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Abstract

Consider a critical K�type Galton-Watson process fZ(t) : t = 0; 1; :::g ; and

a real vector w = (w1; :::; wK)
>
: It is well-known that under rather general

assumptions,


Z(t);w

�
:=
P

k Zk(t)wk conditioned on non-extinction and ap-

propriately scaled has a limit in law as t " 1 ([Vat77]). But the limit degener-

ates to 0 if the vector w deviates seriously from `typical' type proportions, i.e.

if w is orthogonal to the left eigenvectors related to the maximal eigenvalue of

the mean value matrix. We show that in this case (under reasonable additional

assumptions on the o�spring laws) there exists a better normalization which

leads to a non-degenerate limit. Opposed to the �nite variance case, which was

already resolved in Athreya and Ney [AN74] and Badalbaev and Mukhitdinov

[BM89], the limit law (for instance its �index�) may seriously depend on w.

1 Introduction

1.1 Background

Let Zk(t) denote the number of particles of type k 2 f1; :::;Kg =: K at time

t in a multitype Galton-Watson branching process Z = (Z1; :::; ZK)> : Let the

particle reproduction be speci�ed by the vector generating function

F(z) =
�
F1(z); :::; FK(z)

�>
(1)

where 1)

Fj(z) := Ejz
Z1(1)
1 � � � z

ZK(1)

K ; z 2 E; (2)

with E :=
n
z = (z1; :::; zK)

>
: zk complex, jzkj � 1; k 2 K

o
and where the

symbol Ej refers to the law Pj of the process started with a single particle at

time t = 0 having type j: Denote by M the matrix of expectations mj;k :=
EjZk(1): Assume that M is irreducible, aperiodic, and has maximal eigenvalue

1 (criticality). Let u = (u1; :::; uK)
>
> 0 and v = (v1; :::; vK) > 0> denote the

right (column) and left (row) eigenvectors of M corresponding to this eigenvalue

normalized such that

kuk :=
X
j2K

juj j = hu;1i = 1 and vu =
X
j2K

vjuj = 1 (3)

(where 1 = (1; :::; 1)
>
): It is well-known ([Vat77, GH78]) that in the case

v
�
1�F (1� xu)

�
� x� x1+�L (x) as x # 0; (4)

1) If a column vector z occurs as an argument in a function, by an abuse of notation

it is often automatically transposed into the corresponding row vector z
> if no confusion is

possible.
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where � 2 (0; 1] and L is a (positive) function slowly varying at 0+: Moreover,

for the survival probability the following asymptotics holds:

Qj(t) := Pj
�
Z(t) 6= 0

�
� uj t

�1=�L�(t) as t " 1: (5)

Here L� is an appropriate function slowly varying at in�nity. Finally, for each

initial type j; the conditioned random vector
�
q(t)Z(t)

�� Z(t) 6= 0
	
; where

q(t) :=
X
j2K

vjQj(t) � t�1=�L�(t) as t " 1; (6)

has a well-described long-term limit in law independent of the initial state: 2)

lim
t"1

Ej

n
exp

�
�i q(t)



Z(t);w

�� ��� Z(t) 6= 0

o
= 1�

ivw�
1 + (ivw)

��1=� ; (7)

j 2 K; w> 2 RK : Hence, the limit law speci�ed by its Fourier transform (7) is

supported by the ray f�v : � � 0g in RK : In this sense, the left eigenvector v

describes �typical� limiting type proportions. Consequently, for a �xed w with

vw = 0 (i.e. �xing attention to a �deviating� type situation),n
q(t)



Z(t);w

� ��� Z(t) 6= 0

o
�!
t"1

0 in Pj�probability: (8)

Our aim is to ask for a better scaling factor q̂(t) in order that for such a w 6= 0

a limiting distribution of the conditional random variable�
q̂(t)



Z(t);w

� �� Z(t) 6= 0
	

exists non-trivially. Athreya and Ney [AN74] and Badalbaev and Mukhitdinov

[BM89] resolved this problem for processes with �nite covariances [which implies

that � = 1 in (4)]. Here q̂(t) =
p
q(t) (which is of order t�1=2 ); and the limit

law is �symmetric exponential� (with the parameter depending on w):

1.2 Main result

In order to �nd a scaling, we impose a bit stronger condition than (4). Start

with introducing some additional notation. Recalling (2) and (1), we introduce

vectors D(1� z) =
�
D1(1� z); :::; DK(1� z)

�>
by

1�F(z) =: M(1� z)�D(1� z); z 2 E: (9)

Recall that 3)

jD(1� z)j � c k1� zk : (10)

2) If � > 0; in the case of the complex function z 7! z�; we always consider the main

branch, i.e. the branch for which 1
�
= 1:

3) If z is a (row) vector, we denote by jzj� the vector with components jzkj
� : Similarly,

we will proceed with matrices. Furthermore, with the small letter c we always denote a

positive constant, or with c such a vector, which may change from term to term.
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Fix a vector w with vw = 0; and set

J (�;w; t) :=

1X
r=t

vD
�
1� exp [�i�Mrw]

�
; (11)

� 2 R; t � 0; where by de�nition ez = exp[z] is the column vector with

components ez1 ; :::; ezK .

