assume throughout this paper that the family

f ��i : i 2 f1; : : : ; Ng; � 2 f1; : : : ;Mg g is independent of the family of the spin

variables f �i : i 2 f1; : : : ; Ng g.
The Hop�eld model at temperature 1=� 2 (0;1) may now be identi�ed with the

Gibbs measure with respect to the Hamiltonian (1.1), i. e.,

%N;�(�) = 2�N expf��HN(�)g=ZN;�; � 2 f�1;+1gN ; (1.2)

where the so-called partition function

ZN;� =
1

2N

X
�2f�1;+1gN

expf��HN(�)g (1.3)

is the normalization which makes %N;� a probability measure.

In order to understand the introduction of the order parameter in the Hop�eld

model note that the Hamiltonian (1.1) may be rewritten in the following convenient

form as a quadratic functional of the so-called overlap mN :

HN(�) = �N
2
kmN(�)k22; (1.4)

where

mN (�) = (m
�
N(�))�=1;::: ;M with m

�
N (�) =

NX
i=1

�
�
i �i: (1.5)

Here and below, k � k2 denotes the Euclidean norm in R
M . The �th component m

�
N

of the overlap mN compares the spin con�guration to the �th pattern �� in such a

way that a large absolute value ofm
�
N(�) means that the spin con�guration � largely

agrees with �� (or its negative). These con�gurations are of low energy according

to (1.4). Therefore, the overlap is an important quantity for the investigation of the

Hop�eld model, a so-called order parameter. Its distribution under %N;� has been

of major interest in the study of the model and also will be central in this paper.

In [7], Bovier, Gayrard, and Picco established a law of large numbers for the

distribution of the overlap under the Gibbs measure %N;� which holds for P-almost all

realizations of the random patterns �. They showed that, whenever M(N)=N ! 0,

for P-almost all �, the distribution of the overlap mN under the Gibbs measure with

external magnetic �eld of strength h 6= 0 in the direction of the �rst unit vector e1
of the canonical basis in R

M converges weakly towards the Dirac measure ��z(�)e1
concentrated in �z(�)e1 as �rst the system size N ! 1 and then the strength

h! 0�. Here z(�) denotes the largest root z 2 [0; 1) of the Curie�Weiss equation

z = tanh(�z):
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Note that z(�) = 0 for � � �c = 1, so that �0 is the unique limiting measure in the

high-temperature region � � �c = 1, whereas z(�) > 0 for � > �c, so that in this

regime there is no unique limiting point.

Note that this result strongly resembles the law of large numbers for the mean

magnetization in the Curie�Weiss model, see [14, Theorem IV.4.1(a)], for example.

As already explained at the beginning this is, of course, not accidental, as the

Hop�eld model can be considered as a disordered version of the Curie�Weiss model

and, indeed, for M = 1 the Hop�eld model and the Curie�Weiss model agree by a

simple �gauge transformation� (i. e., replacing �i by �i�
1

i ).

On the scale of �uctuations, when analyzing the distribution of
p
N(mN�z(�)e1),

the character of the disorder becomes visible. Indeed, for M=N ! 0 and (�; h) 6=
(1; 0), the overlap satis�es P-almost surely a central limit theorem with the covari-

ance matrix which could be expected from the analogy with the Curie�Weiss model

and a centring which di�ers in the cases � > 1 or h 6= 0 from the naively expected

one by a �-dependent adjustment, see [16], [17], [19] and Bovier and Gayrard [4].

As shown in a previous paper [20], the in�uence of the disorder is even stronger

when investigating the �uctuations of the overlap at the critical temperature 1=� =

1=�c = 1, even when M(N) remains bounded. Recall that in the Curie�Weiss

model the criticality at temperature 1=� = 1 can also be seen as the breakdown

of the central limit theorem. As a matter of fact at the critical temperature the

magnetization in the Curie�Weiss model�scaled by a factorN1=4�converges weakly

towards a random variable given by its density with respect to Lebesgue measure

which is proportional to exp(�x4=12), cf. [14, Theorem V.9.5]. In [20] we showed

that in the Hop�eld model with �nitely many patterns (i. e., with M not depending

on N) the distribution of the overlap�scaled by the same factor N1=4�regarded

as a random variable QN taking values in the Polish space M1(R
M ) of probability

measures on RM converges weakly (with respect to P) to a limiting random measure

QM . This limiting randommeasure QM is given by its (random) density with respect

to the M -dimensional Lebesgue measure which is proportional to

exp

�
� 1

12

MX
�=1

x4� �
1

2

X
1��<��M

x2�x
2

� +
X

1��<��M

��;�x�x�

�
; (1.6)

where � is an M(M � 1)=2-dimensional Gaussian random variable with mean zero

and the covariance matrix being the identity matrix, namely,

� = (�(�;�);(�0 ;�0))(�;�);(�0;�0)

and

�(�;�);(�0;�0) =

�
1; if (�; �) = (�0; � 0);
0; otherwise,

for 1 � � < � �M and 1 � �0 < � 0 �M .

