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Abstract

The paper presents an outline of Vladimir Maz'ya's important and in�u-

ential contributions to the solvability theory of integral and pseudodi�erential

equations.

Since integral and pseudodi�erential operators are one of the main themes of Maz'ya's

vast mathematical work, it is a di�cult task to describe his diverse results in this

�eld in a short survey. In fact, this article was to have been written by Maz'ya's

close friend Siegfried Prössdorf, who was my teacher at the Technical University of

Chemnitz and my colleague at the Weierstrass Institute in Berlin. Siegfried's unex-

pected and untimely death was a tragic loss for everybody who knew him. Siegfried

had followed Maz'ya's work for over thirty years. In this respect I would like to

draw attention to their comprehensive joint monograph published as Volume 27 of

the Encyclopaedia of Mathematical Sciences.

1 Non-elliptic operators

I learned about Vladimir's work for the �rst time in 1972 when two articles by

Maz'ya and Plamenevski�� on multidimensional singular integral operators with de-

generate symbol were reported in Prössdorf's seminar at the Technical University of

Chemnitz. The ideas from these papers in�uenced the research done in Chemnitz

in the same area, including some of my own work. This is why I have chosen to dis-

cuss Maz'ya's contributions to non-elliptic singular integral and pseudodi�erential

operators �rst.

I start with some de�nitions. An operator of the form

Au(x) := a(x)u(x) +
Z
Rn

f(x; �)

jx� yjnu(y)dy ; (1)

where x 2 Rn; � = (x� y)jx� yj�1 2 Sn�1, is called singular integral operator in Rn.

The symbol of A, which was �rst introduced by Mikhlin for n = 2 and somewhat

later by Giraud for n > 2 as a series in spherical harmonics, can equivalently be

de�ned by

�(x; �) := a(x) + Fy)�fjyj�nf(x; y=jyj)g ; x ; � 2 Rn ; � 6= 0 ;

where F refers to the Fourier transform. Note that � is positively homogeneous of

degree 0 in �. It was proved by Calderón and Zygmund that (1) can be written in

the form

Au(x) = F�1
�!x

f�(x; �)(Fu)(�)g : (2)

The operator (1) is called elliptic if �(x; �) 6= 0 for all x 2 Rn and � 2 Sn�1, otherwise

it is called non-elliptic or degenerate.
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At the beginning of the sixties the solvability properties of elliptic multidimensional

singular integral operators were well understood, due to the fundamental contribu-

tions by Tricomi, Mikhlin, Giraud, Calderón and Zygmund, and Gohberg, whereas

nothing was known in the non-elliptic case. In�uenced by S. Mikhlin, V. Maz'ya

had already started working in this �eld in 1964. The short but illuminating paper

[37] by Maz'ya and Plamenevski�� was the �rst dealing with non�elliptic pseudodif-

ferential operators in higher dimensions. It was followed by another short note [38]

and the longer paper [39]. Among other things, it was proved that the equation

Au = g ; g 2 L2(R
n) ;

is always solvable in an appropriate anisotropic Sobolev space provided the symbol

of A does not depend on x and has zeroes of constant (�nite) multiplicities on

disjoint smooth submanifolds of Sn�1. Furthermore, a complete description of the

�nite dimensional kernel (null space) of A and formulations of well�posed problems

for the inhomogeneous equation were given. Maz'ya and Plamenevski�� were also

able to treat some cases of symbols depending additionally on x.

Apparently, these pioneering works on non�elliptic operators remained completely

unknown outside the Iron Curtain. However, the case of degenerating symbol be-

came rather fashionable after the theory of pseudodi�erential operators had emerged

in the works by Eskin and Vishik, Kohn and Nirenberg, Bokobza and Unterberger,

and Hörmander. Recall that a (classical) pseudodi�erential operator in Rn is de�ned

by relation (2), where the symbol � admits an asymptotic expansion into positively

homogeneous terms in �,

�(x; �) �
1X
k=0

�k(x; �) ; �k(x; t�) = tl�k�k(x; �) 8 t > 0 :

Here �0 is called the principal symbol, l is the order of A, and A is said to be elliptic

if �0 is nowhere vanishing.

