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Phase-�eld systems as mathematical models for phase transitions have

drawn increasing attention in recent years. However, while capable of cap-

turing many of the experimentally observed phenomena, they are only of re-

stricted value in modelling hysteresis e�ects occurring during phase transition

processes. To overcome this shortcoming of existing phase-�eld theories, the

authors have recently proposed a new approach to phase-�eld models which

is based on the mathematical theory of hysteresis operators developed in the

past �fteen years. In particular, they have proved well-posedness and ther-

modynamic consistency for hysteretic phase �eld models which are related to

the Caginalp and Penrose-Fife models. In this paper, these results are ex-

tended into di�erent directions: we admit temperature-dependent relaxation

coe�cients and relax the growth conditions for the hysteresis operators con-

siderably; also, a uni�ed approach is used for a general class of systems that

includes both the Caginalp and Penrose-Fife analogues.

1 Introduction and physical motivation

In this paper, we study systems of partial di�erential equations of the form

(i) �(�)wt + f1[w] + � f2[w] = 0 ;(1.1)

(ii) (� + F1[w])t � �� =  (x; t; �) ;

which arise as phase-�eld equations from the mathematical modelling of phase tran-

sitions. Systems of the form (1.1) have been studied repeatedly in the literature for

the case that � , f1 , f2 , F1 ,  are (possibly nonlinear) smooth functions of their

respective variables (cf., for instance, the monographs [1] and [13]). In contrast

to these works, the present contribution is devoted to the case when f1 , f2 , F1

are no longer real-valued functions, but hysteresis operators acting between suitable

function spaces.

It has already been pointed out in [7], [8] that hysteresis operators o�er a natural and

e�cient tool for describing phase transitions. The aim of this paper is to generalize

the results of the above papers and to give a new physical interpretation of hysteresis

operators in the phase-�eld context.

Let us consider a bounded container 
 � RN �lled by a material existing in two

phases, liquid and solid, say. The state of the system is determined by the value

of two state variables: the absolute temperature � > 0 , and the phase fraction

� 2 [0; 1] , both being functions of the space variable x 2 
 and the time t 2 [0; T ] ,
where � = 1 corresponds to the pure liquid and � = 0 to the pure solid phase. The

evolution of the system is governed by the following physical laws.

Ut + div q =  (balance of internal energy) ,(1.2)

�(�)�t 2 �@�F (�; �) (melting/solidi�cation law) ,(1.3)

where U = U(�; �) � 0 is the internal energy, q is the heat �ux,  is the heat source

density, F is the free energy, @� is a (formal) derivative w.r.t. � , and �(�) > 0
is the phase relaxation coe�cient. We say that the model is thermodynamically

consistent , if

�(x; t) > 0 a.e. ;(1.4)

St � � div

�
q

�

�
+
 

�
a.e. (Clausius-Duhem inequality)(1.5)
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entropy. Using the energy balance (1.2), we can formally rewrite the Clausius�

Duhem inequality equivalently in the form

�St � Ut �
1

�
hq ;r�i a.e.(1.6)

Throughout the paper we assume, for the sake of simplicity, that the Fourier law

q = � �r�(1.7)

holds with a constant heat conductivity coe�cient � > 0 . Then inequality (1.6)

holds if and only if

�St � Ut � 0 a.e.(1.8)

Let us �rst brie�y describe a model introduced by Frémond and Visintin in [3] which

can be characterized as a relaxed Stefan problem with overheating and undercooling

and consists in choosing the free energy F in the form

F(�; �) = F0(�) + ~F(�; �);(1.9)

where

F0 (�) := cV �

 
1� log

�

�c

!
(1.10)

is the purely caloric component, and

~F(�; �) = � �I[0;1] (�) + L

 
�(�)�

�

�c
�(�)

!
(1.11)

is the phase component of the free energy. Here, cV > 0 (the speci�c heat), L > 0
(latent heat), �c > 0 (a referential temperature), � > 0 (an arbitrary physical

constant) are given constants, I[0;1] is the indicator function of the interval [0; 1] ,
and �; � are given smooth functions. Typical choices are

�(�) = �; �(�) = � + ��(1� �);(1.12)

where � 2 [0; 1] can be interpreted as a dimensionless coe�cient of undercool-

ing/overheating. Figure 1 shows a diagram of ~F at several �xed temperatures � .

We see that it has the form of a double-obstacle potential with two local minima

provided that � is close to �c , that is, if �c(1 � �) < � < �c(1 + �) ; for higher
temperatures it has a unique local minimum at � = 1 , and for lower temperatures

the only minimum is � = 0 .