This shows that even for �niteM at the critical temperature 1=� = 1, the �uctua-

tions of the overlap depend strongly on the random disorder as even the distribution

of the limiting �uctuations is random. Even to formulate the corresponding result

for the case where the number of patterns M(N) is actually growing with N seemed

to be di�cult, since, on one hand, we don't have an �in�nite-dimensional Lebesgue

measure� as reference measure and, on the other hand, we cannot work with �nite-

dimensional projections (as in the Central Limit Theorem) either, since the �mixed

terms�
P

1��<��M ��;�x�x� tend to �glue� together the coordinates.
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In this paper we circumvent these di�culties by not stating a limit theorem but by

showing instead that the distance between the distribution QN of the scaled overlap

and the random measure QM becomes small with high probability for large N . More

precisely, we shall show, under the constraint M15=N ! 0 on the growth rate of

M(N), that for each large enough N there exists a set of �'s of probability larger

than 1 � expf�M=Lg (with some constant L > 0) on which the distance between

QN and QM is smaller than "N & 0.

This paper has three more sections. Section 2 contains the explicit statement of

the result concerning the non-Gaussian �uctuations of the overlap at � = 1 for the

Hop�eld model with a growing number of patterns. Section 3 is devoted to one

of our basic tools, a multidimensional version of a strong approximation result of

Komlós, Major and Tusnády [22], which allows to control the di�erence of a sum

of i.i.d. random variables and a sum of i.i.d. Gaussian random variables with the

same covariance matrix. These results go back to Zaitsev [32], [33], Einmahl [12]

and Einmahl and Mason [13]. They also proved useful in [10]. Section 4 �nally

is devoted to the proof which is based on the Hubbard�Stratonovich transform of

the measures of interest together with a Taylor expansion of the resulting density, a

saddle point approximation as well as the strong Gaussian approximation mentioned

before.

Acknowledgement. We are grateful to Anton Bovier for bringing the strong

Gaussian approximation to our attention, and, in particular, for sharing the re-

sults of [10] with us prior to publication. We bene�ted from interesting discussions

with him. The results presented here were obtained while the second author was

visiting at the Wias. He thanks the Wias for its hospitality.

2. Statement of Results

This section contains the mathematically precise statement of the result an-

nounced in the introduction. We shall state the theorem only for the case of

� = �c = 1 being �xed. In [20], where we considered M independent of N only, we

also treated the case of variable temperature �N converging to �c = 1 as N ! 1.

It turned out that for �N converging to �c faster than 1=
p
N (recall that M was

chosen as a constant), the limiting distribution is the same, while for �N converg-

ing to �c slower than 1=
p
N , we have a Central-Limit-Theorem type result and at

�the borderline�, i. e., when �N � �c is of the same order as 1=
p
N , one can see the

in�uence of both possible limiting distributions.

In the present setting, we consider such an extension of our results to variable �N a

basically technical exercise. Therefore, we shall concentrate on the most interesting

case which allows us to present streamlined proofs.

In general, we shall assume that the pattern matrix � lives on a probability space

(
;F ; P ) that is rich enough to allow the strong-approximation results stated in

Section 3. The pattern matrix has to be viewed as a random variable on (
;F ; P ),
but with slight abuse of notation, we shall formulate exceptional sets as sets of �-
variables by writing f� : F (�) 2 Ag which is to be understood in the natural way as

f! 2 
 : F (�(!)) 2 Ag.
Let

QN = %N;1(N
1=4mN)

�1 (2.1)
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denote the distribution of the scaled overlap under the Gibbs measure %N;1. By d
we denote the metric

d(P1; P2) = sup

�����
Z

fdP1 �
Z

fdP2

���� : f 2 G
�

(2.2)

with

G = (2.3)n
f : RM ! R : sup

x;y2RM
jf(x)� f(y)j � 1 and sup

x;y2RM
jf(x)� f(y)j � jjx� yjj2

o

on the set M1(R
M ) of all probability measures on R

M . According to [2, Corol-

lary 2.8] this metric generates the weak topology on M1(R
M ). The result we are

going to prove is the following.

Theorem 2.1. Let � = �c = 1. Assume that M(N)15=N ! 0. Then there exist a

constant L > 0, a set 
(N) � 
 with probability

P(
(N)) � 1� e�M(N)=L; (2.4)

an N 2 N and a sequence ("N)N2N, satisfying "N & 0 as N ! 1, such that for

every N � N , there exists a set

(��;�)1��<��M

of M(M � 1)=2 independent standard-Gaussian random variables such that the ran-

dom measure QM , which is given by its (random) density

x 7! expf	M(x)g
� Z

RM

expf	M(x)g dx (2.5)

with

	M(x) = � 1

12

MX
�=1

x4� �
1

2

X
1��<��M

x2�x
2

� +
X

1��<��M

��;�x�x� ; (2.6)

satis�es

d(QN ; QM) � "N (2.7)

for all � 2 
(N).

Remarks 2.2. 1. Note that the scaling factor N1=4 for the overlap vector is the
same as the one for the mean magnetization in the Curie�Weiss model at the
critical temperature, see [14, Theorem V.9.5]. Similar to that case (and, of

course, similar to the Hop�eld model with a �nite number of patterns) the
distribution of the overlap is close to a non-Gaussian distribution.

2. Our condition M(N)15=N ! 0 on the growth rate of M is, of course, em-
barrassing. It is due to the simultaneous strong Gaussian approximation of

M(M � 1)=2 variables. Any proof using the strong Gaussian approximation as
provided in [32], seems to produce conditions which are far o� any reasonable
condition on the growth rate.



6 B. GENTZ AND M. LÖWE

3. In fact, we are going to show that, under the conditions of the theorem,����
Z
RM

f(x)QN(dx)�
Z
RM

f(x)QM(dx)

���� � "N(Kf + kfk1) (2.8)

holds for all � 2 
(N) and all f 2 BL(RM ;R), where BL(RM ;R) denotes the
set of all bounded, Lipschitz continuous functions from R

M to R, Kf denotes the
Lipschitz constant of f and kfk1 = supx2RM jf(x)j. This implies the theorem

by (4.2) below.

