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Abstract

This paper modi�es the coupled mode model for semiconductor lasers, taking

into account the gain dispersion of the optical waveguide. Fitting the true gain

curve by a Lorentzian, we obtain a correction for the dielectric function of the wave-

guide. A review of the derivation of the coupled mode model from the Maxwell

Equations, including the corrected dielectric function, leads to an extended set of

model equations. This extended model consists of the modi�ed coupled mode equa-

tions and additional polarization equations and re�ects spectral selectivity due to

the geometry (waveguide dispersion) as well as the material properties (material

dispersion). Although it is mathematically more complex, it does not increase the

computational e�ort for the dynamical simulation essentially and, thus, it should

replace the original model at least for numerical calculations.

1 Introduction

A standard model for Distributed Feedback (DFB) Lasers consists of two coupled travelling-

wave-equations for the amplitudes of two counter-propagating optical waves and a rate

equation for the longitudinally averaged carrier density [Marcenac 93, Bandelow94]. It

includes the spectral selectivity e�ects due to the corrugation of the active zone in DFB

lasers by a coupled mode formalism. However, the gain dispersion e�ects due to material

properties are completely neglected which leads to a wrong behaviour of the model in the

limit of Fabry-Perot lasers or in case of multi-mode operation.

The objective of this paper is to establish a more realistic model approximating the true

gain curve of the material by a Lorentzian shape function. [Ning, Indik, Moloney 97] use a

similar technique to model high-power bulk lasers by a set of lateral-longitudinal e�ective

Bloch equations. Moreover, the models used by [Marcenac 93] included gain dispersion

e�ects by �ltering techniques.

In order to obtain the new model, we follow the derivation of the model in [Bandelow94]

from the classical Maxwell equations. That derivation based on the assumption, that the

dielectric function "(!) varies linearly with the frequency ! in the spectral interval of

interest. To incorporate the nonlinear dispersion of the optical gain, we supplement this

linear " by a Lorentzian. Whereas the linear contribution is treated as in [Bandelow94],

the additional term is regarded as an independent polarization, for which an equation of

motion is derived.

Then, the basic steps and simpli�cations of the derivation in [Bandelow94] are applied to

the Maxwell equations and the polarization equation:

1. Choose a longitudinally homogeneous reference waveguide and a central reference

frequency and compute theoretically the transversal modes for this waveguide and

frequency.

2. Expand the solution for the real waveguide in terms of these modes.

3. Con�ne to one leading mode and establish a set of local equations for the coe�cients

of this mode by averaging over the transversal cross-section.

4. Assume a periodic corrugation of the waveguide, predict the oscillation in the scale of

the Bragg grating and focus on the spatially slowly varying �elds to obtain equations

re�ecting only the global behaviour of the solution (coupled mode formalism).
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We go through this process starting from the classical Maxwell equations and the polar-

ization equation obtained from the Lorentzian �tting of the gain curve. The result are

two coupled wave equations for two amplitudes 	� corrected by polarization terms ��:

�i@z	� � iv�1
g
@t	� + ��	� + ��	� + �� = 0

with the group velocity vg, the carrier density dependent detuning of the propagation

constant �� and the coupling coe�cients ��. The polarization terms �� are computed

by two polarization equations

�i@t�� = (� + i�) � �� + A	�

with the parameters �, � and A, obtained from the gain curve �tting. These equations,

together with the correspondingly corrected carrier rate equations, model the side mode

suppression due to material and grating in a more realistic way than the model without

gain dispersion in [Bandelow94].

Section 2 introduces the basic denotations used in this paper and discusses the Lorentzian

type polarization modelling dispersive gain. The following sections are devoted to the

steps 1 through 4, mentioned above.

A few remarks about the validity of the simpli�cations:

The computation and expansion in terms of transversal modes is in principle possible for

general waveguide geometries. In Section 5, however, we assume the waveguide to be a

small perturbation of the homogeneous reference waveguide. The coupled mode formalism

in Section 6 is speci�c to periodically corrugated waveguides.