The corresponding expressions for the internal energy U and the entropy S have

the form

U = cV � + L�(�);(1.13)

S = cV log
�

�c
� �I[0;1] (�) +

L

�c
�(�):(1.14)

With these choices, the laws (1.2), (1.3) read

(cV � + L�(�))t � ��� =  ;(1.15)

�(�)�t + L(�0(�) �
�

�c
�
0(�)) 2 � @� I[0;1] (�) ;(1.16)
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F [ ; �]

1

� � �c(1 + �)

�c < � < �c(1 + �)

� = �c

�c > � > �c(1� �)

� � �c(1� �)

�
Figure 1 : The phase component ~F of the free energy at di�erent temperatures.

where @� now denotes the subdi�erential. We couple the equations (1.15), (1.16)

with the initial and boundary conditions

�(x; 0) = �
0(x) 2 [0; 1] ; �(x; 0) = �

0(x) > 0 ; in 
 ;(1.17)

@�

@n
(x; t) = 0 on @ 
� ]0; T [ :(1.18)

We rewrite inclusion (1.16) in a more convenient form. To this end, let us de�ne

an auxiliary function w by the formula

w(x; t) := w
0(x) +

Z t

0

�L
�(�)

 
�
0(�) �

�

�c
�
0(�)

!
(x; �) d�(1.19)

with some given initial condition w
0 . Apparently, the integrand in (1.19) is (up

to the factor 1=�(�) ) nothing else but the negative of the partial derivative with

respect to � of the di�erentiable part of the free energy F(�; �) . Since the latter

is usually seen as the thermodynamic force driving the phase transition, the new

variable w can be interpreted as the (time-integrated)memory of the system during

the evolution. It thus seems to be quite natural to describe the evolution in terms

of w . Now, using (1.19), we obtain from (1.16) that

�t � wt 2 � @� I[0;1] (�);(1.20)

or equivalently,

� 2 [0; 1] ; (�t � wt)(�� ') � 0 a.e. 8' 2 [0; 1] :(1.21)

Variational inequality (1.21) enables us to apply the theory of hysteresis operators

and to simplify the problem stated above by equations (1.15) � (1.18). Recall that

a mapping f : C[0; T ]! C[0; T ] is called a hysteresis operator if it is

causal , that is, the implication

u(t) = v(t) 8 t 2 [0; t0] ) f(u)(t0) = f(v)(t0)(1.22)

3



y ; [ ; ] , 0 [ ; ] ,

rate-independent , that is, for every u 2 C[0; T ] and every continuous increasing

mapping � of [0; T ] onto [0; T ] we have

f(u � �)(t) = f(u)(�(t)) for all t 2 [0; T ] :(1.23)

Let us note that hysteresis operators are exactly those that admit a local represen-

tation by means of superposition operators in each interval of monotonicity of the

input, with a possible branching when the input changes direction.

In connection with inequality (1.21), we recall the following result (which can also

be generalized to the case of vector-valued functions), see e.g. [4], [1], [5], [6].

Proposition 1.1. For every closed interval Z � R , every element �0 2 Z and

every function w 2 W
1;1(0; T ) , there exists a unique � 2 W

1;1(0; T ) such that

�(0) = �
0 and condition (1.21) is satis�ed. The solution operator

sZ : Z �W
1;1(0; T ) ! W

1;1(0; T ) : (�0
; w) 7! � ;(1.24)

is Lipschitz and admits a Lipschitz continuous extension onto Z�C[0; T ]! C[0; T ] .

The operator sZ is called stop. To simplify the notation, we write s instead of

s[0;1] . The hysteretic input-output behaviour of the stop s is illustrated in Fig. 2.

Along the upper (lower) threshold line � = 1 , ( � = 0 ), the process is irreversible
and can only move to the right (to the left, respectively), while in between, motions

in both directions are admissible. This is similar to Prandtl's model of perfect

elastoplasticity, where the horizontal parts of the diagram correspond to plastic

yielding and the intermediate lines can be interpreted as linearly elastic trajectories.

ononononon
0 w

�

1

�
Figure 2: A diagram of the stop s .

Proposition 1.1 enables us to eliminate � and to rewrite system (1.15), (1.16) in the

form

(cV � + L�(s[�0
; w]))t � ��� =  ;(1.25)

�(�)wt + L

�
�
0(s[�0

; w]) �
�

�c
�
0(s[�0

; w])
�
= 0 ;(1.26)

with the initial conditions

w(x; 0) = w
0(x); �(x; 0) = �

0(x) ;(1.27)
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with hysteresis of the form

�(�)wt + f1[w] + � f2[w] = 0 ;(1.28)

(cV � + F1 [w])t � ��� =  ;(1.29)

with three hysteresis operators f1; f2; F1 .

