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ABSTRACT. The logarithmic kernel integral equation of the first kind is investi-
gated as improperly posed problem considering its right-hand side as observed 
quantity in a suitable space with a weaker norm. The improperly posed pro-
blem is decomposed into a well-posed one, extensively studied in the literat~re 
(cf. e.g. [11], [13], [14]), and an ill-posed imbedding problem. For the ill-posed. 
part a modified truncated singular value decomposition regularization method is 
proposed that allows an easily performable a-posteriori parameter choice. The 
whole problem is then solved by combining the regularization method with a nu-
merical procedure from [13] for the well-posed part. Finally, an error estimate is 
given revealing the influence of the observation error on the approximation error 
of the numerical procedure. For a specification of the discretization parameter 
as a known function of the noise level only, the optimal convergence order is 
achieved. 
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1. INTRODUCTION 

The logarithmic kernel integral equation, called Symm's integral equation 
1 fr 1 ' 
- logl lv(q)dsq=g(p),pEI', 
'Tr r p-q 

and also other equations of the first kind 

Bu=f (1.1) 

with smoothing linear operators B, have been examined extensively during the 
last years. In suitable spaces of smooth funct~ons those problems are well-posed in 
Hadamard's sense: Existence, uniqueness and continuous dependence on the data 
f can be shown (cf. e.g. [14] for Symm's equation). In [4], [11], [13] and references 
given there, approximation methods are presented and an error analysis is carried 
out. 

However, considering technical applications those methods are not usable immedia-
tely. In that case the data are not given exactly as a smooth function but gained by 
unexact observation or measurement. Interpolating a smooth function from given 
noisy data and inserting it as right-hand side makes little sense because nothing is 
known about stability or error analysis. The problem is ill-posed in Hadamard's 
sense. 

The approach to such improperly posed problems consists in the development of 
regularization procedures. Examples are discretization procedures where the regu-
larization is achieved by a proper choice of the discretization parameter relative 
to the observation error (cf. e.g. [12] for the general principle and [8] and papers 
cited there for Symm's equation). 

In this paper however another approach is chosen. It consists in decomposing the 
problem 

Au=g, A=LB, 
into a (possibly nonlinear) well-posed part (1.1) and an ill-posed part 

Lf =g, 
L being a linear frequently compact mapping into the observation space. Examples 
are the approaches in [5] concerning the parameter determination in partial differen-
tial equations where the parameter-to-observation operator was decomposed into 
the parameter-to-solution mapping and the solution-to-observation mapping, and 
in [1] concerning a nonlinear Abel's integral equation of the first kind where the 
operator was decomposed into an operator of the second kind and the integration , 
mappmg. 

In problems considered here this decomposition approach is advantageous as the 
well-posed part is very well-known and this knowledge can be used treating the 
problem as a whole. 

In this paper that program is performed for the example of Symm's equation on 
a closed smooth plane curve. (The case of the open arc is completely analogous.) 
The well-posed part is considered on the Sobolev scale HP('Jr) where 'Jr is the one-
dimensional torus JR/Z. The papers [14] resp. [13] are taken as basic literature 
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for existence, uniqueness, stability resp. approximation method and error analysis. 
The facts taken from those papers are summarized in Section 2. In Section 3 
the abstract decomposition method is described. Section 4 is dedicated to the · 
regularization of the imbedding 

A seemingly new modification of the truncated singular value decomposition meth-
od is carried out allowing an a-posteriori parameter. choice by a Morozov's like 
principle. 

Finally in Section 5 an approximation method for the solution of the ill-posed 
Symm's equation is given representing a combination of the collocation method in 
[13] and the regularization of the imbedding operator. Instead of the procedure 
in [13] an arbitrary other procedure could be taken, provided its error analysis is 
available in Sobolev spaces HP('f). The regularization can be interpreted as a data 
smoothing process. For the entire problem an error estimate is given reflecting the 
effect of the measurement error on the approximation error. Because of unknown 
constants the value of the error estimate mainly consists in its asymptotic proper-
ties. With a suitably chosen discretization parameter the optimal convergence rate 
is achieved. 