2 The Basic Equations for Optical Waveguides

Our starting point are the Maxwell equations for the classical electric �eld ~E and the

magnetic �eld ~H

r� ~E + �0@t ~H = 0 (1)

r� ~H� @t ~D = jsp (2)

where ~D denotes the electric displacement, including a linear frequency dependent part

and a nonlinear frequency dependent part of the polarization. The �elds ~E, ~H, ~D depend

on three spatial variables (~r) and time.

The waveguide structures of semiconductor laser diodes have typically a length of several

hundred �m, a width of some �m and a height of several hundred nm. The length is

referred to as longitudinal z-dimension, the height and width as transversal dimension

(x; y) = ~rtr with tr being the symbol for �transversal�.

jsp is a stochastic current density modelling the spontaneous emission. It is supposed to

have a small in�uence once the device is lasing above the threshold and to have the mean

value 0 [Bandelow94].

The magnetic �eld constant is denoted by �0 and the electric �eld constant by "0.

The Fourier transformed variables are indicated by a tilde.

The electric displacement in the frequency domain (!) is supposed to contain the following

two terms:

~~D(!) = "0"(!) �
~~E(!) +

~~P(!) (3)
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Only the �st term is taken into account by the travelling wave equations as used in

[Bandelow94]. Additionally, we assume that " depends only weakly on ! and can be

approximated by the relation

!"(!) = !0"(!0) +
@!"

@!

����
!=!0

�(! � !0). (4)

We keep these assumptions and suppose that all e�ects of gain dispersion are contained

in the polarization term

~~P(!) = "0�(!)
~~E(!). (5)

For simplicity, we model the nonlinear frequency dependence �(!) by one Lorentzian

response function:

�(~r; !) =
A(~r)

! � !0 � 
r(~r)
. (6)

Similarly, [Ning, Indik, Moloney 97] used a sum of Lorentzians to include gain dispersion

into the e�ective Bloch equations for high power bulk lasers. The approximation has to

be valid only in a small range around !0 corresponding to the frequency range of optical

transitions in the active material.

The addition of this nonlinear ~P term in (3) is the crucial modi�cation compared to

[Bandelow94]. The complex frequency


r := � + i�=2

is the relative resonance frequency which has the di�erence � to the reference frequency

!0 and the Full Width at Half Maximum � of the Lorentzian. 2A=� is the resonance

maximum maxfIm(�(!))g. A, � and � are treated as known functions. They have to

be �tted by comparison with experimental data or may be obtained from microscopic

theory [Ning, Indik, Moloney 97]. Later we will use also the transversally averaged quan-

tities instead of the fully space dependent functions. Supposing a negligibly slow time

dependence of the coe�cients A and 
r, relation (5) reads in the time domain

@t ~P = i(!0 + 
r(~r)) � ~P + i"0A(~r) � ~E. (7)

The " and the @!"

@!
, taken at !0, in the right-hand side of (4) may depend on ~r but not on

the frequency. We allow " to depend only on ! and ~r but not on ~E itself. Thus, nonlinear

optical e�ects are not included in our considerations.

3 The Transversal Modes

The waveguides under consideration have a longitudinally varying ". E.g., DFB lasers

have a corrugation of small amplitude and a spatial period of several hundred nm. Thus,

we want to split the Maxwell equations into a transversal system and a dynamic longi-

tudinal system. This has been carried out in [Snyder, Love 91], but only for the case of

harmonically varying �elds leading to a time-independent longitudinal system. At �rst,

we obtain a system of wave solutions of system (1), (2) for a longitudinally homogeneous
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(i. e. averaged) reference waveguide and, secondly, we expand the solution for the real

waveguide in terms of these wave solutions. To be more precise:

We choose a longitudinally homogeneous reference waveguide �"(~rtr) and a reference fre-

quency !0 and seek for a wave number �� and solutions ~�E and ~�H having the form of a

longitudinal wave:

~�E = ~E(~rtr)e
i�(!0t���z) (8)

~�H = ~H(~rtr)e
i�(!0t���z). (9)

Replacing "(~r) and @!"

@!
by the longitudinally averaged values �"(~rtr),

@!�"
@!

and omitting the

nonlinear polarization e�ects, we obtain the equation for ~D

@t
~�D = i!0"0�"(~rtr)e

i�(!0t���z)
� ~E(~rtr) (10)

from (3).

