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Abstract

We consider convex stochastic optimization problems with probabilistic constraints

which are de�ned by so-called r-concave probability measures. Since the true mea-

sure is unknown in general, the problem is usually solved on the basis of estimated

approximations, hence the issue of perturbation analysis arises in a natural way.

For the solution set mapping and for the optimal value function, stability results

are derived. In order to include the important class of empirical estimators, the

perturbations are allowed to be arbitrary in the space of probability measures (in

contrast to the convexity property of the original measure). All assumptions relate

to the original problem. Examples show the necessity of the formulated conditions

and illustrate the sharpness of results in the respective settings.

1 Introduction

Most constraint sets in optimization problems can be described by an inclusion 0 2 H(x),

where H is some multifunction. In a large class of applied problems, the constraints are

subject to uncertainty such that their description changes to � 2 H(x), where � is some

random variable. Usually, the optimization of x- variables has to be carried out without

or with partial knowledge only about the realizations of the random variable. Then,

of course, the above formulation has to be replaced by some reasonable deterministic

equivalent. One possible way is to de�ne an admissible x as to satis�y the inclusion

� 2 H(x) with high probability: �(� j � 2 H(x)) � p or brie
y �(H(x)) � p, where �

is the probability distribution of � and p 2 (0; 1) is some speci�ed probability level. We

shall refer to such constraints as to probabilistic constraints. In the following, we shall

consider optimization problems of the type

(P ) minfg(x) j x 2 X; �(H(x)) � pg:

Here, g is a cost function on IRm, X � IRm is a non-speci�ed set of deterministic con-

straints, H : IRm
� IRs is a multifunction and � is the probability distribution of an

s-dimensional random variable �, i.e. � 2 P(IRs), where P(IRs) denotes the space of

probability measures on IRs. Throughout this paper, we shall make the following basic

assumptions for problem (P ):

g : IRm ! IR is convex: (1)

X � IRm is closed and convex: (2)

H : IRm
� IRs has closed and convex graph: (3)

� 2 P(IRs) is r- concave for some r < 0: (4)

We note, that (3) is equivalent to a description

H(x) = fz 2 IRs j h(x; z) � 0g;

where h : IRm � IRs ! IRk is convex and lower semicontinuous (in both variables).

Concerning assumption (4), we refer to Section 2.1.
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A peculiarity of stochastic optimization problems of type (P ) is that usually there

is no or only partial information on the measure � available. In solution procedures, �

is therefore replaced by sample-based estimators which for increasing sampling size are

supposed to approximate �. In this context, the question of stability arises in quite a

natural way: When the sampling size tends to in�nity, do the optimal solutions and their

cost function values of the approximate problems converge towards an optimal solution

and its cost function value, respectively, of the original problem? This issue is intimately

related with the qualitative stability of the solution set mapping and of the optimal value

function, both depending on perturbed probability measures in a neighbourhood of the

original one. For a list of papers dealing with stability aspects in stochastic programming

problems with probabilistic constraints, we refer to e.g. [1], [4],[6],[7],[9],[13],[15] and

references therein.

At this point, it is emphasized that we allow for arbitrary perturbations of � in the

space P(IRs) of probability measures on IRs. In particular, the important class of em-

pirical measures is included as approximation. Hence, although the original measure �

is supposed to have some nice convexity property (assumption 4), the perturbations are

allowed even to be discontinuous. The purpose of this paper is twofold: �rst, it aims at a

fairly complete characterization of qualitative stability in the settings introduced above by

means of veri�able conditions for the unperturbed problem; second, a series of examples

collected in section 4 shall illustrate the necessity of assumptions and the sharpness of

results.

2 Preliminaries

In this section, we collect some basic de�nitions and facts which are necessary for the

following analysis.

2.1 r-concave probability measures

Here we recall the notion of an r-concave probability measure for some r 2 [�1;1] which

was imposed as a basic assumption to the problem we are going to analyze (see (4)). We

start with the de�nition of the generalized mean function mr on IR+ � IR+ � [0; 1]:

mr(a; b;�) =

8>>>><
>>>>:

(�ar + (1 � �)br)1=r if r 2 (0;1) or r 2 (�1; 0); ab > 0

0 if ab = 0; r 2 (�1; 0)

a�b1�� if r = 0

maxfa; bg if r =1
minfa; bg if r = �1

(5)

The measure � 2 P(IRs) is called r-concave ([3]) for some r 2 [�1;1], if the inequality

�(�B1 + (1� �)B2) � mr(�(B1); �(B2);�) (6)

holds for all Borel measurable, convex subsets B1; B2 of IRs and all � 2 [0; 1] for which

the convex combination �B1 + (1 � �)B2 is Borel measurable as well (note that convex
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sets need not be Borel measurable, see [5]). For r = 0 and r = �1, � is also called

log-concave and quasi-concave, respectively. Since mr(a; b;�) is increasing in r if all

the other variables are �xed, the sets Mr(IR
s) of all r-concave probability measures are

increasing if r is decreasing, i.e., we have for all �1 < r1 � r2 <1 that

M�1(IR
s) �Mr1

(IRs) �Mr2
(IRs) �M1(IR

s): (7)

Recall, that the distribution function F� corresponding to some � 2 P(IRs) is de�ned by

F�(z) = �(� j �i � zi (i = 1; : : : ; s)) = �(z + IRs

�
):

For this particular case of cells B = z + IRs

�
; z 2 IRs, and for r 2 (�1; 0), the inequality

(6) implies the distribution function F� to have the property that the extended-real-valued

function F r

�
is convex on IRs. Moreover, (6) and (7) entail that F� is quasi-concave on

IRs.

As a consequence of a Theorem by Pr�ekopa ([11], Th. 4.2.1.), the probability measure

� induced by a log-concave density f (i.e. a density the logarithm of which is concave) is

log-concave as well, in particular it is r-concave for all r < 0 in view of (7). Examples of

distributions having log-concave densities are the uniform distribution (on any bounded

convex subset of IRs with non-zero Lebesgue measure), the (nondegenerate) multivariate

normal distribution, the Dirichlet distribution, the multivariate Student and Pareto dis-

tributions. These examples qualify our basic assumption (4) as being not very restrictive.