The author is indepted to S. ProBdorf for pointing out the problem and to J. 
Elschner, R. Gorenflo, B. Hofmann, S. ProBdorf, A. Rathsfeld, G. Schmidt for 
fruitful discussions. 

2. PRELIMINARIES 

In this Section Symm's integral equation is considered as a well-posed problem in 
the Sobolev scale Ht(1r). Here results from the literature [13], [14] are quoted. The 
useful formulation over 1r = JR/Z, the one-dimensional torus, is taken from [11], 
the definition of Sobolev spaces from [9]. 
Symm's integral equation 

1 fr 1 - log! · 
1

v(q)=g(p),pEI', 
7r r p-q 

r a plane smooth closed curve, can be transformated by a C00-parametrization' 
of r with a non-vanishing Jacobian into an operator equation 

Bu= f on 1r, (2.1) 

where 

(Bu)(x) = -2 hlog lr(x)- r(Y)lu(y)dy, x E 1r 

holds (cf. [11]). 

Now, let us recall from [9] the definition of HP('f), p E JR. We summarize it as 
follows. 

Consider the space L2 (1r) with the orthonormal basis 

cpz(x)=e27rilx, xE1r, lEZ 
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and let for l E Z 

[ l] = { 111 , l =!= o 
1, l = 0. 

Then, let for p E JR 

W(1r) = { u, 2)1]2PI( u, rpz) 1
2 < oo} 

ZEil 

be the Hilbert space with scalar product 

( u, v )p = I: [l] 2P( u, cpz)( v, cpz) 
ZEil 

where for p ~ 0 

and for p < 0 

u, v are bounded linear functionals on H-P(1f), ( u, cpz) = u( cpz). 

For k E N let w;(1f) be the Sobolev space (in the usual sense) of functions with 
square integrable derivatives up to the order k. 

From [14] we quote the following Lemma 2.1 and Theorem 2.1. 

Lemma 2.1. (Cf. {14, Propos. 2.1}.) Hk(1f) = w;(1f) if k EN. 

Theorem 2.1. {Cf. {14, Thm. 4.1}.) Let r be a smooth, simple curve with trans-
finite diameter differing from l. Then B is 1-1 and "onto" as a continuous, linear 
mapping of H"(1I') to H"+l (1f) for any s E JR. 

As a consequence we have the 

Corollary 2.1. Given f E H"f1 (1f), {2.l) has exactly one solution u E H 8 (1I') and 

I lul Is ::; c( S) I If I ls+l (2.2) 

holds, i.e. B has a continuous inverse operator that is everywhere defined, 1 - 1 
and "onto". 

For proof of the corollary it suffices to mention that from the closedness of the 
range of B the stability (2.2) immediately follows. However, c( s) is not known. 

D 

Now, as an example of a numerical procedure let us consider the collocation method 
from [13]. Let N be a natural number, 

{ 
N · N} ZN = l E Z -- < l < -' 2 - 2 

and 
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a space of trigonometric polynomials. Let ti, j == 1, ... , N be a uniform mesh of 'lr, 
ti= j · h, h = 1/ N. Consider the trigonometric interpolation polynomial 

Uh E XN 

at (tj,uj) as approximated solution of (2.1). Here Uj, 1:::; j:::; N, is the solution of 
the linear system 

a(ti)ui + h L k(ti, ti)(ui - ui) == f(ti) 
#i 

where k(x,y) =log lr(x)-1(Y)I and a(x) = J.lrk(x,y)dy. 

(2.3) 

Theorem 2.2. (Cf. {13, Thm. 3.2}.) Let u E H 6 ('lr), s > -.1/2 and h > 0 be 
small. Then uh is uniquely determined and 

llu - uhllt:::; Ght1-tllullt1 
where -1 :::; t :::; s :::; t + 3 and II · llP is the norm in HP('Jr). 

For proof take (3 = -1, case a_ = 0 in Thm. 3.2 of [13]. 

3. DECOMPOSITION OF THE IMPROPERLY POSED PROBLEM 

From now on let us consider the right-hand side of (2.1) to be observed or measured. 