Remark 1 (i) (well-de�ned) Note that J (�;w; �) is well-de�ned under our

criticality assumptions and by vw = 0; since in this case

(Mrw)k = O (%r) as r " 1; k 2 K; (12)

for some % 2 (0; 1) (see, for instance, [AN72, Frobenius Theorem 5.2.1]). In

fact, by (10), ��Dj

�
1� exp[�i�Mtw]

��� � c


�Mtw



 � c j�j %t; (13)

j 2 K; leading to a convergent series in (11).

(ii) (conjugate) Since for the conjugate expressions,

D(1� z) = D(1� z); hence J (�;w; t) = J (��;w; t) :

(iii) (special J) Note also that

Mw = 0 (14)

is a su�cient condition for vw = 0 because vw = (vM)w = v (Mw) : In this

case even J (�;w; t) = 0; t � 1, and J(�;w; 0) = vD
�
1� e�i�w

�
: 3

For convenience we introduce the following hypothesis, a related example

will be discussed in the next subsection.

Hypothesis 2 (basic assumptions) Recall that we are dealing with a critical

process satisfying (4), and that we �xed a vector w such that vw = 0:

(a) (index G) There exist an index G 2 [�; 1) and a real constant ' with

j'j � 1�G such that

J (�;w; 0) s �ei
�
2
' sign � j�j1+GL1

�
j�j
�

as �! 0� ; (15)

where L1 is a function slowly varying at 0+.

(b) (tail behavior) There is a �0 2 (0; 1) such that for each " > 0 there

exists a T = T (") such that for all real � with j�j � �0 and all t � T;�����
1X
r=t

Dk (1� exp [�i�Mrw])

����� � "
��J (�;w; 0)

�� ; k 2 K: (16)
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(c) (local behavior) There exists a constant 
 2 [0; �=2) and an " > 0 such

that ��Dk(1� z)�Dk (1� z
�)
��

� c
h
k1� zk��
 + k1� z�k��


i
kz� z�k

(17)

for all z; z� 2 E with

k1� zk � " and k1� z�k � ":
3

Set

R (x) := x1+GL1 (x) (18)

[with L1 from (a)], and let R̂ denote the �inverse� function satisfying

R̂
�
R (x)

�
� x and R

�
R̂ (x)

�
� x as x # 0: (19)

According to [Sen76, 5�, p.21] such a function exists, is asymptotically unique

(in an obvious sense) and

R̂ (x) = x1=(1+G)L̂1 (x) (20)

with L̂1 a function also slowly varying at 0 + : In fact, R̂ can be selected to

be monotone ([Sen76, 4�, p.19]), and, moreover, we assume throughout that R̂

is a monotone non-decreasing function de�ned on all of (0;1).
Recall the notation q(t) introduced in (6). Set

q̂(t) := R̂
�
q(t)
�
: (21)

In view of (20) and (6),

q̂(t) = q1=(1+G)(t)L̂
�
q(t)

�
� t�1=(�(1+G)) �L�(t)�1=(1+G)

L̂
�
t�1=�L� (t)

�
:

Here is our main result:

Theorem 3 (limiting deviations) Under Hypothesis 2, the following conver-

gence statements hold. For all j 2 K and � 2 R;

(a) (ratio limit theorem)

lim
t"1

Ej

n
exp

h
�i�R̂

�
1= hZ(t);ui

� 

Z(t);w

�i ��� Z(t) 6= 0

o
= exp

�
�ei

�
2
' sign� j�j1+G

�
;
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(b) (absolute scaling)

lim
t"1

Ej

n
exp

�
�i� q̂(t)



Z(t);w

�� ��� Z(t) 6= 0

o

= 1�
ei

�
2
' sign � j�j1+G�

1 +
�
ei

�
2
' sign� j�j1+G

���1=� :

Consequently, using the sample normalization such as in (a) we get ([Fel71,

formula (XVII.3.18)]) a stable limit law of index 1+G (note that G might be

larger than �); whereas in the `absolute' scaling case of (b) we get a mixture of

such laws, with the weights chosen according to the �classical� limit law (7).

Remark 4 (G = 1) We excluded the case G = 1; since the latter would re-

quire more delicate arguments (see, for instance (34) and (50) below) and would

enlarge the exposition seriously. 3

After some preparations in Section 2, the proof of the theorem will follow in

the �nal section.

1.3 Example

Here we want to illustrate the assumptions to our Theorem 3 in terms of an

example with G > �.