For more information on this issue, proofs and details we refer to Chapter 4 of [11].

2.2 The parametric problem and B-discrepancy between prob-

ability measures

In order to study qualitative stability, we imbed problem (P ) into the parametric problem

(P�) minfg(x) j x 2 �(�)g (� 2 P(IRs));

where the constraint set mapping � : P(IRs) � IRm is de�ned as �(�) = fx 2 X j
�(H(x)) � pg. Clearly, (P ) = (P�). We are interested in the behaviour of the solution

set and value function corresponding to this parametric problem. For technical reasons,

we introduce the slightly more general localized concepts for some open V � IRm and

� 2 P(IRs):

'V (�) = inffg(x) j x 2 X \ clV; �(H(x)) � pg
	V (�) = argminfg(x) j x 2 X \ clV; �(H(x)) � pg

We recall the following elementary fact:

; 6= 	(�) � V =) 	(�) = 	V (�); '(�) = 'V (�) (8)

By ';	 without index, we refer to the usual optimal value function and set of optimal

solutions respectively (i.e. V = IRm).
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Before stating any stability result for optimal solutions and values as functions of

perturbed probability measures � 2 P(IRs) in a neighbourhood of the original measure �,

we want to specify a distance on P(IRs) which is suitable for our purposes (cf. discussion

in [14]):

�B(�1; �2) = sup
B2B

j�1(B)� �2(B)j; �1; �2 2 P(IRs) (9)

Here, B is a system of closed subsets of IRs such that it contains all sets fH(x)jx 2 Xg
(with H and X as introduced in (2) and (3)) and that it forms a determining class, i.e.

whenever �1jB = �2jB, then �1 = �2. This last condition implies �B to be a distance, which

is also referred to as the B-discrepancy. A useful choice in the setting of our problem (P )

under the stated assumptions is B = fH(x)jx 2 Xg[fz+IRs

�
jz 2 IRsg, where the second

part of the union serves to turn B into a determining class, while the �rst part is essential

to obtain the important observations of the following Proposition:

Proposition 2.1 In problem (P�), it holds that

1. The multifunction � : (P(IRs); �B)� IRm has closed graph.

2. For � 2 P(IRs), de�ne w�(x) := �(H(x)). Assume that there exists some subset

Q � X, such that w�(x) � � > 0 for all x 2 Q. Then, for all r < 0, there exist

constants c; � > 0 such that

jwr

�
(x)� wr

�0(x)j � c�B(�; �
0) 8x 2 Q8�0 2 P(IRs); �B(�; �

0) < �:

Proof. 1. is shown in [13] (Prop. 3.1). For the second assertion, note that

jur � vrj � jrjmaxfur�1; vr�1g ju� vj 8u; v > 0.

Then, choosing � := �=2, one has w�0(x) � �=2 > 0 8x 2 Q8�0 2 P(IRs); �B(�; �
0) < �.

Fix c as jrj (�=2)r�1.

As a consequence of assertion 1. in the last proposition, all constraint sets are closed and,

hence, so are all solution sets 	(�).

3 Qualitative Stability

In this section we study qualitative stability in terms of upper and lower semicontinuity of

the solution set mapping and (upper Lipschitz) continuity of the optimal value function

in the parametric version (P�) of the problem (P ). The following theorem gives the main

result in this direction.

Theorem 3.1 Consider the parametric problem (P�) under the basic assumptions (1-4).

Let additionally the following assumptions be satis�ed at �:

1. 	(�) is nonempty and bounded.
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2. There exists some x̂ 2 X such that �(H(x̂)) > p (Slater condition).

Then, the multifunction 	 : (P(IRs); �B)� IRm is upper semicontinuous at �, and there

exist constants L; � > 0, such that

	(�) 6= ; and j'(�) � '(�)j � L�B(�; �) for all � 2 P(IRs) with �B(�; �) < �:

Proof. We de�ne f(x) := �r(H(x)) � pr with the improper value 1 allowed in case of

�(H(x)) = 0. Then, in view of r < 0, the unperturbed constraint set may be written as

�(�) = fx 2 X j f(x) � 0g, where f is convex due to (3) and (4). Furthermore, f(x̂) =

�r(H(x̂))� pr < 0 by assumption 2., i.e. x̂ is a Slater point of f w.r.t. X. Using a result

by Klatte [10], it was shown in [13] (Cor. 3.7.) that under the assumptions made here, the

desired continuity properties at � hold in the localized case. More precisely, with V being

some bounded, open neighbourhood of 	(�) (see assumption 1.), one has that 	V is upper

semicontinuous at � and there exist constants L1; �1 > 0, such that j'V (�)� '(�)j �
L1�B(�; �) for all � 2 P(IRs) with �B(�; �) < �1. Note that, by de�nition, one has

'V (�) = '(�) and 	V (�) = 	(�) since ; 6= 	(�) � V (see (8)).

Suppose now that 	 was not upper semicontinuous at �. Then, by the compactness

of 	(�) (see assumption 1. and recall the closedness of 	(�)), there exists some " > 0 as

well as sequences �n; xn such that �B(�n; �) ! 0, xn 2 	(�n) and d(xn;	(�)) � ". On

the other hand, in case that local nonemptiness of 	 is violated, 	(�n) = ; would hold

for a sequence �n with �B(�n; �) ! 0. Since 	(�) 6= ; by assumption 1., there is some

x� 2 	(�), hence x� 2 X \ V and f(x�) � 0. With the Slater point x̂ from assumption

2., select � 2 (0; 1] such that ~x := �x̂ + (1 � �)x� 2 X \ V (by convexity of X). Since

f is convex, it follows that f(~x) � �f(x̂) + (1 � �)f(x�) < 0: Hence, �(H(~x)) > p and

�(H(~x)) � p for � 2 P(IRs) with �B(�; �) < � := 1=2(�(H(~x)) � p). In particular,

the localized perturbed constraint sets �(�n) \ clV are non-empty (they contain ~x) and

compact for n large enough. Consequently, 	V (�n) 6= ; (since g is continuous as a convex
function which is �nite-valued on IRm, see (1)). But then, 	(�n) = ; means the existence

of a sequence xn 2 �(�n) n clV with g(xn) � 'V (�n).