Inserting (8), (9) and (10) in the Maxwell equations (1) and (2), multiplying by e�i�(!0t���z)

and neglecting jsp yields the �homogeneous Maxwell equations�

rtr �
~E(~rtr)� i��ez � ~E(~rtr) + i!0�0 ~H(~rtr) = 0 (11)

rtr �
~H(~rtr)� i��ez � ~H(~rtr)� i!0"0�"~E(~rtr) = 0 (12)

being independent of z. We denoted rtr := (@x; @y; 0)
T and ez := (0; 0; 1)T in the

equations above. This is an eigenvalue problem for �� and ( ~E; ~H) being quadratic in
��. It is supposed to contain a discrete spectrum of guided modes. Particularly, if

((Ex; Ey; Ez); (Hx; Hy; Hz)) is a mode with wave number ��, ((Ex, Ey, �Ez), (�Hx, �Hy,

Hz)) is a mode with wave number ���. It corresponds to �eld components propagating

in the opposite direction.

The eigenpairs of the reference waveguide are treated as known constants (����) and

functions ~E��(~rtr) and ~H��(~rtr) in the following paragraphs.

Relations between the transversal modes

The Integral Theorem of Gauss statesZ
tr

d~rtrr� ~v � ~w �r� ~w � ~v =

I
@tr

(~v � ~w � ~w � ~v) � ~�

with arbitrary vector �elds ~v and ~w on a transversal cross-section tr and the unit normal

~� at the boundary @tr. Assuming the �elds ~E�� and ~H�� to be negligibly small at the

transversal boundary of the waveguide, we obtain several relations (ref. [Bandelow94])

for the integrals over the transversal plane for each mode pair � being helpful for later

simpli�cations. Integration over the transversal plane is denoted by
R
tr
d~rtr.

1. Inserting ( ~E+�; ~H+�) into the equations (11) and (12) and multiplying them by ~H+�

and ~E+� yields an expression for ���:

i��� = i!0

R
tr
("0�" ~E

2
+�

+ �0 ~H
2
+�
)d~rtrR

tr
ez � ~E+� �

~H+�d~rtr
. (13)

4



2. Equation (11) for ( ~E+�; ~H+�) multiplied by ~H�� and equation (12) for ( ~E�� ; ~H��)

multiplied by ~E+� relate
R
tr

~H+�
~H��d~rtr and

R
tr

~E+�
~E��d~rtr:

��0

Z
tr

~H+�
~H��d~rtr = "0

Z
tr

�" ~E+�
~E��d~rtr. (14)

3. Similarly, di�erentiating the equations (11) and (12) for ( ~E��; ~H��) with respect to

!0 and using (14) we obtain a relation for the dependence @ ���
@!

of the eigenvalue �

on the reference frequency !0:

@ ���
@!

����
!=!0

=
"0
R
tr
(@!�"
@!

+ �") ~E+�
~E��d~rtrR

tr
ez � ~E+� �

~H+�d~rtr
. (15)

4. The transversal modes satisfy an orthogonality relation (ref. [Snyder, Love 91]): We

have Z
tr

ez � ~E�� �
~H�~�d~rtr = 0

for � 6= ~�.

4 The Expansion in the Transversal Modes

We consider the real waveguide to be a perturbation of the homogeneous reference waveg-

uide and expand the �elds ~E and ~H of the real waveguide as a sum of the transversal

modes ~E�� and ~H�� and a part (~Erad; ~Hrad) corresponding to the non-guided modes:

~E =

 X
��

a��(z; t) ~E��(~rtr) + ~Erad

!
� ei!0t (16)

~H =

 X
��

a��(z; t) ~H��(~rtr) + ~Hrad

!
� ei!0t. (17)

The relation between ~D and ~E is (see (3), and (4))

i!
~~D = "0

�
i"!0 + i

@!"

@!
(! � !0)

�
~~E + i!0

~~P . (18)

The formula has to be a valid approximation only in a small range around !0 corresponding

to the frequency range of optical transitions in the active material. Thus, we replaced

i!
~~P by i!0

~~P in (18) for simplicity.