Consider the case of K = 3 types. For � 2 (0; 1=6) ; let

F(z) :=

0
BBBB@

�
1
6
� �
�
+
�
1
3
+ �
�
z1 +

1
3
z2 +

1
6
z23�

1
6
+ �
�
+
�
1
3
� �
� �

z1 +
1
2
(1� z1)

1+ 2
3

�
+ 1

3
z2 +

1
6
z23

1
3
z1 +

1
3
z2 +

1
3

�
z3 +

1
2
(1� z3)

1+ 1
2

�

1
CCCCA (22)

in which case

M =

0
BB@

1
3
+ � 1

3
1
3

1
3
� � 1

3
1
3

1
3

1
3

1
3

1
CCA and D(z) =

0
BBB@

1
6
z23

1
2

�
1
3
� �
�
z
1+ 2

3

1 + 1
6
z23

1
6
z
1+ 1

2

3

1
CCCA :

The mean matrix M has eigenvalues 1; �; 0; and we get

v =(1; 1; 1) and u =
1

3� 3�
(1; 1� 2�; 1� �)>

for the normalized eigenvectors corresponding to the eigenvalue 1. Now

v
�
1�F (1� xu)

�
= x�

1

6

�
1

3
x

�1+ 1
2 �

1 + o (1)
�

as x # 0;
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hence (4) is true with � = 1=2 and L(x) � 1
6

�
1
3

�3=2
: On the other hand, the

vector w =(1;�1; 0)
>

satis�es

vw = 0; Mrw = �rw; r � 0;

and, therefore, by the particular shape of D;

J (�;w; t) =
1

2

�
1

3
� �

� 1X
r=t

�
1� exp [�i��r]

�1+ 2
3 :

Clearly, as �! 0�;

J (�;w; t) �
1

2

�
1

3
� �

�
(i�)

1+ 2
3

1X
r=t

�r(1+
2
3 )

= �ei
�
2
1
3
sign� j�j1+

2
3
1

2

�
1

3
� �

�
�t(1+

2

3 )
�
1� �1+

2
3

��1

;

hence (a) and (b) of Hypothesis 2 are true with G = 2
3
> 1

2
= �; ' = 1

3
= 1�G;

and L1(x) � c: Moreover, (c) holds for 
 = 0 and even on all of E: Finally,

q(t) � c t�2; R̂(x) � c x3=5; hence q̂(t) � c t�6=5: 3

2 Preparations: an asymptotic expansion

2.1 The key expansion

Introduce the vector generating function F(t; z) =
�
F1(t; z); :::; FK(t; z)

�>
of

Z(t); which by the branching property satis�es

F(t+ 1; z) = F
�
F(t; z)

�
; t � 0; z 2 E: (23)

We set

Q(t; z) := 1�F(t; z); Q(t) := Q(t;0): (24)

From

jQ(1; z)j � M j1� zj (25)

(see, e.g., [Sew74, p.114]), we get

jQ(t+ 1; z)j =
��Q �1;F(t; z)��� � M jQ(t; z)j : (26)

By iteration,

jQ(t; z)j � Mt j1� zj ; t � 0; z 2 E: (27)

From (23) and (9), for t � 1;

Q(t+ 1; z) = 1�F
�
1�Q(t; z)

�
= MQ(t; z) �D

�
Q(t; z)

�
; (28)
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and iteration gives

Q(t+ 1; z) = MtQ(1; z)�
X

0�r<t�1

MrD
�
Q(t� r; z)

�
; t � 0: (29)

Now we introduce

D(1; z) := D(1� z); (30)

set z = e�i�w with � 2 R and w> 2 RK ; and de�ne recursively

D(t+ 1; z) := MD(t; z) +D
�
1� exp[�i�Mtw]

�
; t � 1: (31)

This gives, for t � 0;

D(t+ 1; z) = MtD
�
1� e�i�w

�
+

X
0� p< t

MpD
�
1� exp[�i�Mt�pw]

�
:

(32)

The following statement is the key in our development.

Proposition 5 (asymptotic expansion) Impose Hypothesis 2. De�ne vec-

tors �(t; �) via

Q(t; e�i�w) = i�Mtw �D(t; e�i�w) + �(t; �); t � 1: (33)

Then there are (strictly) positive constants �; �; �0 such that���j(t; �)
�� � c t�

�
j�j

(1+G+�)^2
+ %t

�
; (34)

t � 1; j�j � �0 ; j 2 K; with % taken from Frobenius' Theorem (12).

The proof requires some preparations, it will then be completed in the end

of Subsection 2.4.

2.2 Preliminary estimates

As a preparation for the proof of Proposition 5, we �rst deal with the case t = 1:
From the de�nition (33) of �(1; �) and (9) it follows that

�(1; �) = M
�
1� e�i�w � i�w

�
: (35)

But ��1� e�ix � ix
�� � 1

2
jxj

2
; x 2 R; (36)

hence ���(1; �)
�� � M

��1� e�i�w � i�w
�� � c j�j

2
: (37)

This veri�es (34) in the case t = 1:
For general t; we need some preparations. Recall the de�nition (11) of

J(�;w; t):
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Lemma 6 Under Hypothesis 2, there exists a constant �0 2 (0; 1); and for all

" > 0 there is a T = T (") � 1; such that��Dk(t; e
�i�w)� ukJ(�;w; 0)

�� � "
��J (�;w; 0)

�� + t2%t; (38)

j�j � �0 ; t � T; k 2 K; with % from (12).