Imagine that in the general situation 
B · L 

v~w~Y, 

where V, W, Y are normed spaces and B, L are continuous mappings, L is linear 
with nonclosed range, the two following problems have been settled. 

Problem 1: Concerning the (well-posed) equation 

Bu== f 
the following are known: 

( i)1 Existence, i.e. the range R( B) of B is known. 
( ii)1 Uniqueness, i.e. B is on R( B) uniquely invertible. 

(iii)i Stability, i.e. llu1 -u2llv:::; csllBu1 - Bu2llw, u1,u2 E D(B). 
(iv )1 For every f E R(B) a stable approximation procedure uh can be constructed 

with given error analysis (possibly in a weaker norm): 

llu - uhllv' ~ 0 (h ~ 0) where V CV', llullv1 :::; cEilullv 
Problem 2: Concerning the (ill-posed) equation 

Lf == g . 

(i)2 a regularization Rx: y ~ R(B) ~ W, 
( ii)2 a suitable parameter choice a( 8), 8 the noise level, g6 the measured data, 

( iii)i an error analysis 

llRa(o)l - fllw ~ 0 (8 ~ 0) 

are known. 
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Let us suppose ( i)i - (iv )i and ( i)2 , ( ii)2, ( iii)2 to be true. Then the problem 

LBu = g (3.1) 

can be solved in the following way. 

Theorem 3.1. Let g6 be an observed approximation of the right-hand side g with 
the property I lg - l 11 ~ S and let u6 be the solution of 

Bu6 = Ra(6)g6· 
Then 

(3.2) 

Hereu~ is the approximatedsolutionfor f 6 = Ra(6)g6 E R(B) in the sense of(iv)1 • 

Consequently, if h -t 0, S -t 0, 

ui -tu in V'. 

Proof. From 

llu - u~llv1 ~ llu - u6 llv1 + llu6 
- urnv1 , 

inserting ( iii)1 and (iv )1 the assertion (3.2) immediately follows. Moreover, it is 
clear that (iv )1 and ( iii)2 imply u~ -t u if both S and h -t 0. D 

Notice that in the case of the logarithmic kernel integral equation ( i)1 - (iv )1 are 
fulfilled by Section 2. In that case V = H8 ('1r), W = Hs+l('Jr), V' = Ht(T), t ~ s, 
Y = L2 ('1r), R(B) = W, Lis the (compact) imbedding Hs+l('Jr) -t L2 ('1r). To 
solve the problem (3.1) with noisy data ( i)2 , ( ii)2, ( iii)2 have to be settled for the 
ill-posed imbedding problem. 

4. A REGULARIZATION METHOD 

In this Section let us consider a linear continuous injective compact operator 

T:X-tY 
between Hilbert spaces X, Y with the property R(T) = Y and known singular 
value decomposition. We shall develop a modified truncated singular value de-
composition method with a-posteriori parameter choice and finally apply it to the 
Sobolev imbedding operator in the one-dimensional case. The used literature is 
[10], especially chapter 3.5, besides [3] and [7]. 

Let { Ui, Vi, ai} be the singular vafoe decomposition of T, i.e. { ui} resp. {vi} are 
orthonormal bases of X resp. Y and 

hold. 

Let us recall the definition of an adjoint Hilbert scale from [3], [7] or [10], and 
summarize it as follows. 

Consider the selfadjoint operator 

S = (T*T) 1l 2 
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from X to X with eigenvalues {ai} and eigenfunctions {ui}. Then by definition, 
for v E JR 

Hv = S~X 
is a Hilbert space with norm defined by 

and scalar product defined by 

(Svx1, svx2)v = (x1, x2), X1, X2 Ex, 

where II· II is the norm and(-,·) the scalar product of X. Notice that for 

x = L ( x, Ui )ui E X 

svx can (formally) be written as 

Svx = L ai(x, ui)ui. 