The inverse Fourier Transform of relation (18) yields @t ~D (ref. [Landau, Lifshitz 63])

@t ~D = "0

 X
��

(i!0"+
@!"

@!
@t)a��(z; t) ~E��(~rtr) +

1

"0
@t ~Drad

!
� ei!0t + i!0

~P . (19)

The nonlinear dispersion part ~P of (19) is expanded with the same basis as the electric

�eld ~E:

~P = "0

 X
��

p��(z; t) ~E��(~rtr) + ~Prad

!
� ei!0t. (20)
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Using these expansions for ~E , ~H, ~D and ~P , we will obtain equations for the coe�cients

from the Maxwell equations in the next steps.

The physically relevant �elds have to be real. Thus, we have to insert the real parts

Re ~E = 1
2
(~E + ~E�), Re ~H = 1

2
( ~H+ ~H�), Re ~D = 1

2
( ~D+ ~D�) and Re ~P = 1

2
( ~P + ~P�) into the

Maxwell equations (1) and (2).

To obtain equations for the coe�cients a�� and p��, we multiply (1) and (2) by 2 � e�i!0t

and omit the fast oscillating complex conjugate parts. This is called the �Rotating Wave

Approximation� (ref. [Gardiner91]). Furthermore, the rapidly decaying �radiation terms�
~Erad, ~Hrad, ~Drad and ~Prad are neglected.

Reduction to the fundamental TE mode of the reference waveguide

We con�ne ourselves to one pair of guided modes as is done in e. g. [Agrawal80] in the

following sections. This will be a good approximation if the longitudinal perturbation of

" is small, e. g. in DFB lasers. The mode pair is denoted by ��, ~E� and ~H� and its

coe�cients are denoted by a� and p�, respectively.

To keep the calculations simple, this leading mode is assumed to be a TE mode, i. e. the

relations ~E+ = ~E� = ~Etr =: ~E, Ez = 0, ~Htr+ = � ~Htr� and Hz+ = Hz� are ful�lled. This

is a good approximation for the situation in a quasi-planar waveguide.

Particularly, the relations

Ex = Ez = Hy = 0 Hx =
�

!0�0
Ey Hz =

i

!0�0

@Ey

@x

hold for Etr = Ey in the TE case. These relations simplify the homogeneous Maxwell

equations to a scalar Helmholtz eigenvalue problem for � and Ey. All other �eld compo-

nents are now determined by � and Ey.

The polarization is supposed to have a transversal structure similar to the electric �eld

in the following paragraphs:

~P = "0p(z; t) ~E(~rtr)e
i!0t. (21)

The con�nement of the polarization within the active zone can be treated by setting

A(~r) = 0 outside. The assumptions on the concrete form of the reference waveguide

as well as of the transversal mode are not necessary to obtain the resulting equations.

Using other types of modes or reference waveguides leads us to other formulas for the

coe�cients. Despite the modes are treated as known, the coe�cients in the �nal model

equations are �tted by experiments anyway. The only restriction of importance is, that
~E, ~H and ~P are transversally single moded. This is a reasonable assumption for modern

laser structures [ESA 13, 89] and was also made by e. g. [Agrawal80].

5 The Local Amplitude Equations with Nonlinear Gain

Dispersion

The di�erential equation for the nonlinear polarization ~P (7) leads by (21) and (16) to a

linear di�erential equation for p = p+ + p�. The common factor ~E is nonzero. Thus,

@tp(z; t) = i
r(~r) � p(z; t) + iA(~r) � (a+(z; t) + a�(z; t)) (22)
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is valid for the coe�cients p and a�.

The Maxwell equations (1) and (2) with the expansion of Paragraph 4 and its simpli�ca-

tions read as

(a+ + a�)rtr �
~E + ez � @z(a+ + a�) ~E

+ i!0�0(a+ ~H+ + a� ~H�) + �0 � (@ta+ ~H+ + @ta� ~H�) = 0 (23)

a+rtr �
~H+ + a�rtr �

~H� + ez � @z(a+ ~H+ + a� ~H�)�

� "0
@!"