After 1965 solvability and regularity theory for pseudodi�erential equations with

various types of degeneration became a vast area of study. This theory was also

applied to non�elliptic boundary value problems. In the late sixties, Maz'ya and

Paneyah made an important contribution to this �eld. In their papers [34], [35], [36]

they studied a rather general class of pseudodi�erential operators on a smooth man-

ifold � without boundary, with symbol vanishing on a submanifold of codimension

one. Assuming that the principal symbol �0 satis�es the condition

Im �0(x; �) = 0 () x 2 �0 ;

they introduced a classi�cation of the types of degeneration (depending on the sign

of Im �0 near �0) and developed a complete solvability theory for each of them.

Moreover, sharp a priori estimates leading to precise regularity results for weak

solutions were proved. These results have direct applications to the degenerate

oblique derivative problem, which will be discussed now.
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For simplicity we restrict ourselves to the formulation for the Laplace operator;

all results hold of course for general elliptic operators of second order. Let 
 �
R
n; n � 3, be a bounded domain with smooth boundary �, and denote the exterior

unit normal to � by �. The oblique derivative or Poincaré problem consists in

determining a function u satisfying

�u = 0 in 
 ; @u=@` = f on � ; (3)

where ` denotes a �eld of unit vectors on �. The problem (3) can be converted into

a pseudodi�erential equation of �rst order on � with the principal symbol

�0(x; �) = � cos(�; `)j�j+ i cos(�; `)j�j ; x 2 � ; � 2 Tx� ;

where Tx stands for the tangent space at the point x. Observe that this equation is

elliptic if and only if the vector �eld ` is nowhere tangent to �.

In the elliptic case, the Fredholm property and regularity of problem (3) follow from

standard elliptic theory of pseudodi�erential operators, while its unique solvability

is a consequence of Giraud's theorem on the sign of the oblique derivative at the

extremum point.

Until the mid-sixties almost nothing was known about the degenerate problem (3).

For transversal degeneration where the �eld ` is tangent to � on some (n � 2)�
dimensional submanifold �0, but is not tangential to �0, this situation changed

when the �rst results on non�elliptic pseudodi�erential operators became available.

As a by�product of his subelliptic estimates for pseudodi�erential equations, Hör-

mander [18] proved that the dimension of the kernel of this problem may be in�nite

or the regularity of solutions may fail. Correct formulations leading to Fredholm

operators were �rst studied by Malyutov [26] and by Egorov, Kontrat'ev [9], using

entirely di�erent methods from the theory of elliptic second order di�erential oper-

ators. In the above mentioned papers, Maz'ya and Paneyah [34] � [36] presented a

uni�ed pseudodi�erential approach to all cases of transversal degeneration, proving

complete unique solvability results and studying regularity properties of solutions.

2 Oblique derivative problem: breakthrough in the

generic case of degeneration

Geometrically, the transversal degeneration leads to the following three types of

components of the set �0 (where the vector �eld ` is tangent to �): those consisting
of the so�called �entrance� points (of ` into 
), �exit� points, and �status quo� points
where ` remains on the same side of �; see Figs. 1 � 3. In 1969, after the Malyutov,

Egorov & Kondrat'ev and Maz'ya & Paneyah studies, the following properties of

transversal degeneration became clear. The status quo components do not a�ect

the unique solvability of the problem; they only generate some loss of regularity of

solutions. In order to preserve unique solvability, one should allow discontinuities of
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solutions on the entrance components and prescribe additional boundary conditions

on the exit components.

