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1. Introduction

1.1 General introduction

This paper is devoted to developing a systematic approach to the analysis of the long

time behaviour of the dynamics of certain mean �eld spin systems, where by dynamics we

understand of course a stochastic dynamics of Glauber type. For the purposes of this paper,

we will always choose this as reversible with respect to the Gibbs measure of the model. By

long time behaviour we mean that we are interested in time scales on which the phenomena

of \meta-stability" occur, i.e. time scales that increase with the volume of the system ex-

ponentially fast. Our primary motivation comes from the study of disordered spin systems,

and most particularly the so called Hop�eld model [Ho,BG1], although in the present paper

we only illustrate our results in a much simpler setting, that of the random �eld Curie-Weiss

(RFCWM) model (see e.g. [K1]). Our chief objective is to be able to control in a precise

manner the e�ect of the randomness on the metastable phenomena.

On a heuristic level, metastable phenomena in mean �eld models are well understood.

The main idea is to consider the dynamics induced on the order parameters by the Glauber

dynamics on the spin space, i.e. the macroscopic variables that characterize the model. A �rst

issue that arises here, and that we will discuss at length below, is that this induced dynamics

is in general not Markovian. However, one may always de�ne a new Markovian dynamics that

\mimics" the old one and that is reversible with respect to the measures induced on order

parameters by the Gibbs measures. This dynamics on the order parameters is essentially a

random walk in a landscape given by the \rate function" associated to the distribution of the

order parameters. The accepted picture of the resulting motion is that this walk will spend

most of its time in the \most profound valleys" of the rate function and stay in a given valley

for an exponentially long time of order exp(N�F ) where �F is the di�erence between the

minimal value of the rate function in the valley and its value at the lowest \saddle point"

over which the process may exit the valley. An excellent survey on this type of processes

is given in van Kampen's textbook [vK], although most of the results presented there, and

in particular all those related to the long time behaviour, concern the one-dimensional case.

Rather surprisingly, one �nds very few papers in the literature that really treat this problem

with any degree of mathematical rigour. One exception is the classical paper by Cassandro,

Galves, Olivieri, and Vares [CGOV] (see also [Va] for a broader review on metastability) who

consider (amongst others) the case of the Curie-Weiss model in which there is only a single

order parameter and thus the resulting dynamics is that of a one-dimensional random walk.

More recently, a particular version of the RFCWM that leads to a two-dimensional problem

was treated by Mathieu and Picco [MP]. However, there is an abundant literature on two

types of related problems. One of these concerns Markov chains with �nite state space and

exponentially small transition probabilities. They are treated in the work of Freidlin and

Wentzell (but see below for a discussion) and have since then been investigated intensely

(for a small selection of recent references see [OS1,OS2,CC,GT]. In the context of stochastic

dynamics of spin systems, they occur if �nite systems are considered in the limit of zero

temperature.5 A second class of problems, that is in a sense closer to our situation, and that

5Let us mention, however, that there has been condiderable work done on the dynamics of spin systems

on in�nite lattices; see inparticular the recent paper by Schonmann and Shlosman [SS] on the metastable

behaviour in the two-dimensional Ising model in in�nite volume, and references therein.
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can be obtained from it formally by passing to the limit of continuous space and time, is that

of \small random perturbations of dynamical systems" i.e. a stochastic di�erential equation

of the form

dx�(t) = b(x�(t))dt+
p
�a(x�(t))dW (t) (1:1)

where x�(t) 2 Rd , andW (t) is a d-dimensional Wiener process, and in the case of a reversible

dynamics the drift term b(x�(t); �) is given by b(x; �) = rF�(x), Fe(x) being the rate function.

The basic reference on the problem (1.1) is the seminal book by Wentzell and Freidlin

[FW] which discusses this problem (as well as a number of related ones) in great detail.

Many further references can be found in the forthcoming second edition of this book. One of

the important aspects of this work is that is devises a scheme that allows to control the long-

time dynamics of the problem through an associated Markov chain with �nite state space

and exponentially small transition probabilities. The basic input here are large deviation

estimates on the short time behaviour of the associated processes. This treatment has inspired

a lot of consecutive works which it is impossible to summarize to any degree of completeness.

For our purposes, an important development is a re�nement of the estimates which in [FW]

are given only to the leading exponential order in � to a full asymptotic expansion. Relevant

references are [Ki1-4,Az,FJ]. The work of [FJ] in particular is very interesting in that it

develops full asymptotic expansions to all orders for certain exit probabilities using purely

analytic techniques based on WKB methods. Very similar results are obtained in [Az] using

re�ned large deviation techniques. To our knowledge all the re�ned treatments that have

appeared in the literature treat only speci�c \local" questions, and there seems to be no

coherent treatment of the global problem in a complicated (multi-valley) situation that takes

into account sub-leading terms.

The problems we will study require essentially to redo the work of Freidlin and Wentzell

in the setting of our Markov chains. Moreover, for the problems we are interested in, it will

be important to have a more precise control, beyond the leading exponential asymptotics,

for the global problem, if we want to be able to exhibit the in
uence of the residual random-

ness. The point is that in many disordered mean �eld models very precise estimates of the

large deviation properties of the Gibbs measures are available. Typically, the rate function

is deterministic to leading order (although not equal to the rate function of the averaged

system6!) while the next order corrections (typically, but not always, of order N�1=2) are

random. To capture this e�ect, some degree of precision in the estimates is thus needed. On

the other hand, we will not really need a full asymptotic expansion7 of our quantities, and

we will put more e�ort on the control of the \global" behaviour than on the overly precise

treatment of \local" problems. A main di�erence is of course that we do not have a stochastic

di�erential equation but a Markov chain on a discrete state space8. Therefore one may draw

intuition from the proofs given in the continuous case without being able to use any result

proved in that context directly. Finally, our goal is to give a treatment that is as simple and

6It is important to keep in mind that the main e�ect of the disorder manifests itself in a deterministic

modi�cation of the rate function. This e�ect is somewhat reminiscent to the phenomenon of homogenization.
7We believe that it is possible to obtain such an expansion for the global problem. However, this will

require a much more elaborate analysis which we postpone to future publications.
8The state space is even �nite for any N , but its size increases with N , which renders this fact rather

useless.
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transparent as possible. This is the main reason to concentrate on the reversible case, and

one of our strategies is to use reversibility to as large an extent as possible. This allows to

replace re�ned large deviation estimates by simple reversibility arguments. Large deviation

estimates are then only used in a less delicate situations. In the same spirit, we will take

advantage of the discrete nature of the problem whenever this is possible (just to compensate

for all the disadvantages we encounter elsewhere). This will surprise the reader familiar with

the continuous case, but we hope she will be convinced at the end that this was a pleasant

surprise.

Let us say a �nal word concerning our preoccupations with the dependence on dimension-

ality. One of our ultimate goals is to be able to treat, e.g., the Hop�eld model in the case

where the number of order parameters grows with the volume of the system. On the level of

the mean �eld dynamics, this requires us to be able to treat a system where the dimension

of the space grows with the large parameter. Although we will not consider this situation in

this �rst paper, we will achieve a precise control of the dimension dependence of sub-leading

corrections.

1.2. The general set-up.

We will now describe the general class of Markov chains we will consider. Their relation to

disordered spin systems will be explained in Section 7 and a speci�c example will be discussed

in Section 8. Section 7 can be read now, if desired; on the other hand, the bulk of the paper

can also be read without reference to this motivation.

We consider canonical Markov chains on a state space �N where �N is the intersection

of some lattice9 (of spacing O(1=N)) in Rd with some connected � � Rd which is either

open or the closure of an open set. To avoid some irrelevant issues, we will assume that �

is either Rd or a bounded and convex subset of Rd . �N is assumed to have spacing of order

1=N , i.e. the cardinality of the state space is of order Nd. Moreover, we identify �N with a

graph with �nite (d-dependent) coordination number respecting the Euclidean structure in

the sense that a vertex x 2 �N is connected only to vertices at Euclidean distances less than

c=N from x. The main example the reader should have in mind is �N = Zd=N \ �, with

edges only between nearest neighbors. We denote the set of edges of �N by E(�N ).

Let QN be a probability measure on (�N ;B(�N )). We will set, for x 2 �N ,

FN (x) � �
1

N
lnQN (x) (1:2)

We will assume the following properties of FN (x).

Assumptions:

R1 F � limN"1 FN exists and is a smooth function � ! R; the convergence is uniform in

compact subsets of Rd .

R2 FN can be represented as FN = FN;0+
1
N
FN;1 where FN;0 is twice Lipshitz, i.e. jFN;0(x)�

FN;0(y)j � Ckx� yk and for any generator of the lattice, k, N jFN;0(x)�FN;0(x+ k=N)�

9The requirement that �N is a lattice is made for convenience and can be weakened considerably, if desired.

What is needed are some homogeneity and rather minimal isotropy assumptions.
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(FN;0(y)�FN;0(y+k=N)j � Ckx� yk, with C uniform on compact subsets of the interior

of �. FN;1 is only required to be Lipshitz, i.e. jFN;1(x)� FN;1(y)j � Ckx� yk.

For the purposes of the present paper we will make a number of assumptions concerning

the functions FN which we will consider as \generic". An important assumption concerns the

structure of the set of minima of the functions FN . We will assume that the set MN � �N ,

of local minima of FN is �nite and of constant cardinality for all N large enough, and that

the sets MN converge, as N tends to in�nity, to the set M of local minima of the function

F 10.

Another set of points that will be important is the set, EN , of \essential" saddle points

(i.e. the lowest saddle points one has to cross to go from one minimum to another) of FN .

A precise de�nition of essential saddle points will be given in Section 4. By the assumptions

on MN this set is also �nite.

G1 We will assume that there exists � > 0 such that minx6=y2MN[EN
jFN (x) � FN (y)j =

KN � N��1.

G2 We assume that at each minimum the eigenvalues of the Hessian of F are strictly positive

and at each essential saddle there is one strictly negative eigenvalue while all others are

strictly positive.

G3 All minima and saddles are well in the interior of �, i.e. there exists a � > 0 such that for

any x 2MN [ EN , dist(x;�c) > �.

Remark: We make the rather strong assumptions above in order to be able to formulate

very general theorems that do not depend on speci�c properties of the model. They can

certainly be relaxed. The regularity conditions R2 are necessary only for the application of

certain large deviation results in Section 4 and are otherwise not needed.

We recall that in our main applications, QN will be random measures, but we will forget

this fact for the time being and think of QN as some particular realization.

We can now construct a Markov chain XN (t) with state space given by the set of vertices

of �N and time parameter set either N or R+ . For this we �rst de�ne for any x; y such that

(x; y) 2 E(�N ) transition rates

pN(x; y) �

s
QN (y)

QN (x)
fN(x; y) (1:3)

for some non-negative, symmetric function fN . We will assume that fN does not introduce

too much anisotropy. This can be expressed by demanding that

R3 There exists c > 0 such that if (x; y) 2 E(�N ), and dist(x;�c) > �=2, (where � is the same

as in assumption G3) pN(x; y) � c.

10This assumption can easily be relaxed somewhat. For example, it would be no problem if the function

FN is degenerate on a small set of points in the very close (order N�1=2) neighborhood of a minimum. One

then would just choose one of them to represent this cluster. Other situations, e.g. when the function F has

local minima on large sets and would lead to new e�ects would require special treatments.
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Moreover, for applications of large deviation results we need stronger regularity properties

analogous to R2.

R4 ln fN(x; y) as a function of any of its arguments is uniformly Lipshitz on compact

subsets of the interior of �.

For the case of discrete time, i.e. t 2 N, we then de�ne the transition matrix

PN (x; y) �

8><>:
pN (x; y); if (x; y) 2 E(�N )

1�
P

z2�N :(x;z)2E(�N ) pN (x; z); if x = y

0; else

(1:4)

choosing f such that sup
x2�N

P
z2�N :(x;z)2E(�N ) pN(x; y) � 1.

Similarly, in the continuous time case, we can use the rates to de�ne the generator

AN (x; y) �

8><>:
pN (x; y); if (x; y) 2 E(�N )

�
P

z2�N :(x;z)2E(�N ) pN(x; y); if x = y

0; else

(1:5)

Our basic approach to the analysis of these Markov chains is to observe the process when

it is visiting the positions of the minima of the function FN , i.e. the points of the set MN ,

and to record the elapsed time. The ideology behind this is that we suspect the process

to show the following typical behaviour: starting at any given point, it will rather quickly

(i.e. in some time of order Nk) visit a nearby minimum, and then visit this same minimum

at similar time interval an exponentially large number of times without visiting any other

minimum between successive returns. Then, at some random moment it will go, quickly

again, to some other minimum which will then be visited regularly a large number of times,

and so on. Moreover, between successive visits of a minimum the process will typically not

only avoid visits at other minima, but will actually stay very close to the given minimum.

Thus, recording the visits at the minima will be su�cient information on the behaviour

of the process. These expectations will be shown to be justi�ed (see in particular Section

7). Incidentally, we mention that the \quick" processes of transitions can be analysed in

detail using large deviation methods [WF1-4]. In [BG2] a large deviation principle is proven

for a class of Markov chains including those considered here that shows that the \paths"

of such quick processes concentrate asymptotically near the classical trajectories of some

(relativistic) Hamiltonian system. More precisely, the transitions between minima can be

identi�ed as instanton solutions of the corresponding Hamiltonian system.