3. Strong Gaussian Approximation

In this section we are going to collect some facts about the so-called strong Gauss-

ian approximation and apply them to the situation of our interest. The problem

of the Gaussian approximation is quickly stated. Given a sequence (Xi)i2N of i.i.d.

random vectors in R
d , we know that

Pn

i=1Xi�scaled appropriately�converges in

distribution to a Gaussian random vector Y . This vector can obviously be decom-

posed again into a sum of �small� Gaussians. The question is now, whether we can

also �nd Gaussian vectors Yi such that the di�erence

�(X; Y; n) = sup
1�k�n






kX
i=1

Xi �
kX
i=1

Yi






2

(3.1)

becomes small in a suitable sense.

This problem was �rst stated and treated in a one-dimensional setting by Komlós,

Major and Tusnády in [22]. The d-dimensional extension is due to Zaitsev [32] and

Einmahl [12]. For a thorough treatment of the problem, we refer the reader to [33].

The form of the strong approximation we recall below proved useful in [10] and goes

back to Einmahl and Mason [13].

Let P1 and P2 be two probability measures on Rd (endowed with the Borel �-�eld),
and for � > 0 let

�(P1; P2; �) = supfP1(A)� P2(A
�); P2(A)� P1(A

�) : A � R
d closedg: (3.2)

Here

A� = fx 2 R
d : 9y 2 A such that kx� yk2 � �g (3.3)

is the closed �-neighborhood of the set A.
Furthermore, let X1; : : : ; Xn be n 2 N independent random vectors in R

d with

EX1 = 0 and �nite variance which satisfy the Bernstein-type condition

jE hs;Xii2ht; Xiim�2j �
1

2
m!�m�2ktkm�2E hs;Xii2 (3.4)

with some � for all m � 3 and all s; t 2 R
d .

Under the condition (3.4), Zaitsev proved in [32, Theorem1.1] the following bound

on �(P1;n; P2;n; �), where P1;n is the distribution of X1 + : : : + Xn and P2;n is the

d-dimensional normal distribution with mean zero and covariance matrix cov(X1)+

� � �+ cov(Xn) (see also [13]).

Fact 3.1. For all n � 1 and all � � 0,

�(P1;n; P2;n; �) � c1;d expf��=(c2;d�)g (3.5)

with c1;d = c1d
5=2 and c2;d = c2d

5=2 for numerical constants c1; c2 > 0.
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As in [13], Fact 3.1, the following fact follows.

Fact 3.2. Let X1; : : : ; Xn be independent mean zero random vectors satisfying the

Bernstein-type condition (3.4). If the underlying probability space is rich enough,
then, for each � � 0, there exist independent Gaussian random vectors Y1; : : : ; Yn
with mean zero and

cov(Yi) = cov(Xi) for all i 2 f1; : : : ; ng,
such that

P

�




nX
i=1

(Xi � Yi)






2

� �

�
� c1;d expf��=(c2;d�)g; (3.6)

where the constants c1;d, c2;d are the same as in Fact 3.1.

Corollary 3.3. In the situation of Fact 3.2, for each � � 0, there exists a mean
zero Gaussian random vector Y with covariance matrix cov(Y ) =

Pn

i=1 cov(Xi) such
that

P

�



Y �
nX
i=1

Xi






2

� �

�
� c1;d expf��=(c2;d�)g (3.7)

with the same constants c1;d, c2;d.

In our situation we want to apply Fact 3.2 and, in particular, Corollary 3.3 to

the M(M � 1)=2 dimensional vectors that contain the information of the mutual

overlaps of the patterns in the ith component. More precisely, we will choose d =

M(M�1)=2, n = N , and Xi = (�
�
i �

�
i )1��<��M in order to replace 1=

p
N
PN

i=1Xi by

a Gaussian random vector � = (��;�)1��<��M . Observe that due to the independence

of the �
�
i , we obtain

cov(Xi) = Id

for each i, and hence also � will have identity covariance matrix. (By a slight abuse

of notation, we denote the identity matrix by Id whatever the dimension of the

underlying space R
d is.) In order to apply Corollary 3.3, we have to check the

Bernstein-type condition (3.4). This is done in the following lemma.

Lemma 3.4. In the above setting X1; : : : ; Xn ful�ll the Bernstein-type condition
(3.4) with � = M .

Proof. By Schwarz' inequality,

jht; Xiij � ktk2kXik2 � ktk2M:

Thus, for any choice of s; t 2 R
M and all m � 3

jE hs;Xii2ht; Xiim�2j � �m�2ktkm�2
2

Ehs;Xii2 �
1

2
m!�m�2ktkm�2

2
E hs;Xii2;

where we have already chosen � = M .

Now we are ready to deduce the desired approximation.

Corollary 3.5. If (
;F ;P) is rich enough, for each N and � � 0, there exist a
mean zero Gaussian random variable � with covariance matrix Id and numerical

constants c1; c2 > 0, such that

P

�



 1p
N

NX
i=1

Xi � �






2

� �

�
� c1M

5 exp

�
� �

p
N

c2M6

�
: (3.8)
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Proof. Apply Lemma 3.4 and Corollary 3.3 with � =M .

Remark 3.6. Observe that � in (3.8) may�and will indeed in our applications�
depend on N and M .