Proof By the representation formula (32) and de�nition (11),

��D(t; e�i�w)� uJ(�;w; 0)
�� � u

 
v

���� 1P
p=t

D
�
1� exp [�i�Mpw]

� ����
!

+

t�1X
p=0

jMp � uvj
���D �1� exp[�i�Mt�p�1w]

����:
(39)

According to the Frobenius Theorem (see, for example, [AN72, Theorem 5.2.1])

jMp � uvj � c %p I (40)

where % is the same as in (12), and I is the unit matrix. From condition (c) in

Hypothesis 2 (with z� = 1) it follows that there exist constants 
 2 [0; �=2) and
� > 0 such that ��D(1� z)

�� � c k1� zk1+��
 (41)

for all z 2 E with k1� zk � �: By (12),

1� exp[�i�Mt�p�1w]


 �



�Mt�p�1w


 � j�j c %t�p�1: (42)

Choose �0 = �0(�) 2 (0; 1) such that the latter expression is smaller than �

whenever j�j � �0 : For these �; from (41) and (42),���D �1� exp[�i�Mt�p�1w]
���� � c

�
j�j %t�p�1

�1+��

� c j�j1+��
%t�p�1:

(43)

Combining with (40),

t�1X
p=0

jMp � uvj
���D �1� exp[�i�Mt�p�1w]

� ��� � t c %t�1 1 � t2%t 1

for all su�ciently large t: Inserting into (39), and using part (b) of Hypothesis

2 for the other term in (39), the proof is complete. 2

Corollary 7 Under Hypothesis 2, there exist constants 
 2 [0; �=2) and �0 2
(0; 1) such that for all j�j � �0 and t � 1;

��Dk(t; e
�i�w)

�� � c
�
j�j1+G�
 + t2%t

�
; k 2 K:
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Proof This follows from the preceding lemma and condition (a) in Hypothesis

2. 2

For convenience, we expose the following elementary observation.

Lemma 8 Fix a constant B > 0. For all complex numbers x; y 6= 0;���(x+ y)
B+1

� xB+1
��� � c

��yxB�� �1 + jy=xj
B
�

= c
���yxB��+ ��yB+1

��� :
Proof Indeed,

���(x+ y)
B+1

� xB+1
��� = ��yxB��

����� (1 + z)B+1 � 1

z

����� (44)

with z = y=x. Clearly,����� (1 + z)
B+1

� 1

z

����� � c
�
1 + jzj

B
�
: (45)

(To check this, built the ratio, and consider the cases jzj # 0 and jzj " 1:)
Hence the needed inequality follows. 2

2.3 First estimates of �Q and �

First observe that by (27),��Q(t; e�i�w)
�� � Mt

��1� e�i�w
�� � Mt jwj j�j � c j�j ; (46)

t � 1, � 2 R; where in the last step we used the criticality. Hence, as in (41),

there are constants 
 2 [0; �=2) and �0 2 (0; 1) such that for all j�j � �0 ;��D �Q(t; e�i�w)
��� � c



Q(t; e�i�w)


1+��
 � c j�j1+��
 : (47)

Set

�Q(t; e�i�w) := Q(t; e�i�w)� i�Mtw; t � 1: (48)

Our next aim is to prove the following estimate.

Lemma 9 (�rst estimates) There are constants 
 2 [0; �=2) and �0 2 (0; 1)
such that for all k 2 K; t � 1 and j�j � �0 ;�� �Qk(t; e

�i�w)
�� � c t j�j

1+��

(49)

and ���k(t; �)
�� � c t2 j�j(1+2(��
))^2

: (50)
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Proof Using (28), the de�nition (33) of �(t; �); and adding and subtracting

a D�term, for t � 1 we obtain

Q(t+ 1; e�i�w)

= M

h
i�Mtw �D(t; e�i�w) + �(t; �)

i
�D

�
1� exp[�i�Mtw]

�
�
h
D
�
Q(t; e�i�w)

�
� D

�
1� exp[�i�Mtw]

�i
:

On the other hand, again by (33),

Q(t+ 1; e�i�w) = i�Mt+1w �D(t+ 1; e�i�w) + � (t+ 1; �) : (51)

Using the recursive relation (31), we conclude for the following recursion formula

�(t+ 1; �) = M�(t; �)�
h
D
�
Q(t; e�i�w)

�
� D

�
1� exp[�i�Mtw]

�i
;

t � 1: Hence, by iteration, for t � 0;

�(t+ 1; �) = Mt�(1; �)

�
X

0� p< t

Mp
h
D
�
Q(t� p; e�i�w)

�
� D

�
1� exp[�i�Mt�pw]

�i
:

(52)

In view of the recursive relation (28), for t � 1;���Q(t+ 1; z)
�� � M

���Q(t; z)
��+ ��D (Q(t; z))

�� ; (53)

and by iteration we conclude for���Q(t+ 1; z)
�� � Mt

���Q(1; z)
��+ X

0� r<t

Mr
��D �Q(t� r; z)

��� ; t � 0:

With z = e�i�w; for the second term we use (47), whereas the �rst term

is rewritten by means of (33), and the two new expressions
��D(1; e�i�w)

�� =��D(1� e�i�w)
�� and ���(1; �)

�� are estimated by (41) and (37), respectively. This

gives (49).