Let us mention that the strategy to record visits at single points is speci�c to the discrete

state space. In the di�usion setting, visits at single points do not happen with su�cient

probability to contain pertinent information on the process. Indeed, the crucial fact we use

is that in the discrete case it is excessively di�cult for the process to stay for a time of order

Nk (we will discuss the values of k later) in the vicinity of a minimum without visiting it11

11The reader may wonder at this point why the minima are so special compared e.g. with their neighboring

points. In fact they are not, and nothing would change if we chose some other point close to the minimum

rather than the exact minimum. But of course the minima themselves are the optimal choice, and also the

most natural ones.
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which in the continuum is not the case. For this reason Freidlin and Wentzell record visits

not at single points but at certain neighborhoods of minima and critical points which has

the disadvantage that such visits do not exactly allow a splitting of the process and this

introduces some error terms in estimates which in our setting can easily be avoided. This is

the main advantage we draw from working in a discrete space.

The informal discussion above will be made precise in the sequel. We place ourselves

in the discrete time setting throughout this paper, but everything can be transferred to

the continuous time setup with mild modi�cations, if desired. Let us �rst introduce some

notation. We will use the symbol P for the law of our Markov chain, omitting the explicit

mention of the index N , and denote by Xt the coordinate variables. We will write �y
x
for the

�rst time the process conditioned to starting at y hits the point x, i.e. we write

P [�y
x
= t] � P [Xt = x;80<s<tXs 6= xjX0 = y] (1:6)

for t > 0. In the case x = y, we will insist that �y
y
is the time of the �rst visit to y after

t = 0, i.e. P[�y
y
= 0] = 0. This notation may look unusual at �rst sight, but we are convinced

that the reader will come to appreciate its convenience.

One of the most useful basic identities which follows directly from the strong Markov

property and the fact that �y
x
is a stopping time is the following:

Lemma 1.1: Let x; y; z be arbitrary points in �N . Then

P [�y
x
= t] = P [�y

x
= t; �y

x
< �y

z
]

+
X

0<s<t

P [�y
z
= s; �y

z
< �y

x
]P [�z

x
= t� s] (1:7)

Proof: Just note that the process either arrives at x before visiting z, or it visits z a �rst

time before x. }

A simple consequence is the following basic renewal equation.

Lemma 1.2: Let x; y 2 �N . Then

P [�y
x
= t] =

1X
n=0

X
t1;:::tn+1P

i
ti=t

nY
i=1

P
�
�y
y
= ti; �

y

y
< �y

x

�
P
�
�y
x
= tn+1; �

y

x
< �y

y

�
(1:8)

The fundamental importance in the decomposition of Lemma 1.2 lies in the fact that

objects like the last factor in (1.8) are \reversible", i.e. they can be compared to their time-

reversed counterpart. To formulate a general principle, let us de�ne the time-reversed chain

corresponding to a transition from y to x via Xr

t
� X�

y
x�t

. For an event A that is measurable

with respect to the sigma algebra F (Xs; 0 � s � �y
x
) we then de�ne the time reversed event

Ar as the event that takes place for the chain Xt if and only if the event A takes place for

the chain Xr

t
. This allows us to formulate the next lemma:
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Lemma 1.3: Let x; y 2 �N , and let A be any event measurable with respect to the sigma

algebra F (Xs; 0 � s � �y
x
). Let Ar denote the time reversion of the event A. Then

QN (y)P
�
A; �y

x
< �y

y

�
= QN (x)P

�
Ar; �x

y
< �x

x

�
(1:9)

For example, we have

QN (y)P
�
�y
x
= t; �y

x
< �y

y

�
= QN (x)P

�
�x
y
= t; �x

y
< �x

x

�
(1:10)

Of course the power of Lemma 1.3 comes to bear when x and y are such that the ratio

between QN (x) and QN (y) is very large or very small.

Formulas like (1.8) invite the use of Laplace transforms. Let us �rst generalize the notion

of stopping times to arrival times in sets. I.e. for any set I � �N we will set �x
I
to be the

time of the �rst visit of the process, starting at x, to the set I. With this notion we de�ne

the corresponding Laplace transforms

G
y

x;I
(u) �

X
t�0

eutP [�y
x
= t; �y

x
� �

y

I
] � E

h
eu�

y
x 1I�yx��

y
I

i
(1:11)

(We want to include the possibility that I contains x and/or y for later convenience). Note

that in particular

G
y

x;I
(0) = P [�y

x
� �

y

I
] (1:12)

and
d

du
G
y

x;I
(u = 0) � _G

y

x;I
(0) = E

h
�y
x
1I�yx��

y
I

i
(1:13)

The expected time of reaching x from y conditioned on the event not to visit I in the meantime

is expressed in terms of these functions as

_G
y

x;I
(0)

G
y

x;I
(0)

= E [�y
x
j�y
x
� �

y

I
] (1:14)

It is important to keep in mind that the Laplace transforms de�ned in (1.11) are Laplace

transforms of the distributions of positive random variables. Thus, all these functions exist

and are analytic at least for all u 2 C with Re(u) � 0. Moreover, if G
y

x;I
(u0) is �nite for

some u0 2 R+ , then it is analytic in the half-space Re(u) � u0. As we will see later, all the

functions introduced in (1.11) will exist for some u0 > 0.

An important consequence of Lemma 1.3 is

Lemma 1.4: Assume that I is any subset of �N containing x and y. Then

QN (y)G
y

x;I
(u) = QN (x)Gx

y;I
(u) (1:15)
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Proof: Immediate from Lemma 1.3. }

Lemma 1.4 implies in particular that the Laplace transforms of the conditional times are

invariant under reversal, i.e.
G
y

x;I
(u)

G
y

x;I
(0)

=
Gx

y;I
(u)

Gx

y;I
(0)

(1:16)

and in particular

E [�y
x
j�y
x
� �

y

I
] = E

�
�x
y
j�x
y
� �x

I

�
(1:17)

(1.16) expresses the well-known but remarkable fact that in a reversible process the con-

ditional times to reach a point x from y without return to y are equal to those to reach y

from x without return to x.

A special rôle will be played by the Laplace transforms for which the exclusion set are all

the minima. We will denote these by gy
x
(u) � G

y

x;MN
(u). Indeed, we think of the events

f�y
x
� �

y

MN
g, for x; y 2 MN , as elementary transitions and decompose any process going

from one minimum to another into such elementary transitions. This gives:

Lemma 1.5: Let x; y 2 MN . denote by ! an arbitrary sequence

! = !0; !1; !2; !3; : : : ; !j!j of elements !i 2MN . Then we have

Gy

x
(u) =

X
!:x!y

p(!)

j!jY
i=1

g
!i�1
!i (u)

g
!i�1
!i (0)

(1:18)

where

p(!) �
j!jY
i=1

P
�
�!i�1
!i

� �
!i�1

MN

�
(1:19)

and ! : y ! x indicates that the sum is over such walks for which !0 = y and !j!j = x, and

!i 6= x for all 0 < i < j!j.

Lemma 1.5 can be thought of as a random walk representation of our process as observed

on the minima only. As we will show soon, the quantities
g
!i�1
!i

(u)

g
!i�1
!i

(0)
are rather harmless, i.e.

they do not explode in a small neighborhood of zero, and e.g. their derivative at zero is

at most polynomially large in N . On the other hand, we will also see that the \transition

probabilities" P
�
�
!i�1
!i < �

!i�1

MN

�
are all exponentially small provided that !i�1 6= !i. This

means that a typical walk will contain enormously long \boring" chains of repeated returns to

the same point. It is instructive to observe that these repeated returns to a given minimum

can be re-summed, to obtain a representation in terms of walks that do not contain zero

steps:

Lemma 1.6: Let x; y 2 MN . denote by ~! a sequence ~! = !0; !1; !2; !3; : : : ; !j!j of

elements !i 2MN such that for all i, !i 6= !i+1. Then we have

Gy

x
(u) =

X
~!:x!y

~p(~!)

j!jY
i=1

1� g
!i�1
!i�1 (0)

1� g
!i�1
!i�1 (u)

g
!i�1
!i (u)

g
!i�1
!i (0)

(1:20)
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where

~p(~!) �
j!jY
i=1

P
�
�
!i�1
!i � �

!i�1

MN

�
P

h
�
!i�1

MNn!i�1
< �

!i�1
!i�1

i (1:21)

The reason for writing Lemma 1.6 in the above form is that it entails as a corollary the

following expression for the expected transition time:

E�y
x
=
X

~!:x!y

~p(~!)

j!jX
i=1

�
_g
!i�1
!i�1 (0)

1� g
!i�1
!i�1 (0)

+
_g
!i�1
!i (0)

g
!i�1
!i (0)

�
(1:22)

Note that ~p(~!) has indeed a natural interpretation as the probability of the sequence of steps

~!, while each term in the sum is the expected time such a step takes. Moreover, this time

consists of two pieces: the �rst is a waiting time which in fact arises from the re-summation

of the many returns before a transition takes place while the second is the time of the actual

transition, once it really happens. Note that the �rst term is enormous since the denominator,

1� g
!i�1
!i�1 (0) = P

h
�
!i�1

MNn!i�1
< �

!i�1
!i�1

i
, is, as we will see, exponentially small.

Remark: Lemma 1.6 does provide a representation of the process on the minima in terms

of an embedded Markov chain with exponentially small transition probabilities. Moreover,

we expect that for N large, the waiting times will be almost exponentially distributed (but

with very di�erent rates!), while transitions happen essentially instantaneously on the scale

of even the fastest waiting time. This is the analogue of the controlling Markov processes

constructed in Freidlin and Wentzell (see in particular Chap. 6.2 of [FW]).

In the case where MN consists of only two points, Lemma 1.6 already provides the full

solution to the problem since the only walk left is the single step (y; x).

Corollary 1.7: Assume that MN = fx; yg. Then

Gy

x
(u) =

gy
x
(u)

1� g
y

y(u)
(1:23)

and

E�y
x
=

_gy
y
(0)

1� g
y

y(0)
+

_gy
x
(0)

g
y

x(0)
(1:24)

Proof: Just use that in this particular setting, 1� gy
y
(0) = gy

x
(0). }

Remark: (1.24) can be written in the maybe more instructive form

E�y
x
=

1� gy
x
(0)

g
y

x(0)

_gy
y
(0)

g
y

y(0)
+

_gy
x
(0)

g
y

x(0)
(1:25)

As we will see, all the ratios of the type _g(0)=g(0) represent the expected times of a transition

conditioned on the event that this transition happens and should be thought of as \small".

On the other hand, the probability gy
x
(0) will be shown to be exponentially small so that the

�rst factor in the �rst term in (1.25) is extremely large. Thus, to get a precise estimate on
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the expected transition time in this case, it su�ces to compute precisely the two quantities

_gy
y
(0) and gy

x
(0) only (the second term in (1.25) being negligible in comparison). One might

be tempted to think that in the general case the random walk representation given through

Lemma 1.6 would similarly lead to a reduction to the problem to that of computing the

corresponding quantities at and between all minima. This however is not so. The reason

is that the walks ~! still can perform more complicated multiple loops and these loops will

introduce new and more singular terms when appear explicitly in (1.20) and (1.22). This

renders this representation much less useful than it appears at �rst sight. On the other hand,

the structure of the representation of Corollary 1.7 will be rather universal. Indeed, it is easy

to see that with our notations we have the following

Lemma 1.8: Let I � �N . Then for all y 62 I [ x,

G
y

x;I
(u) =

G
y

x;fI[yg
(u)

1�G
y

y;fI[xg
(u)

(1:26)

holds for all u for which the left-hand side exists.

Proof: Separating paths that reach x from y without return to y from those that do return,

and splitting the latter at the �rst return time, using the strong Markov inequality, we get

that

G
y

x;I
(u) = G

y

x;fI[yg
(u) +G

y

y;fI[xg
(u)G

y

x;I
(u) (1:27)

By construction, if G
y

x;I
(u) is �nite, the second summand being less than the left-hand side,

we have that +G
y

y;fI[xg
(u) < 1 and so (1.26) follows.}

Lemma 1.8 will be one of our crucial tools. In particular, since it relates functions with

exclusion sets I to functions with larger exclusion sets, it suggests control over the Laplace

transforms via induction over the size of the exclusion sets.

A special case of particular importance is obtained by setting u = 0 in Lemma 1.8. This

give the

Corollary 1.9: Let I � �N . Then for all y 62 I [ x,

P [�y
x
< �

y

I
] =

P

h
�y
x
< �

y

I[y

i
P [�

y

I[x
< �

y

y ]
(1:28)

1.3. Outline of the general strategy.

As indicated above, an important tool in our analysis will be the use of induction over the

size of exclusion sets by the help of Lemmata 1.1 and 1.8. One of the basic inputs for this will

be a priori estimates on the quantities gx
y
(u). These will be based on the representation of

these functions as solutions of certain Dirichlet problems associated to the operator (1�euPN )
with Dirichlet boundary conditions in set containing MN .