The system is formally thermodynamically consistent provided F1 � 0 and there

exist two further operators g ; F2 such that

g[w]twt � 0 a.e. ;(1.30)

Fi [w]t � g[w]t fi[w] a.e. ; i = 1; 2 ;(1.31)

for every w 2 W
1;1 (0; T ) . Indeed, putting

U := cV � + F1[w] ; S := cV log
�

�c
� F2[w] ;

we obtain

Ut � � St = F1[w]t + � F2[w]t � g[w]t (f1[w] + � f2[w])

= ��(�) g[w]twt � 0 ;

hence inequality (1.8) holds for every regular solution (w; �) of the system (1.28),

(1.29) satisfying � > 0 . We will prove rigorously in the next sections that conditions

(1.30), (1.31), together with additional technical hypothesis, also imply the positivity

of temperature and enable us to justify the above formal computation.

We easily check that inequalities (1.30), (1.31) are ful�lled in the context of sys-

tem (1.25), (1.26), where we put g[w] = s [�0
; w]; f1 [w] = �

0 (g[w]); f2 [w] =
�
0 (g[w]); F1 [w] = � (g[w]); F2 [w] = � (g[w]): Our approach, however, makes it

possible to model an additional hysteretic behaviour in the melting/solidi�cation

law itself. As an example, we can consider a free energy of the form (1.9) � (1.12),

where the function �(�) is replaced by the operator

F [�] = �+ �

�
s
2
r

�
�
0
r; ��

1

2

�
+ �(1� �)� r

2

�
;(1.32)

where sr := s[�r;r] is the stop operator corresponding to Z = [�r; r] with some

r 2 ]0; 1
2
[ , and where �0

r = sign (�0 � 1
2
)minfr; j�0 � 1

2
jg 2 [�r; r] .

In other words, the phase component ~F of the free energy now has the form

~F [�; �] = �� I[0;1] (�) + L

 
F [�]�

�

�c
�

!
(1.33)

with F given by (1.32), see Fig. 3. Let us note that the operator F is not Gâteaux

di�erentiable; we therefore interpret the formal condition (1.3) as an inclusion anal-

ogous to (1.16), namely

�(�)�t + L

 
f [�]�

�

�c

!
2 � @� I[0;1] (�) ;(1.34)

where f is the operator

f [�] = 1 + �

�
2 sr

�
�
0
r; ��

1

2

�
+ 1� 2�

�
:(1.35)
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(1.28), (1.29) with F2[w] = g[w] = s[�0
; w] ; f2[w] � 1; f1[w] = f [g[w]] ; F1[w] =

F [g[w]] . To check that f1; F1 satisfy inequality (1.31), we need to show that

F [�]t � �t f [�] a.e.(1.36)

for all � 2 W 1;1 (0; T ): Put s := sr

h
�
0
r; ��

1
2

i
. Then

F [�]t � �t f [�] =
2�

1� 2r
s ( _s� _�) ;(1.37)

and inequality (1.36) follows from the de�nition of the stop operator.

onon 0

~F [�; �c]

�12r 1� 2r�
Figure 3: Free energy (1.33) at � = �c .

Inequality (1.30) is called piecewise ([12], [1]) or local ([5]) monotonicity . Condition

(1.36) represents the energy inequality for the hysteresis operator f with a clockwise

admissible potential F according to the terminology of [1], see Fig. 4.

onononononon
�

f [�]

�
Figure 4: Clockwise admissibility of the operator f .

2 Statement of the problem

We consider the following system of equations:

(i) �(�)wt + f1[w] + � f2[w] = 0 ;(2.1)

(ii) (� + F1[w])t � �� =  (x; t; �) ;

in 
� ]0; T [ , coupled with initial and boundary conditions

�(x; 0) = �
0(x) ; w(x; 0) = w

0(x) in 
 ;
@�

@n
= 0 on @
� ]0; T [;(2.2)
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time. We make the following hypotheses concerning the data of the system.

H1. The initial data are given in such a way that

(i) w
0 2 L1(
) ; �0 2 W 1;2(
) \ L1(
) ;(2.3)

(ii) 9� > 0 : �0(x) � � for a.e. x 2 
:

H2. The function � : ]0;1[! ]0;1[ is Lipschitz continuous on compact subsets

of ]0;1[ , and either

9�0 > 0 : �(�) � �0 minf�; 1g 8� > 0 ;(2.4)

or

(2.4)* 9�0 > 0 : �(�) � �0 8� > 0 :

H3. The operators f1; f2 : C[0; T ] ! C[0; T ] are causal, and there exists some

K1 > 0 such that

w1; w2 2 C[0; T ] ) j fi [w1] (t) � fi [w2](t)j � K1jw1 � w2j[0;t](2.5)

8t 2 [0; T ] ; i = 1; 2 ;

where for z 2 C[0; T ] and t 2 [0; T ] we denote

jzj[0;t] := maxfjz(�)j ; � 2 [0; t]g:(2.6)

We moreover assume that either

9� : ]0;1[! ]0;1[ nondecreasing, with lim sup
s!1

�(s)=s = 0 ; such that(2.7)

jf2[w](t)j � �(jwj[0;t]) 8w 2 C[0; T ] ; 8t 2 [0; T ] ;

or

(2.7)* 9K2 > 0 : jfi[w](t)j � K2 8w 2 C[0; T ] ; 8t 2 [0; T ] ; i = 1; 2 :