Summarizing, if the upper semicontinuity or the local non-emptiness of 	 is violated

at �, then there are sequences �n; xn such that (with some " > 0)

�B(�n; �)! 0; xn 2 �(�n); g(xn) � 'V (�n) and d(xn;	(�)) � ": (10)

In the following, we lead these relations to a contradiction. We de�ne the set

A :=

�
IRm if 	(�) = �(�)

g�1(�1; g(x0)] if there is some x0 2 �(�) n	(�); f(x0) < 0:
(11)

Note �rst, that the case distinction above is complete. Indeed, assume that f(x) = 0

for all x 2 �(�) n 	(�) and choose an arbitrary such x. Then, f(�x̂ + (1 � �)x) �
�f(x̂)+(1��)f(x) < 0 for � 2 (0; 1], hence, due to x̂; x 2 �(�) and to convexity of �(�),

one gets �x̂+ (1 � �)x 2 	(�). This, however, entails 	(�) = �(�).

We note that A\�(�) is convex and compact. The convexity being evident from the

convexity of g, the compactness follows in the �rst case above from the compactness of
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	(�) = A \ �(�) due to assumption 1. In the second case, one may use the fact that

the level set g�1(�1; '(�)] of the convex function g intersected with the convex set �(�)

equals 	(�) which is compact by assumption 1. Then, according to [12] (Cor. 8.7.1), the

intersection �(�)\g�1(�1; �)] has to be compact for all levels �, hence the compactness

of A \ �(�) follows with � := g(x0).

Next, we verify that the sequence xn in (10) satis�es xn 2 A for n large enough. While

this is trivial in the �rst case of (11), assuming the contrary in the second case would

yield the existence of subsequences �nk ; xnk such that �B(�nk ; �)!k 0 and

'V (�) = '(�) < g(x0) < g(xnk) � 'V (�nk )���!k!1
'V (�)

which contradicts the already stated continuity of 'V at �.

Now, we claim that f(xn) > 0 holds for the sequence xn in (10) with n large enough.

Indeed, otherwise f(xnk) � 0 holds for some subsequence. Since then xnk 2 A \ �(�) by

de�nition of f and by the statement proven just before (also recall that xnk 2 �(�nk ) � X)

and, since A \ �(�) was shown above to be compact, one has xnk
l

! x� 2 A \ �(�) for

another subsequence. Now, because of g(xnk
l

) � 'V (�nk
l

) (see (10)), the continuity of 'V

at � and that of g as a convex function provide g(x�) � 'V (�) = '(�) which entails the

contradiction x� 2 	(�) to d(xnk
l

;	(�)) � " in (10).

Since xn 2 �(�n), one has �n(H(xn)) � p, hence �(H(xn)) � p � �B(�; �n) � p=2 > 0

for n large enough. Therefore, statement 2. in Proposition 2.1 yields the existence of

some c > 0, such that �r(H(xn)) � �r
n
(H(xn)) � c�B(�; �n) for n large enough. Hence,

f(xn) � c�B(�; �n). Next, de�ne

�x :=

�
x̂ in the �rst case of (11)

x0 in the second case of (11):

Set yn := �n�x + (1 � �n)xn, where �n 2 [0; 1] is chosen such that f(yn) = 0 (recall that

f(�x) < 0 and 0 < f(xn) � c�B(�; �n) < 1). Then, 0 � �nf(�x) + (1 � �n)c�B(�; �n) by

convexity of f . Since (1 � �n)c�B(�; �n) ! 0 and f(�x) < 0, one derives that �n ! 0.

Furthermore, one has kyn � �xk = (1 � �n)kxn � �xk. Now, yn 2 �(�) (since f(yn) = 0

and yn 2 X due to �x; xn 2 X and to convexity of X ). Finally, one has yn 2 A

which is trivial in the �rst case of (11) and which follows in the second case of (11) from

x0; xn 2 A since A is convex. Knowing that A \ �(�) is compact, the sequence yn must

be bounded, which, by the relations above, entails the sequence xn to be bounded as

well. Observing that kyn � xnk = �nk�x � xnk, we conclude kyn � xnk ! 0. It follows

that d(xn;�(�) \ A)! 0 and, hence, xnk ! x� 2 �(�) \A for some subsequence. Now,

similarly to an argumentation above, the relation g(xnk) � 'V (�nk) along with continuity

of 'V at � yields g(x�) � '(�) and, hence, the contradiction x� 2 	(�) to d(xnk ;	(�)) � "

in (10).

It remains to verify the statement on '. Up to now, we have shown that 	 is upper

semicontinuous at � and nonempty-valued close to �: Accordingly, there is some � > 0

such that ; 6= 	(�) � V for all � 2 P(IRs) with �B(�; �) < �. But then '(�) = 'V (�)

for these � (see (8)) and the formulated continuity property of ' results from the same

property of 'V already stated in the beginning of this proof.
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As already stated in the proof of the preceding Theorem, a corresponding version with

localized mappings 	V and 'V was shown in an earlier work. A restriction to localizations

seemed to be necessary due to allowing for non-convex perturbations of the probabilistic

constraint. However, the uniformity property of the B-discrepancy introduced in Section

2.2 permits to obtain results even for the non-localized mappings.

A series of Examples in section 4 shows the necessity of the assumptions made in

Theorem 3.1 in order to arrive at the assertions stated there. All examples relate to

the problem (P') introduced below, which is a special case of problem (P). For instance,

Examples 4.1 and 4.2 show that none of the three properties asserted in the theorem (upper

semicontinuity and local non-emptiness of 	 as well as continuity of ') can be guaranteed

when the Slater condition is dispensed with while all other assumptions are kept. In

Example 4.3, all assumptions of the Theorem are met with the exception that 	(�) = ;.
As a consequence, the upper semicontinuity and, trivially, the local non-emptiness of 	

fail to hold. Finally, the r-concavity of � cannot be dropped in the theorem as it is shown

in Example 4.4, where of course assumption 2. of the theorem can no longer be interpreted

as a Slater condition due to absence of convexity. Nevertheless, it is possible to arrive at

continuity results in the non-convex case. More precisely, exactly the same results as in

Theorem 3.1 were shown in [7] (Th. 1) to hold for the localized mappings 	V and 'V in

a more general setting of problem (P ) than under assumptions (1-4), namely for locally

Lipschitzian g, closed X, H with closed graph and � 2 P(IRs) arbitrary. Then, however,

assumption 2. of Theorem 3.1 has to be replaced by the so-called metric regularity w.r.t.