4. Proofs

To prove Theorem 2.1, we need to show that for large system size N the distribu-

tion QN of the scaled overlap under the Gibbs measure %N;1 is close to the random

measure QM with respect to the metric d on a set of large P-measure. First we show

that QN and its smoothed version obtained by a Hubbard�Stratonovich transform

are close, so that we may investigate the Hubbard�Stratonovich transform instead of

the measure itself. We recall the Hubbard�Stratonovich transform of QN from [20].

The core of the proof is the investigation of the density of this Hubbard�Stratonovich

transform by an adaptation of Laplace's method.

Notation 4.1. We denote by � � � the convolution of two measures � and �.

Lemma 4.2. For all M � 8, all f 2 BL(RM ;R) and all probability measures ~Q on

R
M , ����

Z
f d( ~Q � N (0; N�1=2Id))�

Z
f d ~Q

���� � 2
p
2Kf

p
� + kfk1e�M ; (4.1)

where Kf denotes again the Lipschitz constant of f and kfk1 = supx2RM jf(x)j as
before.

Now,

d(P1; P2) = sup

�����
Z

fdQ1 �
Z

fdQ2

���� : f 2 G0
�

(4.2)

with

G0 = G \ ff : f(0) = 0g (4.3)

and G0 � BL(RM ;R). Therefore, the following corollary is an immediate conse-

quence of the preceding lemma.

Corollary 4.3. For all M � 8 and all probability measures ~Q on R
M ,

d( ~Q � N (0; N�1=2Id); ~Q) � 2
p
2� + e�M : (4.4)

Proof of Lemma 4.2. Let f 2 BL(RM ;R) and let ~Q be an arbitrary probability

measure on R
M . Then, for � > 0,����

Z
f d( ~Q � N (0; N�1=2Id))�

Z
f d ~Q

����
�
ZZ

1B(0;�)(x)jf(x+ y)� f(y)j ~Q(dy)N (0; N�1=2Id)(dx)

+ 2kfk1
�p

N

2�

�M=2 Z
1B(0;�)c(x) exp

n
�N

2
kxk2

2

o
dx

� Kf� + 2kfk1
M(B(0; �N1=2)c); (4.5)
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where 
M denotes the M -dimensional Gaussian measure with mean zero and the co-

variance matrix being the identity matrix. The radius �M satisfying 
M(B(0; �M)) =

1=2 is bounded by
p
2M for M � 8, cf. [18, Equation (4.4)]. Choosing � = 2

p
2�,


M(B(0; �N1=2)c) � 1

2
exp
n
�1

2

�
N1=2� � �M

�
2
o
� 1

2
e�M (4.6)

follows by [24, Theorem 1.2]. This concludes the proof.

The Hubbard�Stratonovich transform of the distribution of the scaled overlap is

given by its density with respect to Lebesgue measure.

Lemma 4.4. Let 0 < � <1 and a > 0. Then the convolution

�N;�;a = QN � N
�
0;

a

N�
Id
�

(4.7)

of QN = %N;�(
p
amN )

�1 with the M-dimensional Gaussian distribution with mean

zero and covariance matrix a
N�

Id is the random measure on R
M which is given by

the (random) density

fN;�;a(x) =
expf�N��N;�(x=

p
a)gR

RM
expf�N��N;�(x=

p
a)g dx ; x 2 R

M ; (4.8)

with respect to the M-dimensional Lebesgue measure, where

�N;�(x) =
1

2
kxk2

2
� 1

�N

NX
i=1

log cosh(�hx; �ii); x 2 R
M ; (4.9)

depends on the random patterns. Here h�; �i stands for the inner product in R
M .

We omit the proof as it follows by a straight-forward calculation similar to the

ones given in [7, Lemma 2.2] or [15, Lemma 3.3].

Before turning to the proof of Theorem 2.1, we gather some estimates which will

prove useful in the sequel. The �rst of these estimates is a bound on the operator

norm of the random matrix arising from the patterns.

Lemma 4.5 ([6, Theorem 4.1]). There exist a constant K > 0 and an N1 2 N such

that

P
���k 1

N
�T�kOp � (1 +

p
�)2
�� � p

�
	
� Ke�M=K (4.10)

for all N � N1.

For later use, we de�ne


1(N) =
�
� :
��k 1

N
�T�kOp � (1 +

p
�)2
�� < p

�
	
: (4.11)

In particular, we know that for N � N1, � 2 
1(N) and all x; y 2 R
M ,���� 1N

NX
i=1

hx; �iihy; �ii � hx; yi
���� � 4

p
�kxk2kyk2: (4.12)

We also need the following estimates to treat terms which involve products of

components �
�
i for four or six di�erent values of �. These are provided by the

following lemma.
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For � > 0 let


2(N; �) =

� [
�1;:::;�4

����� 1N
NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i

���� > �
p
�

�

[
[

�1;:::;�6

����� 1N
NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i �

�5
i �

�6
i

���� > �
p
�

��
c

; (4.13)

where each of the unions is taken over all sets of pairwise di�erent indices in

f1; : : : ;Mg.
Lemma 4.6. For every � > 0, there exists an N2(�) such that for all N � N2(�)

Pf
2(N; �)
cg � expf��2M=4g: (4.14)

Proof. Let

BN;�(�1; : : : ; �4) =

����� 1N
NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i

���� > �
p
�

�
(4.15)

and

CN;�(�1; : : : ; �6) =

����� 1N
NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i �

�5
i �

�6
i

���� > �
p
�

�
: (4.16)

For pairwise di�erent indices �1; : : : ; �6 2 f1; : : : ;Mg, Chebychev's inequality with

t = �
p
� implies

P(BN;�(�1; : : : ; �4)) � expf�t�
p
�Ng expfNt2=2g = expf��2M=2g

and, similarly,

P(CN;�(�1; : : : ; �6)) � expf��2M=2g:
Therefore,

P(
2(N; �)
c) �

�1
2
M(M � 1) +

1

4!
M(M � 1)(M � 2)(M � 3)

�
expf��2M=2g:

(4.17)

Choosing M large concludes the proof.