H4. The operator F1 : W 1;1 (0; T )!W
1;1(0; T ) is causal, and it holds:

9K3 > 0 : jF1[w]t (t)j � K3jwt(t)j a.e. 8w 2 W 1;1(0; T );(2.8)

8R > 0 9�R > 0 : w1; w2 2 W 1;1(0; T ) ; jwijW 1;1(0;T ) � R ; i = 1; 2;(2.9)

) jF1[w1](t) � F1[w2](t)j � �R jw1 � w2jW 1;1(0;t) 8t 2 [0; T ] ;

where for z 2 W 1;1(0; T ) and t 2 [0; T ] we denote

jzjW 1;1(0;t) := jz(0)j +
Z t

0
j _z(�)j d�:(2.10)
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assume that  : 
� ]0; T [�R ! R is a measurable function such that

9 0 2 Lq (
�]0; T [) : � � 0 )  (x; t; �) =  0(x; t) ;(2.11)

9K4 > 0 :

�����@ @�
����� � K4 a.e. ;(2.12)

 0(x; t) � 0 a.e.(2.13)

H6. There exist causal operators F2; g : W 1;1(0; T )!W
1;1(0; T ) and a constant

K5 > 0 such that for all w 2 W 1;1(0; T ) we have

0 � g[w]t wt � K5w
2
t a.e. ;(2.14)

Fi [w]t � g [w]t fi[w] a.e. ; i = 1; 2 ;(2.15)

F1[w](t) � 0 8t 2 [0; T ] :(2.16)

Remark 2.1. Assumption (2.4) is for instance satis�ed if �(�) = �0 � , �0 > 0
�xed. Then system (2.1) constitutes a hysteretic analogue of the Penrose-Fife model

for phase transitions with zero interfacial energy (cf. [10]); on the other hand, (2.4)*

is the hysteretic analogue of the Caginalp model with zero interfacial energy (see

[2]). Note that also the intermediate models �(�) = �0 �
� , 0 < � < 1 , �0 > 0 are

included in (2.4).

The main result of this paper reads as follows.

Theorem 2.2. Let hypotheses H1 � H6 hold with either (2.4) and (2.7) � or

(2.4) � and (2.7). Then there exists a unique solution (w; �) 2 L
1(
� ]0; T [) �

L
1(
� ]0; T [) to problem (2.1) , (2.2) such that wt 2 L

1(
� ]0; T [) , �t;�� 2
L
2(
� ]0; T [) , equations (2.1) are satis�ed almost everywhere, and there exists a

constant � > 0 such that �(x; t) � � e
��t a.e. in 
� ]0; T [ .

3 An auxiliary problem

We �rst solve the system

(i) wt = [w; �] ;(3.1)

(ii) (� + F1[w])t � �� =  (x; t; �) ;

with the initial and boundary conditions (2.2), where  : C[0; T ] � L
1(0; T ) !

L
1(0; T ) is a causal operator satisfying the following hypotheses.

9K6 > 0 : j[w; �](t)j � K6(1 + j�(t)j) a.e. 8(w; �) 2 C[0; T ]� L
1(0; T ) ;(3.2)

8R > 0 9�R > 0 : �1; �2 2 L1(0; T ) ; w1; w2 2 C[0; T ] ; j�1j1 ; j�2j1 � R(3.3)

) j[w1; �1](t) � [w2; �2](t)j � �R(jw1 � w2j[0;t] + j�1(t)� �2(t)j) ;
for a.e. t 2 (0; T ) :

8
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hold. Then problem (3.1), (2.2) admits a unique solution (w; �) 2 L1(
�]0; T [)�
L
1(
�]0; T [) such that wt 2 L

1(
�]0; T [) ; �t;�� 2 L
2(
�]0; T [) , and such that

the equations (3.1) are satis�ed almost everywhere.

Let us �rst consider equation (3.1) (i) independently of the space variable.

Lemma 3.2. Let conditions (3.2), (3.3) hold and let � 2 L1(0; T ) be given. Then

the equation

_w(t) = [w; �](t) ; w(0) = w
0
;(3.4)

admits a unique solution w 2 W 1;1(0; T ) for each w0 2 R . Moreover, two solutions

w1; w2 corresponding to two di�erent input functions �1; �2 satisfy for every R > 0
and t 2 [0; T ] the following implication.

j�1j1 ; j�2j1 � R ) jw1(t)� w2(t)j � �R e
�
R
t

Z t

0
j�1 � �2j(�) d� :(3.5)

Proof of Lemma 3.2. For w 2 C[0; T ] put

G[w](t) := w
0 +

Z t

0
[w; �](�) d�:(3.6)

Condition (3.3) yields for R := j�j1 ,

���G[w1](t)�G[w2](t)
��� � �R

Z t

0
jw1 � w2j[0;� ] d� ;(3.7)

for all w1; w2 2 C[0; T ] . By induction we easily check that the n -th iteration G
n

of G ful�lls the inequality

���Gn[w1](t) � G
n[w2](t)

��� � �nR
(n� 1)!