X of the probabilistic constraint, which in the setting of Theorem 3.1 is equivalent with

the Slater condition, but which is a stronger requirement in the non-convex context.

Example 4.5 demonstrates that the assumptions of Theorem 3.1 do not su�ce to

derive the lower semicontinuity of 	. Inspecting Fig. 2 reveals that a lack of curvature

in the level set of the chance constraint is responsible for the solution set to collapse

after arbitrary small perturbations of the measure. Therefore it seems natural to require

some strict convexity property of the probability measure. Before stating a corresponding

result, some auxiliary facts are needed.

In the following, the multifunction H is speci�ed as H(x) = fz 2 IRs j � � h(x)g,
where h : IRm ! IRs is supposed to have concave components hi in order to satisfy

the basic assumption (3). This speci�c system of inequalities, where the realizations

z of the random vector � occur explicitly on the left-hand side, typically re
ects some

supply/demand relationship, where the random demand z of some good has to be met

by the supply h(x) depending on the decision variable x. The assumption of this speci�c

structure is crucial for the following, since it allows to write the constraint function as

a composition of two single-valued mappings in contrast to the set-valued formulation of

(P). Indeed, by de�nition of the distribution function, (P) now writes as

(P 0) minfg(x) j x 2 X; F�(h(x)) � pg:

Furthermore, the system B of closed sets �guring in the de�nition of the discrepancy

distance �B reduce to the system of cells z + IRs

�
, z 2 IRs, since the sets H(x) now

are cells themselves (cf. section 2.2). Accordingly, the discrepancy �B turns into the
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Kolmogorov distance

dK(�1; �2) = sup
z2IRs

jF�1
(z)� F�2

(z)j (�1; �2 2 P(IRs));

which equals the uniform distance between the distribution functions induced by the

corresponding measures. Therefore, from now on, the stability results are formulated by

using dK.

The following lemma opens a way by means of decomposition separately to study

properties of F� and h in the context of lower semicontinuity of 	.

Lemma 3.2 Under the assumptions of Theorem 3.1 let V be an open (in the maximum

norm) ball containing 	(�). Set

YV = [h(X \ cl V ) + IRs

�
] \ F�1

�
([p=2; 1])

Y (�) = argminf�(y) j y 2 YV ; F�(y) � pg (� 2 P(IRs))

�(y) = inffg(x) j x 2 X \ cl V; h(x) � yg;
�(y) = argmin fg(x) j x 2 X \ clV; h(x) � yg (y 2 YV ):

Then it holds that

1. YV is convex and compact.

2. � is convex, �nite and lower semicontinuous on YV .

3. There is some � > 0 such that for all � 2 P(IRs) with dK(�; �) < �

'(�) = inff�(y) j y 2 YV ; F�(y) � pg (12)

	(�) = �(Y (�)) (13)

4. Y : P(IRs)� IRs is upper semicontinuous at �.

Proof.

ad 1.

The convexity of YV follows from the assumed convexity of X and V along with h having

concave components and � being r-concave (note that F� � 1 since � 2 P(IRs)). The

compactness ofX\cl V implies closedness of h(X\cl V )+IRs

�
and, hence, closedness of YV

due to F� being upper semicontinuous as a distribution function. If YV was not bounded,

there would be a sequence yn 2 YV with kynk ! 1. By de�nition, yn � h(xn) for

xn 2 X \ cl V . Since h is continuous (having concave components which are �nite-valued

on IRm), each component of yn is bounded from above. On the other hand, the condition

F�(yn) � p=2 > 0 (due to yn 2 YV ) implies all components of yn to be bounded from

below, since F� is a distribution function of some probability measure. This contradicts

kynk ! 1.

ad 2.
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The convexity and �niteness of � on YV are immediate from the properties of g; h;X and

YV . Now, consider any sequence yn ! �y with yn; �y 2 YV and �(yn) ! � 2 IR [ f1g.
Then, there are xn 2 X \ cl V such that yn � h(xn) and g(xn) = �(yn) (note that

the constraint set in the de�nition of �(y) is nonempty and compact for y 2 YV ). By

compactness of X \ cl V , one has xnk !k �x for some subsequence, where �x 2 X \ cl V

and h(�x) � �y due to continuity of h. Consequently,

�(�y) � g(�x) = lim
k!1

g(xnk) = lim
k!1

�(ynk) = �

by continuity of g. In particular, � > �1. It results that � is lower semicontinuous on

YV .

ad 3.

From the local nonemptiness and upper semicontinuity at � of 	, which was stated in

Theorem 3.1, one derives the existence of some � > 0 such that

; 6= 	(�) � V 8� 2 P(IRs); dK(�; �) < �: (14)

Fix an arbitrary such �. Then (14) and (8) yield that 	V (�) = 	(�) 6= ; and 'V (�) =

'(�). Select some �x 2 	(�). Then, since �x 2 	V (�) � fx 2 X \ cl V j F�(h(x)) � pg, it
follows that

'(�) = g(�x) � �(h(�x)) � inff�(y) j y 2 YV ; F�(y) � pg,
where the last inequality relies on F�(h(�x)) � p=2, which is true if � in (14) is chosen

smaller than p=2. For the reverse direction of (12), consider an arbitrary �y 2 YV with

F�(�y) � p. By de�nition, there is an ~x 2 X \ cl V with h(~x) � �y. Choose some

x� 2 �(�y) (note that the constraint set in the de�nition of �(�y) contains ~x and, hence,

is nonempty and compact such that �(�y) is nonempty). We continue by �(�y) = g(x�) �
'V (�) = '(�), where the inequality follows from x� 2 X \ cl V; h(x�) � �y as well as

F�(h(x
�)) � F�(�y) � p (recall that distribution functions are nondecreasing). Since �y was

arbitrary, this establishes (12).

Concerning (13), note that �(h(x)) � g(x) = '(�) holds for all x 2 	V (�) = 	(�),

hence (12) implies

�(h(x)) = inff�(y) j y 2 YV ; F�(y) � pg = g(x) 8x 2 	(�):

Therefore, x 2 �(h(x)) and h(x) 2 Y (�) for all these x. Consequently, 	(�) � �(Y (�)).