@!
@t(a+ + a�) ~E � i!0"0("(a+ + a�) + p) ~E = 2jspe

�i!0t (24)

The eigenvalue equations (11) and (12) for ~E and ~H+ and ~H� provide replacements for the

termsrtr�
~E andrtr�

~H� in the TE case. The insertion yields (since ez� ~H� = �ez� ~H+)

(a+ + a�) � (i��ez � ~E � i!0�0 ~H+) + @z(a+ + a�)ez � ~E

+ i!0�0(a+ ~H+ + a� ~H�) + �0 � (@ta+ ~H+ + @ta� ~H�) = 0 (25)

(a+ + a�) � (i��ez � ~H+ + i"0!0�" ~E) + @z(a+ � a�)ez � ~H+

� "0
@!"

@!
@t(a+ + a�) ~E � i!0"0("(a+ + a�) + p) ~E = 2jspe

�i!0t (26)

The ansatz with three coe�cients a� and p is too restrictive to satisfy the system (25), (26)

and (22). Only a transversally averaged version of ((22), (25), (26)) can be ful�lled. The

averaged equations are the scalar products with the mode integrated over the transversal

plane (denoted by
R
tr
d~rtr). We introduce the abbreviations

N := 2
R
tr
ez � ~E � ~H+d~rtr = �2

R
tr

~E � ~H� � ezd~rtr "tr :=
R
tr
" ~E � ~Ed~rtr=e

2

h2 :=
R
tr

~H+ �
~H+d~rtr =

R
tr

~H� �
~H�d~rtr

@!"

@! tr
:=

R
tr

@!"

@!

~E � ~Ed~rtr=e
2

h2� :=
R
tr

~H� �
~H+d~rtr Atr :=

R
tr
A~E � ~Ed~rtr=e

2

e2 :=
R
tr

~E � ~Ed~rtr
@!�"
@! tr

:=
R
tr

@!�"
@!

~E � ~Ed~rtr=e
2

Jsp :=
R
tr
2jspe

�i!0t � ~Ed~rtr 
r;tr :=
R
tr

r

~E � ~Ed~rtr=e
2

�"tr :=
R
tr
�" ~E � ~Ed~rtr=e

2.

N , e2, h2, h2�, �"tr are pure constants, "tr, Atr, 
tr depend only on z. The index tr at the

quantities �", ", @!"

@!
, @!�"

@!
A and 
r indicating the transversal averaging will be omitted for

brevity.

Using these abbreviations the relations (13), (14) and (15) can be adapted for TE modes

to

i�N = i!0("0�"e
2 + �0h

2) (27)

��0h
2
� = "0�"e

2 (28)

@�

@!

����
!=!0

=
1

N
"0(

@!�"

@!
+ �")e2 (29)

Here @�

@!
corresponds to the inverse of the group velocity.
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The projection of (22),
R
tr
d~rtr(22) � ~E � ~E, yields an ordinary di�erential equation for p:

@tp = i
rp+ iA(a+ + a�). (30)

The averaged amplitude equations
R
tr
d~rtr((25) � ~H+ + (26) � ~E) and �

R
tr
d~rtr((25) � ~H� +

(26) � ~E) are scalar linear equations for a�:

N@za� �

�
i�N +

�N

!0

@t

�
a� + @t(a+ + a�) �

�
�N

!0

� "0

�
�"+

@!"

@!

�
e2
�
+

i!0"0e
2
�
�
(�"� ")(a+ + a�)� ip

�
= Jsp (31)

N@za+ +

�
i�N +

�N

!0

@t

�
a+ � @t(a+ + a�) �

�
�N

!0

� "0

�
�"+

@!"

@!

�
e2
�
�

i!0"0e
2
�
�
(�"� ")(a+ + a�)� ip

�
= �Jsp (32)

The equations (32) and (31) are scaled by N and �N , respectively.

The resulting local equations for the amplitudes read

@za+ + (i� + i�")a+ +

�
@�

@!

�
loc

@ta+ +

��
@�

@!