The next lemma provides a bound similar to (4.12) for terms involving the Gauss-

ian � instead of N�1=2�T�. Let


3(N;R; �) =

�
� :

����X
�<�

��;�(�)x�x�

���� < �R2
p
Mkxk2

2
8x 2 R

M

�
: (4.18)

Lemma 4.7.

Pf
3(N;R; �)
cg � 52M expf��2R4M=16g:

Proof. Let x; y 2 R
M . First note that

P
�<� ��;�x�y� can be viewed as the scalar

product of � and the vector (x�y�)�<� and that k(x�y�)�<�k2 � 2�1=2kxk2kyk2. By
Chebychev's inequality,

P

�X
�<�

��;�x�y� � �0
�

� expf�t�0g exp
nt2
2
k(x�y�)�<�k22

o

� expf�t�0g exp
nt2
4
kxk2

2
kyk2

2

o
(4.19)
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for t > 0. Choosing t = 2�0=(kxk2
2
kyk2

2
),

P

�X
�<�

��;�x�y� � �0
�
� exp

n
� �02

kxk2
2
kyk2

2

o
(4.20)

follows. To obtain a uniform bound, note that

P

�
9x 2 R

M :
X
�<�

��;�x�x� � �0kxk2
2

�
= P

�
9x 2 B(0; 1) :

X
�<�

��;�x�x� � �0
�

� P

�
9x; y 2 B(0; 1) :

X
�<�

��;�x�y� � �0
�
:

B(0; 1) being a (bounded) convex, balanced set in R
M , there exists a subset D �

B(0; 2) such that B(0; 1) is contained in the convex hull of D and D has at most 5M

elements (see for example [31, Lemma 10.2 in the Appendix]). Now, by our previous

bound and the de�nition of the set D,

P

�
9x 2 R

M :
X
�<�

��;�x�x� � �0kxk2
2

�

� P

�
9x; y 2 D :

X
�<�

��;�x�y� � �0
�
� 52M sup

x;y2D

P

�X
�<�

��;�x�y� � �0
�

� 52M sup
x;y2D

exp
n
� �0

2

kxk2
2
kyk2

2

o
� 52M exp

n
��

02

16

o
: (4.21)

Choosing �0 = �R2
p
M with � > 0 concludes the proof.

With these preparations we are able to prove Theorem 2.1.

Proof of Theorem 2.1. By (4.2), Theorem 2.1 follows, once we have shown that,

under the conditions of the theorem,����
Z
RM

f(x)QN (dx)�
Z
RM

f(x)QM(dx)

���� � "N(Kf + kfk1) (4.22)

holds for all � 2 
(N) and all f 2 BL(RM ;R). By Lemma 4.2, we may replace QN

by its Hubbard�Stratonovich transform.

So let f 2 BL(RM ;R). We need to investigateR
f(x) expf�N�(x=N1=4)g dxR

expf�N�(x=N1=4)g dx ; (4.23)

where

�(y) = �N;1(y) =
1

2
kyk2

2
� 1

N

NX
i=1

log cosh(hy; �ii); y 2 R
M : (4.24)

Consider the nominator �rst as the denominator is a special case of the nominator.

The main contribution to the integral arises from the inner region B(0; RM1=4) and

we shall choose a suitable R > 0 later on. In the inner region as well as in the

intermediate region B(0; rN1=4) n B(0; RM1=4) with r > 0 to be chosen later, we

investigate the behaviour of the integral in the nominator with the help of a Taylor

expansion of �. The outer region B(0; rN1=4)c is treated separately.
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Taylor expansion. Calculating the Taylor expansion of � around zero, we see that

there exists a � 2 (0; 1) such that

�(x) =
1

2
kxk2

2
� 1

N

NX
i=1

�
1

2
hx; �ii2 �

1

12
hx; �ii4

�
+RN(x; �); (4.25)

with

RN(x; �) = � 1

N

NX
i=1

1

15
h(h�x; �ii)hx; �ii5; (4.26)

where

h(t) =
tanh(t)

cosh4(t)
[2� sinh2(t)]; t 2 R: (4.27)

Regrouping the terms of the Taylor expansion of �, we �nd that

�N�(x=N1=4)

= � 1

12
kxk4

4
� 1

4

X�

�1;�2

x2�1x
2

�2
+

1

2

X�

�1;�2

x�1x�2
1p
N

NX
i=1

�
�1
i �

�2
i

� 1

3

X�

�1;�2

x�1x
3

�2

1

N

NX
i=1

�
�1
i �

�2
i � 1

2

X�

�1;�2;�3

x�1x�2x
2

�3

1

N

NX
i=1

�
�1
i �

�2
i (4.28)

� 1

12

X�

�1;�2;�3;�4

x�1x�2x�3x�4
1

N

NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i +O(N jRN (x=N

1=4; �)j);

where kxk4
4
=
PM

�=1 x
4

�. Here and in the sequel, we use the notation
P

�

�1;:::;�k

for summation over all k-tuples (�1; : : : ; �k) 2 f1; : : : ;Mg with pairwise disjoint

components.