The crucial point here is to have Dirichlet boundary conditions at all the minima of FN
and at y. Without these boundary conditions, the stochastic matrix P is symmetric in the
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space `2(�N ;QN ) and has a maximal eigenvalue 1 with corresponding (right) eigenvector 1;

since this eigenvector does not satisfy the Dirichlet boundary conditions at the minima, the

spectrum of the Dirichlet operator lies strictly below 1, so that for su�ciently small values

of u, 1� euP is invertible. It is essential to know by how much the Dirichlet conditions push

the spectrum down. It turns out that Dirichlet boundary conditions at all the minima push

the spectrum by an amount of at least CN�d�1 below one, and this will allow us not only to

construct the solution but to get very good control on its behaviour. If, on the other hand,

not all the minima had received Dirichlet conditions, we must expect that the spectrum is

only pushed down by an exponentially small amount, and we will have to devise di�erent

techniques to deal with these quantities.

As a matter of fact, while the spectral properties discussed above follow from our esti-

mates, we will not use these to derive them. The point is that what we really need are

pointwise estimates on our functions, rather than `2 estimates, and we will actually use more

probabilistic techniques to prove `1 estimates as key inputs. The main result, proven in

Section 3, will be the following theorem:

Theorem 1.10: There exists a constant c > 0 such that for all x 2 �N , y 2 MN the

functions gx
y
(u) are analytic in the half-plane Re(u) < cN�d�3=2. Moreover, for such u, for

any non-negative integer k there exists a constant Ck such that���� dkduk gxy (u)
���� � CkN

k(d+3=2)+d=2eN [FN (x)�FN (z�(x;y))] (1:29)

where

z�(y; x) � arg inf
c:c(0)=y;c(1)=x

 
sup
t2[0;1]

[FN (c(t))]

!
(1:30)

where the in�mum is over all paths c : [0; 1]! �N going from y to x.12 �N with jumps along

the edges of �N only.

These estimates are not overly sharp, and there are no corresponding lower bounds. There-

fore, our strategy will be to use these estimates only to control sub-leading expressions and

to use di�erent methods to control the leading quantities which will be seen to be certain of

the expected return times, like
_gxx(0)

gxx(0)
and the transition probabilities P

�
�x
y
< �x

x

�
. The latter

quantities will be estimated up to a multiplicative error of order N1=2 in Section 2. In fact

we will prove there the following theorem:

Theorem 1.11: With the notation of Theorem 1.10 there exists �nite positive constants

c; C such that if x 6= y 2MN , then

P
�
�y
x
< �y

y

�
� cN

d�1
2 e�N [FN (z�(y;x))�FN (y)] (1:31)

and

P
�
�y
x
< �y

y

�
� CN

d�2
2 e�N [FN (z�(y;x))�FN (y)] (1:32)

12Note that here we think of a path as a discontinuous (c�adl�ag) function that stay at a site in �N for some

time interval �t and then jumps to a neighboring site along an edge of �N . This parametrization will however

be of no importance and allows just some convenient notation. If z�(x; y) 62 fx; yg, we will call z�(x; y) the

essential saddle between x and y.
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The estimates for the return times require some more preparation and will be stated only

in Section 5, but let us mention that the main idea in getting sharp estimates for them is the

use of the ergodic theorem .

Equipped with these inputs we will, in Section 4, proceed to the analysis of general tran-

sition processes. We will introduce a natural tree structure on the set of minima and show

that any transition between two minima can be uniquely decomposed into a sequence of

so-called \admissible transitions" in such a way that with probability rapidly tending to one

(as N " 1), the process will consist of this precise sequence of transitions. This will require

large deviation estimates in path space that are special cases of more general results that

have recently been proven in [BG2].

In Section 5 we will investigate the transition times of admissible transitions. In the �rst

sub-section we will prove sharp bounds on the expected times of such admissible transitions

with upper and lower bounds di�ering only be a factor of N1=2. This will be based on

more general upper bounds on expected times of general types of transitions that will be

proven by induction. In the second sub-section we show that the rescaled transition times

converge (along subsequences) to exponentially distributed random variables. This result

again is based on an inductive proof establishing control on the rather complicated analytic

structure of the Laplace transforms of a general class of transition times. In Section 6 we use

these results to derive some consequences: We show that during an admissible transition, at

any given time, the process is close to the starting point with probability close to 1, that it

converges exponentially to equilibrium, etc. Section 7 motivates the connection between our

Markov chains and Glauber dynamics of disordered mean �eld models, and in Section 8 we

discuss a speci�c example, the random �eld Curie-Weiss model.

Notation: We have made an e�ort to use a notation that is at the same time concise and

unambiguous. This has required some compromise and it may be useful to outline our policy

here. First, all objects associated with our Markov chains depend on N . We make this

evident in some cases by a subscript N . However, we have omitted this subscript in other

cases, in particular when there is already a number of other indices that are more important

(as in Gx

y
(u)), or in ever recurring objects like P and E , and which sometimes will have to be

distinguished from the laws of modi�ed Markov chains by other subscript. Constants c; C; k

etc. will always be understood to depend on the details of the Markov chain, but to be

independent of N for N large. There will appear constants KN > 0 that will depend on N

in a way depending on the details of the chain, but such that for some � > 0, N1��KN " 1
(this can be seen as a requirement on the chain). Speci�c letters are reserved for a particular

meaning only locally in the text.

Acknowledgements: A.B. would like to thank Enzo Olivieri for an inspiring discussion

on reversible dynamics that has laid the foundation of this work. M. K. thanks Johannes

Sj�ostrand and B. Hel�er for helpful discussions. Finally, V.G. and A.B. we thank the

Weierstrass-Institute, Berlin, and the Centre de Physique Th�eorique, Marseille, for hospi-

tality and �nancial support that has made this collaboration possible.
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2. Precise estimates on transition probabilities

In this section we will prove the upper and lower bounds of Theorem 1.11 for the quantities

Gy

x
(0) � P

�
�y
x
< �y

y

�
; x; y 2MN (2:1)

Proof of Theorem 1.11.: The proof of the upper bound (1.31) is very easy. We construct

a `hyper-surface'13 SN � �N separating x and y such that

i) z�(y; x) 2 SN .

ii) 8z 2 SN , FN (z) � FN (z
�(y; x)).

Path splitting allows then the simple upper bounds:

P
�
�y
x
< �y

y

�
�
X
z2SN

P
�
�y
z
< �y

y
; �y
z
� �

y

SN

�
P
�
�z
x
< �z

y

�
�
X
z2SN

P
�
�y
z
< �y

y
; �y
z
� �

y

SN

� (2:2)

Using reversibility, we have furthermore that

P
�
�y
z
< �y

y
; �y
z
� �

y

SN

�
= e�N [FN (z)�FN (y)]P

�
�z
y
< �z

z
; �z
y
< �z

SN

�
� e�N [FN(z)�FN (y)] (2:3)

Since we assume that we have a generic situation with no more than a �nite number of

equivalent escape saddles and that, by G2, FN is quadratic at these saddle points, then a

straightforward computation shows that (2.3) implies (1.31).

The main task of this section will be to establish the corresponding lower bound (1.32). The

main idea of the proof of the lower bound is to reduce the problem to a sum of essentially

one-dimensional ones which can be solved explicitly. The key observation is the following

monotonicity property of the transition probabilities.

Lemma 2.1: Let � � �N be a subgraph of �N and let eP� denote the law of the Markov

chain with transition rates

ep�(x0; x00) =
8><>:

pN (x
0; x00); if x0 6= x00 ; and (x0; x00) 2 E(�)

1�
P

y0:(x0;y0)2E(�) pN (x
0; y0); if x0 = x00

0; else

(2:4)

Assume that y; x 2 �. Then

P
�
�y
x
< �y

y

�
� eP� ��yx < �y

y

�
(2:5)

13We actually require no analytic properties for the set SN and the term hyper-surface should not be

taken very seriously.
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Proof: This lemma is an almost immediate consequence of the following variational repre-

sentation of the transition probability that can be found in the book by Liggett ([Li], p. 99,

Theorem 6.1):

Theorem 2.2: [Li] Let Hy

x
denote the space of functions

Hy

x
� fh : �N ! [0; 1] : h(y) = 0; h(x) = 1g (2:6)

and de�ne the Dirichlet form

�N (h) �
X

x0;x002�N

QN (x0)pN (x
0; x00)[h(x0)� h(x00)]2 (2:7)

Then

P
�
�y
x
< �y

y

�
=

1

2QN (y)
inf
h2H

y
x

�N (h) (2:8)

Proof: See Ligget [Li], Chapter II.6. Note that the set R in Liggett's book in will be �Nnfxg,
and our Hy

x
would be H�Nnfxg in his notation.}

To prove Lemma 2.1 from here, just note that for any h 2 Hy

x

�N (h) �
X

(x0;x00)2�

QN (x0)pN (x
0; x00)[h(x0)� h(x00)]2

= QN (�)
X

(x0;x00)2�

eQ� (x
0)ep�(x0; x00)[h(x0)� h(x00)]2

(2:9)

where eQ� (x) � QN (x)=QN (�). This implies immediately that

inf
h2H

y
x

�N (h) � QN (�) inf
h2H

y
x

��(h) = QN (�) inf
h2H

y
x(�)

��(h) (2:10)

where Hy

x
(�) � fh : �! [0; 1] : h(y) = 0; h(x) = 1g. Thus, using Theorem 2.2 for the pro-

cess eP�, we see that
P
�
�y
x
< �y

y

�
=

1

2QN (y)
inf
h2H

y
x

�N(h) �
1

2eQ�(y)
inf

h2H
y
x(�)

��(h) = eP� ��yx < �y
y

�
(2:11)

which proves the lemma. }

To make use of this lemma, we will choose � in a special way. Note that the simplest

choice would be to choose � as one single path connecting y and x over the saddle point

z�(y; x) in an optimal way. However, such a choice would produce a bound of the form

CN�1=2 exp (�NFN (z
�(y; x)) � FN (y)) which di�ers from the upper bound by a factor Nd=2.

I seems clear that in order to improve this bound we must choose � in such a way that it

still provides \many" paths connecting y and x. To do this we proceed as follows. Let E be

any number s.t. FN (z
�(y; x)) > E > max (FN (y); FN (x)) (e.g. choose E = FN (z

�(y; x)) �
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1
2
(FN (z

�(y; x)) �max (FN (y); FN (x))). Denote by Dy, Dx the connected components of the

level set fx0 2 �N : FN (x
0) � Eg that contain the points y, resp. x.

Note that of course we cannot, due to the discrete nature of the set �N , achieve that the

function FN is constant on the actual discrete boundary of the sets Dy, Dx. The discrete

boundary @D of any set D � �N , will be de�ned as

@D � fx 2 Dj9y 2 �NnD ; s.t. (x; y) 2 �Ng (2:12)

We have, however, that

sup
x02@Dy;x

00
2@Dx

jFN (x0)� FN (x
00)j � CN�1 (2:13)

Next we choose a family of paths 
z : [0; 1] ! �N , indexed by z 2 B � SN with the

following properties:

i) 
z(0) 2 @Dy, 
z(1) 2 @Dx

ii) For z 6= z0, 
z and 
z0 are disjoint (i.e. they do not have common sites or common edges.

iii) FN restricted to 
z attains its maximum at z.

Of course we will choose the set B � SN to be a small relative neighborhood in SN of the

saddle z�(y; x). In fact it will turn out to be enough to take B a disc of diameter CN�1=2 so

that its cardinality is bounded by jBj � CN (d�1)=2.

For such a collection, we will set

� � Dx [Dy [
[
z2B

V (
z) (2:14)

where V (
z) denotes the graph composed of the vertices that 
z visits and the edges along

which it jumps; the unions are to be understoof in the sense of the union of the corresponding

subgraphs of �N .

Lemma 2.3: With � de�ned above we have, for any � > 0, and for N large enough

eP� ��yx < �y
y

�
�
�
1� CNd=2e�N [FN (z�(y;x))�E]

�X
z2B

QN (
z(1))

QN (y)
eP
z h�
z(1)
z(0)

< �

z(1)


z(1)

i
(2:15)

Proof: All paths on � contributing to the event
�
�y
x
< �y

y

	
must now pass along one of the

paths 
z. Using the strong Markov property, we split the paths at the �rst arrival point in

Dx which gives the equality

eP� ��yx < �y
y

�
=
X
z2B

eP� h�y
z(1) � �
y

Dx[y

i eP� h�
z(1)x
< �
z(1)

y

i
(2:16)
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By reversibility,

eP� h�y
z(1) � �
y

Dx[y

i
=

QN (
z(1))

QN (y)
eP� h�
z(1)y

� �

z(1)

Dx

i
=

QN (
z(1))

QN (y)
eP� h�
z(1)
z(0)

� �

z(1)

Dx

i eP� h�
z(0)y
� �


z(0)

Dx

i (2:17)

where in the last line we used that the path going from 
z(1) to y without further visits to

Dx must follow 
z. Note further that we have the equality

eP� h�
z(1)
z(0)
� �


z(1)

Dx

i
= eP
z h�
z(1)
z(0)

� �

z(1)


z(1)

i
(2:18)

where the right hand side is a purely one-dimensional object. We will now show that the

probabilities eP� h�
z(1)x < �

z(1)
y

i
and eP� h�
z(0)y � �


z(0)

Dx

i
are exponentially close to 1. To

see this, write

1� eP� h�
z(1)x
< �
z(1)

y

i
= eP� h�
z(1)y

< �
z(1)
x

i
=

eP� h�
z(1)y < �

z(1)

x[
z(1)

i
1� eP� h�
z(1)
z(1)

< �

z(1)
x[y

i (2:19)

The latter equality arises from the by now usual decomposition of the path into multiple

returns to 
z(1) and by summing the resulting geometric series. Now by reversibility, the

denominator in (2.19) satis�es the bound

eP� h�
z(1)y
< �


z(1)

x[
z(1)

i
�
X
x02B

eP� h�
z(1)x0
< �


z(1)

x[
z(1)

i
� jBj

Q�(z
�(y; x))

Q�(
z(1))
= jBj

QN (z�(y; x))

QN (
z(1))

(2:20)

On the other hand,

1� eP� h�
z(1)
z(1)
< �


z(1)
x[y

i
= eP� h�
z(1)x[y < �


z(1)


z(1)

i
� eP� h�
z(1)x

< �

z(1)


z(1)

i
� eP
 h�
z(1)x

< �

z(1)


z(1)

i (2:21)

where 
 is a a one dimensional path going from 
z(1) to x. We will show later that

eP
 h�
z(1)x
< �


z(1)


z(1)

i
� CN�1=2 (2:22)

Thus we get that

eP� h�
z(1)x
< �
z(1)

y

i
� 1� CNd=2e�N [FN (z�(y;x))�E] (2:23)
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By the same procedure, we get also that

eP� h�
z(0)y
� �


z(0)

Dx

i
� 1� CNd=2e�N [FN (z�(y;x))�E] (2:24)

Putting all these estimates together, we arrive at the a�rmation of the lemma.}

We are left to prove the lower bounds for the purely one-dimensional problems whose

treatment is explained for instance in [vK]. In fact, we will show that

Proposition 2.4: Let 
z be a one dimensional path such that FN attains its maximum on


z at z. Then there is a constant 0 < C <1 such that

eP
z h�
z(1)
z(0)
< �


z(1)


z(1)

i
� CN�1=2e�N [FN (z)�FN (
z(1))] (2:25)

Proof: Let K � j
zj denote the number of edges in the path 
z. Let us �x the notation

!0; !1; : : : ; !K , for the ordered sites of the path 
z, with 
z(1) = !0; 
z(0) = !j
zj.