Clearly, by (52) and criticality, for t � 1;

���(t; �)
�� � c

" ���(1; �)
��

+
X

0<r�t�1

���D �Q(r; e�i�w)
�
� D

�
1� exp[�i�Mrw]

����
#
:

(54)

Recalling (46), by assumption (c) in Hypothesis 2, for k 2 K and r � 1;���Dk

�
Q(r; e�i�w)

�
�Dk

�
1� exp[�i�Mrw]

����
� c

h

Q(r; e�i�w)


��
 + 

1� exp[�i�Mrw]



��
i�
�



1� exp[�i�Mrw]�Q(r; e�i�w)




 :
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Applying estimates as in (46) to the �rst line at the right hand side of this

inequality and notation (48) to the second one, the inequality can be continued

with

� c j�j��

�
k1� exp[�i�Mrw]� i�Mrwk+



�Q(r; e�i�w)


� :

Thus, by (36) and criticality,���Dk

�
Q(r; e�i�w)

�
�Dk

�
1� exp[�i�Mrw]

����
� c j�j

��
 �
�2 +



�Q(r; e�i�w)


� : (55)

Inserting (49) gives,���Dk

�
Q(r; e�i�w)

�
�Dk

�
1� exp[�i�Mrw]

���� � c r j�j
1+2(��
)

: (56)

Using this bound for (54), combined with the estimate (37) for
���(1; �)

�� ; also
the second inequality follows. This completes the proof. 2

2.4 Generalization by induction

Lemma 9 can be generalized as follows.

Lemma 10 (higher order estimates) Impose Hypothesis 2. There is a con-

stant 
 2 [0; �=2); and to each N � 1 there are positive constants C1;N ; C2;N ;

�1;N ; �2;N ; �N ; and �N 2 (0; 1) such that

�� �Qk(t; e
�i�w)

�� � C1;N t�1;N
h
j�j

1+G�

+ j�j

1+N(��
)
+ %t

i
(57)

and ���k(t; �)
�� � C2;N t�2;N

�
j�j

(1+G+��2
)^2
+ j�j

1+N(��
)
+ %t

�
; (58)

t � 1; j�j � �N ; k 2 K; with 0 < % < 1 taken from (12).

Proof We proceed by induction on N: First of all, the case N = 1 follows

from Lemma 9. Assume the statements (57) and (58) hold for some N � 1:
Then from (55) we get, for 1 � r � t;���Dk

�
Q(r; e�i�w)

�
�Dk

�
1� exp[�i�Mrw]

����
� c j�j

��

t�1;N

�
j�j

1+G�

+ j�j

1+N(��
)
+ %t

�
� c t�1;N

�
j�j1+G+��2
 + j�j1+(N+1)(��
) + %t

�
:
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Inserting into (54), and combined with the estimate (37) for
���(1; �)

�� ; gives,

for t � 1;

j�k(t; �)j � c
n
j�j

2
+ t1+�1;N

�
j�j

1+G+��2

+ j�j

1+(N+1)(��
)
+ %t

�o
� c t1+�1;N

�
j�j

(1+G+��2
)^2
+ j�j

1+(N+1)(��
)
+ %t

�
:

This implies (58) with N replaced by N + 1:
By the de�nition (33) of �k(t; �);�� �Qk(t; e

�i�w)
�� � ��Dk(t; e

�i�w)
��+ j�k(t; �)j ; t � 1: (59)

Apply Corollary 7 to the �rst term at the right hand side, and the already

proved estimate (58) with N replaced by N + 1 to the second one to get�� �Qk(t; e
�i�w)

��
� c

n
j�j1+G�
 + t2%t + t�2;N+1

�
j�j(1+G+��2
)^2 + j�j1+(N+1)(��
) + %t

�o
:

This yields (57) in the case N + 1; �nishing the proof by induction. 2

Completion of Proof of Proposition 5 Actually the expansion in Propo-

sition 5 is now a simple consequence of (58) in Lemma 10. In fact, choose an

N such that 1 +N (�� 
) > 1 +G. 2

3 Proof of Theorem 3

The proof of Theorem 3 still needs some additional arguments involving in

particular ideas from [AN74]. Once for all, �x the type j 2 K of the initial

particle. We start from the representation 4)

Z(t+ s) =
X
k2K

Zk(t)X
n=1

Z(k;n)(t; s); t; s � 0; (60)

where Z(k;n)(t; s) denotes the descendents vector at time t + s coming from

the nth particle of type k at time t: Set

X(t) :=


Z(t);u

�
and Y (t) :=



Z(t);w

�
: (61)

Then

Y (t+ s) =
X
k2K

Zk(t)X
n=1



Z(k;n)(t; s);w

�
: (62)

4) Of course, such representation requires a �ner model description than we started o� in

Subsection 1.1. But we skip such details and rely at this stage only on the readers knowledge

about such family tree constructions.
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Therefore, on the events Nt := fZ(t) 6= 0g ; and recalling our assumtions on R̂

imposed after (20), we have

R̂
�
1=X(t)

�
Y (t+ s) = R̂

�
1=X(t)

� 

Z(t);Msw

�

+
X
k2K

R̂
�
1=X(t)

�
R̂
�
1=Zk(t)

� R̂ �1=Zk(t)� Zk(t)X
n=1

�
(n)
k (t; s);

(63)

where,

�
(n)
k (t; s) :=



Z(k;n)(t; s);w

�
� (Ms)kw; k 2 K; n � 1; s � 0;

with (Ms)k being the kth row of the matrix Ms: We start with estimating the

�rst summand in the right-hand side of (63).