If k > 0 

( 4.1) 

( 4.2) 

( 4.3) 

Hk = { x Ex, L a;2kl(x, Ui)l2 < 00} = {x Ex, s-kx EX}. ( 4.4) 

Hv, v E JR, is a scale of Hilbert spaces with 

Hv c Hµ if v > µ 

and compact imbedding operator, 

and logarithmic convexity of the norms. 
D 

Let the inverse operator of T be denoted by r+. It is densly defined with 

and given by 

( 4.5) 

( 4.6) 

In order to handl.e noisy data g6 ~ R(T) let us consider a regularization method 

(4.7) 

that is for every fixed r 2:: 0 a continuous everywhere on Y defined operator, 

&y:Y-7X 

with the property &yg :--7 r+ g (r -7 0) if g E R(T). If the function F satisfies 

F-r(t)={l, t2'.:r 
0, t < r 

the method is called "truncated singular value decomposition". 
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Here, for the purpose of an easy a-posteriori parameter choice the following contin-
uous modification of the "filter" ( 4.8) is considered. Let b; be the positive pairwise 
different singular values of T arranged in the natural order 

b1 > b2 > b3 > . . . > b; > ... > 0 . 

Then for 0 :::; r < oo let us define 

1
1 if b;"?::.r 

F-y(b;) == 0 if bj < r 
T(r, b;) if bj < {:::; bj 

(4.9) 

where 

bt == { b;-1 if j > 1 
J 00 if j == 1 

( 4.10) 

and 

( b ·) - b+-b· 1 
' '?::. j - j 

{ 

b t --y . f b+ b 
T {, J - 1 1 

b; /, if , :::; b j - b; . 
(4.11) 

Lemma 4.1. T( ·, b;) is a monotone strictly decreasing continuous function, 
Q :::; T( ·, bj) :::; 1 if bj < { :::; bj. 
Lemma 4.2. 

s~p lbj1 F-y(b;)I :::; ,-1 (4.12) 
1 

s~p ll - F-y(b;)lbj :::; rk, k '?::. 0. ( 4.13) 
J 

Proof. To prove (4.12) consider first the case r :::; bj. In that case b.;1 F-y(b;) == 
b.;1 :::; ,-1 as F-y( bj) == 1. In the case bi < r :::; bj 

bt - "V bt - (b+ - b ·) 
b-:1 ( b ·) == b-:1 J , < b-:1 J J J < -l if "V >_ bJt - bJ· J T(, J J bf-b. - J bf-b· _{ 1 

J 1 J J 
and 

b';1T(r, bj) == ,-l if { < bj - bj. 

(4.13) is clear as F-y(bj) == 1 if bi'?::_{, and 11- F-y(bi)I:::; 1 because of Lemma 4.1 
in the opposite case. D 

Now, let us consider the operator equation 

Tf == g 

w_here f is the searched-for solution, g6 E Y are noisy data with noise level 5, i.e. 

(4.14) 

g E R( T) is unknown. 
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Moreover, let us regard the regularization method ( 4. 7) with ( 4.9), ( 4.10), ( 4.11 ). 

Theorem 4.1. {A-priori parameter choice) 

(i) If I -t 0, 6/1 -t 0 then Iiyg° -t f. 
(ii) If f E Hk, k > 0, and 1( 5) = ( 5 /II! I lk) 1f(k+i) then 

k 1 

llR-rcs)l - !II~ 251c+1 llJll~+i. 

Theorem 4.2. (A-posteriori parameter choice). 
Let 1( 5) be such that 

Ill - T R-rcs)lll =RS, 
where R > 1 is fixed, then Ily( o)9° -t f ( 8 -t 0). 
If in addition f E Hk, k > 0, then 

k _1 

I IRrcs)l - !II ~ cR51c+ 1 II! 11~+ 1 
, 

1 k 
where CR= (R - 1r 1c+1 + (R + l)1c+1. 

(4.15) 

The proofs of Theorems 4.1 and 4.2 are omitted here. They go along the lines of 
(10, chapter 3.5.], Lemmas 4.1 and 4.2 are needed to fit into the assumptions of 
that place. 

D 

Now, let us have a look at the performability of the parameter cho1ce ( 4.15) in the 
case of our regularization method ( 4.9), ( 4.10), ( 4.11 ). 