0

Fig. 1 Entrance points � under-
determined problem

0

Fig. 2 Exit points � over-
determined problem

0

Fig. 3 Status quo �
well-posed problem

1

0

Fig. 4 Generic case of
degeneration

Around 1970 V. Arnold [1] stressed the importance of the so�called generic case of

degeneration, where the vector �eld ` is no longer transversal to �0; see also his well�

known book [2], p. 203. More precisely, one assumes that there are smooth manifolds

(without boundary) �0 � �1 : : : � �s of dimensions n� 2; n� 3; : : : ; n� 2� s such

that ` is tangent to �j exactly at the points of �j+1, whereas ` is nowhere tangent
to �s; see Fig. 4. A local model of this situation is given by the following:


 = fx 2 Rn : x1 > 0g ; � = fx1 = 0g ;
` = x2@1 + x3@2 + : : :+ xk@k�1 + @k ; k � n ;

�j = fx1 = x2 = : : : = x2+j = 0g ; j = 0; : : : ; k � 2 :

The generic case is much more di�cult from the analytical point of view than the

transversal one, because entrance and exit points are permitted to belong to one

and the same component of �0 and the usual localization technique does not apply.

In 1972 V. Maz'ya [27] published a deep result related to the generic degeneration,

the only known one for the time being. He found function spaces of right�hand sides

4



and solutions for the unique solvability of the problem. The success was achieved

by an ingenious choice of weight functions in the derivation of a priori estimates for

the solution. Additionally, Maz'ya proved that the inverse operator of the problem

is always compact on Lp(�); 1 < p � 1. It turned out that the manifolds �j of
codimension greater than one do not in�uence the correct statement of the problem,

contrary to Arnold's expectations; see [2], p. 203. By the way, a description of the

asymptotics of solutions near the points of tangency of the �eld ` to �0 remains a

di�cult long�standing problem.

3 Estimates for di�erential operators in the half�

space

At the beginning of the seventies Gelman and Maz'ya wrote a series of papers

on the topic of this section, and the results were summarized in their monograph

[13] published only in German. The fact that the book could not appear in the

Soviet Union at that time sheds some light upon the antisemitic policy of the Soviet

scienti�c administration. This is the right place to emphasize the role of Maz'ya's

friends Siegfried Prössdorf and Günther Wildenhain. The �rst of them brought the

manuscript illegally to East Germany, and the second became the editor.

The Gelman�Maz'ya book starts with the following epigraph by L. Gårding:

�When a problem about partial di�erential operators has been �tted

into the abstract theory, all that remains is usually to prove a suitable

inequality and much of our knowledge is, in fact, essentially contained

in such inequalities. But the abstract theory is not only a tool, it is also

a guide to general and fruitful problems.�

It contains indeed a great variety of inequalities for di�erential and pseudodi�erential

operators with constant coe�cients. The authors obtain results of �nal character,

without any restrictions on the type of the di�erential operators. They found neces-

sary and su�cient conditions for the validity of the corresponding a priori estimates

and presented easier veri�able either necessary or su�cient conditions.

I will now describe a few typical results from this book. Let Rn

+ = f(x; t) : x 2
R
n�1; t � 0g and consider pseudodi�erential operators R(D); Pj(D); Qs(D) with

symbols R(�; �); Pj(�; �); Qs(�; �); � 2 R
n�1; � 2 R, not depending on x and t,

which are further assumed to be polynomials in � with locally bounded measurable

coe�cients of polynomial growth in �. [13] presents a detailed and complete study

of estimates in the half�space,

jjR(D)ujj2
L2(R

n

+
) � c

8<
:

mX
j=1

jjPj(D)ujj2
L2(R

n

+
) +

rX
s=1

jjQs(D)ujj2
L2(@R

n

+
)

9=
; ; (4)

u 2 C1

0 (Rn

+) ;
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and of trace estimates of the form

jjR(D)ujj2
H�(@Rn

+
) � c

8<
:

mX
j=1

jjPj(D)ujj2
L2(R

n

+
) +

rX
s=1

jjQs(D)ujj2
L2(@R

n

+
)

9=
; ; (5)

u 2 C1

0 (Rn

+) ;

where H� denotes the Sobolev space of order �. Gelman and Maz'ya found neces-

sary and su�cient conditions stated in algebraic terms for these inequalities in full

generality. Well�known results by Aronszajn, Agmon, Douglis and Nirenberg, and

Schechter became part of the general theory developed in [13].