For any site !n we introduce the probabilities to jump to the right, resp. the left

p(n) = pN(!n; !n+1); q(n) = pN (!n; !n�1) (2:26)

We will �rst show that

Lemma 2.5: With the notation introduced above,

eP
z h�
z(1)
z(0)
< �


z(1)


z(1)

i
=

"
KX
n=1

QN (!0)

QN (!n)

1

p(n)

#�1
(2:27)

Proof: Let us denote by r(n) the solution of the boundary value problem

r(n)(p(n) + q(n)) = p(n)r(n+ 1) + q(n)r(n� 1); for 0 < n < K

r(0) = 0; r(K) = 1
(2:28)

Obviously we have that eP
z h�
z(1)
z(0)
< �


z(1)


z(1)

i
= p(0)r(1) (2:29)

(2.28) has the following well know unique solution

r(n) =

P
n

k=1

Q
K�1

`=k
p(`)

q(`)P
K

k=1

Q
K�1

`=k
p(`)

q(`)

(2:30)

hence,

eP
z h�
z(1)
z(0)
< �


z(1)


z(1)

i
=

p(0)
Q
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`=1
p(`)

q(`)P
K

k=1

Q
K�1
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=
p(0)P

K

k=1

Q
k�1

`=1
q(`)

p(`)

(2:31)
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Now reversibility reads QN (!`)p(`) = QN (!`+1)q(`+ 1), and this allows to simplify

k�1Y
`=1

p(`)

q(`)
=
q(k)QN (!k)

q(1)QN (!1)
(2:32)

and �nally eP
z h�
z(1)
z(0)
< �


z(1)


z(1)

i
=

1

QN (!0)
P

K

k=1 [q(k)QN (!k)]
�1

(2:33)

which is the assertion of the lemma. }

We are left to estimate the sum QN (!0)
P

K

k=1
1

q(k)QN (!k)
uniformly in K. Since q(k) �

c > 0 for all 1 � k � K, for an upper bound on this sum it is enough to consider

QN (!0)

KX
k=1

1

QN (!k)
=

QN (!0)

QN (z)

KX
k=1

e�N [FN(z)�FN (!k)] (2:34)

Now in the neighborhood of z, we can certainly bound

FN (z)� FN (!k) � c

�
k

N

�2

(2:35)

while elsewhere FN (z) � FN (!k) > � > 0 (of course nothing changes if the paths have to

pass over �nitely many saddle points of equal height), and from this it follows immediately

by elementary estimates that uniformly in K

KX
k=1

e�N [FN(z)�FN (!k)] � CN1=2 (2:36)

which in turn concludes the proof of Proposition 2.4.14 }}

Combining Proposition 2.4 with Lemma 2.3, we get that

eP� ��yx < �y
y

�
�
�
1� CNd=2e�N [FN(z�(y;x))�E]

�X
z2B

QN (
z(1))

QN (y)

QN (z)

QN (
z(1))
CN�1=2

= e�N [FN (z�(y;x))�FN (y)]
�
1� CNd=2e�N [FN (z�(y;x))�E]

�
CN�1=2

X
z2B

e�N [FN (z)�FN (z�(y;x))]

(2:37)

By our assumptions FN (z)�FN (z�(y; x)) restricted to the surface SN is bounded from above

by a quadratic function in a small neighborhood of z�(y; x) and so, if B is chosen to be such a

14Of course we could easily be more precise and identify the constant in (2.36) to leading order with the

second derivative of F (z) in the direction of 
 (see e.g. [vK] where this computation is given in the case of

the continuum setting, and [KMST] where a formal asymptotic expansion is derived in the discrete case), but

this would not really help us as we do not have the corresponding upper bound.
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neighborhood, the lower bound claimed in Theorem 1.11 follows immediately by a standard

gaussian approximation of the last sum. }}

3. Laplace transforms of transition times in the elementary situation

In this section we shall prove Theorem 1.10, which is our basic estimate for the Laplace

transforms of elementary transition times. We shall need the sharp estimates on the transition

probabilities which we obtained in the previous section based on Lemma 2.2. Combined with

reversibility they lead to an estimate on the hitting time �x
MN

. This is the basic analytic

result needed to estimate the Laplace transforms, using their usual representation as solutions

of an appropriate boundary value problem. Let us recall the notation

Gx

y;�(u) = E

h
eu�

x
y 1I�xy��x�

i
; gx

y
(u) = Gx

y;MN
(u)

In this section � will always denote a proper nonempty subset of �N that contains MN .

Moreover, we will assume that y is not in the interior of �, i.e. it is not impossible that y is

reached before �ny from x, since otherwise Gx

y;�(u) = 0 trivially.

To prove Theorem 1.10, it is enough to show that

gx
y
(u) � C0N

d=2eN [FN(z�(x;y))�FN (x)] (3:1)

for real and positive u � cN�d�3=2. Note that z�(x; y) is de�ned in (1.30) in such a way that

z�(x; y) equals to x if y can be reached from x without passing a point at which FN is larger

than FN (x). Analyticity then follows since gx
y
(u) is a Laplace transform of the distribution

of a positive random variable, and the estimates for k � 1 follow using Cauchy's inequality.

In the sequel we will �x y 2 � andMN � � � �N . It will be useful to de�ne the function

vu(x) =

8><>:
Gx

y;�(u) for x =2 �

1 for x = y

0 for x 2 �ny:

(3:2)

As explained in the introduction, vu(x) is analytic near u = 0 (so far without any control in

N on the region of analyticity).

Similarly, we de�ne the function

w0(x) =

(
E [�x

MN
] for x =2MN

0 for x 2MN

(3:3)

Observe that as a consequence of Lemma 1.1 of the introduction we get (for any x; y 2
�N ;� � �N ) that

Gx

y;�(u) = euPN (x; y) + eu
X
z =2�

PN (x; z)G
z

y;�(u): (3:4)
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Using this identity one readily deduces that vu is the unique solution of the boundary value

problem

(1� euPN )vu(x) = 0 (x =2 �); vu(y) = 1; vu(x) = 0 (x 2 �ny): (3:5)

and, in the same way, wu is the unique solution of

(1� PN )w0(x) = 1 (x =2MN ); w0(x) = 0 (x 2MN ): (3:6)

We shall use these auxiliary functions to prove the crucial

Lemma 3.1: There is a constant C 2 R such that for all y 2 �N and all N large enough

TN := max
y2�N

E [�
y

MN
] � CNd+1 (3:7)

Proof: In view of the Kolmogorov forward equations it su�ces to consider the case y =2MN .

We set � =MN [y; where y =2MN . Then v0(x) de�ned in (3.2) solves the Dirichlet problem

(1� PN )v0(x) = 0 (x =2 �)

v0(y) = 1; v0(x) = 0 (x 2MN )
(3:8)

Moreover, (3.4) with u = 0 and x = yS reads (since G
y

y;�(0) = P[�y
y
� �

y

�])

1� P
�
�
y

� < �y
y

�
=
X
z2�N

pN (y; z)v0(z) (3:9)

which can be written as

(1� PN )v0(y) = P[�
y

MN
< �y

y
] (3:10)

We shall use v0(x) as a fundamental solution for 1� PN and, using the symmetry of PN in

`2(�N ;QN ), we get

QN (y)P[�
y

MN
< �y

y
]E [�

y

MN
] = h(1� PN )v0; w0iQ
= hv0; (1 � PN )w0iQ

= QN (y) +
X
x=2�

QN (x)P[�x
y
< �x

MN
];

(3:11)

where in the last step we have used equation (3.6) and the fact that y =2MN : This gives the

crucial formula for the expected hitting time in terms of Boltzmann factors and transition

probabilities, namely

E [�
y

MN
] =

X
x=2�

QN (x)

QN (y)

P[�x
y
< �x

MN
]

P[�
y

MN
< �

y

y ]
+

1

P[�
y

MN
< �

y

y ]
: (3:12)
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We remark that in this sum only those values of x with FN (x) � FN (y) contribute. To

estimate the probabilities in equation (3.12) we choose, given the starting point y =2 MN ,

an appropriate minimum z 2 MN near y such that there is a path 
 : y!z (of moderate

cardinality) so that FN attains its maximum on 
 at y (note that such a z exists trivially

always). Then the variational principle in equation (2.11) (with 
 as the subgraph �) gives

P[�
y

MN
< �y

y
] � P[�y

z
< �y

y
] � eP
 [�yz < �y

y
]; (3:13)

where the �rst inequality is a trivial consequence of z 2 MN : But then Proposition 2.5 can

be applied to get the lower bound

P[�
y

MN
< �y

y
] � CN�1=2 (3:14)

for some constant C.

To estimate the other probability in (3.12) we use Corollary 1.9 to write, for x 62 �,

P[�x
y
< �x

MN
] =

P[�x
y
< �x

MN[x
]

P[�x� < �x
x
]

(3:15)

Since MN � �, we obtain from (3.14) that for x 62 �,

P[�x� < �x
x
] � P[�x

MN
< �x

x
] � CN�1=2 (3:16)

Reversibility then gives the upper bound

P[�x
y
< �x

MN[x
] =

QN (y)

QN (x)
P[�y

x
< �

y

MN[y
] � min

�
1;
QN (y)

QN (x)

�
: (3:17)

Thus, inserting (3.16) and (3.17) into (3.15) we obtain from the representation (3.12) that

E [�
y

MN
] � CN(1 +

X
x=2�

1) � CNd+1: (3:18)

for some constant C. This proves the lemma. }

Next we need an estimate on the Laplace transform Gx

y;�(u). This will be obtained from an

integral representation of our auxiliary function vu(x), choosing u smaller than the estimate

on the inverse of the maximal expected time TN obtained in Lemma 3.1. More precisely, we

shall prove

Lemma 3.2: Assume that MN � � � �N : Then there is a constant c > 0 such that for

all u � cN�d�1 and all x; y 2 �N ,

Gx

y;�(u) � 2 (3:19)

Furthermore, there are constants b; c > 0 such that for all u � cN�d�3=2 and y 2 �NnMN ,

1�G
y

y;�(u) � bN�1=2 (3:20)
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Proof: As mentioned in the beginning of this chapter we can assume without loss of general-

ity that y 2 @�. Then it follows from equation (3.5) that the function wu(x) := vu(x)�v0(x)
solves the Dirichlet problem

(1� PN )wu(x) = (1� PN )vu(x) = (1� e�u)vu(x); (x =2 �)

wu(x) = 0 (x 2 �)
(3:21)

The relation between resolvent and semi-group gives the following representation for x =2 �

wu(x) = E

24�x��1X
t=0

f(Xt)

35 ; f(x) := (1� e�u)vu(x) (3:22)

that in turn yields the integral equation

vu(x) = P[�x
y
= �x�] + (1� e�u)E

24�x��1X
t=0

vu(Xt)

35 : (3:23)

for the function vu. We can now use our a priori bounds from Lemma 3.1 on the expectation

of the stopping time �x� to extract an upper bound for the sup-norm of this function. Namely,

setting M(u) := sup
x=2� vu(x) we obtain the estimate

M(u) � 1 + j1� e�uj max
x2�N

E [�x� ]M(u) � 1 +
1

3
M(u); (3:24)

where we have used that juj < cN�d�1 with c su�ciently small. This gives for x 62 �,

Gx

y;�(u) � 3=2 (3:25)

The estimate of the Laplace transform Gx

y;�(u) is trivial for negative u or for x 2 �n@�. In
the case x 2 @�, (3.19) follows from (3.4), using (3.25).