Z t

0
(t� �)n�1 jw1 � w2j[0;� ] d� ;(3.8)

that is, Gn is a contraction on C[0; T ] for su�ciently large n . Therefore, there

exists a unique �xed point w 2 C[0; T ] of G which satis�es equation (3.4) almost

everywhere. To derive inequality (3.5), we just notice that for j�1j1; j�2j1 � R , the

hypothesis (3.3) entails that

���w1(t)� w2(t)
��� � �R

Z t

0

�
jw1 � w2j[0;� ] + j�1 � �2j(�)

�
d� ;(3.9)

and the assertion follows from Gronwall's inequality.

The proof of Theorem 3.1 is based on the following classical properties of the linear

heat equation, see e.g. [9].

Lemma 3.3 Consider the problem

ut � �u + u = g in 
� ]0; T [ ;(3.10)

u(x; 0) = u
0(x) in 
 ;

@u

@n
= 0 on @
� ]0; T [ ;(3.11)

where 
 � RN is a bounded domain with a lipschitzian boundary and g ; u
0 are

given functions. Then the following statements hold.

9
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(3.10) � (3.11) satis�es for every t 2 [0; T ] the estimate

���u( � ; t)���p
p
�
���u0���p

p
+
Z t

0

���g( � ; �)���p
p
d� ;(3.12)

where j � jp denotes the norm in L
p(
) .

(ii) Let rN and q be as in Hypothesis H5. Then there exists a constant K1 > 0
such that for every u

0 2 L
1(
) and g 2 L

q(
� ]0; T [) the solution u of

(3.10)�(3.11) satis�es the estimate

kuk1 � K1 max
n
ju0j1 ; kgkq

o
;(3.13)

where k � kq denotes the norm of L
q(
� ]0; T [) .

Proof of Theorem 3.1. We construct the solution of system (3.1), (2.2) by

successive approximation. We put �
0(x; t) := �

0(x) , and for k � 1 we de�ne

recursively the sequences fwk
; �

kg1k=1 as solution to the system

(i) w
k
t (x; t) = 

h
w
k(x; �); �k�1(x; �)

i
(t) ;(3.14)

(ii) �
k
t � ��k + �

k = �
k�1 +  (x; t; �k�1) � F1[w

k]t ;

together with the initial and boundary conditions (2.2). Inequalities (3.2) and (2.8)

yield that

(i) jwk
t (x; t)j � K6

�
1 + j�k�1(x; t)j

�
a.e. ;(3.15)

(ii) jF1[w
k]t(x; t)j � K3K6

�
1 + j�k�1(x; t)j

�
a.e. ;

and from Lemma 3.3 (i) we infer that

Z


j�k(x; t)jq dx � C1

�
1 +

Z t

0

Z


j�k�1 (x; �) jq dx d�

�
;(3.16)

for all k � 1 and t 2 [0; T ] , with some constant C1 � j�0jq
1

that is independent of

k . By induction, we obtain from (3.16)Z


j�k(x; t)jq dx � C1 e

C1t 8k 2 N; 8t 2 [0; T ] :(3.17)

Applying Lemma 3.3 (ii) to equation (3.14) (ii) and using inequalities (3.15), (3.17)

and Hypothesis H5, we can �nd a constant C2 > 0 , independent of k , such that

jj �k jj1 � C2 8k � 0 :(3.18)

Taking a bigger C2 , if necessary, we also have

jj �kt jj2 ; jj� �
k jj2 � C2 8k 2 N :(3.19)

According to Lemma 3.2 and hypothesis (3.3), there exists some constant C3 > 0 ,
independent of k , such that���wk+1

t (x; t) � w
k
t (x; t)

��� � C3

� ����k(x; t) � �
k�1(x; t)

���(3.20)

+
Z t

0

����k(x; �)� �
k�1 (x; �)

��� d� � ;
10



( ; ) ] ; [

>From (2.9), (3.15), (3.18), and (3.20), it follows that

���F1[w
k+1] (x; t) � F1 [w

k] (x; t)
��� � C4

Z t

0
j�k � �

k�1j (x; �) d� a.e.(3.21)

for all k 2 N , where C4 > 0 is a constant independent of k . This enables us to

estimate the di�erence �k+1 � �
k . Indeed, for almost all (x; t) we have

�
k+1(x; t) � �

k(x; t) �
Z t

0

�
�
�
�
k+1 � �

k
�
�
�
�
k+1 � �

k
��

(x; �) d�(3.22)