For the reverse inclusion, let x 2 �(Y (�)) be arbitrary, i.e., x 2 �(y) for some y 2 Y (�).

Then,

g(x) = �(y) � �(h(x0)) � g(x0) 8x0 2 X \ cl V; F�(h(x
0)) � p;

which amounts to x 2 	V (�) = 	(�).

ad 4.

Although it seems tempting to proove 4. via Theorem 3.1 by setting g := �; h := id; X :=

YV , this is not justi�ed since the domain h(X \ cl V )+ IRs

�
of � is not the whole space in

9



general and, hence, � - although convex on this domain - cannot be assumed to be locally

Lipschitzian. Instead, we write

Y (�) = fy 2 IRs j F�(y) � pg \ fy 2 YV j �(y) � '(�)g,

where the �rst part is a closed multifunction (compare 1. in Prop. 2.1 with h := id and

X := IRs) and the second part too is closed at �: In fact, if �n 2 P(IRs); yn 2 YV are

sequences with yn ! �y, dK(�; �n) ! 0 and �(yn) � '(�n), then by continuity of ' at �,

closedness of YV (see 1.) and lower semicontinuity of � on YV (see 2.) one gets

�y 2 YV and �(�y) � lim inf
n!1

�(yn) � '(�);

which is the desired closedness property. As a consequence, Y itself is closed at � (as an

intersection of closed multifunctions). On the other hand, for all �, Y (�) is contained in

the compact set YV (see 1.) by de�nition, hence Y must be upper semicontinuous at �.

Relation (13) suggests that lower semicontinuity of 	 may be formulated in terms of the

same property for the two constituents � and Y :

Proposition 3.3 The solution set mapping 	 of problem (P') is lower semicontinuous

at � 2 P(IRs) provided that the following two assumptions hold:

1. � : YV � IRm is lower semicontinuous at each y 2 YV .

2. Y : P(IRs)� IRs is lower semicontinuous at �.

Proof.

Let U � IRm be an arbitrary open set with U \ 	(�) 6= ;. By (13), there exists some

y 2 Y (�) � YV such that U \ �(y) 6= ;. According to assumption 1., there exists an open

neighbourhood V of y such that

U \ �(y0) 6= ; for all y0 2 V \ YV : (15)

On the other hand, since y 2 Y (�) \ V , assumption 2. provides the existence of some

� > 0 such that Y (�) \ V 6= ; for all � 2 P(IRs) with dK(�; �) < �. Combining this with

(15) yields that (due to Y (�) � YV )

U \	(�) = U \ �(Y (�)) � U \ �(Y (�) \ V ) 6= ; for all� 2 P(IRs) with dK(�; �) < �:

This, however, is the asserted lower semicontinuity of 	 at �.

We continue by deriving veri�able conditions for the two assumptions in Proposition 3.3.

First we make use of the following concept introduced in [2]: A function � : IRn ! IR is

called weakly analytic if for any a; b 2 IRn with a 6= b, one has

� is constant on a line segment conv fa; bg =) � is constant on the entire line linfa; bg:

10



Accordingly, a subset Q � IRn has a convex, weakly analytic description, ifQ = fx 2 IRn j
�(x) � 0g for some mapping � : IRn ! IRn

0

with convex, weakly analytic components �i.

In particular, all analytic or strictly convex functions are weakly analytic. Furthermore,

each polyhedral set Q has a convex, weakly analytic description by means of the a�ne

linear mapping �(x) := Ax+ b for some matrix A and vector b.

Proposition 3.4 Assumption 1. of Proposition 3.3 is satis�ed if in problem (P') the

functions g and hi are weakly analytic and the set X has a convex, weakly analytic de-

scription.

Proof.

Consider the multifunction M : � � IRn1 � IRn2 de�ned by M(�) = fx 2 IRn2 j �(x) �
�(�)g, with functions � : IRn2 ! IRn3 and � : � ! IRn3 . The results in [2] (Th. 3.2.1.,

Th. 3.2.2. and Cor. 3.2.2.1) imply M to be lower semicontinuous at all � 2 � under the

following assumptions:

� M(�) 6= ; 8� 2 �.

� The �i are convex and weakly analytic.

� � is continuous.

First, put in the context of the de�nitions of Lemma 3.2:

� := YV ;
�i(x) := �hi(x)
�i(y) := �yi

�
i = 1; : : : ; s

�s+i(x) := 
i(x)

�i(y) := 0

�
i = 1; : : : ; n0:

Here, 
 refers to a convex, weakly analytic description of the set X \ clV (recall that

clV is a closed ball in the maximum norm and hence a polyhedral set). Obviously, M

represents the multifunction y 7! fx 2 X \ clV j h(x) � yg here. Now, the assumptions

above are satis�ed due to the de�nition of YV , and to the hi being concave and weakly

analytic. Consequently, M is lower semicontinuous at all y 2 YV . Therefore, again by an

argument of parametric optimization ([2], Th. 4.2.2), � de�ned in Lemma 3.2 is upper

semicontinuous on YV due to the continuity of g. This yields the continuity of � on YV
along with statement 2. of Lemma 3.2. Now, we apply the result cited in the beginning

of this proof, a second time: In addition to the settings above, put �s+n0+1 := g and

�s+n0+1 := �. Then, M is exactly the multifunction � and again, the three assumptions

above are met by M = �: since, for any y 2 YV the set fx 2 X \ clV j h(x) � yg is

nonempty by the de�nition of YV and compact by clV being a closed ball, the set �(y)

of global minima of g on this set must be nonempty as well due to continuity of g. The

remaining two assumptions are valid due to �s+n0+1 = g being convex (see (1)) and to the

continuity of �s+n0+1 = � just shown before. As a consequence, � is lower semicontinuous

at all y 2 YV as was to be shown.

A counter-example in [2] (Ex. 3.3.1.) shows that the weak analyticity assumptions in

the last Proposition cannot be dispensed with.
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Next, we turn to the second assumption in Proposition 3.3. At this point, the strict

convexity property of the probability measure, mentioned before as a necessary require-

ment for lower semicontinuity of the solution set, comes into play.