To prove the estimate (3.20) on the Laplace transform G
y

y;� of the recurrence time to the

boundary point y 2 @�; (in particular y 2 �nMN under our assumptions), observe that

for any � > 0, there exists c > such that for juj < cN�d�3=2, using Lemma 3.2 to estimate

E [�x� ] � E [�x
MN

] from above, it follows that

E

24�x��1X
t=0

(1� e�u)

35 � �N�1=2 (3:26)

Inserting this estimate and the a priori bound (3.19) into (3.23) together with the a priori

bound gives then that

Gx

y;�(u) � P[�x
y
= �x�] + 2�N�1=2; (3:27)
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Inserting (3.27) into (3.4), which represents G
y

y;�(u) via G
x

y;�(u) for x =2 �; it follows that

modulo �N�1=2 one has, for juj < cN�d�3=2,

1�G
y

y;�(u) � 1� euPN (y; y)� eu
X
x=2�

pN (y; x)P[�
x

y
= �x�]

= 1� P[�
y

� = �y
y
]

= P[�
y

� < �y
y
]:

(3:28)

Since MN � � and y 2 �nMN one obtains from (3.16) that

1�G
y

y;�(u) � P[�
y

MN
< �y

y
]� 2�N�1=2 � bN�1=2 (3:29)

for some b > 0; choosing � su�ciently small in equation (3.26). This proves Lemma 3.3. }

We are now ready to give the

Proof of Theorem 1.10: Note that when FN (x) = FN (z
�(x; y)), Lemma 3.3 already

provides the desired (actually a sharper) estimate. It remains to consider the case z�(x; y) 6=
x.

Here we can, as in the proof of Theorem 1.11 in Section 2, construct a discrete separating

hyper-surface SN containing the minimal saddle z�(x; y) and separating y and x: Since the

process starting at x must hit SN before hitting y; path splitting at SN gives

gx
y
(u) =

X
z2SN

Gx

z;
(u)g
z

y
(u); 
 =MN [ SN : (3:30)

We treat the cases x 2MN and x =2MN separately. In the latter case we need an additional

renewal argument, while in the former all loops are suppressed since the process is killed

upon arrival at x 2MN : For x =2MN the renewal equation (1.26) reads

Gx

z;
(u) = (1�Gx

x;
(u))
�1Gx

z;
[x(u) (3:31)

By Lemma 3.2 and reversibility we have

Gx

z;
[x(u) =
QN (z)

QN (x)
Gz

x;
(u) � 2
QN (z)

QN (x)
; (3:32)

using Lemma 3.3. Combining (3.32) and (3.20) of Lemma 3.2 we get from the renewal

equation (3.31)

Gx

z;
(u) � CN1=2 QN (z)

QN (x)
; (z 2 SN ; u � cN�d�3=2) (3:33)

for c > 0 su�ciently small.

If x 2MN ; we directly apply the reversibility argument to Gx

z;
(u) (without renewal) and

obtain a sharper estimate, i.e. (3.33) with N1=2 deleted on the right hand side.
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Inserting (3.33) into (3.30) and using (3.19) to estimate the Laplace transform gz
y
(u) =

Gz

y;MN
(u) we �nally get, for u � cN�d�3=2,

gx
y
(u) � CN1=2QN (x)�1

X
z2SN

QN (z) = O(Nd=2)e�N(FN (z�(x;y))�FN (x)); (3:34)

where the last equality is obtained by a standard gaussian approximation as (2.37). All

estimates on the derivatives k � 1 now follow from Cauchy's inequality and the obvious

extension of our estimates to complex values of u: This completes the proof of Theorem

1.10.}}

4. Valleys, trees and graphs

In this chapter we provide the setup for the inductive treatment of the global problem.

Although this description is not particularly original, and is essentially equivalent to the

approach of Freidlin and Wentzell [WF], we give a self-contained exposition of our version

that we �nd particularly suitable for the speci�c problem at hand. To keep the description

as simple as possible, we make the assumption that FN is \generic" in the sense that no

accidental symmetries or other \unusual" structures occur. This will be made more precise

below. For the case of a random system, this appears a natural assumption.

4.1. The valley structure and its tree-representation

The �rst important concept will be that of the set of essential saddle points.

De�nition 4.1: We call a point z 2 �N an essential saddle point, if the connected (accord-

ing to the graph structure on �N) component of the level set �z � fx 2 �N : FN (x) � FN (z)g
that contains z falls into two15 disconnected components when z is removed from it.

These two components are called \valleys" and denoted by V �(z), with the understanding

that

inf
x2V +(z)

FN (x) < inf
x2V �(z)

FN (x) (4:1)

holds. We denote by EN the set of all essential saddle points.

With any valley we associated two characteristics: its \height",

h(V i(z)) � FN (z) (4:2)

and its \depth"

d(V i(z)) � FN (z)� inf
x2V i(z)

FN (x) (4:3)

The essential topological structure of the landscape FN is encoded in a tree structure that

we now de�ne on the set MN [ EN . To construct this, we de�ne, for any essential saddle

15Under the assumption G1 no points will exist where this connected component would fall into several

components.
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z 2 EN , the two points

z�
z
=

�
argmaxzi2EN\V �(z) FN (zi); if EN \ V �(z) 6= ;

MN \ V �(z); else
(4:4)

(note that necessarily the setMN \V �(z) consists of a single point if EN \V �(z) = ;). Now
draw a link from any essential saddle to the two points z�

z
. This produces a connected tree,

TN , with vertex set EN [MN having the property that all the vertices with coordination

number 1 (endpoints) correspond to local minima, while all other vertices are essential saddle

points. An alternative equivalent way to construct this tree is by starting from below: Form

each local minimum, draw a link to the lowest essential saddle connecting it to other minima.

Then from each saddle point that was reached before, draw a line to the lowest saddle above

it that connects it to further minima. Continue until exhaustion. We see that under our

assumption of non-degeneracy, both procedures give a unique answer. (But note that in a

random system the answer can depend on the value of N !)

The tree TN induces a natural hierarchical distance between two points in EN [MN , given

by the length of the shortest path on TN needed to join them. We will also call the \level"

of a vertex its distance to the root, z0.

The properties of the long-time behaviour of the process will be mainly read-o� from

the structure of the tree TN and the values of FN on the vertices of TN . However, this

information will not be quite su�cient. In fact, we will see that the information encoded

in the tree contains all information on the time-scales of \exits" from valleys; what is still

missing is how the process descends into a neighboring valley after such an exit. It turns out

that all we need to know in addition is which minimum the process visits �rst after crossing

a saddle point. This point deserves some discussion. First, we note that the techniques we

have employed so far in this paper are insu�cient to answer such a question. Second, it

is clear that without further assumptions, there will not be a deterministic answer to this

question; that is, in general it is possible that the process has the option to visit various

minima �rst with certain probabilities. If this situation occurs, one should compute these

probabilities; this appears, however, an exceedingly di�cult task that is beyond the scope

of the present paper. We will therefore restrict our attention to the situation where FN is

such that there is always one minimum that is visited �rst with overwhelming probability.

To analyse this problem, we need to discuss an issue that we have so far avoided, that

of sample path large deviations for the (relatively) short time behaviour of our processes.

A detailed treatment of this problem is given in [BG2] and, as this issues concerns the

present paper only marginally, we will refer the interested reader to that paper and keep the

discussion here to a minimum. What we will need here is that for \short" times, i.e. for

times t = TN , T <1, the process starting at any point x0 at time 0 will remain (arbitrarily)

close (on the macroscopic scale) to certain deterministic trajectories x(t; x0) with probability

exponentially close to one16. These trajectories are solutions of certain di�erential equations

involving the function F . In the continuum approximation they are just the gradient 
ow of

F , i.e. d

dt
x(t) = �rF (x(t)); x(0) = x0, and while the equations are more complicated in

16Convergence of this type of processes to deterministic trajectories was �rst proved on the level of the

law of large numbers by Kurtz [Ku].
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the discrete case they are essentially of similar nature. In particular, all critical points are

always �xpoints. We will assume that the probability to reach and �-neighborhood of the

boundary of � in �nite time T will be exponentially small for all �xed T . We will assume

further that at each essential saddle the deterministic paths starting in a neighborhood of z

lead into uniquely speci�ed minima within the two valleys connected through z. As we will

see, these paths will determine the behaviour of the process.

We will incorporate these information in our graphical representation by decorating the

tree by adding two yellow17 arrows pointing from each essential saddle to the minima in each

of the branches of the tree emanating from it into which the deterministic paths lead. (These

branches are essentially obtained by following the gradient 
ow from the saddle into the next

minimum on both sides.) We denote the tree decorated with the yellow arrows by eTN .
4.2. Construction of the transition process

We are in principle interested in questions like \how long does the process take to get from

one minimum to another?". This question is more subtle than one might think. A related

question, that should precede the previous one, is actually \how does the process get from

one minimum to another one?", and we will �rst make this question precise and provide an

answer.

We recall that in (1.18) we have given a representation of the process going from y to x

in terms of a random walk on the minima. As we pointed out there, this representation was

not extremely useful. We will now show that it is possible to give another decomposition of

the process that is much more useful.

Let us consider the event F(x; y) � f�y
x
<1g with x; y 2 MN . Of course this event has

probability one. We now describe an algorithm that will allow to decompose this event, up

to a set of exponentially small measure, into a sequence of \elementary" transitions of the

form

F(xi; zi; xi+1) �
n
�xi
xi+1

� �xi
T
c
zi;xi

\MN

o
(4:5)

where xi; xi+1 2 MN , zi is the �rst common ancestor of xi and xi+1 in the tree TN , and
Tzi;xi is the branch of TN emanating from zi that contains both xi and T c

zi;xi
� TNnTzi;xi .

We will write Tz for the union of all branches emanating from z. The motivation for this

de�nition is contained in the following

Proposition 4.2: Let x; y 2 Tz;y \MN , and �y 2 T c

z;x
\MN . Then there is a constant

C <1 such that

P
�
�x�y < �x

y

�
� inf

z02Tz;ynz

C
p
Ne�N [FN(z)�FN (z0)] (4:6)

Remark: Note that by construction we have FN (z) � FN (z
0) > 0 for all lower saddles in

the branch Tz;y. Thus the proposition asserts that with enormous probability, the process

starting from any minimum in a given valley visits all other minima in that same valley

before visiting any minimum outside of this valley. As a matter of fact, the same also holds

17This color was used in the original drawing on a blackboard in the o�ce of V. G. in the CPT, Marseille,

and is retained here for historical reasons.
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for general points. Thus what the proposition says is that up to the �rst exit from a valley,

the process restricted to this valley behaves like an ergodic one.

Proof: We use as usual path-splitting at the consecutive returns of the process to x. This

yields
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Now using the upper and lower bounds from Theorem 1.11, we get

P
�
�x�y < �x

y

�
� C

p
Ne�N [FN (z)�FN (z0)] (4:8)

where z0 is the lowest saddle connecting x and y. (4.8) yields the proposition.}

Proposition 4.2 implies in particular that the process will visit the lowest minimum in a

given valley before exiting from it, with enormous probability. This holds true on any level

of the hierarchy of valleys. These visits at the lowest minima thus serve as a convenient

breakpoint to organize any transition into elementary steps that start at a lowest minimum

of a given valley and exit just into the next hierarchy. This leads to the following de�nition.

De�nition 4.3: A transition F(x; z; y) is called admissible, if

i) x is the deepest minimum in the branch Tz;x, i.e. FN (x) = infx02Tz;x FN (x).

ii) z and y are connected by a yellow arrow in eTN .
Remark: We already understand why an admissible transition should start at deepest

minimum: if it would not, we would know that the process would �rst go there, and we could

decompose it into a �rst transition to this lowest minimum, and then an admissible transition

to y. What we do not see yet, is where the condition on the endpoint (the yellow arrow)

comes from. The point here is that upon exiting the branch Tz;x, the process has to arrive

somewhere in the other branch emanating from z. We will show later that with exponentially

large probability this is the �rst minimum which the deterministic path staring from z leads

to.

Proposition 4.4: If F(x; z; y) is an admissible transition, then there exists KN > 0,

satisfying N1��KN " 1 such that

P [F(x; z; y)] � 1� e�NKN (4:9)

Remark: To proof this proposition, we will use the large deviation estimates that require

the stronger regularity assumptions R2; R4, as well as the structural assumptions discussed
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in the beginning of this section. These are to some extent technical and clearly not necessary.

Alternatively, one can replace these by the assumption that Proposition 4.4 holds, i.e. for

any z 2 E and x 2 Tz;x there is a unique y 2 T c

z;x
[MN such that (4.9) holds.

Proof: The proof is based on the fact that the process will, with probability one, hit the

set T c

z;x
eventually. Thus, if we show that given x and z, for all ~y 2 T c

z;x
with ~y 6= y,

P

h
�x~y < �x

T
c
z;xn~y

i
is exponentially small, the proposition follows. To simplify the notation, let

us set I = T c

z;x
\MN . Note that the case ~y 62 Tz is already covered by Proposition 4.2, so

we assume that ~y 2 Tz. Using Corollary 1.9
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By reversibility,

P

h
�x~y < �x

In~y[x

i
= eN [FN (x)�FN (~y)]P

h
� ~y
x
< �

~y
I

i
(4:11)

Now construct the separating hyper-surface SN passing through z as in the proof of Theorem

1.11. Then
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Putting all things together, and using reversibility once more, we see that
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Using that P[�x
I
< �x

x
] � P[�x

y0
< �x

x
] for any y0 2 I, together with the lower bound of Theorem

1.11 and the trivial bound P

h
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x
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i
� 1, we see that
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Under our assumptions the condition FN (z
0)�FN (z) � KN implies that jz0 � zj � C 0

p
KN ,

i.e. all depends on the term P

h
�z

0

~y � �z
0

I[SN

i
for z0 very close to the saddle point z. Now,

heuristically, we must expect that with large probability the process will �rst arrive at the

minimum that is reached from z0 by following the `gradient' of FN .