�
loc

�
�

!0

�
@ta� + i�"a� + iCpp = �F

(33)

�@za� + (i� + i�")a� +

�
@�

@!

�
loc

@ta� +

��
@�

@!

�
loc

�
�

!0

�
@ta+ + i�"a+ + iCpp = F .

(34)

The term
�
@�

@!

�
loc

indicates the appearance of @!"

@!
of the real waveguide instead of the @!�"

@!

of the reference waveguide. The coe�cients can be specialized in the case of a TE mode

for a planar waveguide with k0 =
!0

c
to

@�

@!
=

1

N
"0(

@!�"

@!
+ �")e2 =

k20
2�!0

�

R
tr

�
�"+ @!�"

@!

�
E2

y
d~rtrR

tr
E2

y
d~rtr�

@�

@!

�
loc

=
@�

@!
+ "0

�
@!"

@!
�

@!�"

@!

�
e2

N
=

k20
2�!0

�

R
tr

�
�"+ @!"

@!

�
E2

y
d~rtrR

tr
E2

y
d~rtr

�" =
!0"0e

2 � ("� �")

N
=

k20
2�

�

R
tr
("� �")E2

y
d~rtrR

tr
E2

y
d~rtr

Cp =
!0"0e

2

N
=

k20
2�

F =
Jsp

N
=

�0!0

2�
e�i!0t �

R
tr
jsp

y
Eyd~rtrR

tr
E2

y
d~rtr

.

The terms @�

@!
�

�

!0
and

�
@�

@!

�
loc
�

�

!0
are quite small as long as the e�ective refractive index

remains almost constant with respect to frequency, i. e. �=k0 is independent of the choice

of !0.
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6 The Case of Periodically Modulated Waveguides �

the Coupled Mode Formalism

The local equations obtained in Section 5 are an approximation for arbitrary small per-

turbations of homogeneous quasi-planar waveguides. We are particularly interested in

devices with periodic corrugations of " of spatial period length � (Bragg grating in DFB

lasers). Then, the equations contain terms, jumping in each period of the Bragg grating

(i. e. ", @!"

@!
, A or 
). These terms are hidden in �" or

�
@�

@!

�
loc

in (33) and (34). Using the

coupled mode formalism we want to focus on the large scale behaviour of the solutions.

We con�ne ourselves to the �rst Fourier component of the Bragg di�raction. This leads to

a solution a� spatially oscillating with a frequency near to the Bragg frequency �=� and

non-di�erentiable at each jump of the coe�cients. In order to focus on the large spatial

scale in comparison with the Bragg period, we apply the coupled mode formalism.

Consequently, we introduce spatially slowly varying amplitudes amplitudes b�(z; t) and
p�(z; t) and extract the �rst order short-scale oscillation as a factor e�i�z=�:

a�(z; t) = b�(z; t)e
�i�z=� and p(z; t) = p+(z; t)e

�i�z=� + p�(z; t)e
i�z=� . (35)

The substitution of (35) into (33) (multiplied by ei�z=�) yields an extra factor e2i�z=� in

front of b� and p�:

@zb+ + (i� �
i�

�
+ i�")b+ +

�
@�

@!

�
loc

@tb+ + iCpp+ +

e2i�z=� �

���
@�

@!

�
loc

�
�

!0

�
@tb� + i�"b� + iCpp�

�
= �Fei�z=�. (36)

Similarly, we multiply (34) by e�i�z=� after the substitution of (35):

� @zb� + (i� �
i�

�
+ i�")b� +

�
@�

@!

�
loc

@tb� + iCp�� +

e�2i�z=� �

���
@�

@!

�
loc

�
�

!0

�
@tb+ + i�"b+ + iCpp+

�
= Fe�i�z=�. (37)

The equations (36), (37),(40) and (41) are linear in the spatially slowly varying b� and p�.
Their coe�cients depend on z and still oscillate within the Bragg period. Consequently,

after averaging of the coe�cients along one grating period ( 1
�

R
z+�

z
dz), the solutions

represent only the large scale behaviour of b�. The averages of the coe�cients are their
0th and 1st spatial Fourier components:

��"(z) =
1

�

Z
z+�

z

�"(�)d� ��
"
(z) =

1

�

Z
z+�

z

�"(�)e
�2i��=�d�.