We have 

g5 - T Ryg° =. L (g°, vi)vi - T(L F-r( ai)a;1(g5, vi)ui) 

= L (1 - F-r( ai) )(g°, vi)vi 

where the summation runs over all i with ai -=/= 0. If I = 0 or less or equal to the 
least singular value, g5 - T Ilyg° = 0. Let b( I) be a suitable singular value with 

b(!) < I ~ b + (!) . 

Then 

g°-Tllyg° = L (g°,vi)vi+(l-r(!)) L (g°,vi)vi 
O"i<b("Y) O"i=b("Y) 

where r(!) = r(1, b(!)) (cf. (4.11)). 
r( I) is continuous, decreasing, 0 ~ r(!) ~ 1, r(!) -t 0 (! -t oo ). Hence, 

is a continuous, non-decreasing function with the property 

0 ~ </>(I) ~ 119°11 · 
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Consequently, for every <Po, 0 ~ <f;0 < Ill" 11 the equation 

is solvable. 

It is quite natural to assume that the signal-to-noise ratio I lg0 l I/ S has the property 

lllll/S > !f, > 1 ( 4.16) 

(cf. [7], p. 43). (R should be chosen such that (4.16) holds.) Then RS< lll"ll and 
the equation </>( r) = RS is solvable. 

Let us solve ( 4.15). Choose the singular value b such that 

L l(g°,vi)l 2 <(RS)2 ~ L l(g°,vi)l2 

holds. Then there is a T, 0 ~ T < 1, with 

(RS) 2 = L l(g°,vi)l2 + (1 - r)2 L l(g°,vi)l2, 

i.e. 

= 1- ((RS)2 - 2:ui<b l(g°,vi)l2)1/2 
7 

2:ui=bl(g0,vi)l2 • 
( 4.17) 

Then (4.11) and (4.17) imply 

T = {b+ - (b+ - b)r if T ~. b/(b+ - b) 
b IT if T > b I ( b+ - b) . 

( 4.18) 

Notice that r is uniquely determined calculating it in the prescribed way. The 
calculated r is a solution of ( 4.15). We take it as our parameter choice!( S). 
We obtain 

and 

0 

To finish this Section consider the Hilbert scale ( 4.1) and recall ( 4.2)-( 4.5). In what /1 

follows we are going to apply our method (4.9), (4.10), (4.11) to the imbedding 
operator 

E : Hp ---+ X , p > 0 fixed. 

First, let us determine its singular value decomposition and the adjoint mapping 
E*. For u E Hp, v E H 0 = X we have 

(Eu,v) ( u, E*v )p = (SP s-Pu, SP s-p E*v )p' 
(S-Pu, s~P E*v) = ( u, s-2p E*v), 
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i.e. v = s-2p E*v 
' 

E* = S 2P. 

Moreover, 

( af ui, a;'u; )p = ( SPui, SPui )P = ( ui, u;) = 5i;, 
E( af ui) = af ui, E*ui = S2Pui = af( afui) 

hence the singular value decomposition of Eis 

The adjoint Hilbert scale has the form 

( E* Etl2 Hp = Hp+pv 

as (E* E)112 = SP. 

( 4.19) 

( 4.20) 

The trivial identity llEullP = llullP says that Eis "smoothing of the step p" (in 
the sense of Louis [10]), i.e. the image of u E Hp under Eis p steps smoother than 
a (non-smooth) element of X. 

Besides, af being the largest singular value, the imbedding constant is af, i.e. 

I I Eu I I ::; af I lul IP· 
We are now ready to apply our regularization method. According to ( 4.6) and 
( 4.19) we have 

E+ g =I: a;P(g, ui)afui = L (g, ui)ui = g 

as it should be! And (4.7) reads 

!Lyy = L F-y(af)(y, ui)ui, 
Ui being the orthonormal basis of X. 

To be short we restrict ourselves to the application of Theorem 4.2. Assume that 
(4.14) holds and R is suitable chosen according to (4.16). 

Corollary 4.1. Let 1( 5) be such that 

119° - E.R.y(a)9°1 I = R5 
then R-rca)9° ~ f (5 ~ 0) in Hp. 

