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Abstract

We extend the quasi-steady state approximation (QSSA) as well with re-

spect to the class of di�erential systems as with respect to the order of approx-

imation. As an application we prove that the trimolecular autocatalator can

be approximated by a fast bimolecular reaction system. Finally we describe a

class of singularly perturbed systems for which the �rst order QSSA can easily

be obtained.

1 Introduction

Mathematical modeling of processes with di�erent time scales leads in general to

singularly perturbed systems (SPS) of the form

_x = f(x; y; t; "); (1)

" _y = g(x; y) + "~g(x; y; t; ");

where x 2 R
m
; y 2 R

n
; 0 < " � 1; f; g are bounded as " tends to zero. The

�rst equation is called the slow subsystem and the second represents the fast one.

A variety of perturbation methods has been developed to investigate singularly

perturbed systems: matched asymptotic expansions [1], WKB-methods [2], multiple

scale methods [3], boundary layer functions [4], averaging [5]. Renormalization group

theory is a new unifying method for global asymptotic analysis [6].

Geometric singular perturbation theory is another approach for the qualitative anal-

ysis of singularly perturbed systems [7]. It is based on the existence of an invariant

manifoldM of the form

y =  (x; t; ") =  0(x) + " 1(x; t) +O("2) (2)

for systems of type (1) and reduces (1) to the regularly perturbed system (RPS) of

lower order

_x = f(x;  (x; t; "); t; "): (3)

A necessary condition for the existence of this so-called slow manifold (2) is that

the associated system

y
0 = g(x; y) (4)

to (1) possesses a family y =  0(x) of hyperbolic steady states where x has to be

considered as a parameter. If this condition is ful�lled, system (1) is called a regu-

lar singularly perturbed system (RSPS). If furthermore the hyperbolic �xed points

are asymptotically stable and the considered initial values lie in their domain of

attraction, then the long-time dynamics of system (1) can be approximated by the

regularly perturbed system (3) [8]. Under the (simple) quasi-steady-state approx-

imation (QSSA) we understand the approximation of the dynamics of (1) by the

system

_x = f(x;  0(x); t; 0); (5)
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where y =  0(x) is the family of asymptotically stable steady states of (4). The

higher order QSSA takes into account also higher order terms of (2).

The QSSA is sometimes called pseudo-steady-state hypothesis, Bodenstein's method

or method of adiabatic elimination. It plays a prominent role in modeling biological

[9], chemical [10] (especially in atmospheric chemistry [11] and combustion chemistry

[12]) and physical [13] systems. The QSSA is the key assumption in deducing the

velocity equations in enzyme kinetics [14] and can be used in the homogeneous [15]

as well as in the nonhomogeneous case [16].

There are, however, systems containing fast and slow processes whose associated

system (4) has no hyperbolic �xed point. As an example we consider an arbi-

trary chemical reaction system with two very fast reactions Y1

k1
! Y2 and 2Y1

k2
!

P (k1; k2 � 1), where P is assumed to have constant concentration. Under the

assumption of spatial homogeneity and mass-action kinetics (The reaction velocity

is proportional to the concentrations of the reactants and ki are the proportionality

constants.) the reaction system is described by the di�erential equations

_x = f(x; y1; y2);

" _y1 = �y1 � ay
2

1 + "~g1(x; y1; y2); (6)

" _y2 = y1 + "~g2(x; y1; y2);

where " = 1=k1 � 1; a = 2k2=k1 = O(1) and f; ~g1; ~g2 are smooth functions. The

corresponding associated system

y
0

1 = �y1 � ay
2

1;

y
0

2 = y1

has a continuum of steady states described by �y1 = 0. Systems with such a property

are called singular singularly perturbed systems (SSPS). The condition described

above for the applicability of the QSSA is not ful�lled for SSPS.

The goal of this note is to extend the class of di�erential equations to which the QSSA

can be applied. We prove that the existence of some conservation property of the

corresponding associated system allows the transformation of a SSPS into a RSPS

generically. Moreover, we demonstrate that under some circumstances it is necessary

to apply higher order QSSA. As an interesting example we treat the simpli�ed

`Brusselator' model which shows that trimolecular reactions can be approximated

by fast bimolecular ones. Finally, we characterize a class of singularly perturbed

systems where higher order QSSA can simply be determined only by means of the

fast subsystem.
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2 Extension of the QSSA with respect to the class

of SPS

We consider the class of singularly perturbed systems of the form (1) under the

assumptions

(A1). f; g; ~g are continuous and locally lipschitzian in x 2 Rm and y 2 Rn
:

(A2). The associated system (4) to (1) has a �rst integral � : Rm�Rn ! R
k
; k � n

such that there exists a splitting y = (y1; y2) with dim y1 = k and the property

that the derivative �y1 is invertible and jj��1
y1
jj is uniformly bounded on its

domain.

Theorem: Assume hypotheses (A1), (A2) are satis�ed. Then the SPS (1) can be

transformed into a SPS whose number of fast variables is n� k.