Let us now show that this is the case. Let us �rst remark that using the same arguments

as in the proof of Proposition 4.2, it is clear that the probability that the process will hit the

set where FN (x
0) > FN (z

�(x; ~y))+ �0, �0 > 0, before reaching ~y is of order exp(��0N) so that

this possibility is negligible. Denote the complement of this set by L�0 . Now consider the
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ball D� of radius � centered at z, where � should be large enough such that the intersection

of L�0 with SN is well contained in the interior of D�. The set L�0 \D� is then separated by

SN into two parts, and we call C� the part that is on the side of I. According to the previous

discussion, if the process is to reach I, it has to pass through the surface � � @C� \ @D� .

Finally, let R� denote the ball of radius � centered at y. Note �rst that
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The second term is exponentially small by standard reversibility arguments. It remains to

control the �rst.
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Now under the assumptions on F , for all x0 2 �, the deterministic paths x(t; x0) reach R� in

�nite time T (i.e. in a microscopic time TN) without getting close to ~y. Therefore, for some

� > 0
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But the large deviation theorem of [BG2] implies that there exists � � �(�; T ) > 0, such that

lim sup
N"1
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so that, e.g., for all large enough N ,
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Tt then su�ces to observe thatX
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and so, since P
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�x~y < �x

In~y

i
� exp(�NKN ), for all ~y 6= y, P
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i
> 1�exp(�NKN ).}

Note that the above argument also shows that if F(x; z; y) is admissible, and y0 2 I, then
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Theorem 4.5: Let x; y 2 MN . Then there is a unique sequence of admissible events

F(xi; zi; xi+1), i = 1; : : : ; k, such that18
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<1g � f�x

y
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kX
i=1

�xi
xi+1

<1g \
k\
i=1

F(xi; zi; xi+1) (4:22)

and such that the sequences are free of cycles, i.e. the points xi; i = 1; : : : k+1 are all distinct.

Moreover, there is a strictly positive constant KN , such that

P
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f�x
y
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kX
i=1

�xi
xi+1

<1g \
k\
i=1

F(xi; zi; xi+1)

#
� 1� e�NKN (4:23)

Proof: There is a simple algorithm that allows to construct the sequence of admissible

transitions. Let z be the �rst common ancestor of x and y in TN . First we notice that

we will `never' (that is to say with exponentially small probability) visit a minimum that

is not contained in the two branches emanating from z before visiting all of Tz. Given this

restriction, starting from x, we make the maximal admissible transition, i.e. one traverses

the highest possible saddle for which the starting point is a lowest minimum of its branch.

This leads to some point x2, from which we continue as before, with the restriction that the

�rst common ancestor of x2 and y now determines the maximal allowed transition. This

process is continued until an admissible transition reaches y. It is clear that this algorithm

determines a sequence of admissible transitions. We have to show that this is the only one

containing no loops.

Note �rst that the condition that no transition leaves the branches of the youngest common

ancestor follows since Proposition 4.4 ensures that the target point is reached before exit from

this valley with probability close to one. It is easy to see that we should always choose the

maximal admissible transition. Suppose we start in some point that is the deepest minimum

in some valley that does not contain the target point, and we perform an admissible transition

that does not exit from this valley. Then we must return to this point at least once more before

reaching the target which means that our sequence of admissible transitions contains a loop.

Therefore, at each step the choice of the next admissible transition is uniquely determined.

Finally, from Proposition 4.4 the estimate (4.23) follows immediately. }

Remark: We see that the same type of reasoning would also allow us to deal with degener-

ate situations where e.g. integral curves of the gradient bifurcate and transitions to several

points y may have non-vanishing probabilities. The picture of the deterministic sequence of

admissible transitions should then be replaced by a (cycle free) random process of admissi-

ble transitions. The precise computation of the corresponding probabilities would however

require more re�ned estimates than those presented here (except if this can be done by using

exact symmetries).

18We hope the notation used here is self-explanatory: E.g. f�xy < 1g stands for [t<1fX0 = x;X1 6=

y; : : : ; Xt�1 6= y;Xt = yg.
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Remark: Theorem 4.5 asserts that for �xed large N a transition occurs along an essentially

deterministic sequence of admissible transitions. When dealing with the dynamics of system

with quenched disorder, this deterministic (with respect to the Markov chain) sequence will

however depend on the realization of the quenched disorder, and on the volume N . In a typical

situation, this will give rise to a manifestation of dynamical \chaotic size dependence" (in

the spirit of Newman and Stein (see e.g. [NS] for an overview).

In the sequel we will always be interested in computing the times (expected or distribution)

of transitions conditioned on the canonical chain of admissible transitions constructed in

Theorem 4.5. We mention that in general, these do not coincide with the unconditional

transition times. Namely, in general, there can occur unlikely excursions (into deeper valleys)

that take extremely long times so that they dominate e.g. the expected transition times.

Physically, this is clearly not the most interesting quantity.

5. Transition times of admissible transitions

From the discussion above it is clear that the most basic quantities we need to control to

describe the long time behaviour of our processes are the times associated with an admissible

transition. Note that an admissible transition F(x; z; y) can also be considered as a �rst

exit from the valley associated with the saddle z and the minimum x. We proceed in three

steps, considering �rst the expectations the expectations of these times, then the Laplace

transforms, and �nally the probability distributions themselves.

5.1. Expected times of admissible transitions.

A �rst main result is the following theorem.

Theorem 5.1: Let F(x; z; y) be an admissible transition, and assume that x is a generic

quadratic minimum. Then there exist �nite positive constants c; C such that

E�x
y
1IF(x;z;y) � CNeN [FN(z)�FN (x)](1 + e�NKN )

E�x
y
1IF(x;z;y) � cN1=2eN [FN (z)�FN (x)](1� e�NKN )

(5:1)

where KN satis�es N1��KN " 1 for some � > 0.

Remark: In dimension d = 1 the upper bound captures the true behaviour (see e.g. [vK]

where the expected transition time in d = 1 is computed in the continuous case. Note that

the extra factor N in our estimates is just a trivial scaling factor between the microscopic

discrete time and the appropriate macroscopic time scale). We expect that the upper bound

has the correct behaviour in all dimensions.

Before proving the theorem, we will prove some more crude but more general estimates.

For this we introduce some notation. Let I �MN . We de�ne

dI(x; y) � inf
x02I[y

[FN (z
�(x; x0))� FN (x)] (5:2)

to be the e�ective depth of a valley associated with the minimum x with exclusion at the

set I. Here z�(x; y) is the lowest saddle connecting x and y, as de�ned in (1.30). Note that
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equivalently we have that

z�(x; y) � arg inf
z2EN

x2Tz;x;y2Tz;y

FN (z) (5:3)

With these notations we will show the following

Lemma 5.2: Let I �MN . There exist C <1 and � <1 such that for any x; y 2MN ,

we have that for all N large enough,
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y
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y
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�
� CN�

+ CN� sup
x02MNnfI[yg

min
�
e�N [FN(z�(x;x0))�FN (z�(x;y))]; 1

�
eNdI(x

0
;y) (5:4)

If the set MNnfI [ yg is empty, we use the convention that the sup takes the value one.

Moreover, we set z�(x; x) � x.

Remark: In order to understand (5.4), it is helpful to realise that

min
�
e�N [FN (z�(x;x0))�FN (z�(x;y))]; 1

�
� P

�
�x
x0
< �x

y
j�x
y
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I

�
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is essentially the probability that the process visits x0 on its way to y. Also, eNdI(x
0
;y) should

be thought of as the time it takes to reach I or y from x0. Note that formula (5.4) implies

that the process conditioned on avoiding a set I will leave a valley in a time that corresponds

to reaching the point in I \closest" to it. This may at the �rst glance appear surprising.

Proof: Note �rst that if I =MN the estimate follows from the estimates of Theorems 1.10

and 1.11. starting point to prove the lemma by downward induction over the size of the set

I. Actually, the structure of the induction is a bit more complicated. We have to distinguish

the cases where the starting point x is contained in the exclusion set I and where it is not.

We will then proceed in two steps:

(i) Show that if (5.4) holds for all J �MN with cardinality jJ j = k and all x; y 2 MN , and

if (5.4) holds for all J of cardinality jJ j = k � 1 for all y 2MN and x 62 J [ y, then (5.4)

holds for all I with cardinality jIj = k � 1 and all x; y 2MN .

(ii) Show that if (5.4) holds for all J with cardinality jJ j = k and all x; y 2 MN , then (5.4)

holds for all J of cardinality jJ j = k � 1 for all y 2MN and x 62 J [ y.

If we can establish both steps, we can conclude that since (5.4) holds for I =MN and all

x; y 2MN , it holds for all I �MN .

We now proof both assertions. Note that C and � will denote in the course of the proof

generic �nite numerical constants. We will not keep track of the changes of their values in

the course of the induction.



Metastability 35

Case (i): (x 2 J [ y). We can assume without loss that y =2 J .
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The �rst summand in (5.6), divided by the probability P[�x
y
< �x

J
], produces a term of the

order of the �rst terms in (5.4), by Theorems 1.10 and 1.11. The second term in (5.6), again

divided by the same probability, is at most of the order N�. Thus the only dangerous term

is the last one. We see that we have to bound, for any of the x0 occuring in (5.6), a term of

the form
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The conditional expectation on the right hand side satis�es (5.4) by the inductive hypothesis.

Now we have that
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and
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This last inequality is proven using �rst that P
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Proposition 4.2 and Theorem 1.11 give (5.9). Therefore we get
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We will bound each term in the supremum over x00 and treat all the four cases corresponding

to the di�erent possibilities in the minimum separately. A crucial observation is the following

general statement that is tied to the tree structure of the set of saddle points: Whenever
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x; x0; x00 are minima, FN (z
�(x; x0)) < FN (z

�(x; x00)) implies that z�(x0; x00) = z�(x; x00). This

observation will be used repeatedly in what follows.

a) FN (z
�(x0; y)) � FN (z

�(x; x0)), FN (z
�(x0; y)) � FN (z

�(x0; x00)). Then
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But in this case we must have z�(x; x00) = z�(x0x00), and FN (z
�(x; y)) < FN (z

�(x; x00)) so

that the left hand side of (5.11) in fact equals

eN [FN (z�(x;y))�FN (z�(x;x00))] = min
�
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b) FN (z
�(x0; y)) � FN (z

�(x; x0)), FN (z
�(x0; y)) > FN (z

�(x0; x00)).

Here the left hand side of (5.11) equals

eN [FN(z�(x;y))�FN (z�(x0;y))] = 1 (5:13)

since we must have that z�(x0; y) = z�(y; x). Moreover, it is also clear that FN (z
�(x; y)) >

FN (z
�(x; x00)), so that (5.13) is also equal to

min
�
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�
.

c) FN (z
�(x0; y)) < FN (z

�(x; x0)), FN (z
�(x0; y)) < FN (z

�(x0; x00)).

Here we get
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There are two sub-cases to consider:
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�(x; x0)) > FN (z

�(x0; x00)).
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c.2) FN (z
�(x; x0)) < FN (z

�(x0; x00)).

Then z�(x0; x00) = z�(x; x00) and FN (z
�(x; y)) � FN (z

�(x; x00)), so that (5.14) satis�es
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d) FN (z
�(x0; y)) < FN (z

�(x; x0)), FN (z
�(x0; y)) � FN (z

�(x0; x00)).

Here we obtain

eN [FN (z�(x;y))�FN (z�(x;x0))] = eN [FN (z�(x;y))�FN (z�(x;x00))] =

min
�
eN [FN (z�(x;y))�FN (z�(x;x00))]; 1

� (5:17)
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since z�(x; x0) = z�(x; x00) = z�(x; y).

We have seen that in all cases we get the claimed bound.

To complete the proof we need to turn to the case

Case (ii): x 62 J [ y. Using the by now familiar renewal argument, we get

E
�
�x
y
j�x
y
< �x

J

�
=
E

h
�x
y
1I�xy<�xJ[x

i
P

h
�x
J[y

< �x
x

i +
E

h
�x
x
1I�xx<�xJ[y

i
P
�
�x
y
< �x

J[x

�
P

h
�x
J[y

< �x
x

i2 (5:18)

Since P
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x
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�
, and J [ x has cardinality k, the �rst term in (5.18)

satis�es the desired bound by the induction hypothesis. For the second term we have
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Since P
�
�x
x
< �x

J[y

�
� 1 � e�O(N) we can replace the numerator by the corresponding con-

ditional expectation. Since J [ y has cardinality k, we can use the induction hypothesis for

this term. On the other hand, by Theorem 1.11,
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x002J[y
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This gives
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We want to show that this is equal to the left hand side of (5.4). Note �rst that the �rst term

in the bracket corresponds to the choice x0 = x in the sup in (5.4). To see that the remaining

terms are o.k., we just have to observe that by de�nition

dJ[y(x
0; x) � inf

x002J[y[x

[FN (z
�(x0; x00))� FN (x

0)]

� inf
x002J[y

[FN (z
�(x0; x00))� FN (x
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= dJ (x
0; y)

(5:22)

Let x� b any point in J[y[x that realizes the minimum of FN (z
�(x0; x00)) over x0 2 J[y[x.
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a) x� 6= x, FN (z
�(x0; x�)) < FN (z

�(x0; x)).