Lemma 11 Consider the case s = b log t where the constant b is chosen so

large such that b log %+ 1=2� < 0: Thenn
R̂
�
1=X(t)

� 

Z(t);Msw

� ��� Nt

o
! 0 in Pj-probability as t " 1:

Proof Since we selected the function R̂ to be monotone non-decreasing on

(0;1); we have, for " > 0 and � 2 (0; 1=�);

Pj

n���R̂ �1=X(t)
� 

Z(t);Msw

���� > "
��� Nt

o
� Pj

n
X(t) < t��+1=�

��� Nt

o
+ Pj

n���R̂ �t��1=�
� 

Z(t);Msw

���� > "
��� Nt

o
:

Note that by the limit law (7) with w = u and the asymptotics (5) of the

scaling factor q(t),

Pj

n
X(t) < t��+1=�

��� Nt

o
< " for t su�ciently large. (64)

On the other hand, by Markov's inequality,

Pj

n���R̂(t��1=�)


Z(t);Msw

���� > "
��� Nt

o
�

R̂
�
t��1=�

�
" Pj(Nt)

Ej

��
Z(t);Msw
��� :

In view of (20) and (5), for � 2 (0; 1�G),

R̂
�
t��1=�

�
Pj(Nt)

� c t1=�+�
�
t��1=�

�1=(1+G+�)

:

Neglecting the factor corresponding to �; the exponent of t can be estimated

from above by � + � + 1
�

�
1� 1

1+G+�

�
: But the term in brackets is smaller

than 1=2; so the whole expression is not larger than 1=2� if we choose � and

� su�ciently small. Combining this with (64), we get

Pj

n���R̂ �1=X(t)
� 

Z(t);Msw

���� > "
��� Nt

o
� "+ c "�1 t1=2�Ej

��
Z(t);Msw
���
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for t su�ciently large. In view of Frobenius (12) and criticality, this inequality

can be continued with

� "+ c "�1 t1=2� %s � "+ c "�1t1=2�+b log %;

where in the last step we took s = b log t with b as in the lemma. Letting

t " 1; the proof is �nished since " is arbitrary. 2

Proof of claim (a) By construction, �
(n)
k (t; s) are zero mean random vari-

ables, and the characteristic functions

�k(�; s) := Ek exp
h
�i��

(n)
k (t; s)

i
; � 2 R; (65)

do not depend on t and n: We can write them as

�k(�; s) = 1 +
�
1� exp

�
i� (Ms)kw

�� �
1�Ek exp

�
�i�w



Z(s);w

���
�
�
1� exp

�
i� (Ms)kw

��
�
�
1�Ek exp

�
�i�



Z(s);w

���
:

Observe now that as �! 0;

1� exp
�
i� (Ms)kw

�
= �i� (Ms)kw +O

�
�2
�
; uniformly in s;

and ����1� exp
�
i� (Ms)kw

�� �
1�Ek exp

�
�i�



Z(s);w

������
� c j�j

2
Ek

��
Z(s);w��� � c j�j
2
:

On the other hand, by the notations (24) and (33),

1�Ek exp
�
�i�



Z(s);w

��
= i� (Ms)kw�Dk

�
s; e�i�w

�
+�k (s; �) :

Putting these considerations together gives

�k(�; s) = 1 +Dk

�
s; e�i�w

�
��k (s; �) +O

�
�2
�

as �! 0; (66)

uniformly in s (and k):
We know that under the conditions of the theorem, as t " 1 and in Pj�law,�

Zk(t)
�� Nt

	
! 1 (67)

([Sew74, p.114]) and �
Zk(t)

X(t)

���� Nt

�
! vk (68)

([Vat78]). Moreover, n
Zk(t) t

�1=�+"
��� Nt

o
! 1 (69)
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and n
Zk(t) t

�1=��"
��� Nt

o
! 0; (70)

for each �xed " > 0:
By (68) and since R̂ is regularly varying of order 1=(1 +G);(

R̂
�
1=X(t)

�
R̂
�
1=Zk(t)

�
����� Nt

)
! v

1=(1+G)

k ; t " 1; (71)

in Pj�law.