Lemma 3.5 Assumption 2. of Lemma 3.3 is satis�ed in problem (P') if, in addition to

the assumptions of Theorem 3.1, there exists some open convex neighbourhood U of Y (�)

such that F r

�
is strictly convex on U (with r < 0 being the modulus of r- concavity of �).

Proof.

Setting b�(y) := F r

�
(y)� pr for � 2 P(IRs), the original problem ( eP�) may be written

as

( eP�) min f�(y) j y 2 YV ; b�(y) � 0g.
Clearly, ( eP�) is a convex program (since the r- concavity of � implies F r

�
to be convex (see

Section 2.1) and due to 1. and 2. in Lemma 3.2). Also, ( eP�) satis�es the Slater condition
b�(ŷ) < 0 for some ŷ 2 YV . Indeed, in the proof of Theorem 3.1, the existence of some

~x 2 X \V with F r

�
(h(~x)) = �r(H(~x)) < pr was shown, hence one may take ŷ := h(~x). We

proceed by case distinction with respect to the relation between Y (�) and the solution

set Q := arg minf�(y) j y 2 YV g of the relaxed problem:

case 1: Y (�)\ Q = ;:
Choose some y� 2 Y (�) (recall that Y (�) 6= ; due to 	(�) 6= ; and to (13)). Since �

and b� are �nite-valued on YV and '(�) = �(y�) > �1, the Slater condition ensures the

existence of a Lagrange multiplier �� � 0 such that (cf. [12], Cor. 28.2.1)

�(y�) = min f�(y) + ��b�(y) j y 2 YV g and ��b�(y
�) = 0.

By the case 1- assumption, one has �� 6= 0, hence �� > 0 and � + ��b� is strictly convex

on YV \ U due to the additional assumption in this lemma. Accordingly,

�(y) + ��b�(y) > �(y�) + ��b�(y
�) = �(y�) 8y 2 YV \ U; y 6= y�;

which implies that y� is the unique minimizer of ( eP�), i.e., Y (�) = fy�g. Because of this
uniqueness, the upper semicontinuity of Y at � (statement 4. of Lemma 3.2) entails the

desired lower semicontinuity of Y at �.

case 2: Y (�)\ Q 6= ;:
In this case, Y (�) has the simple representation

Y (�) = fy 2 Q j b�(y) � 0g: (16)

Note also, that Q is closed and convex by the properties of � and YV stated in Lemma

3.2.

case 2.1 9 �y 2 Y (�), b�(�y) < 0.

Since �y 2 YV , one has F�(�y) � p=2 > 0 such that statement 2. of Proposition 2.1 yields

the existence of c; � > 0 with

jb�(�y)� b�(�y)j < cdK(�; �) 8� 2 P(IRs); dK(�; �) < �:
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In particular, choosing �0 := minfjb�(�y)jc�1; �g, one gets br�(�y) < 0 for all � 2 P(IRs) with

dK(�; �) < �0. Since on the other hand, �y 2 Q by (16), one derives that �y 2 Y (�), hence

Y (�) \ Q 6= ; for all these �. Consequently, the representation (16) holds as

Y (�) = fy 2 Q j b�(y) � 0g

for all � close to �.

Now, �y is a Slater point of the constraint b�(y) � 0 with respect to Q. According to

the results in [13] (Cor. 3.7 and Th. 3.2), the multifunction Y satis�es a so-called upper

Pseudo-Lipschitzian property at all (�; y) 2 Gph Y . This means in particular, that each

y 2 Y (�) is supplied with neighbourhoods Vy of y and Uy of � and with a constant Ly > 0

such that

d(y0; Y (�)) � Lyd(�; �) 8� 2 Uy 8y0 2 Y (�) \ Vy:

The compactness of Y (�) � YV (see Lemma 3.2) then allows to extract a neighbourhood
~U of �, an open set ~V containing Y (�) and a constant L > 0 such that

d(y; Y (�)) � Ld(�; �) 8� 2 ~U 8y 2 Y (�):

This, however, implies the lower semicontinuity of Y at �.

case 2.2 b�(y) = 0 8y 2 Y (�).

The convexity of Y (�) along with the strict convexity of b� on U � YV imply that Y (�)

reduces to a singleton. Then, as in case 1., the upper semicontinuity of Y at � yields the

lower semicontinuity at �.

Combining the results of Theorem 3.1, Proposition 3.3, Proposition 3.4 and Lemma

3.5 one gets the following statement on continuity (i.e. upper- and lower semicontinuity

at the same time) of the solution set mapping to problem (P'):

Theorem 3.6 Consider problem (P') under the following assumptions:

1. g is convex and weakly analytic.

2. The hi are concave and weakly analytic.

3. X has a convex, weakly analytic description.

4. � is r-concave for some r < 0.

5. 	(�) is nonempty and bounded.

6. There exists some x̂ 2 X such that F�(h(x̂)) > p.

7. F� ist strictly convex on some open convex neighbourhood U of the compact set �

with

Y (�) � � := [h(	(�)) + IRs

�
] \ fy 2 IRs j F�(y) � pg � YV .
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Then, the multifunction 	 : (P(IRs); dK)� IRm is continuous at �.

Note that all assumptions of the Theorem relate to the original data of the problem (no

assumptions with perturbed measures � are involved). We recall, that assumptions 1. and

2. are satis�ed, for instance, if g and the hi are convex (concave, respectively) and analytic

(e.g. linear) or stricly convex (concave, respectively). Assumption 3. is met among others

by polyhedral sets X or balls (in any of the p-norms). Assumption 4. has already been

quali�ed in section 2.1 to hold for most of the common multivariate probability measures.

Assumptions 5. and 6. were shown above to be indispensable in the context of upper

semicontinuity of solutions, and they are common in general parametric programming

problems. Finally, the strict convexity property of the measure � assumed in 7. was

found to be necessary when passing from upper to lower semicontinuity of solutions (see

Example 4.5). In case that h is a linear mapping, it is su�cient to require U in assumption

7. to be a convex, open neighbourhood of the simpler set � := h(	(�)).