Analogously, we obtain
�

@�

@!

�
loc

and
�
@�

@!

��
loc

as Fourier components of
�
@�

@!

�
loc
. The co-

e�cient Cp is constant as well as �

!0
, thus, �Cp = Cp and C�

p
= 0. The averages of the

right-hand-side �uctuation are denoted by

F�(z) = �
1

�

Z
z+�

z

Fe�i��=�d�.
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The equations with the averaged coe�cients and the slowly varying and smooth solutions

	� and �� read

@z	+ + (i� �
i�

�
+ i ��")	+ +

�
@�

@!

�
loc

@t	+ +

�
@�

@!

�+

loc

@t	� + i�+
"
	� + iCp�+ = F+

(38)

�@z	�+(i��
i�

�
+ i ��")	�+

�
@�

@!

�
loc

@t	�+

�
@�

@!

��
loc

@t	++ i��
"
	++ iCp�� = F�.

(39)

The coupled polarization equations can be obtained similarly. The substitution by (35)

for p into the polarization equation and multiplication by ei�z=� respectively e�i�z=� yields

@tp+ + @tp�e
2i�z=� = i
rp+ + iAb+ + e2i�z=�[i
rp� + iAb�] (40)

@tp� + @tp+e
�2i�z=� = i
rp� + iAb� + e�2i�z=�[i
rp+ + iAb+] (41)

Again, we average the coe�cients by ��1
R
z
l
+�

z
l

dz along one grating period. If we denote

the averages of the coe�cients by �A, and �
r and the �rst Fourier components by A� and


� we obtain two di�erential equations with smooth solutions by �+ and ��:

@t�+ = i�
r�+ + i �A	+ + i
+
r
�� + iA+	� (42)

@t�� = i�
r�� + i �A	� + i
�
r
�+ + iA�	+ (43)

We give a few remarks about the accuracy and the range of validity of the coupled mode

formalism:

� We included only the e�ects of the Bragg grating up to the �rst order. A Fourier

component of spatial frequency n�=� leads to a set of coupled mode equations

describing the nth order Bragg di�raction. However, only the component with

n = 1 is situated in the frequency range of optical transitions in the active material.
(ref. [Bandelow94])

� The coupled mode equations are globally exact in the stationary case @tb� = @tp� =
0 in the following sense (ref. [Bandelow94]): The smooth global-scale amplitudes

	� and �� intersect their locally detailed counterparts b� and p� in each Bragg

period. This means, the solutions of (38), (39) and (42), (43) simply hide the local

details of b� and p�.

� The solutions 	� and �� will be a good approximation to b� and p� if the cor-

rugation is small, i. e. in terms of coupling coe�cients �� = ��
"
: j���j � 1

[Bandelow94]. E. g., this means a change of the e�ective index of about 1%.

� Another consideration justifying the coupled mode formalism is:

We can consider the continuous equations (38), (39) and (42), (43) as a O(�) ap-
proximation of a spatially discrete �nite di�erence equation for piecewise linear

continuous b� and a spatially discrete equation for piecewise constant ��. This

approximation will be good if the grating period length � (� 200nm) is su�ciently
small compared to the typical variation of some �m of 	 and �.
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7 Results and Conclusions

Let �, ~E(~rtr), ~H+(~rtr) be the �rst TE mode of a longitudinally homogeneous reference

waveguide, !0 a reference frequency and � the length of the grating period in the Bragg

grating.�
@�

@!

�
loc

simpli�es to @�

@!
and ��" vanishes for a suitably chosen reference waveguide. The

��
"
appear as the coupling coe�cients ��. The non-diagonal coe�cients

�
@�

@!

��
loc

of the

time derivatives become small compared with @�

@!
and, thus, are omitted.