To give an idea of the results, I consider the example

r = 0 ; m = 2 ; P1(�; �) = P (�; �) ; P2(�; �) = 1

and assume that the leading coe�cient of P is equal to one. Now (5) takes the form

jjR(D)ujj2
H�(@Rn

+
) � c

n
jjP (D)ujj2

L2(R
n

+
) + jjujj2L2(Rn+)

o
: (6)

Let H(�; �) be a polynomial in � with roots in the half�plane Im � > 0; � = � + i�,

and such that

jP (�; �)j2 + 1 = jH(�; �)j2:
The authors show that estimate (6) holds if and only if

Z
R

jT1(�; �)j2 + jT2(�; �)j2
jP (�; �)j2 + 1

d� � c(1 + j�j2)�� ;

where T1(�; �); T2(�; �) denote the quotient and the remainder obtained when the

polynomial (in �) R(�; �)H(�; �) is divided by P (�; �); see [13], p. 170.

It is a pity that this Gelman�Maz'ya book did not attract much attention despite the

beauty and the completeness of the obtained results. Apparently they have a great

potential of generalization to partial di�erential and pseudodi�erential equations

with variable coe�cients, both in the half�space and on domains.

4 The characteristic Cauchy problem

If one thinks of well�posed problems for hyperbolic di�erential equations, the �rst

that comes to one's mind is the Cauchy problem with initial data given on a space�

like initial surface. On the other hand, it is known (see the book [8] by Courant and

Hilbert) that the solution of the wave equation is already uniquely determined if its

values are prescribed on the characteristic cone.

This is the simplest example of a characteristic Cauchy problem, which was the

topic of an important paper by Vainberg and Maz'ya [49]. They studied general

hyperbolic operators of arbitrary even order 2m. In contrast to previous work by
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Gårding, Kotake, Leray [12] and Kondrat'ev [22], they were able to avoid any as-

sumption regarding the set where the initial surface S is characteristic. This set,

which will be denoted by V , may even have positive measure. In this case deriva-

tives of order 2m�1 need not be prescribed on V in the formulation of the problem.

The existence and uniqueness theorems and energy estimates obtained in [49] show

that this formulation leads to a well�posed problem in appropriately chosen function

spaces.

To illustrate that, I will present the Vainberg�Maz'ya energy estimate in the special

case of the homogeneous di�erential equation. Let fS�g0���T be a one�parameter

family of surfaces S� = f(t; x) : t = s(�; x); x 2 R
ng, where S0 = S. On some

compact sets V� the surfaces S� have characteristic directions, while at the remaining

points they are space�like. Consider the weight function

�(�; x) = P0(s(�; x); x; 1;�s0x(�; x)); 0 � � � T ;

where P0 is the principal symbol of the hyperbolic di�erential operator P under

consideration. The function � is non�negative and satis�es �(�; x) = 0 if and only if

(t; x) 2 V� . Finally, let E
� denote the �weighted� energy

E�(�; u) = jjp� @2m�1u=@t2m�1jj2
L2(S� )

+
2m�2X
j=0

jj@ju=@tjjj2
H2m�1�j(S� )

;

whereas E(�; u) is de�ned by setting � = 1 in the �rst term. Then, for the charac-

teristic Cauchy problem

P (t; x; @=@t; @=@x)u = 0;

@ju=@tjjS = 'j; 0 � j � 2m� 2; @2m�1u=@t2m�1jSnV = '2m�1 ;

the energy estimate

max
0���T

E�(�; u) +

TZ
0

E(�; u)d� � c

8<
:jjp�'2m�1jj2L2(SnV ) +

2m�2X
j=0

jj'jjj2H2m�1�j(S)

9=
;

holds. Hörmander, who did not know about the paper by Vainberg and Maz'ya,

obtained the same results in [19] for hyperbolic equations of second order. It should

be noted that the proofs for higher order equations are much more complicated.