Let us consider the di�erent �-dependent terms. By the strong Gaussian approxi-

mation Corollary 3.3, there exist a constant N0 2 N and anM(M�1)=2-dimensional

Gaussian vector � with mean zero and covariance matrix being the identity matrix

such that


0(N; �N) =

�



 1p
N

NX
i=1

(�
�
i �

�
i )�<� � �






2

< �N

�
(4.29)

with

�N = KM7=
p
N (4.30)

for some K > 0 satis�es

P(
0(N; �N)
c) � expf�KM=(2c2)g (4.31)

for all N � N0 and����12
X�

�1;�2

x�1x�2
1p
N

NX
i=1

�
�1
i �

�2
i �

X
�1<�2

��1;�2x�1x�2

���� � �Mk(x�1x�2)�1<�2k2 �
�Mp
2
kxk2

2

(4.32)

for all � 2 
0(N; �N).
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The other �-dependent terms become small due to the law of large numbers. For

N � N1 and � 2 
1(N), the bound (4.12) on the random matrix yields����13
X�

�1;�2

x�1x
3

�2

1

N

NX
i=1

�
�1
i �

�2
i

���� � 4

3

p
�kxk4

2
(4.33)

as well as����12
X�

�1;�2;�3

x�1x�2x
2

�3

1

N

NX
i=1

�
�1
i �

�2
i

���� (4.34)

=

����12
X�

�1;�2

x�1x�2kxk22
1

N

NX
i=1

�
�1
i �

�2
i �

X�

�1;�2

x�1x
3

�2

1

N

NX
i=1

�
�1
i �

�2
i

���� � 6
p
�kxk4

2
:

Furthermore, for N � N2(�) and � 2 
2(N; �), by the de�nition of 
2(N; �),���� 112
X�

�1;�2;�3;�4

x�1x�2x�3x�4
1

N

NX
i=1

�
�1
i �

�2
i �

�3
i �

�4
i

���� (4.35)

� �
p
�

12

X
�1;�2;�3;�4

jx�1x�2x�3x�4 j �
�
p
�M2

12
kxk4

2
=

�

12

�M5

N

�
1=2

kxk4
2
:

It remains to consider the remainder of the Taylor expansion. Now, jh(t)j � 2jtj
and 0 < � < 1 together with Schwarz' inequality imply that

jRN(y; �)j �
2

15N

NX
i=1

hy; �ii6 �
2

15

X
�1;:::;�6

jy�1 : : : y�6j
���� 1N

NX
i=1

�
�1
i : : : �

�6
i

����: (4.36)

The right-hand side is bounded above by a combinatorial factor times the sum of

terms similar to the ones treated above (with two, four or six di�erent �
�
i ) plus the

term arising from �1 = � � � = �6. This yields

jRN(y; �)j � C

�p
�kyk6

2
+ �
�M5

N

�
1=2

kyk6
2
+ �
�M7

N

�
1=2

kyk6
2
+ kyk6

6

�
(4.37)

for N � maxfN1; N2(�)g and � 2 
1(N) \ 
2(N; �), so that

N jRN (x=N
1=4; �)j � Cp

N

�p
�kxk6

2
+ 2�

�M7

N

�
1=2

kxk6
2
+ kxk6

6

�
: (4.38)

From now on, we shall always assume that N � maxfN0; N1; N2(�)g and that

� 2 
0(N; �N ) \ 
1(N) \ 
2(N; �). We have already seen that this implies that

�N�(x=N1=4) di�ers from

	(x) = � 1

12
kxk4

4
� 1

2

X
�<�

x2�x
2

� +
X
�<�

��;�x�x� (4.39)

by at most a constant times

gN(x) = �Mkxk22 +
�p

� + �
�M5

N

�
1=2
�
kxk4

2
+

1p
N

�p
� + �

�M7

N

�
1=2
�
kxk6

2
+
kxk6

6p
N
:

(4.40)
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The inner region. For kxk2 � RM1=4, the main contribution to gN(x) arises from
the �rst summand. Therefore, we shall use the estimate

gN(x) � hN(�; R) =
�M15

N

�
1=2

(K + �)R6 ! 0; (4.41)

provided M15=N ! 0. (Recall that �M = KM7=
p
N .) Therefore, the estimate for

the inner region is immediate: For f 2 BL(RM ;R),Z
B(0;RM1=4)

f(x) expf�N�(x=N1=4)g dx

= expfO(hN(�; R)g
Z
B(0;RM1=4)

f(x) expf	(x)g dx: (4.42)

The intermediate region. For RM1=4 � kxk2 � rN1=4,

gN(x) � �Mkxk22 +
�
(1 + r2)

p
� + (1 + r2)�

�M7

N

�
1=2

+ r2
�
kxk4

2
; (4.43)

which implies, that there exists an N3(�; r) 2 N such that

gN(x) � �Mkxk22 + 2r2kxk4
2

(4.44)

for all N � N3(�; r), provided provided M7=N ! 0.