From now on, we �x a � 2 R. Using the Markov and branching properties,

Ej

8<
:exp

�
� i�R̂

�
1=Zk(t)

� Zk(t)X
n=1

�
(n)
k (t; s)

� ����� Nt

9=
;

= Ej

(
�k

�
�R̂
�
1=Zk(t)

�
; s
�Zk(t) ����� Nt

)
: (72)

By the asymptotics (66), �explosion� (67), and regular variation (20), for the

�xed �; (conditioned on Nt and in Pj�law)

�k

�
�R̂
�
1=Zk(t)

�
; s
�
= 1 +Dk

�
s; exp

h
�i�R̂

�
1=Zk(t)

�
w

i�
(73)

� �k

�
s; �R̂

�
1=Zk(t)

��
+O

��
R̂
�
1=Zk(t)

��2�

as t " 1: Moreover, by Lemma 6,

Dk

�
s; exp

�
� i�R̂

�
1=Zk(t)

�
w
��

(74)

= ukJ
�
�R̂
�
1=Zk(t)

�
;w; 0

��
1 + o(1)

�
+ s2%s

as s " 1 and for all su�ciently large t: In addition, by Hypothesis 2 (a), and

with R from (18),

J
�
�R̂
�
1=Zk(t)

�
;w; 0

�
� �ei

�
2
' sign�R

�
j�j R̂

�
1=Zk(t)

��
as t " 1: By regular variation, we may continue with

� �ei
�
2
' sign� j�j1+GR

�
R̂
�
1=Zk(t)

��
;

and (19) gives (conditioned on Nt and in Pj�law)

J
�
�R̂
�
1=Zk(t)

�
;w; 0

�
� �ei

�
2
' sign� j�j1+G=Zk(t) as t " 1: (75)
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On the other hand, if we take s = b log t with b > 0 to be chosen later,

according to Proposition 5 there exist constants � > 1 and � > 0 satisfying

1 +G+ 2� < 2 such that����k

�
s; �R̂

�
1=Zk(t)

����� � c

����R̂ �1=Zk(t)����1+G+2�

+ tb log %
�
log� t

for all su�ciently large t: Since R̂ is a regularly varying function of order

1= (1 +G) at x = 0+;

0 < R̂ (x) � x1=(1+G+�); 0 < x < x0 ; (76)

for some x0 and the chosen � ([Sen76, 1�, p.18]). From this estimate,����k

�
s; �R̂

�
1=Zk(t)

����� � c

��
1=Zk(t)

� 1+G+2�
1+G+� + tb log %

�
log� t

= o
�
1=Zk(t)

�
+ tb log % log� t

(conditioned on Nt and in Pj�law) as t " 1 [recall (69)]. If we chose b so

large that b log %+ 1=� < 0;

tb log % log� t = o
�
1=Zk(t)

�
;

hence ����k

�
s; �R̂

�
1=Zk(t)

����� = o
�
1=Zk(t)

�
: (77)

Similarly,

s2 %s = o
�
s�%s

�
= o

�
tb log % log� t

�
= o

�
1=Zk(t)

�
(78)

as t " 1: Finally, since 1 +G+ 2� < 2;

O

��
R̂
�
1=Zk(t)

��2�
= o

�
1=Zk(t)

�
as t " 1: (79)

Combining (73) � (79), we see that

�k

�
�R̂
�
1=Zk(t)

�
; s
�

= 1� uk e
i �
2
' sign� j�j1+G=Zk(t) + o

�
1=Zk(t)

�
as t " 1. Inserting into the right hand side of (72) gives

Ej

(n
1 � uk e

i �
2
' sign� j�j1+G=Zk(t) + o

�
1=Zk(t)

�oZk(t) ����� Nt

)
:

Hence,

lim
t"1

Ej

8<
:exp

�
� i�R̂

�
1=Zk(t)

� Zk(t)X
n=1

�
(n)
k (t; s)

� ����� Nt

9=
;

= exp
�
�uk e

i �
2
' sign� j�j1+G

�
: (80)
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Since this limiting expression is continuos at � = 0; it must be a characteristic

function and in fact of a random variable �k over a probability space (
;F ;P)
with a stable distribution with parameter 1 +G: By the way, suppose for the

moment, we did not restrict the range of ' as done in Hypothesis 2 (a), here

we would get the restriction j'j � 1 � G automatically, compare with [Fel71,

formula (XVII.6.2)]. In view of (71), this means that conditioned on Nt and in

Pj�law,

X
k2K

R̂
�
1=X(t)

�
R̂
�
1=Zk(t)

� R̂ �1=Zk(t)� Zk(t)X
n=1

�
(n)
k (t; s) !

X
k2K

v
1=(1+G)

k �k (81)

as t " 1; where �k are independent random variables over (
;F ;P) : Turning
back to (63), along with Lemma 11 it shows that in Pj�law,n

R̂
�
1=X(t)

�
Y (t+ s)

��� Nt

o
!
X
k2K

v
1=(1+G)

k �k (82)

as t " 1.