If additionally f E Hp+pk 1 k > 0 1 then 

llR-rca)l - flip::; ~R5"~ 1 llfll;±~k, 
1 k 

where CR= _(R- 1r 1c+1 + (R + 1)1c+1. 

The proof of the Corollary 4.1 follows easily from Theorem 4.2 taking ( 4.20) into 
account. 

It is not difficult to translate the corollary to the case of the Sobolev scale considered 
in Section 2, where X = L2(1I'), HP = HP('JI') and ai = 1/[l] hold. That case will 
be applied in Section 5. 

11 



5. A NUMERICAL PROCEDURE 

In this Section we are going to show how for the improperly posed Symm's equation 
one can find an approximation procedure and gain its ·error analysis-: using a known 
procedure and its analysis for the well-posed equation. Let us restrict ourselves to 
the case of a closed smooth curve .. (The open arc proceeds analogously.) 

Let be given a mesh on 1r of M equidistant points 

ti=jd, j=l, ... ,M, d=l/M, 

and at every tj a measured value gj of g( tj) with the property 

lg(tj) - gjl ~ s, (5.1) 
where S > 0 is the noise level and g is the (unknown) smooth right-hand side of 
Symm's equation. Recalling the notations of Section 2 consider the trigonometric 
interpolation polynomial 

where 

l(x) = I: (l, cpi)cpi, 
lEZM 

(g°, cpi) = ~ f gje-21rilj/M 
M i=t 

is the discrete Fourier transform. It has the property 

g°(ti) = gi, j = 1, ... M. 

Let be g E C('lr) and 

gM(x) = L (~ f g(tj)e-27rilj/M) 'Pl 
lEZM M j=l 

be the M-th interpolation polynomial of g. Then 

log(M + 2) lg - gMlc ~ c(k,g) Mk+a. 

provided g E Ck,a.('lr) (cf. [2]). 

Lemma 5.1. Let beg E C1(1r) and M > lg - gMlc/S. Then 

Ilg - lllL2 ~ c1S 

where c1 does not depend on S, M, g, g8. 

(5.2) 

(5.3) 

Proof. Using the trapezoidal rule and its error analysis (cf. e.g. [6]) we obtain 

. 1 M 
Ilg - llli, h lg(t) - g5(t)l2dt ~ M ~ lg(t;)- 9;1 2 

+CM, 

CM d2 h K2(t, d)ll( t) - g(t)l2dt 

< 2d2 h K2(t, d)[lg5(t) - 9M(t)1 2 + l9M(t) - g(t)l2Jdt. 
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Moreover, from the estimate 

ll(x) - 9M(x)I = 

< 

we get 

and by the as sum pt ion, 

eM :::; 4c82
, 

where c = fT K 2 ( t, d)dt is bounded in d. 

Finally, by ( 5.1) we get the asserted estimate. D 

Now, recall Theorems 2.1 and 2.2 of Section 2 and consider Symm's integral ope-
rator as a mapping from H8 (T) to Hs+l(T), s ~ 0. Let be 

p=s+l 

and consider the regularization method of Section 4 for the imbedding 

After replacing 8 by 

81 = c18, 

ai by 1/[l)P, ui by 'Pl == e27rilx and after having performed the parameter choice 
1(81) along the lines (4.16), (4.17), (4.18) we calculate 

Rrcs1)l = L F-y(oi)(l/[l]P)(g8, cpi)cpi (5.4) 
lEZ 

where F-r is defined by ( 4.9), ( 4.10), ( 4.11). Applying Corollary 4.1 we get the 

Lem.ma 5.2. Let g,g° be defined by (5.1}, {5.2} and let 1(81 ) be such that 

Ill - Rrcs1)lllL2 = R81, 

R > 1, fixed, then 

Rrcs1)l ~ g ( 5 ~ 0) in HP(T). 