5 Applications of multiplier theory to integral op-

erators

In 1979�1983, together with his wife Tatyana Shaposhnikova, Maz'ya developed a

new theory of multipliers in spaces of di�erentiable functions, the results of which

were summarized in their book [40]. One should not mix up these multipliers with
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the Fourier multipliers already studied in the thirties. Maz'ya and Shaposhnikova

showed that their multipliers provide a natural language for various questions of

analysis and the theory of di�erential and pseudodi�erential operators.

Before their work, only a few separated facts concerning multipliers in Sobolev

spaces were known. In [40] one can �nd, in particular, a complete description of

the multiplier spaces M(Wm

p
! W l

p
) as well as of the spaces M�(Wm

p
! W l

p
) of

compact multipliers. HereWm

p
stands for the Sobolev�Slobodetski�� space on Rn, and

M(X)Y ) denotes the set of functions for which the corresponding multiplication

operator maps the Banach space X into another Banach space Y . For X = Y , we

simply write M(X).

I dwell upon some of the many results in [40] which are close to the topic of the

present article. As an application of their multiplier results for p = 2, Maz'ya and

Shaposhnikova proved two�sided estimates for the essential norm and necessary and

su�cient conditions for the compactness of convolution operators u! k � u,
acting from the weighted L2 space L2(R

n; (1 + jxj2)m=2) into L2(R
n; (1 + jxj2)l=2).

Note that the Fourier transform is an isomorphic map ofW l

2 onto the latter weighted

L2 space.

The authors also study singular integral operators in Sobolev spaces. It turns out

that the basic properties of these operators are retained under minimal smoothness

assumptions on the symbol concerning the �rst variable. I present a typical result

in this direction.

Consider singular integral operators A;B of the form (1) in Rn, which have the

symbols a(x; �); b(x; �). Let A � B denote the singular integral operator with the

product symbol ab. It was proved in [40], Chap. 4.5, that if a and b satisfy the

smoothness conditions

a 2 C1(M(W l+1
p

); Sn�1); rxb 2 C1(M(W l

p
); Sn�1)

then the operator C := AB � A � B is a continuous map of W l

p
into W l+1

p
. If, in

addition, there exists b1 2 C1(Sn�1) such that

b� b1 2 C1(M�(W l

p
); Sn�1) ;

then C is compact on W l

p
.

In conclusion I mention that the book [40] contains very interesting applications

of multipliers to the theory of elliptic boundary value problems on domains with

non�smooth boundaries.

6 Integral equations of harmonic potential theory

on general non�regular surfaces

In the sixties Maz'ya and his colleagues made a major breakthrough in the theory

of boundary integral equations on very general surfaces, generalizing the classical
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Radon theory to higher dimensions. In order to explain this, I need some notation.

Let 
 � R
n (n � 2) be a domain with boundary �. The harmonic double layer

potential is given by

Wu(x) =
Z
�

u(�)
@

@��
G(x; �)d��; x 2 Rnn� ;

where G denotes the fundamental solution of the Laplacian. Let T = 2W0, with

W0 being the direct value of W on �. The interior and exterior Dirichlet problem

for the Laplacian in 
 can be reduced to the classical second kind integral equation

with the boundary integral operators I + T and I � T , respectively, whereas the

corresponding Neumann problems lead to the adjoint operators I � T �. Here I

denotes the identity operator.