Recalling s = b log t; next we use that(
X(t+ s)

X(t)

����� Nt+s

)
! 1 (83)

as t " 1 in Pj�law (compare with [AN74, p. 342]; note that the arguments

there remain true under our more general assumptions). Hence, since R̂ is

regularly varying, (
R̂
�
1=X(t)

�
R̂ (1=X(t+ s))

����� Nt+s

)
! 1: (84)

Thus,

lim
t"1

Ej

n
exp

h
�i�R̂ (X(t+ s))Y (t+ s)

i ��� Nt+s

o
(85)

= lim
t"1

Ej

n
exp

h
�i�R̂ (X(t))Y (t+ s)

i ��� Nt+s

o
(provided the limit exist).

For convenience, set now

V := exp
h
�i�R̂

�
1=X(t)

�
Y (t+ s)

i
: (86)

Then

Ej fV ;Nt+sg = Ej fV j NtgPj(Nt)� Pj
�
Nt \ N

c
t+s

�
:

Thus

Ej fV j Nt+sg =
�
Pj (Nt) =Pj(Nt+s)

� h
Ej fV j Ntg � Pj

�
N c
t+s j Nt

	i
:
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Recalling s = b log t; by the survival probability asymptotics (5),

Pj(Nt)=Pj (Nt+s)! 1 as t " 1: (87)

Therefore, Pj
�
N c
t+s j Nt

	
! 0; and

lim
t"1

Ej fV j Nt+sg = lim
t"1

Ej fV j Ntg (88)

(provided the limit exist). Combining with (85) and (82),

lim
t"1

Ej

n
exp

h
�i�R̂ (X(t+ s))Y (t+ s)

i ��� Nt+s

o
=
Y
k2K

E exp
h
�i�v

1=(1+G)

k �k

i

(with E referring to expectation corresponding to the underlying law P): But
the latter expression equals

Y
k2K

exp

�
�uk e

i �
2
' sign�

����v1=(1+G)

k

���1+G� = exp
�
�ei

�
2
' sign� j�j1+G

�
:

This completes the proof of (a). 2

Proof of claim (b) To prove part (b), we use similar ideas and therefore only

sketch the argument. Recalling the representation (62) and notation (65), by

the Markov and branching properties,

Ej

n
exp

�
�i� q̂(t)Y (t+ s)

� ��� Nt

o
(89)

= Ej

(Y
k2K

�
�k
�
� q̂(t); s

��Zk(t) ���� Nt

)
:

Similarly to (73),

�k
�
� q̂(t); s

�
= 1 +Dk

�
s; exp

h
� i� q̂(t)w

i�
(90)

� �k

�
s; � q̂(t)

�
+O

��
q̂(t)

�2�
:

As in (74),

Dk

�
s; exp

�
� i� q̂(t)w

��
= ukJ

�
� q̂(t);w; 0

��
1 + o(1)

�
+ s2%s: (91)

Now, as t " 1;

R
�
q̂(t)

�
= R

�
R̂
�
q(t)
��

� q(t) (92)
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[recall (21), (6), and (19)], and by Hypothesis 2 (a),

J
�
�R̂
�
q(t)

�
;w; 0

�
� �ei

�
2
' sign� R

�
j�j R̂

�
q(t)
��

:

By regular variation and (92), we may continue with

� �ei
�
2
' sign � j�j1+GR

�
R̂
�
q(t)
��

� �ei
�
2
' sign� j�j

1+G
q(t):

Thus,

J
�
� q̂(t);w; 0

�
� �ei

�
2
' sign� j�j1+Gq(t) (93)

[compare with (75)]. As in (77) � (79), with s = b log t;

�k

�
s; � q̂(t)

�
+O

��
q̂(t)

�2�
+ s2%s = o

�
q(t)

�
: (94)

Inserting (91), (93), and (94) into (90) gives

�k
�
� q̂(t); s

�
= 1� uk e

i �
2
' sign� j�j1+G q(t) + o

�
q(t)

�
:

Hence, the right hand side of (89) can be written as

Ej

(Y
k2K

�
1� uk e

i �
2
' sign� j�j1+G q(t) + o

�
q(t)

��Zk(t) ���� Nt

)
:

Its limt as t " 1 equals

lim
t"1

Ej

�Y
k2K

exp
�
�ei

�
2
' sign � j�j1+G q(t)Zk(t)uk

� ���� Nt

�

= lim
t"1

Ej

h
exp

�
�ei

�
2
' sign� j�j1+Gq(t)



Z(t);u

�� ��� Nt

i
: (95)

Recalling notation (61), under our conditions (see [Vat77]),�
q(t)X(t)

�� Nt

	
! � (96)

in Pj�law as t " 1; where � is a (non-negative) random variable with charac-

teristic function

Ee�i�� = 1�
i��

1 + (i�)
�
�1=� ; � 2 R; (97)

[recall (7)]. Since � � 0; by analytic continuation we even have

Eey� = 1�
�y�

1 + (�y)
�
�1=� ; y complex with <e y � 0:

But <e
�
�ei

�
2
' sign�

�
= � cos

�
�
2
'
�
� 0 under our restriction on '; hence the

right hand side of (95) coincides with

E exp
�
�ei

�
2
' sign� j�j1+G�

�
= 1�

ei
�
2
' sign � j�j1+G�

1 +
�
ei

�
2
' sign� j�j1+G

���1=� ;

and the proof is complete. 2
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