The dynamic coupled mode equations including nonlinear polarization e�ects with these

simpli�cations read as follows:

They consist of a Travelling Wave part for the slowly varying amplitude 	�

@z	+ + (i� �
i�

�
)	+ +

@�

@!
@t	+ + i�+	� + iCp�+ = F+ (44)

�@z	� + (i� �
i�

�
)	� +

@�

@!
@t	� + i��	+ + iCp�� = F� (45)

and equations for the slowly varying polarization ��:

@t�+ = i�
r�+ + i �A	+ + i
+
r
�� + iA+	� (46)

@t�� = i�
r�� + i �A	� + i
�
r
�+ + iA�	+. (47)

The coe�cients have the following meaning: The inverse of @�

@!
is the group velocity vg

and is considered to be constant in time.

The �rst longitudinal Fourier component of " leads to the coupling coe�cients �� between

the forward and the backward travelling wave:

�� = "0!0

R
z+�

z
e�2i�z=�

R
tr
"(~r)) ~E(~rtr) � ~E(~rtr)d~rtrdz

2�
R
tr
ez � ~E(~rtr) � ~H+(~rtr)d~rtr

=
k20
2�

�

R
z+�

z
e�2i�z=�

R
tr
"(~r)E2

y
d~rtrdz

�
R
tr
E2

y
d~rtr

They disappear for homogeneous waveguides. A rectangular tooth shape leads to a maxi-

mum coupling in the �rst Fourier components (ref. [Agrawal80, Hardy84]). The coupling

factor for the inclusion of the nonlinear polarization Cp can be scaled, but the product

of �A as well as A� in the polarization equation and Cp has to be kept constant. Another

choice of Cp corresponds to another scaling of � in relation to 	.

Cp = "0!0

R
tr

~E(~rtr) � ~E(~rtr)d~rtr

2
R
tr
ez � ~E(~rtr) � ~H+(~rtr)d~rtr

=
k20
2�

The coe�cients in the polarization equations can be obtained experimentally by �tting of

the gain curve with the Lorentzian �(!) = A

!���i�
. Their longitudinal Fourier components

�A =

R
z+�

z

R
tr
A(~r) ~E(~rtr) � ~E(~rtr)d~rtrdz

�
R
tr

~E(~rtr) � ~E(~rtr)d~rtr
=

R
z+�

z

R
tr
A(~r)E2

y
d~rtrdz

�
R
tr
E2

y
d~rtr

A� =

R
z+�

z
e�2i�z=�

R
tr
A(~r) ~E(~rtr) � ~E(~rtr)d~rtrdz

�
R
tr

~E(~rtr) � ~E(~rtr)d~rtr
=

R
z+�

z
e�2i�z=�

R
tr
A(~r)E2

y
d~rtrdz

�
R
tr
E2

y
d~rtr

,
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and, similarly, �
r and 

�
r
are the cross-section averages weighted by the transversal mode

of the fully space dependent quantities.

The right hand side F models the spontaneous emission (ref. [Marcenac 93, Bandelow94]

for remarks and more detailed references). It is supposed to have a small in�uence above

the threshold. Thus, after the initialization of the lasing process, it will be either set to

zero or considered as stochastic.

F� = �

R
z+�

z

R
tr
jspe

�i!0t�i�z=� ~E(~rtr)d~rtrdzR
tr
ez � ~E(~rtr) � ~H+(~rtr)d~rtr

= �

R
z+�

z
e�i�z=�

R
tr
jspEyd~rtrdzR

tr
E2

y
d~rtr

�
�0!0

2�
e�i!0t

The system (44), (45), (46), (47) is only the optical part of the laser model. They have

to be complemented by a model for �, its dependence on the carrier density and a rate

equation for the evolution of the carrier density. The laser model used in [Bandelow94]

for multi-section lasers neglects spatial hole burning e�ects and considers � as spatially

constant in each section of the laser. These equations can be used together with the

new optical model as well, only the stimulated emission/recombination terms have to be

adjusted appropriately.

The set of the modi�ed optical travelling-wave-equations, the polarization equations and

the carrier rate equations establish a model, that takes the side-mode suppression due to

material gain dispersion into account and leads, consequently, to more realistic simulation

results for a wide range of devices. Although the model is mathematically more complex,

it does not increase the computational e�ort for the dynamic simulation essentially. It

reproduces the qualitatively accurate results of the original model for DFB lasers.
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