Proof. Using the splitting y = (y1; y2) we rewrite (1) as

_x = f(x; y1; y2; t; ");

" _y1 = g1(x; y1; y2) + "~g1(x; y1; y2; t; "); (7)

" _y2 = g2(x; y1; y2) + "~g2(x; y1; y2; t; "):

Since � is a �rst integral of (4) it satis�es the partial di�erential equation

�y g(x; y) = 0: (8)

Thus, we have by (1)

" _� = �x" _x+ �y" _y = " �xf(x; y; t; ") + �yg(x; y) + " �y~g(x; y; t; ")

= "

�
�xf(x; y; t; ") + �y~g(x; y; t; ")

�
: (9)

Now we introduce new coordinates by x = x; y2 = y2; � = �(x; y1; y2). From hy-

pothesis (A2) it follows that � = �(x; y1; y2) can be solved globally for

y1 = w(x; �; y2): (10)

Thus, we have

" _� = "

�
�x(w(x; �; y2); y2)f(x; w(x; �; y2); y2; t; ")

+�y(w(x; �; y2); y2)~g(x; w(x; �; y2); y2; t; ")
�
:

Hence, system (7) is equivalent to

_x = f(x; w(x; �; y2); y2; t; ");

_� = �x(w(x; �; y2); y2)f(x; w(x; �; y2); y2; t; ") (11)

+ �y(w(x; �; y2); y2)~g(x; w(x; �; y2); y2; t; ");

" _y2 = g2(x; w(x; �; y2); y2) + "~g2(x; w(x; �; y2); y2; t; "): 2
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Remark 1. If the associated system to (11) y02 = g2 has a hyperbolic �xed point,

system (11) represents a RSPS to which the QSSA can be applied if this �xed point

is stable.

Remark 2. The �rst integral � can be found as a solution of the linear �rst-order

PDE (8). If this PDE has no solution, then the associated system (4) does not

possess a �rst integral.

Remark 3. If system (4) has a �rst integral, it always has a continuum of steady

states. If we di�erentiate relation (8) with respect to y on the solution set of

g(x; y) = 0 we get the relation �ygy = 0. Since �y is not identically zero it fol-

lows that gy is singular on g(x; y) = 0.

Remark 4. In modeling biological, chemical and biochemical systems, linear

transformations have been used to transform special SSPS into RSPS [9]. However,

in many cases, as e.g. for the given example (6), no linear transformation can trans-

form the system into a RSPS.

Now we illustrate our approach by considering system (6). The corresponding PDE

(8) reads in our case

�y1(�y1 � ay
2

1) + �y2y1 = 0; (12)

which has the solution

�(y1; y2) = y2 + a
�1
ln(1 + ay1): (13)

Because �y2 � 1, we can use � = �(y1; y2) as nonlinear coordinate transformation

in the whole phase plane. Substituting y2 = � � a
�1
ln(1 + ay1) into (6) yields

_x = ~f(x; �; y1);

_� = (1 + ay1)
�1 ~g1(x; �; y1) + ~g2(x; �; y1); (14)

" _y1 = �y1 � ay
2

1 + "~g1(x; �; y1):

This is a RSPS whose associated system y
0

1 = �y1 � ay
2
1 has the hyperbolic stable

�xed point �y1 = 0 (we are only interested in non-negative steady states). After

applying the (simple) QSSA we obtain the reduced system

_x = f(x; �; 0);

_� = ~g1(x; �; 0) + ~g2(x; �; 0); (15)

which has the same long-time dynamics as the original system (6) for 0 < "� 1:

3 Higher order QSSA

As mentioned above, the simple QSSA consists in using the zeroth order approxi-

mation of the invariant manifoldM in (2) to study the corresponding system (1).
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Sometimes this approach is not su�cient to get the desired information about the

dynamics of (1). In these cases it is necessary to use higher order QSSA that is,

instead of y =  0(x) we use the n-th order approximation

y = ~ n(x; t; ") =  0(x) + " 1(x; t) + : : :+ "
n
 n(x; t); (16)

where the functions  i are the coe�cients in the representation (2) of the invariant

manifoldM. To compute the functions  i we substitute (16) into (1) and exploit

the invariance property ofM. By this way we get

" _y = g(x; ~ n(x; t; ")) + "~g(x; ~ n(x; t; "); t; ") +O("n+1) (17)

= "

 
@ 0

@x
+ "

@ 1

@x
+ : : :+ "

n�1
@ n�1

@x

!
f(x; ~ n(x; t; "); t; ")

+ "
2

 
@ 1

@t
+ : : :+ "

n�2
@ n�1

@t

!
+O("n+1):

By comparing the coe�cients multiplied by " we get for  1 the relation

gy(x;  0(x)) 1(x; t) + ~g(x;  0(x); t; 0) =
@ 0

@x
f(x;  0(x); t; 0): (18)

Thus, we have

 1(x; t) = g
�1

y
(x;  0(x))

 
@ 0

@x
f(x;  0(x); t; 0)� ~g(x;  0(x); t; 0)

!
: (19)

To demonstrate the importance of the higher order QSSA we consider the trimolec-

ular autocatalator which is a simpli�ed `Brusselator'.