If in addition g E HP+Pk(T), k > 0, then 
le 1 

llR-rcsi)l - gllp:::; cR8t+i llgll;+~k, (5.5) 
1 le 

where CR= (R - 1r le+l + (R + l)1e+1. 
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The regularization ( 5.4) can be interpreted as a data smoothing process as higher 
oszillations are cut off. 
Finally we come to the announced numerical procedure and its error analysis for 
the solution of the improperly posed Symm's integral equation. ·Let u 6 be the 
solution and u~ the approximate solution concerning the procedure (2.3) for the 
equation (2.1) with the right-hand side J4(6i)l· Then using Theorems 3.1, 2.2 
and Lemmas 5.1, 5.2 we obtain the 

Theorem 5.1. Let the assumptions of Theorems 2.1, 2.2 and 3.1 and Lemmas 
5.1, 5.2 be fulfilled. Let 

Then 

g E 0 1(T) n na+1('Ir), a== s + (s + l)k, k > 0, 
0:::; t:::; s:::; r:::; 3, 
ifs < r, g6 E 'IM, d == 1/ M; ifs == r, d == 1. 

le 1 

''

u - u6 II < c c c 51e+1 ll9ll1c+1 + chr-tds-r h t - E S R 1 . a+l , (5.6) 
1 

where CE == 1, cs == stability constant (dependening on s}, cR == (R - lf 1e+1 
le 

+(R + l)1e+1, c a constant depending on r, s, t. 

Proof. Adapting (3.2) to our situation we know from Theorem 3.1 

llu - uillt :::; cEcslll4c6t)g6 - 9llP + llu6 - uillt · 

After having inserted (5.5) in what follows there is only need to consider the expres-
sion llu6 - u~ llt· 

To this end let us first realize that u6 E H.\(T) for any ..\ E JR. Indeed, since 
Bu6 == f 6 where f 6 == J4(6i)g6 is a trigonometric polynomial (5.4) being element of 
an arbitrary Sobolev space HH1 ('Ir) we find from Theorem 2.1 that u6 E HA('J.r). 
Now, applying Theorem 2.2 to the situation 

u6 E Hr , t :::; s :::; r :::; 3 

we obtain 

llu6 - u~llt :::; c' hr-t llu6 llr . (5.7) 

Moreover, by Corollary 2.1 

(5.8) 

Since g6 E 'IM we have also f 6 E 'IM· Then the inverse property of the trigonomet-
ric polynomials gives 

(5.9) 

(Recall p == s + 1. (5.9) can easily be verified by direct calculation of the Sobolev 
norms using (4.1), (4.4).) By (5.5) 

le 1 

I lf61 Ip :::; I IJ° - gj Ip+ 1191 IP :::; CR5:+i 1191 l~t11 + 1191 Ip :::; Co 

Now, from (5.9), (5.8), (5.7) the assertion (5.6) follows. D 
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In order to apply Theorem 5.1 to concrete cases we have to specify the parameters 
d, h, r, s, t. The quantity d = 1/ M characterizes the number of measurement points 
necessary at the noise level 8. Taking 

d = 811 for s~me e > 0 

and g E C1(1r), to fulfil the assumption of Lemma 5.1 we obtain from (5.3) (since 
c1(1r) c co,1(1r)) 

I I < log(M + 2) <. ce(l-t:) g - 9M c _ c M _ co 

for c > 0 and small 8. Moreover 

provided 1 - e < e(l - c ), i.e. 

1 e>--. 2-c 
Furthermore, let us specify the discretization parameter h as 

to be given later. 

According to (5.10) 

h = 8tt for some K > 0 

k k = a-s 
s+l' k+l 

a-s 
a+l 

Then the asymptotics of (5.6) for 8 ~ 0 read as 

llu _ u~llt = 0 ( 5MinC+:, tt(r-t)+u(s-r)}) . 

Choosing 

t=s, r=3, O~s<3 

the velocity o(s~+:) is achieved if 

1 a-s K>g+----. - 3-sa+l 

With the choice (5.11), (5.12) and (5.13) we get 

llu - urns = 0 ( s~+:) . 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

That is the optimal order of regularization procedures in the sense of [10) where 
the operator maps Hs to L2 and the solution lies in Ha. Especially in the usually 
considered case s = 0 one has the optimal order 0 ( 8 a~1 ) for mappings from L2 to 
L2. 
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