To formulate Radon's classical results on these integral equations, I need some fur-

ther notation. Let A be a bounded linear operator acting on a Banach space X. The

Fredholm radius R(A) of A, introduced by Radon [44], is the radius of the largest

disk centered at the origin of the complex ��plane such that the operators I � �A

are Fredholm for all � in its interior. The quantity jAj = inf jjA�KjjX , where the
in�mum is taken over all compact operators K on X, is referred to as the essential

norm of A and also appeared �rst in [44].

Let � be a planar curve of bounded rotation, i.e., � is recti�able and the angle #(s)
between the positively oriented tangent and the abscissa is of bounded variation

on, say, 0 � s � l. In 1919 Radon [45] proved that, for the harmonic double layer

potential operator T acting on the space C(�) of continuous functions, the equality

R(T ) = jT j�1 = �=�

is satis�ed with � = supfj#(s+ 0)� @(s� 0)j : 0 � s � lg.
As a corollary of this result, one obtains that if � has no cusps then R(T ) > 1,
so that in this case the Fredholm theory applies to the operators I � T in C(�).
Moreover, Radon then obtained the basic solvability results for these operators as

well, e.g., the invertibility of I + T .

In their famous course of functional analysis [47] F. Riesz and B. Sz.�Nagy noted

that �in the case of the spatial problem an analogue of curves with bounded rotation

has not yet been found.� This inspired the work by Burago, Maz'ya, Sapozhnikova

[4], [5] and Burago, Maz'ya [3], who not only extended Radon's theory to higher

dimensions but also improved Radon's result for contours in the plane.

The basic solvability results (e.g., invertibility of I + T in C(�) and of I + T � in

C(��)) were obtained for domains subject to the following two conditions:

(A) supfvar !(�;�n�) : � 2 �g <1,

(B) lim
r�!0

supfvar !(�;� \Br(�)) : � 2 �g < �n=2.

9



Here !(�; B) denotes the solid angle at which the set B is seen from the point �,

or rather its generalization to a certain set function. Furthermore, var denotes the

variation of the charge, Br(�) is the ball with center � and radius r, and �n is the

area of the unit sphere Sn�1.

Condition (A) is necessary to apply the potential method in the spaces under con-

sideration, whereas (B) is solely needed to prove the Fredholm alternative. In fact,

independently of each other, Král [22] and Burago and Maz'ya [3] proved that (B) is

equivalent to the inequality jT j < 1. Condition (A) is of course valid for any curve

of bounded rotation, while (B) is satis�ed if it has no cusps. However, there exist

plane curves satisfying (A) and (B) which are not of bounded rotation. Before the

works of Král and Burago, Maz'ya and Sapozhnikova it was a common belief that

Radon generalized the theory of potentials in spaces of continuous functions to its

natural limit; see [47], Sect. 91.

We now discuss some deep results by Kresin and Maz'ya [23], [24] on the essential

norm of the general vector�valued double layer potentials

Tu(x) = 2
Z
�

k(exy)u(y)!(x; dy) :

Here k is a continuous even (m � m)�matrix�valued function on the unit sphere,

which is homogeneous of degree 0 and normalized by the condition
R
Sn�1

k = I, and

exy denotes (y � x)=jy � xj. The authors succeeded in proving general formulas for

the norm and the essential norm in the space C(�)m of continuous vector�valued

functions on � with m components, provided the surface � satis�es condition (A).

The case where k(e) is the unit matrix with elements

��1
n
f(1� �)�ij + n�(e; ei)g ; i; j = 1; : : : ; n ; 0 � � � 1 ;

ej being the unit vector directed along the jth coordinate axis, is of particular

interest. Note that � = 0 yields a diagonal matrix of harmonic potentials, and

putting � = 1 and � = (� + �)(� + 3�)�1 with the Lamé constants �; �, we obtain

the hydrodynamic and elastic potentials, respectively.