Assuming N � maxfN0; N1; N2(�); N3(�g and � 2 
0(N; �N)\
1(N)\
2(N; �)\

3(N;R; �) from now on, our previous estimates together with the de�nition of


3(N;R; �) yield

�N�(x=N1=4) (4.45)

� 	(x) +O(gN(x))

� � 1

12
kxk4

4
� 1

2

X
�<�

x2�x
2

� +
X
�<�

��;�x�x� +O(�Mkxk22 + 2r2kxk4
2
)

� � 1

12
kxk4

4
� 1

12

�
kxk4

2
� kxk4

4

�
+ �R2

p
Mkxk2

2
+O(�Mkxk22 + 2r2kxk4

2
):

For kxk2 � RM1=4, kxk4
2
� R2

p
Mkxk2

2
is trivial. By choosing r and 0 < � � 1=48

small enough, we see that there exists an N4(R;K) 2 N such that �M becomes so

small that

�N�(x=N1=4) � �R
2

24

p
Mkxk2

2
(4.46)

holds for all N � N4(R;K) and all x from the intermediate region. Therefore, for

all f 2 BL(RM ;R) and N and � chosen as before,����
Z
fRM1=4

�kxk2�rN1=4
g

f(x) expf�N�(x=N1=4)g dx
����

� kfk1
Z
fkxk2�RM1=4

g

exp
n
�R

2

24

p
Mkxk2

2

o
dx

� kfk1 expf�R4M=48g
Z
RM

exp
n
�R

2

48

p
Mkxk2

2

o
dx

= kfk1 expf�R4M=48g
�

48�

R2

p
M

�M=2

: (4.47)
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This bound will allow us to deduce that the integral over the intermediate region is

negligible.

The outer region. The investigation of the outer region consists of two parts.

First, we show that there exists an r0 > 0 such that the integral over B(0; r0N
1=4)c

is negligible and then, in a second step, we show that this r0 can be replaced by an

arbitrarily small r > 0.

For convenience, we denote by fCW(�) the free energy in the Curie�Weiss model

at temperature 1=�, i. e.,

fCW(�) = ��
2
z(�)2 + log cosh(�z(�)): (4.48)

Then,

log cosh x � 1

4�
x2 +max

t2R

�
� 1

4�
t2 + log cosh t

�
=

1

4�
x2 + fCW(2�); (4.49)

which implies in particular that

�N�(x=N1=4) = �
p
N

2
kxk2

2
+

NX
i=1

log coshhx=N1=4; �ii

� �
p
N

2
kxk2

2
+

1

4
p
N

NX
i=1

hx; �ii2 +N fCW(2): (4.50)

Estimating the sum with the help of the bound (4.12) on the random matrix 1

N
�T�,

we see that there exist r0 > 0 and N5 � N1 such that

�N�(x=N1=4) � �
p
N

6
kxk2

2
(4.51)

holds for all x satisfying kxk2 � r0N
1=4, all N � N5 and all � 2 
1(N).

Let now rN1=4 � kxk2 � r0N
1=4 with an arbitrary r 2 (0; r0). First note that

�(x=N1=4) � E

n 1

2
hx=N1=4; �1i2 � log coshhx=N1=4; �1i

o
(4.52)

� sup
kyk2�r0

���� 1N
NX
i=1

log coshhx=N1=4; �ii � E log coshhx=N1=4; �1i
����:

The �rst summand on the right-hand side is bounded below by

cr;r0 = inf
y : r�kyk2�r0

E �(hy; �1i); (4.53)

where

�(t) = t2=2� log cosh t; t 2 R; (4.54)

attains its unique minimum at t = 0. The fact that hy; �1i is a (�nite) Rademacher

average (see [24, Chapter I.4], for instance), implies that

P(jhy; �1ij � 1

8
kyk2) > 1=3 (4.55)

(cf. [17, Lemma 4.3]), so that

cr;r0 = inf
y : r�kyk2�r0

E �(hy; �1i) > 0; (4.56)
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because there is a set of positive P-measure, on which � is bounded away from its

unique minimum at zero.

The second summand on the right-hand side of (4.52) becomes small due to so-

called self-averaging. Inspection of the proof of [17, Lemma 4.2] shows that not

only

lim
N!1

sup
kxk2�r0

���� 1N
NX
i=1

f(hx; �ii)� Ef(hx; �1i)
���� = 0 (4.57)

holds P-almost surely for Lipschitz continuous f , but we obtained also bounds valid

for large but �xed N :

Lemma 4.8 ([17, Lemma 4.2]). There exist a constant c > 0 and an N6 � N1 such
that for all " > 0 and all N � maxfN6; 2="

2g

P

�
sup

kyk2�r0

���� 1N
NX
i=1

log coshhy; �ii � E log coshhy; �1i
���� � (3 + 2r0)"

�

� 2 expfM(log(r0=") + c)g expf�N"2=8g+ P(
1(N)c):

With

" =
cr;r0

2(3 + 2r0)

and


4(N; r; r0) =

�
� : sup

kyk2�r0

���� 1N
NX
i=1

log coshhy; �ii � E log coshhy; �1i
���� � cr;r0

2

�
(4.58)

we obtain the following corollary.

Corollary 4.9. There exist a constant K(r; r0) > 0 and an N7(r; r0) 2 N such that
for all N � N7(r; r0)

P(
4(N; r; r0)
c) � expf�K(r; r0)Ng + P(
1(N)c):

Now, by our estimates on the two summands on the right-hand side of (4.52), we

�nd

�N�(x=N1=4) � �Ncr;r0=2 (4.59)

for all x such that rN1=4 � kxk2 � r0N
1=4, all N � N7(r; r0) and all � 2 
4(N; r; r0).