=
Z t

0

��
�
k � �

k�1
�
(x; �) +  

�
x; �; �

k(x; �)
�
�  

�
x; �; �

k�1(x; �)
��
d�

�F1

h
w
k+1
i
(x; t) + F1

h
w
k
i
(x; t) :

Multiplying the above identity by
�
�
k+1 � �

k
�
(x; t) , integrating over 
 and us-

ing inequalities (3.21), (2.12), we conclude that there exists a constant C5 > 0 ,
independent of k , such thatZ




����k+1 � �
k
���2 (x; t) dx +

d

dt

Z



 ����
Z t

0
r
�
�
k+1 � �

k
�
(x; �) d�

����
2

(3.23)

+
����
Z t

0

�
�
k+1 � �

k
�
(x; �) d�

����
2
!
dx � C5

Z t

0

Z



����k � �
k�1

���2 (x; �) dx d� ;
for all k 2 N and t 2 [0; � ] . By induction, this implies that

Z t

0

Z



����k+1 � �
k
���2 (x; �) dx d� �

C
k
5 t

k

k!

Z t

0

Z



����1 � �
0
���2 (x; �) dx d� ;(3.24)

independently of k and t . Hence, f�kg is a Cauchy sequence in L
2(
� ]0; T [ ) .

Let � 2 L2(
� ]0; T [ ) be its limit. >From inequalities (3.18), (3.19) it follows that

� 2 L
1(
� ]0; T [ ); �t;�� 2 L

2(
� ]0; T [ ) ; �k ! � in L
1(
� ]0; T [ ) weakly-star,

and �
k
t ! �t ;��

k ! �� , in L
2(
� ]0; T [ ) weakly.

From inequalities (3.5), (3.15) (i), and (3.20), it follows that fwkg; fwk
t g are Cauchy

sequences in L2(
�]0; T [) which are bounded in L1(
�]0; T [) . Consequently, there
exists some w 2 L

2(
;C[0; T ]) \ L1(
�]0; T [) with wt 2 L
1(
�]0; T [) such that

w
k ! w strongly in L

2(
;C[0; T ]) , and weakly-star in L
1(
�]0; T [) ; wk

t ! wt

strongly in L
2(
�]0; T [) , and weakly-star in L

1(
�]0; T [) .

Hypothesis (2.9), and inequality (3.15) (ii), yield that F [wk] ! F [w] strongly in

L
2(
;C[0; T ]) , as well as F [wk]t ! F [w]t weakly in L

2(
� ]0; T [ ) . Passing to the

limit in the system (3.14) as k ! 1 , and using hypothesis (3.3), we see that w; �

satisfy system (3.1) almost everywhere.

The above convergences immediately yield that w(x; 0) = w
0(x) for a.e. x 2 
 , as

well asZ T

0

Z


�(t) (�� � '(x) + hr�;r'(x)i) dx dt = 0 8' 2 W 1;2(
) ; 8� 2 L2(0; T ) ;

so that
@�

@n
= 0 a.e. on @
�]0; T [ . We further have, for all k and t ,

Z


j�(x; 0) � �

0(x)
���2 dx � 3

 Z


j�(x; 0) � �(x; t)j2 dx(3.25)

+
Z



����(x; t) � �
k(x; t)

���2 dx +
Z



����k(x; t) � �
0(x)

���2 dx
!
:
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g g q y ( ) , , g q y,

Z


j�(x; 0) � �

0(x)j2 dx �
3

2
t̂

Z t̂

0

Z



�
j�tj

2 + j�kt j
2
�
(x; t) dx dt(3.26)

+
3

t̂

Z t̂

0

Z


j� � �

kj2 (x; t) dx dt :

Taking t̂ su�ciently small, and then k su�ciently large, we conclude that �(x; 0) =
�
0(x) a.e.; hence, the initial and boundary conditions (2.2) are ful�lled. We thus

have proved the existence of a solution in Theorem 3.1. To prove uniqueness, we

consider two solutions (w1; �1); (w2; �2) . Analogously as in inequality (3.23), we

have, for all t 2 [0; T ] ,

Z


j�1 � �2j2 (x; t) dx +

d

dt

Z



����
Z t

0
r(�1 � �2) d�

����
2

dx(3.27)

� C5

Z t

0

Z


j�1 � �2j2(x; �) dx d� :

Gronwall's inequality yields �1 = �2 , hence w1 = w2 . Theorem 3.1 is proved.