For n = 2 and � a polygon with interior angles �1; : : : ; �N , Kresin and Maz'ya

deduced the following beautiful formula:

jT j = 2

�
(1 + �)E

 
� � �min

2
;
2
p
�

1 + �

!
; �min = minf�i : i = 1; : : : ; Ng;

where E denotes the elliptic integral of the second kind. For the hydrodynamic

potential, i.e. for � = 1, this gives jT j = 4��1 cos(�min=2). On the other hand,

Shelepov [48] found the Fredholm radius,

R(T ) = �fj� � �minj+ � sin j� � �minjg�1 :

These two formulae imply the unexpected inequality R(T ) > jT j�1 whenever � > 0.
Explicit formulae for jT j were also given in [24] in the three�dimensional case where

� has an edge or a conical point.
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7 Boundary integral equations on piecewise smooth

surfaces

Despite the great generality of surfaces which Burago, Maz'ya and Král dealt with

in the sixties, their theory did not apply to quite natural geometries because of

the rather restrictive condition (B) on the local variation of the solid angle, and

of course they only studied the Dirichlet and Neumann problem for harmonic po-

tentials. Neither speci�c problems of mathematical elasticity and hydrodynamics

nor general elliptic boundary value problems were touched. The main obstacle was

that the theories of Fredholm and singular integral equations were not su�ciently

developed to deal with irregular boundaries.

Around 1980 Maz'ya arrived at a simple but bold idea which brought a new light

to the whole domain of boundary integral equations. He understood that such

equations could be exhaustively studied without using general theories of integral

equations. His talk [28] presented at the Petrovski�� Conference in 1981 became a

breakthrough in the solvability theory of boundary integral equations on piecewise

smooth surfaces.

Maz'ya's approach is based on the fact that solutions of boundary integral equations

can be expressed in terms of solutions to certain auxiliary interior and exterior

boundary value problems. Then the full force of the newly developed theory of

boundary problems in non-smooth domains, with its theorems on solvability and

Fredholm property in various function spaces as well as the results on asymptotics

of solutions near boundary singularities, becomes available. In this theory Maz'ya

also did major and pioneering work; see J. Rossmann's survey in the present Volume.

The new approach was �rst exempli�ed in [28] by the classical boundary value

problems of potential theory, although it was clear from the very beginning that

it has universal character. In [29] and [30] it was applied to the two fundamental

boundary value problems of elasticity. As a result of �fteen years' work, Maz'ya

and his collaborators developed an extensive solvability theory of boundary integral

equations on surfaces with conical points, edges, vertices, and also cusps. A detailed

account of the results obtained before 1990 can be found in Maz'ya's survey article

[32], which has become a standard reference in the �eld.

Another important development during the last two decades was the theory of

boundary equations in Lipschitz domains and with data from Lp, originating from

the result of Calderón and Coifman, McIntosh, Meyer on the boundedness of the

Cauchy singular integral operator over Lipschitz curves. Based on these results and

on the Rellich-Ne£as identities, Verchota [50], Kenig [20], Fabes [11], and others

proved the solvability in Lp of various boundary integral equations on a Lipschitz

surface. However, it is worth mentioning that there are simple polyhedra that are

not Lipschitz (in the sense that they can in local Cartesian coordinates be described

by Lipschitz functions).

To give an impression of how Maz'ya's method works, I will consider the special
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case of the second kind boundary integral equation