From the very beginning of modeling small mass-action kinetic systems, it has

been supposed that two-component bimolecular systems cannot have limit cycles

(The �nal proof has been given in [17].). Hence, for the sake of simplicity, two-

component systems with trimolecular reactions, such as the famous `Brusselator',

has been studied. There is a vast literature devoted to the `Brusselator' (cf.[18]).

Nevertheless, such models often has been criticized because of their unrealistic tri-

molecularity. Thus, attempts has been undertaken to explain the trimolecular re-

action as an approximation by bimolecular ones (cf.[19] and citations therein). In

what follows we consider the well-known trimolecular autocatalator (also known as

Higgins-Selkov-, Schnakenberg- or Gray-Scott-system [20]) which contains the same

trimolecular reaction as the `Brusselator':

S ! X

X+ 2Y
k

! 3Y (20)

Y ! P

where, S and P denote substances with constant concentrations, and k is a positive

parameter. Under the assumptions of spatial homogeneity and mass-action kinetics
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the dynamic behavior is described by the di�erential equations

_x = 1� kxy
2
; (21)

_y = kxy
2
� y:

Here we have scaled out the reaction rates for the (constant) in�ux reaction for X

and the e�ux reaction for Y. We shall prove that the trimolecular autocatalator

(20) can be understood as an approximation of the bimolecular reaction system

S ! X

2Y
k1
*)
k
�1

Z (22)

X+ Z
k2
! Y+ Z

Y ! P

where k1; k�1; k2 are positive parameters, k�1 is assumed to be large. Under the same

assumptions as for system (20) and by introducing the small parameter " = 1=k�1,

the corresponding mathematical model reads

_x = 1� k2xz;

" _y = �2"k1y
2 + 2z + "(k2xz � y); (23)

" _z = "k1y
2
� z:

The QSSA cannot be applied to system (23), because the associated system has no

isolated steady state ((23) is a SSPS). However, with the coordinate transformation

� = y + 2z; (24)

system (23) can be transformed into a RSPS

_x = 1� k2xz;

_� = k2xz � (� � 2z); (25)

" _z = "k1(� � 2z)2 � z:

The associated system z
0 = �z has the hyperbolic stable �xed point �z = 0, but the

simple QSSA does not yield our desired result, as the zeroth order approximation

is still to rough. We instead use the general asymptotic approximation of the slow

manifold (2), which can be written in our case as

z =  (x; �; ") =  0(x; �) + " 1(x; �) + "
2
 2(x; �) + � � � : (26)

Inserting this Ansatz into (25) we obtain by comparing the corresponding coe�cients

 0 = 0;  1 = k1�
2 such that we have

z = k1�
2
"+O("2): (27)
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Inserting this into the �rst two equations of (25) we get the regularly perturbed

system

_x = 1�
k1k2

k�1
x�

2
; (28)

_� =
k1k2

k�1
x�

2
� � + 2

k1

k�1
�
2
;

with the perturbation parameter " = 1=k�1. In the limit k�1 !1 with k2 = O(k�1)

we obtain exactly the equation (21) for the trimolecular system (20) (It follows from

(27) lim"!0 z = 0 and with (24) lim"!0 � = y.). The given derivation is both,

rigorous and simple compared with the approach in [19].

4 Special case for the higher order QSSA

The computation of the coe�cients for the higher order QSSA requires some e�ort.

From the relation (17) which determines the coe�cients  i for the higher order QSSA

we can derive special cases where the computation of these coe�cients is based only

on the fast subsystem. Concerning the �rst order QSSA we get the following result.

Lemma: Consider the SPS (1). Suppose hypothesis (A1) is valid, and g is contin-

uously di�erentiable with respect to y. Under the conditions that g(x; y) = 0 has a

solution y = '0 where '0 does not depend on x and that gy(x; '0) is invertible for

all x there is an invariant manifold M to (1) which can be represented by

y =  1(t; x; ") = '0 � "g
�1

y
(x; '0)~g(x; '0; t; 0) +O("2):

Proof. see eq.(19). 2

As an example we consider the model of H. Haken [13]

_x = ��x� axy;

" _y = �y + "bx
2
;

which can be interpreted as a mass-action kinetic system with a very fast reaction

Y ! P . It is easy to verify that this model �ts into the scope of our Lemma. We

get as the �rst-order QSSA y = " bx
2, such that the system on the slow manifold

M can be approximated by _x = ��x� "abx
3
:

5 Summary

We have shown under which conditions the QSSA can be extended to SSPS. The

corresponding coordinate transformation can be found as a solution of the linear

�rst order PDE (8). We have presented a case study when the simple QSSA has

to be replaced by a higher order QSSA. As an interesting side product we have
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got that trimolecular reaction systems can be approximated by fast bimolecular

systems. Finally we have selected a class of SPS where the �rst-order QSSA can be

determined only by means of the fast subsystem. A known model due to H. Haken

�ts into that class.

T.W. acknowledges the support by the Graduiertenkolleg �Nichtlineare Probleme in

Analysis, Geometrie und Physik� (GRK 283) �nanced by the DFG and the state of

Bavaria.
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