4 Proof of Theorem 2.2. Case I.

First, we prove Theorem 2.2 in the case when hypotheses (2.4) and (2.7) � hold. We

�x some " > 0 (to be speci�ed later) and de�ne auxiliary functions T"; �" : R! R
+

by the formulae

(i) T"(s) := maxf"; jsjg ;(4.1)

(ii) �"(s) := �(T"(s)) ;

for s 2 R . Let " be the operator

"[w; �] := �
1

�"(�)

�
f1[w] + T"(�) f2[w]

�
:(4.2)

Using hypotheses H1, H2, we easily check that the conditions (3.2), (3.3) are

ful�lled. By Theorem 3.1, the system

(i) �"(�)wt + f1[w] + T"(�) f2[w] = 0 ;(4.3)

(ii) (� + F1[w])t � �� =  (x; t; �) ;

has a unique solution (w; �) =: (w"
; �

") satisfying the initial and boundary condi-

tions (2.2) such that �" ; w"
; w

"
t 2 L1(
�]0; T [) ; �"t ;��

" 2 L2(
�]0; T [) .

Let us test equation (4.3) (ii) with an arbitrary function p 2 W
1;2(
� ]0; T [ ) such

that p � 0 almost everywhere. Assumptions (2.11) � (2.15) yield, for a.e. t 2 ]0; T [ ,

Z



�
p �

"
t + hrp;r�"i

�
(x; t) dx(4.4)

=
Z


p

�
 0(x; t) +  (x; t; �") �  (x; t; 0)

�
dx +

Z



�
jpjF1[w

"]t
�
(x; t) dx

� K4

Z



�
jpjj�"j

�
(x; t) dx +

Z



�
jpj g[w"]t f1[w

"]
�
(x; t) dx ;

12



Z



�
jpj g[w"]t f1[w

"]
�
(x; t) dx(4.5)

= �
Z



 
jpj

g[w"]t
w"
t

f1[w
"]

�"(�")

!
(f1[w

"] + T"(�
") f2[w

"]) (x; t) dx :

To estimate the last integral, we �rst notice that for every a; b; r 2 R we have

� a2 � rab �
1

2

�p
1 + r2 � 1

� �
a
2 + b

2
�

(4.6)

�
jrj
2

min
n
1; jrj

o�
a
2 + b

2
�
:

Hence, by assumptions (2.14) and (2.4),

�
g[w"]t
w"
t

f1[w
"]

�"(�")

�
f1[w

"] + T"(�
") f2[w

"]
�
�

K5

2�0

�
(f1[w

"])2 + (f2[w
"])2

�
T"(�

") :(4.7)

Combining inequalities (4.4), (4.5) and (4.7) with assumption (2.7) � , we obtain that

Z



�
p �

"
t + hrp;r�"i

�
(x; t) dx �

 
K4 +

K5K
2
2

�0

!Z



�
jpjT"(�")

�
(x; t) dx :(4.8)

Put � := K4 +K5K
2
2=�0 , " := �e

��T , and

p(x; t) := �
�
�e
��t � �

"(x; t)
�+

for (x; t) 2 
� ]0; T [ :(4.9)

Then it follows from inequality (4.8) that

Z



�
p

�
p + �e

��t
�
t
+ jrpj2

�
(x; t) dx � �

Z


jpj

�
jpj + �e

��t
�
(x; t) dx :(4.10)

This yields, in particular,

1

2

d

dt

Z


p
2(x; t) dx +

Z


jrpj2(x; t) dx � �

Z


p
2(x; t) dx ;(4.11)

hence, by Gronwall's inequality, p � 0 . We therefore have �
"(x; t) � �e

��t
> "

a.e., and, in particular, T"(�
") = �

"
; �"(�

") = �(�") . We thus have proved that

(w; �) = (w"
; �

") is a solution satisfying the conditions of Theorem 2.2. Uniqueness

follows from Theorem 3.1.

5 Proof of Theorem 2.2. Case II.

Assume that hypotheses (2.4) � and (2.7) hold. We introduce a parameter R > 0
and de�ne the auxiliary operators

f
R
i [w] := fi

h
sR[w]

i
; i = 1; 2 ;(5.1)

F
R
i [w] := Fi

h
sR[w]

i
; i = 1; 2 ;(5.2)

g
R[w] := g

h
sR[w]

i
;(5.3)

13



p , R p p

�R ; R . Since sR is causal, and Lipschitz continuous with respect to both the

norms of C[0; T ] and W
1;1(0; T ) , and since sR[w]twt = ( sR[w]t)

2 a.e. for all

w 2 W
1;1(0; T ) , all the hypotheses H1 to H6 are satis�ed if we replace fi ; Fi ; g

by f
R
i ; F

R
i ; g

R . Moreover, there exists a function K2 : R
+ ! R

+ such that

jfRi [w](t)j � K2(R) 8w 2 C[0; T ] ; R > 0 ; t 2 [0; T ] ; i = 1; 2 :(5.4)

Indeed, inequality (5.4) is obvious for i = 2 . Since jsR[w]j � R by de�nition of the

stop operator, it su�ces to choose any function

K2(R) � �(R) ;(5.5)

where � is the function introduced in (2.7).