(I + T )u = f ; T = 2W0 (7)

for the Laplacian, which has already been discussed in the previous section. Let

D : f ! v be the inverse operator of the interior Dirichlet problem

�v = 0 in 
 ; T0v := vj� = f ;

and let N be the inverse of the corresponding exterior Neumann problem. Then the

inverse of I + T can be represented as

(I + T )�1 =
1

2
(I � T0NT 1D) ; (8)

where T1 stands for the trace operator T1v := (@=@�)vj�. This also applies to

the systems of integral equations of elasticity and hydrodynamics if the role of

T1 is played by the stress operator. In [30] Maz'ya studied the solvability of these

equations in weighted Hölder spaces in the case of a surface with conical points, edges

and polyhedral angles, using the representation (8) and his results with Plamenevski��

on boundary value problems. Corresponding results for the mixed problem of 3D

elasticity in domains with edges were obtained in his paper [31]. Moreover, Maz'ya's

approach turned out to be useful to calculate the Fredholm radius of boundary

integral operators. In the paper [15] with his student Grachev, an explicit formula for

the harmonic double layer potential operator in weighted Hölder spaces on surfaces

with edges was proved.

If one wants to obtain solvability in the space C or in weighted Lp and Sobolev

spaces, then the representation (8) is not directly applicable (as long as there are

no solvability results in Hardy spaces for the auxiliary boundary value problems).

In 1989 Grachev and Maz'ya developed an approach which also works in this case.

They established sharp estimates for the kernel of the inverse operator (I + T )�1,
implying, in particular, the solvability of the integral equation (7) in C without any

assumption on the essential norm of T . For a smooth cone � of vertex 0 in Rn, it

was shown in their paper [16] that (I + T )�1 decomposes into a sum I +M1 +M2

with certain integral operators M1 and M2 on � whose kernels admit the estimates

jM1(x; y)jj � c(1 + jyj��1);

jM2(x; y)jj �

8>>>>><
>>>>>:

cjyj1�n(jxj=jyj)� for jxj < jyj=2 ;
cjyj�1jx� yj2�n for jyj=2 < jxj < 2jyj ;
cjyj�1jxj2�n(jyj=jxj)� for jxj > 2jyj ;

where the number �; 0 < � � 1, depends on the shape of the cone.

As a consequence of these estimates, general solvability results for equation (7) in

C and weighted Lp spaces on a boundary with a �nite number of conical points
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were obtained. Applying the same method, Maz'ya and Grachev [17] settled the

long�standing classical question on solvability of (7) in the space C for an arbitrary

polyhedron; see also [14]. At the same time, this problem was solved by Rathsfeld

[46] using Mellin transformation and Banach algebra techniques. In addition [46]

establishes the inequality R(T ) > 1 for the Fredholm radius in C, which also holds

for L2 and certain weighted Sobolev spaces (see [10]).

As another application of Maz'ya's method, the asymptotics of solutions to boundary

integral equations near singular points of the boundary can be derived, including the

computation of the coe�cients appearing in the asymptotic formulas. These results

were set up by Zargaryan and Maz'ya [51], [52] for the integral equations of harmonic

potential theory on a polygonal boundary. A di�erent approach to solvability and

asymptotics of solutions of integral equations over curves with corners was worked

out by Costabel and Stephan [6], [7], who used the Mellin transform to solve the

model equation on the legs of an in�nite angle. The �rst result on the asymptotics

of solutions to boundary integral equations over three�dimensional regions is due to

Maz'ya and Levin [25] and refers to the case of conical points on the boundary.

During the last decade, Maz'ya and Solov'ev developed a theory of boundary inte-

gral equations on plane contours with cusps, including the Dirichlet and Neumann

problem for the Laplace and the Lamé operator. Their extensive research on this

topic started in 1988 with [41] and is presently still going on; see e.g. the recent

papers [42], [43]. They proved theorems on the unique solvability in appropriate

weighted Lp, Sobolev and Hölder spaces and on asymptotic representations for so-

lutions near peaks, which are the only known results in the domain. I refer the

interested reader to Maz'ya's survey [33] for further information. It is a tempting

perspective to generalize the Maz'ya�Solov'ev results to multidimensional domains

with cusps as well as to other boundary value problems.

I hope what I have said in this section shows convincingly that Maz'ya's approach

opened new horizons in the theory of boundary integral equations on non�regular

surfaces, and it will de�nitely inspire fruitful research in this �eld in the future.
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