Gathering our estimates on the outer region yields����
Z
fkxk2�rN1=4

g

f(x) expf�N�(x=N1=4)g dx
����

�
Z
fkxk2�r0N1=4

g

kfk1 exp

�
�
p
N

6
kxk2

2

�
dx

+

Z
frN1=4

�kxk2�r0N1=4
g

kfk1 expf�Ncr;r0=2g dx

� kfk1
�
expf�Nr2

0
=12g+ expf�Ncr;r0=4g

�
(4.60)

for all N � N8(r; r0) for some N8(r; r0) 2 N .
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Completing the proof. From now on we shall always assume that

� 2 
(N) = 
(N;R; r; r0; �; �)

= 
0(N; �N ) \ 
1(N) \ 
2(N; �) \ 
3(N;R; �) \ 
4(N; r; r0) (4.61)

and that

N � max
�
N0; N1; N2(�); N3(�; r); N4(R;K); N5; N6; N7(r; r0); N8(r; r0)

	
: (4.62)

Note that there exists a constant L > 0 such that

P(
(N)c) � expf�M=Lg; (4.63)

provided R is chosen large compared to � and M is large enough, cf. Lemma 4.7.

Naturally, L depends on our choice of R, r, r0, � and �.
Let f 2 BL(RM ;R) be arbitrary. We have already shown that

Z
f(x) expf�N�(x=N1=4)g dx

= expfO(hN (�; R)g
Z
B(0;RM1=4)

f(x) expf	(x)g dx

+O
 
kfk1 expf�R4M=48g

�
48�

R2

p
M

�M=2
!

+O
�
kfk1

�
expf�Nr2

0
=12g+ expf�Ncr;r0=4g

��
(4.64)

with hN(�; R)! 0. Next, we want to replace the integral

Z
B(0;RM1=4)

f(x) expf	(x)g dx (4.65)

by the integral over RM . First note, that (4.45) already provides an upper bound

on 	(x), valid for all x satisfying kxk2 � RM1=4:

	(x) � � 1

12
kxk4

4
� 1

12

�
kxk4

2
� kxk4

4

�
+ �R2

p
Mkxk2

2
� �R

2

24

p
Mkxk2

2
: (4.66)

As an immediate consequence,

����
Z
fkxk2�RM1=4

g

f(x) expf	(x)g dx
����

� kfk1
Z
fkxk2�RM1=4

g

exp
n
�R

2

24

p
Mkxk2

2

o
dx

� kfk1 expf�R4M=48g
�

48�

R2

p
M

�M=2

; (4.67)
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which implies by (4.64) thatZ
f(x) expf�N�(x=N1=4)g dx

= expfO(hN(�; R)g
Z
RM

f(x) expf	(x)g dx

+O
 
kfk1 expf�R4M=48g

�
48�

R2

p
M

�M=2
!

+O
�
kfk1

�
expf�Nr2

0
=12g+ expf�Ncr;r0=4g

��
: (4.68)

In order to compareR
RM

f(x) expf�N�(x=N1=4)gR
RM

expf�N�(x=N1=4)g dx to

R
RM

f(x) expf	(x)gR
RM

expf	(x)g dx ;

we need a lower bound on
R
RM

expf	(x)g dx. To obtain a lower bound on 	 �rst,

we proceed as in (4.45):

	(x) � � 1

12
kxk4

4
� 1

4

�
kxk4

2
� kxk4

4

�
� �R2

p
Mkxk2

2
� �1

4
kxk4

2
� �R2

p
Mkxk2

2
:

(4.69)

For kxk2 � RM1=4,

	(x) � �R
2

3

p
Mkxk2

2
(4.70)

follows. (Recall, that � � 1=48.) Now,

Z
RM

expf	(x)g dx �
Z
B(0;RM1=4)

exp
n
�R

2

3

p
Mkxk2

2

o
dx � 1

2

�
3�

R2

p
M

�M=2

(4.71)

for M large enough, i. e., N � N9(R) for some N9(R) 2 N .

With these preparations, it is easy to see that�����
R
RM

f(x) expf�N�(x=N1=4)gR
RM

expf�N�(x=N1=4)g dx �
R
RM

f(x) expf	(x)gR
RM

expf	(x)g dx

�����
� kfk1

OR
RM

expf	(x)g dx+O ; (4.72)

where we use O as an abbreviation for

O
�
hN (�; R)

Z
RM

expf	(x)g dx
�
+O

 
expf�R4M=48g

�
48�

R2

p
M

�M=2
!

+O
�
expf�Nr2

0
=12g+ expf�Ncr;r0=4g

�
:
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By our lower bound on
R
RM

expf	(x)g dx, we see that R can be chosen so large that

there exist a constant K > 0 and an N10(R; r; r0; �; �) 2 N such that�����
R
RM

f(x) expf�N�(x=N1=4)gR
RM

expf�N�(x=N1=4)g dx �
R
RM

f(x) expf	(x)gR
RM

expf	(x)g dx

�����
� kfk1

�
O(hN (�; R)) +O(expf�R4M=Kg)

�
(4.73)

for all N � N10(R; r; r0; �; �). Now the theorem follows from Lemma 4.2 and

Lemma 4.4 with 
(N) as de�ned in the beginning of this subsection and

N � N = N(R; r; r0; �; �)

= max
�
N0; N1; N2(�); N3(�; r); N4(R;K); N5; N6; N7(r; r0); N8(r; r0);

N9(R); N10(R; r; r0; �; �)
	
: (4.74)
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