Having the qualitative results obtained so far, one might ask about quantitative sta-

bility of the solution set in program (P'). This question was investigated in [7] in terms of

relating the Hausdor� distance between the solution sets of the original and the perturbed

problems to the Kolmogorov distance between the original and the perturbed measure.

Example 4.6 demonstrates, that the assumptions of Theorem 3.1 allone are not su�cient

in order to derive any H�older rate of upper semicontinuity for solutions. The basic addi-

tional argument is to strengthen assumption 7. of Theorem 3.6 towards a strong convexity

property of F r

�
. Of course, this raises the question whether such strong convexity proper-

ties of probability measures are still as common as simple convexity of F r

�
(coming from

the r-concavity of �). So far, some partial results have been obtained in this direction,

for example the multivariate normal distribution with independent components or the

uniform distribution on rectangles in IRs satisfy a strong convexity property.

4 Examples

Example 4.1 In the program (P 0) put m = s = 2; g(x1; x2) = x2 � x1; h = id; X =

f(x1; x2) j x1 + x2 = 3=2g; p = 1=4 and let � 2 P(IR2) be de�ned as the uniform distribu-

tion on the right upper triangle conv f(1; 0); (0; 1); (1; 1)g. According to section 2.1, � is

logconcave as a uniform distribution on a bounded, convex set, hence it is r-concave for

any r < 0. The distribution function F� of � is given by

F�(x1; x2) =

8>>>><
>>>>:

1 ; x1; x2 � 1

(x1 + x2 � 1)2 ; x1 + x2 � 1 and x1; x2 2 [0; 1];

x21 ; x2 � 1 and x1 2 [0; 1];

x22 ; x1 � 1 and x2 2 [0; 1]

0 ; else

Hence, F� is constant on the line segments f(x1; x2) 2 [0; 1]2 j x1+x2 = ag with a 2 [0; 1]

(see Fig. 1). Now, let ~� be the uniform distribution on [1=2; 1]2 and consider the perturbed
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Figure 1: Distribution function F� for the uniform distribution on the right upper triangle

conv f(1; 0); (0; 1); (1; 1)g (left) and distribution function F��
(� = 0:5) for the perturbed

measure. The level lines F�(x1; x2) = p and F��
(x1; x2) = p are indicated on both graphs.

probability measures �� = (1 � �)� + �~�; � 2 [0; 1]. The induced perturbed distribution

function F��
is illustrated in Fig. 1 for � = 1=2. By de�nition, the discrepancy dis-

tance (which reduces to the Kolmogorov distance here) between � and �� computes as

dK(�; ��) = �dK(�; ~�), hence �� converges towards � with � # 0.
Some calculation shows that the perturbed level set F�1

��
(p) is given by8<

:(x1; x2)

������
x1 = �� if x2 � 1

x2 = �� if x1 � 1

x2 = �(x1; �) if x1 2 [��; 1]

9=
; ;

where

�� =
2� �

p
1 + 3�

2(� � 1)
; �(x; �) =

�2 + 2x+ 2�x �
p
1 + 3� � 16�x + 16�x2

2 (�� 1)
:

Note, that �(3=4; �) = 3=4 for all � 2 [0; 1] but �(x; �) > 3=2 � x for all x 2 [��; 1] with

x 6= 3=4 and for all � 2 (0; 1]. Consequently, for arbitrarily small � > 0, the perturbed

constraint set fx 2 X j F��
(x) � pg reduces to the singleton f(3=4; 3=4)g (compare Fig.

2). In particular, 	(��) = f(3=4; 3=4)g for any � > 0. On the other hand, the constraint

set of the unperturbed problem is given by the line segment conv f(1=2; 1); (1; 1=2)g (see

Fig. 2) and compare de�nition of �0 and �(x; 0)). Consequently, the original solution set

is 	(�) = f(1; 1=2)g by de�nition of g. Therefore, 	 is not upper semicontinuous at �.

At the same time, one has '(�) = �1=2 but '(��) = 0 for any � > 0, hence ' is not

continuous at �. The reason for the failure of Theorem 3.1 with respect to the continuity

properties of 	 and ' is the absence of a Slater point.

Example 4.2 In the program (P'), set m = s = 1; h(x) = g(x) = x; X = (�1; 0]; p =

1=2 and let � be the uniform distribution on the interval [�1; 1]. Then, � is log-concave

and, hence, r-concave for all r < 0 (see Section 2.1). Since F�(x) = minfmaxf0; (x +

1)=2g; 1g, the constraint set and, hence, the solution set reduce to the singleton f0g,
whereas, after an arbitrary small perturbation of � in the sense of Kolmogorov distance

(uniform distribution on [�1 + "; 1 + "]), the constraint and, hence, the solution set be-

come empty. Again, all assumptions of Theorem 3.1 except Slater's condition are satis�ed.

15



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

X

F(x)=pµ

F(x)=pµλ

g

SP

0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

1.2

X

F(x)=pµ

F(x)=pµλ

g

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

F(x)>pµ -

X

g

SP

Figure 2: Illustration of original and perturbed constraint sets (dashed boundaries) in the

examples 4.1 (top left), 4.3 (top right), and 4.5 (bottom left). 'SP' refers to Slater point.

Example 4.3 In the program (P'), set m = s = 2; h = id; g(x1; x2) = x1; X = f(x1; x2) j
x1 = 0g; p = 1=2 and let � � N ((0; 0); I2) be the bivariate standard normal distribu-

tion. Then, � is log-concave and, hence, r-concave for all r < 0 (see Section 2.1). The

corresponding distribution function writes as F�(x1; x2) = �(x1)�(x2), where � is the

univariate standard normal distribution. The level line F�(x1; x2) = p is the graph of

the function x2 = ��1(1=(2�(x1))), which asymptotically reaches the boundary of X (see

Fig. 2). Obviously, the Slater condition is satis�ed. However, 	(�) = ;. On the other

hand, for the perturbed measure �" � N ((�"; 0); I2) (" > 0) - where the distribution is

slightly shifted to the left and the Kolmogorov distance dK(�; �") becomes arbitrarily small

- the level line F�1
�"