For i = 1 , we use the Lipschitz continuity of f1 for proving inequality (5.4). Let

' := f1[0] 2 C[0; T ] be the image of the null function under f1 . By (2.5), we have

���fR1 [w](t)
��� � j'(t)j + K1

���sR[w]���
[0;t]

;(5.6)

so that (5.4) holds with

K2(R) := max
n
�(R) ; j'j1 + K1R

o
:(5.7)

The results of Section 4 imply that the system

(i) �(�)wt + f
R
1 [w] + � f

R
2 [w] = 0 ;(5.8)

(ii)
�
� + F

R
1 [w]

�
t
� �� =  (x; t; �) ;

together with the initial and boundary conditions (2.2), has for each R > 0 a unique

solution (w; �) = (wR
; �

R) satisfying the conditions of Theorem 2.2.

Integrating equation (5.8) (ii) with respect to t , and using the fact that FR
1 [w] � 0

a.e. by hypothesis (2.16), we obtain that

�
R(x; t) � �

Z t

0
�
R(x; �) d�(5.9)

� �
0(x) + F

R
1 [wR(x; �)](0) +

Z t

0
 0(x; �) d� + K4

Z t

0
�
R(x; �) d� :

The operator F1 is causal; hence, for any arbitrary input ~w 2 W 1;1(0; T ) , the output
value F1[ ~w](0) depends only on the value of ~w(0) . From hypotheses (2.8), (2.9) it

follows that there exists a locally Lipschitz continuous function ' : [0;1[! [0;1[
such that

F1[ ~w](0) = '( ~w(0)) 8 ~w 2 W
1;1(0; T ) :(5.10)

We �x R in such a way that

jw0(x)j � R a.e.(5.11)

Then sR[w
R(x; �)](0) = w

0(x) a.e., hence FR
1 [wR(x; �)](0) = '(w0(x)) a.e.

Next, observe that inequality (5.9) has the form

ut � �u + u � �(x; t) a.e. ;(5.12)
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with u(x; t) := e

Z
0
� (x; �) d� and

�(x; t) :=
�
�
0(x) + '(w0(x)) +

Z t

0
 0(x; �) d�

�
e
�(K4+1) t

:

Thus, � 2 L
q(
�]0; T [) is independent of R , u(x; 0) = 0 in 
 , @u=@n = 0 on

@
�]0; T [ .

Let v be the solution of the equation

vt ��v + v = �(x; t) ; v(x; 0) = 0 in 
 ;
@v

@n
= 0 on @
� ]0; T [ :(5.13)

By Lemma 3.3, there exists a constant ~C > 0 , independent of R , such that

kvk1 � ~C :(5.14)

On the other hand, testing the inequality

(u � v)t � �(u � v) + (u � v) � 0(5.15)

with (u� v)+ , we �nd that (u� v)+ � 0 , whence

0 � u(x; t) � v(x; t) a.e. in 
� ]0; T [ :(5.16)

Consequently, Z t

0
�
R(x; �) d� � ~C e(K4+1) t a.e.(5.17)

By the de�nition of the stop operator, we have���sR[ ~w]���
[0;t]

� j ~wj[0;t] 8 ~w 2 C[0; T ] ;(5.18)

independently of R . Integrating equation (5.8) (i), and using inequalities (2.4) � ,

(2.7), (5.4) and (5.17), we obtain that

jwR(x; t)j � jw0(x)j +
1

�0

Z t

0

���fR1 [wR] + �
R
f
R
2 [w

R]
���(x; �) d�(5.19)

� jw0(x)j +
1

�0

Z t

0

 
j'(�)j + K1jwR(x; �)j[0;� ]

+ �
R(x; �)�

�
jwR(x; �)j[0;� ]

�!
d�

� C6

 
1 +

Z t

0
jwR(x; �)j[0;� ] d� + �

�
jwR(x; �)j[0;t]

� Z t

0
�
R(x; �) d�

!

� C7

 
1 +

Z t

0
jwR(x; �)j[0;� ] d� + �

�
jwR(x; �)j[0;t]

�!
;

with some constants C6 ; C7 which is independent of R . Note that hypothesis (2.4) �

was substantial in the above computation.

Next, we choose a constant C8 > 0 such that

�(s) �
1

2C7

s + C8 8 s > 0 :(5.20)

Then inequality (5.19) implies that

���wR(x; �)
���
[0;t]

� C9

�
1 +

Z t

0

���wR(x; �)
���
[0;� ]

d�

�
(5.21)
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9 p q y

yields that jwR(x; t)j � C9e
C9 t a.e., and, choosing

R > C9 e
C9 T(5.22)

in addition to (5.11), we obtain that

jwR(x; t)j < R a.e. ;(5.23)

whence sR[w
R] = w

R a.e. The functions wR , �R therefore satisfy (2.1), (2.2), and

Theorem 2.2 is proved.
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