In this case dJ[y(x
0; x) = dJ (x

0; y). Moreover, we have that z�(x; x�) = z�(x0; x), so that
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b) x� = x.

Set x�� � arg infx002J[y FN (z
�(x0; x00)).

Then dJ[y(x
0; x)�dJ (x0; y) = FN (z

�(x0; x))�FN (z�(x0; x��)). Now again FN (z
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FN (z
�(x; x��)) � FN (z

�(x0; x��)). Therefore,
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Thus in all cases we obtain the claimed estimate. Putting everything together we have

�nally proven Lemma 5.2.}

Proof of Theorem 5.1: Lemma 5.2 can now be used to prove the theorem. For this, let

F(x; z; y) be an admissible transition and �x I = T c

z;x
ny \MN . We rewrite (5.18) in the

form
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Corollary 1.9 gives
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where the last term satis�es, by virtue of (4.21),
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for some KN > 0. This implies that
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Putting everything together we arrive at
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Now we have already precise bounds on the denominator of the �rst term (seeSection 2),

and using the upper bound from Lemma 5.2 we see that, under the assumptions of the

theorem, the second term is by a factor N� exp(�KNN) smaller than the �rst. It remains

to estimate precisely the numerator in the �rst term. The essential idea here is to use the

ergodic theorem. It may be useful to explain this �rst in a simpler situation where there

is only a single minimum present and consider the quantity gy
y
(u). Let D � �N be the

local valley associated to y, that is the connected component of the level set of the saddle

point that connects y to the rest of the world. The basic idea is to show that the expected

recurrence time at y (without visits at other points ofMN ) is up to exponentially small errors

equal to the same time of another Markov chain eXD(t) with state space D with transition

rates epD(x; z) de�ned as in (2.4) and whose invariant measure, eQD , is easily seen to be just

QN conditioned on D, i.e. eQD (x) � QN (x)=QN (D) for any x 2 D. Then, by the ergodic

theorem, we have that eED �yy =
1eQD (y) = QN (D)

QN (y)
(5:32)

This quantity can be estimated very precisely via sharp large deviation estimates. It will

typically exhibits a behaviour of the form CNd=2.

To arrive at this comparison, we simply divide the paths in our process into those reaching

the boundary of D and those who don't, i.e. we write
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Let us denote by D+ and D� the two sets obtained by adding and removing, respectively,

one layer of points to, resp. from, D. Note that on the event f�y
@D

> �y
y
g the processes X(t)

and eXD+(t) have the same law until time �y
y
, so that
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We will show that this is the dominant term in (5.33), the �rst summand on the right being

exponentially small. Indeed
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Using Theorem 1.10, for small enough u, the �rst factor is bounded by

const:N�e�N [FN(z)�FN (y)], while the second is bounded by const:N�. This gives the desired

upper bound
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h
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i
+ CN�e�N [FN (z�)�FN (y)] (5:36)

where z� denotes the lowest saddle point in @D. To get the corresponding lower bound, just

note that eED+
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But the last term in (5.37) can be treated precisely as in (5.35), so that we arrive at
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y
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� CN�e�N [FN (z�)�FN (y)] (5:38)

Di�erenting and using reversibility and the upper bounds from Theorem 1.10, as well as the

obvious lower bound
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gives then that
_gy
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(0)
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=

QN (D+)

QN (y)
+O(N�)e�N [FN (z�)�FN (y)] (5:40)

The same ideas can now be carried over to the estimation of the return time in an admissible

situation, using the estimates from Lemma 5.2.

Proposition 5.3: Let F(x; z; y) be an admissible transition. Let D denote the level set of

the saddle z. Then there are �nite constants C; k and KN > 0 such that
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where I = T c

z;x
ny \MN .

Proof: Basically, the proof goes as outlined above. With D de�ned as the level set of the

saddle z, we can decompose
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The �rst summand gives precisely
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so that from this term alone we would get the same estimate as in (5.40). We have to show

that the second term does not give a relevant contribution. Note that as in (5.35) we can

split paths at the �rst visits to @D. This gives
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Now P [�x
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] is bounded by e�N [FN(z)�FN (x)], and by reversibility
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(which are more or less the same) are

not too large. But this follows from our previous bounds by splitting the process going from

z0 to x at its �rst visit to a point in Tz;x \MN , e.g.
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Lemma 5.2 and Theorem 1.10 can now be used on the expectations in (5.45), and this implies

the desired result.}

Now if (as we assume) x is a quadratic minimum of FN ,
QN (D+)

QN (x)
= CNd=2, and using this

together with Theorem 4.1 we get the estimates of Theorem 5.1.}}

Remark: The reader will have observed that we could also prove lower bounds for more

general transitions, complementing Lemma 5.2. But the point is that these would depend

in a complicated way on the global speci�cs of the function FN , contrary to the situation

of admissible transitions for which we get the very simple estimates of Theorem 5.1. The

beauty of the construction lies in some sense in the fact that the general \worst case" upper

bounds of Lemma 5.2 su�ce to obtain the precise estimates of the theorem.

5.2 Laplace transforms of transition times of admissible transitions

Theorem 5.1 gives precise estimates on the expected transition times for an elementary

transition. We will now show that as expected, the distribution of these transition times is

asymptotically exponential. This will be done by controlling the Laplace transforms for small

arguments.
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Theorem 5.4: Let F(x; z; y) be an admissible transition. Set ��x
y
� E

�
�x
y
jF(x; z; y)

�
.

Then
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1� v
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where for any � > 0, for N large enough, f is bounded and analytic in the domain jRe(v)j <
1� �; jIm(v)j < exp(NKN ).

Proof: The main ingredient of the proof lies in controlling the analytic structure of the

Laplace transforms. The procedure will be similar to that in the proof of Lemma 5.2, that is

we consider the entire family of functions Gx

y;I
(u) and establish the corresponding domains

by induction, starting with the case I =MN where the analytic estimates of Theorem 1.10

hold. It will be convenient to use functions where the argument u has been properly rescaled.

The naive expectation might be that the Laplace transform will exist for values of u up to

the inverse of the corresponding expected transition time. However, this is not so. The point

is that Laplace transforms are much more sensitive to \deep valleys" than the expected times

for which such valleys contribute less if they are unlikely to be visited. However the Laplace

transform will only partly bene�t from this, but simply explode at a value corresponding to

the deepest valley that is at all allowed to be visited.

We introduce some more notation for convenience. Set

tI(x; y) � eNdI(x;y) (5:47)

and

TI(y) � sup
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tI(x; y) (5:48)

With the notation of Section 1, we de�ne
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The following key lemma gives us control over how this happens. It is the analogue of Lemma

5.2.

Lemma 5.5: Let I � MN , and let x; y 2 MN . Then Gx

y;I
(u) can be represented in the

form
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where a0
x;y;I

and ax
0

x;y;I
, for any x0 2 MNnfI [ yg are complex functions that have the prop-

erties (for �nite constants C; �):

(i) They are bounded by CN� and analytic in the domain jRe(u)j < CN��, jIm(u)j < N ,

(ii) They are real positive for real v.
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Proof: An important corollary of analyticity are corresponding bounds on the derivatives.

Namely, by a standard application of the Cauchy integral formula it follows that for any

function a which is bounded and analytic in the domain jRe(v)j < CN��, jIm(v)j < N , for

jRe(v)j < C

2
N�� we have,���� dndvn a(v)

���� � n!C
2nNn�

Cn
sup

v:Re(v)<CN��

a(v) (5:51)

This will be used repeatedly in the sequel.

We observe that for I = MN , the representation (5.50) holds trivially due to Theorem

1.10. This provides the starting point for our induction like in Lemma 5.2. Again we assume

that the Lemma holds for all I of cardinality greater than or equal to `, and we consider sets

J �MN of cardinality `� 1. As before, we �rst show that the case x 2 J reduces easily to

the case x 62 J . Without loss of generality we assume y =2 J . Namely, in the former case,
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Remember that in the proof of Lemma 5.2 we have established that
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which shows that (5.52) provides the claimed representation.

The more subtle part of the proof concerns the case x 62 J . Here we use of course that
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(u) =
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(5:54)
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which implies
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The numerator again poses no problem since it permits to obtain the desired representation

by the inductive hypothesis. Potential danger comes from the denominator. But using the

induction hypothesis, we see that
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All we need is to bound the modulus of this expression from above. This gives����TJ[y(x)TJ (y)
bG0x
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Now in the second part of the proof of Lemma 5.2 we have shown that
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Thus we deduce from (5.57) that����TJ[y(x)TJ (y)
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Since TJ (y) � tJ (x
0; y), we see that in any case the numerator in (5.55) will not vanish

for v < C�1N��. Now we have to distinguish two cases. If there exists an x0 such that

TJ (y) = tJ (x
0; y) and min

�
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�
= 1, then the considerations above

show that
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is a function of v analytic in the strip Re(v) < C�1N��. Since there exists an x0 with the

above properties, in the representation of (5.50) such a term weighted with a factor one is

allowed to appear, so we are some.

Otherwise, the denominator is far from vanishing and we can simply expand in geometric

series. Since tJ[y(x
0; x) � tJ(x

0; y), one sees that
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is an analytic function in the required domain and bounded byN�. Note that this requirement

is the reason why we must restrict ourselves to bounded imaginary parts of v. Using that

sums and products preserve the structure required in (5.50), we see that again we obtain the

desired representation for our function. This concludes the proof of the lemma.}

We are now ready to prove Theorem 5.4. For this we have to improve the previous analysis

in the case where x is the deepest minimum in the allowed set MNnI. In that case TI(y) is

strictly larger than any of the terms tI[x(x
0; y) and tI[y(x

0; x) and it will pay to use Taylor

expansions to second order. Also, we will be more precise in the rescaling of the variables u

and de�ne eGx

y;I
(v) � bGx

y;I
(vTI (y)= �T ) (5:62)

with

�T �
E

h
�x
x
1I�xx<�xy;I

i
P

h
�x
I[y

< �x
x

i (5:63)

Note that we use �T instead of �� in the proof because this will simplify the following formulas.

But in the present situation the two quantities are essentially equal, namely�����E
�
�x
y
j�x
y
< �x

I

�
�T

� 1

����� � e�O(N) (5:64)

This follows easily from equation (5.18) together with estimates on the expected transition

times and probabilities (which shows that the �rst term in (5.18) is negligible in our situation),

and the fact that by de�nition of an admissible transition, P [�x
y
< �x

I[x
]=P [�x

I[y
< �x

x
] is

exponentially close to one (use (5.26)!). Thus in the �nal results they can be interchanged

without harm.
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Then
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Using the analyticity properties established in the preceding lemma, we now proceed to a

more careful computation, using second order Taylor expansions. This yields
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for some 0 � ~� � 1. We use (5.26) to get
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The term we must be most concerned with is the second order term in the denominator.

Here we must use the full analyticity properties proven in Lemma 5.5. This gives, after

computations analogous to those leading to (5.57) and using the obvious lower bound on �T������ (vTI[y(x))
2
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Now according to our hypothesis that x is the lowest minimum in I, it follows that tI[y(x
0; x) �

eN [FN (z�(x;x0))�FN (x)] so that (5.68) is �nally bounded by
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(5:69)

where � is strictly positive.
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All the other terms in (5.67) except the leading ones are even smaller. Note moreover

that both TI[y(x) and TI[x(y) are exponentially small compared to �T , so that all these error

terms as functions of v are analytic if jRe(v)j < 1, and jIm(v)j < exp(NKN=4). This allows

to write eGx

y;I
(v) in the form

eGx

y;I
(v) =

1

1� v
+ e�NKN=2

e1(v)

1� v
+

e2(v)

(1 � v)(1 � v � e�NKN=2e3(v))
(5:70)

where all ei are analytic and uniformly (in N) bounded in the domain jRe(v)j < 1, jIm(v)j <
eNKN=4. This concludes the proof of the theorem.}}

5.3. The distribution of transition times.

From Theorem 5.4 one obtains of course some information on the distribution function.

Corollary 5.6: Under the same assumptions as in Theorem 5.4, we have:

(i) For any � > 0, for su�ciently large N ,

P
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> t �T jF(x; z; y)

�
� e�(1��)t=� (5:71)

(ii) Assume that Ni is a sequence of volumes tending to in�nity such that for all i, F(x; z; y)
is an admissible transition. Then, for any t � 0,
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i"1

PNi

�
�x
y
> t��Ni
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�
= e�t (5:72)

Proof: (i) is an immediate consequence of the the Laplace transform is bounded for real

positive v with v < 1 and the exponential Chebyshev inequality. (ii) is a standard consequence

of the fact that the Laplace transform converges pointwise for any purely imaginary v to that

of the exponential distribution, and is analytic in a neighborhood of zero.}

With a little more work we can also complement the upper bound (5.71) by a lower bound

on the distribution of the survival time in a valley.