(p) now intersects the boundary of X, and the perturbed solution set

becomes 	(�") = [��1(1=(2�(")));1). Consequently, the upper semicontinuity of 	 at �

is violated due to emptiness.
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Example 4.4 In the program (P'), set m = s = 1; h(x) = g(x) = x; X = IR; p = 1=2

and let � be the uniform distribution on the set [0; 1] [ [2; 3]. The resulting distribution

function is

F�(x) = minfmaxfminfmaxf0; (x=2g; 1=2g; (x � 1)=2g; 1g
The constraint set is the interval [1;1), hence 	(�) = f1g which is nonempty and

bounded. Furthermore, for x̂ = 3, one has F�(x̂) = 1, hence the 'Slater condition' is

satis�ed. We de�ne a perturbed measure �" via the density

f�"(x) =

8<
:

1=2 � " if x 2 [0; 1]

1=2 + " if x 2 [2; 3]

0 else

The perturbed distribution function becomes

F�"(x) = minfmaxfminfmaxf0; (1=2 � ")xg; 1=2 � "g; (1=2 + ")x� 1=2 � 3"g; 1g:

This results in the perturbed solution set 	(�") = f(1 + 3")=(1=2 + ")g which is a value

always larger than 2. Clearly, dK(�; �")!"#0= 0. Therefore, neither 	 is upper semicon-

tinuous nor ' is continuous at � caused by the fact that � is not r-concave for any r < 0

(the support of the density of � is not convex).

Example 4.5 Take the same data as in Example 4.1, but now with X := [0; 1]
2
and

g(x1; x2) = x1 + x2. Now, all assumptions of Theorem 3.1 including Slater's condition

are satis�ed (see Fig. 2), but the solution set mapping is not lower semicontinuos. In-

deed, 	(��) = f(3=4; 3=4)g for any � > 0 and 	(�) = convf(1=2; 1); (1; 1=2)g (compare

discussion of Example 4.1).

Example 4.6 In the program (P'), set m = s = 2; h = id; g(x1; x2) = x2; X = [�1; 1]�
[1=2; 1]; p = 1=2. We are going to construct a probability measure � on IR2 such that all

three assumptions of Theorem 3.1 are satis�ed but 	 fails to be upper H�older continuous

at � with any rate. To this aim, put

f1(x) :=

�
� � e1=x�x2 x < 0

0 x � 0
; (� such that

Z
1

�1

f1(x)dx = 1):

f2(x) :=

�
1 x 2 [0; 1]

0 else

Clearly, both f1 and f2 are log-concave probability densities on IR. Hence, f(x1; x2) :=

f1(x1)f2(x2) is a log-concave probability density on IR2. It is illustrated in Fig. 3 (left

part). As a consequence of a Theorem by Pr�ekopa ([11], Th. 4.2.1.), the probability

measure � induced by f is log-concave as well, in particular it is r-concave for all r < 0

(see section 2.1), hence the third assumption of Theorem 3.1 is met. Now, denote by F1; F2

the one-dimensional distribution functions induced by f1; f2, respectively. Obviously, the

distribution function F� belonging to � is given then by F�(x1; x2) = F1(x1)F2(x2). It is
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Figure 3: Illustration of the probability density (left) and of the induced distribution

function (right) including the level line F�(x; y) = p (lifted to the graph).

illustrated in Fig. 3 (right part). Setting c := F�1
1 (1=2) and '(x) := 1=2=F1(x), it is

elementary to check that the constraint set is given by (see Figure 4)

f(x1; x2) 2 [�1; 1]� [1=2; 1] j x1 � c if x2 � 1

x2 � '(x1) if x1 � cg:

Obviously, the solution set is 	(�) = f(x; 1=2) j x 2 [0; 1]g. Finally, (0; 3=4) is a possible

candidate for a Slater point (SP in Fig. 4). Summarizing, all three assumptions of

Theorem 3.1 are met.

Now, suppose that 	 was upper semicontinuous at � with some H�older rate 1=k (k2 N).

Then, there exist constants L; � > 0 such that

sup
y2	(�)

d(y;	(�)) � L[d(�; �)]1=k 8� 2 P(IRs); d(�; �) < �: (17)

In order to lead this assumption to a contradiction, we may assume without loss of gen-

erality that k is an odd number. We de�ne perturbed probability measures �" 2 P(IRs) via

a perturbed density by f "(x1; x2) = f1(x1)f
"

2 (x2), where

f "2(x) :=

�
1 x 2 [�"; 1� "]

0 else
(" > 0)

The induced perturbed distribution function F�" satis�es kF�" � F�k1 < " and, conse-

quently, dK(�; �") < ". The perturbed constraint set now becomes (see dashed line in Fig.
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Figure 4: Illustration of the original and the perturbed constraint set: thick line = bound-

ary of the original constraint F�(x; y) � p, dashed line = boundary of the perturbed

constraint F�"
(x; y) � p, SP = Slater point.

4)

f(x1; x2) 2 [�1; 1]� [1=2; 1] j x1 � c if x2 � 1� "

x2 � '(x1)� " if x1 � cg:
Accordingly, the solution set of the perturbed problem becomes 	(�") = f(x; 1=2) j x 2
[q; 1]g, where q = '�1("+ 1=2) (see Fig. 4), hence sup

y2	(�")

d(y;	(�)) = jqj.

Since, by de�nition, one has f1 2 C1(IR) with f
(k)

1 (0) = 0 for k = 0; 1; 2; : : :, it

follows that F1 2 C1(IR) with F
(k)

1 (0) = 0 for k = 1; 2; : : : and, hence, ' 2 C1(IR) with
'(k)(0) = 0 for k = 1; 2; : : :. Consequently,

�
(�)k+1 + 1=2 � '

�(j)
(0) =

�
0 j = 0; : : : ; k

> 0 j = k + 1

and one gets the relation xk+1+1=2 � '(x) for x close to 0. In particular, we may insert

the point x := �"1=(k+1) for " su�ciently close to 0, and it follows that '(�"1=(k+1)) �
"+ 1=2 (recall that k was odd). More generally, one has

'(x) � xk+1 + 1=2 � "+ 1=2 8x 2 [�"1=(k+1); 0];
which implies that q = '�1(" + 1=2) < �"1=(k+1), whence for all small enough " > 0 the

contradiction (see (17))

"1=(k+1) < jqj = sup
y2	(�")

d(y;	(�)) � L[d(�; �)]1=k < L"1=k
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