Proposition 5.7: Let F(x; z; y) be an admissible transition, and set I = MNnTz;x. Let

h(N) be any sequence tending to zero as N tends to in�nity. Then, for some � <1, for any

0 < �t < 1 we have that
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(5:73)

Proof: The proof of this lower bound consists essentially in guessing the strategy the process

will follow in order to realize the event in question which will be to return a speci�c number
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of times to x without visiting the set I. For, obviously,
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We introduce the family of independent, identically distributed variables Yi taking values in

the positive integers such that for P [Yi = s] = P [�x
x
= sj�x

x
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]. Then (5.74) can be written
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We have good control on the �rst factor in (5.75). We need a lower bound on the second

probability. The simplest way to proceed is to use the inequality, going back to Paley and

Zygmund, that asserts that for any random variableX with �nite expectation, and any � > 0,

P[X > (1� �)EX] � �2
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EX2 . We will use this with X =
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Now using Lemma 5.5 one veri�es easily that

EY 2
1 � CN� + TI(x)e

�NKN (5:77)

So that (5.76) gives
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Thus the second factor is essentially equal to one if n� max(N�; TI). We now choose n as

the integer part of n(t) where

n(t) = min

�
t

EY1 (1� �t)
;

1

h(N)(CN� + TI)

�
(5:79)
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where 0 < �t < 1 is such that n(t) 2 N. This yields

P [�x
I
> t] � (1� P [�x

I
� �x

x
])
n(t)

�2
t

1

1 + 1
n(t)

(CN� + TI(x)e�NKN )

� e
�t

P[�x
I
��xx ]

EY1(1��t)
�tO(P[�xI��

x
x ]

2)�2
t
(1� h(N))

(5:80)

if t is such that the n(t) is given by the second term in the minimum in (5.79). This yields

the �rst case in (5.78). If t is smaller than that, one sees easily that n(t)P[�x
I
� �x

x
] tends to

zero uniformly in t, as N " 1 (in fact exponentially fast!) This implies the second case. }

6. Miscellaneous consequences for the processes

In this section we collect some soft consequences of the preceding analysis. We begin by

substantiating the claim made in Section 1 that the process spends most of the time in the

immediate vicinity of the minima. We formulate this in the following form.
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Now
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Note that by Theorem 1.10 and the exponential Markov inequality, for some � <1
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while the factors P
h
�x
y
< �x

MNny

i
are exponentially small except if y = x. The denominator

is bounded below by Proposition 5.7. Since it decays with t� s at an exponentially smaller

rate than the numerator (see (6.6)), and is close to one for times up to the order exp(NC)

(for some C), it is completely irrelevant.

Thus we see that the second term in the minimum takes over for t � s > N�+1[FN (y) �
FN (x)], a number small compared to the inverse of the �rst term in the minimum. Thus

using that, for a; b� 1,
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the result follows immediately. }

Based on this result, we will now show that during an admissible transition the process

also stays mostly close to its starting point, i.e. the lowest minimum of the valley concerned.

The following proposition makes this precise.

Proposition 6.2:Let F(x; z; x0) be an admissible transition. Then there exists �nite posi-

tive constants C; k and KN s.t. limN1��KN " 1, for some � > 0, such that for any t and
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(6:8)

Proof: The proof of this proposition is in principle similar to that of Proposition 6.1. We
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begin by applying the same decomposition as before to get
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As in the proof of Proposition 6.1, the denominator is bounded by Proposition 5.7 and is

seen to be insigni�cant. We concentrate on the estimates of the numerator. Again we have

the obvious bound
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but to deal with the second probability in the minimum will be a little more complicated.

Note �rst that as in (6.5) we can write

P

h
�x
T
c
z;x[x

> t� s
i
= P

h
�x
x
> t� sj�x

x
< �x

T
c
z;x

i
P

h
�x
x
< �x

T
c
z;x

i
+
X

y2T c
z;x

P

h
�x
y
> t� sj�x

y
< �x

T
c
z;x[xny

i
P

h
�x
y
< �x

T
c
z;x[xny

i
(6:11)

Now the terms in the second sum are all harmless, since by the estimates of Lemma 5.10 and

the geometry of our setting
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with TT c
z;x[x

(y) much smaller than eN [FN (z)�FN (x)]. The remaining term is potentially dan-

gerous. To deal with this e�ciently, we need to classify the trajectories according to the

deepest minimum they have visited before returning to x. In the present situation the rele-

vant e�ective depth of a minimum y 2 Tz;x is (recall (5.2))

d(y) � dT c
z;x

(y; x) = FN (z
�(y; x))� FN (y) (6:13)

We will enumerate the minima in Tz;x according to increasing depth by x = y0; : : : ; yk (we

assume for simplicity that no degeneracies occur). We set L(y) � fy0 2 Tz;x : d(y0) � d(y)g.
Then the family of disjoint events f�x
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g can serve as a partition of



52 Section 6

unity, i.e. we have that
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Now again
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T
c
z;x

i
� e�(t�s)e

�Nd(yi)

(6:15)

while

P

h
�x
x
� �x

yi
j�x
x
< �x

T
c
z;x

i
� e�N [FN (z�(yi;x))�FN (x)] (6:16)

which is much smaller than e�Nd(yi) (except in the case i = 0 where we are back in the

situation of Proposition 6.1). Combining all these estimates and using again (6.7) yields the

claim of the proposition. }

Remark: Note that Proposition 6.2 again exhibits the special rôle played by admissible

transitions. It justi�es the idea that the behaviour of the process during an admissible

transition can be described, on the time scale of the expected transition time19, as waiting

in the immediate vicinity of the starting minimum for an exponential time until jumping

quasi-instantaneously to the destination point. This idea can also be expressed by passing to

a measure valued description (as was done in [GOSV]) which will exhibit that the empirical

measure of the process on any time scale small compared to the expected transition time but

long compared to the next-smallest transition time within the admissible transition, is close

to the Dirac mass at the minimum; since this, in turn, is asymptotically the invariant measure

of the process conditioned to stay in the valley associated to the admissible transition, it can

thus justly be seen as a metastable state associated with this time scale. The corresponding

measure-valued process is than close to a jump process on the Dirac measures centered at

these points. These results can be derived easily from the preceding Propositions, and we

will not go into the details.

Let us also mention that from the preceding results and Theorem 5.9 one can easily extract

statements concerning \exponential convergence to equilibrium". E.g., one has the following.

Corollary 6.3: Let Nk " 1 be a subsequence such that for all k the topological structure

of the tree from Section 5 is the same and such that along the subsequence, FNk
is generic.

Let m0 denote the lowest minimum of FNk
. Let f 2 C(�;R) be any continuous function

on the state space. Consider the process starting in some point x 2 �N . Then there is

19A �ner resolution will of course exhibit rare and rapid excursions to other minima during the time of

the admissible transition, and we have all the tools to investigate these interior cycles.
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a unique minimum m(x) of FNk
, converging to a minium m(x) of F , such that, setting

��x(k) � E

h
�
mNk

(x)
m0

i
lim
k"1

Ef(Xt=��x (k)) = e�tf(m(x)) + (1� e�t)f(m0) (6:17)

(where on the right hand side m(x);m0 denote the corresponding minima of the limiting

function F ). The point m(x) is the lowest minimum of the deepest valley visited by the

process in the canonical decomposition of the transition x;m0 given in Theorem 4.5.

We leave the proof of the corollary to the reader. In a way such statements that involve

convergence on a single time-scale are rather poor re
ections of the complex structure of the

behaviour of the process that is encoded in the description given in Section 4.

Relation to spectral theory.

Contrary to much of the work on the dynamics of spin systems we have not used the notion

of \spectral gap" in this paper, and in fact the analysis of spectra has been limited in general

to the rather auxiliary estimates in Section 2. Of course these approaches are closely related

and our results could be re-interpreted in terms of spectral theory.

Most evidently, the estimate given in Theorem 5.1 can also be seen as precise estimates

on the largest eigenvalue of the Dirichlet operator associated with the admissible transition

F(x; z; y). Moreover, these Dirichlet eigenvalues are closely related to the low-lying spectrum

of the stochastic matrix PN . Sharp estimates on this relation require however some work,

and we will not pursue this analysis in this paper but relegate it to forthcoming work in

which the relation between the metastability problem and associated quantum mechanical

tunneling problem will be further elucidated.

7. Mean �eld models and mean �eld dynamics

Our main motivation is to study the properties of stochastic dynamics for a class of models

called \generalized random mean �eld models" that were introduced in [BG1]. We recall that

such models require the following ingredients:

(i) A single spin space S that we will always take to be a subset of some linear space, equipped

with some a priori probability measure q.

(ii) A state space SN whose elements we denote by � and call spin con�gurations, equipped

with the product measure
Q

i
q(d�i).

(iii) The dual space (SN )�M of linear maps �T
N;M

: SN ! RM .

(iv) A mean �eld potential which is some real valued function EM : RM ! R.

(v) An abstract probability space (
;F ;P) and measurable maps �T : 
! (SN)�N. Note that
if �N is the canonical projection RN ! RN , then �T

M;N
[!] � �M�T [!] � ��1

N
are random

elements of (SN )�M .
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(vi) The random order parameter

mN;M [!](�) �
1

N
�T
M;N

[!]� 2 RM (7:1)

(vii) A random Hamiltonian

HN;M [!](�) � �NEM (mN;M [!](�)) (7:2)

In [BG1] the equilibrium properties of such models were studied in the case where M =

M(N) grows with N . Our aim in the long run is to be able to study dynamics in this

situation, but in the present paper we restrict us to the case of �xed M = d. Also, we will

only consider the case where S is a �nite set.

Typical dynamics studied for such models are Glauber dynamics, i.e. (random) Markov

chains �(t), de�ned on the con�guration space SN that are reversible with respect to the

(random) Gibbs measures

��;N (�)[!] �
e��HN [!](�)

Q
N

i=1 q(�i)

Z�;N [!]
(7:3)

and in which the transition rates are non-zero only if the �nal con�guration can be obtained

from the initial one by changing the value of one spin only. To simplify notation we will

henceforth drop the reference to the random parameter !.

As always the �nal goal will be to understand the macroscopic dynamics, i.e. the behaviour

of mN (�(t)) as a function of time. It would be very convenient in this situation if mN(�(t))

were itself a Markov chain with state space Rd . Such a Markov chain would be reversible

with respect to the measure induced by the Gibbs measure on Rd through the map 1
N
�T , and

this measure has nice large deviation properties. Unfortunately, mN (�(t)) is almost never

a Markov chain. A notable exception is the (non-random) Curie-Weiss model (see the next

section). There are special situations in which it is possible to introduce a larger number of

macroscopic order parameters in such a way that the corresponding induced process will be

Markovian; in general this will not be possible. However, there is a canonical construction

of a new Markov process on Rd that can be expected to be a good approximation to the

induced process. This construction and the following results are all adapted from Ligget [Li],

Section II.6.

Let rN (�; �
0) be transition rates of a Glauber dynamics reversible with respect to the

measure ��;N , i.e. for � 6= �0, pN (�; �
0) =

q
�N (�0)

�N (�)
gN (�; �

0) where gN (�; �
0) = gN (�

0; �).

We denote by RN the law of this Markov chain and by �(t) the coordinate variables. De�ne

the induced measure

Q�;N = ��;N �m�1
N;d

(7:4)

and the new transition rates for a Markov chain with state space the �N = mN;d(SN ) (we
drop the indices of mN;d in the sequel) by

pN (x; y) �
1

Q�;N (x)

X
�:m(�)=x

X
�0:m(�0)=y

��N (�)rN (�; �
0) (7:5)
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Theorem 7.1: Let PN be the law of the Markov chain x(t) with state space �N and tran-

sitions rates pN(x; y) given by (7.5). Then Q�;N is the unique reversible invariant measure

for the chain x(t). Moreover, for any � 2 SN and D � SN , one has

��;N (�)RN [��
D
� ��

�
] � Q�;N (m(�))PN

h
�
m(�)

m(D)
� �

m(�)

m(�)

i
(7:6)

Finally, the image process m(�(t)) is Markovian and has law PN if for all �; �00 such that

m(�) = m(�00), r(�; �) = r(�00; �). If the initial measure �0 is such that for all �, �0(�) > 0,

then this condition is also necessary.

Remark: Notice that by the ergodic theorem, we can rewrite (7.6) in the less disturbing

form

E��
�

RN [��
D
� ��

�
]
�

E�
m(�)

m(�)

P

h
�
m(�)

m(D)
� �

m(�)

m(�)

i (7:7)

from which we see that the theorem really implies an ineqality for the arrival times in D.

Proof: Note that we can write

pN (x; y) =

s
Q�;N (y)

Q�;N (x)

X
�:m(�)=x

X
�0:m(�0)=y

p
��N (�)��;N (�

0)p
Q�;N (x)Q�;N (y)

gN (�; �
0) (7:8)

which makes the reversibility of the new chain obvious. Note also that if rN (�; �
0) is constant

on the sets m�1(x), then

pN (x; y) =
X

�0:m(�0)=y

rN (�; �
0) = RN [m(�(t+ 1)) = yj�(t) = �] (7:9)

which is only a function of m(�). From this one sees easily that in this case, the law of

m(�(t)) is P. The proof of the converse statement is a little more involved and can be found

in [BR].

Finally, the inequality (7.8) is proven in [Li] (Theorem 6.10). However, the proof given

there is rather cumbersome, and meant to illustrate coupling techniques, while the result

follows in a much simpler way from Theorem 6.1 in the same book. It may be worthwhile to

outline the argument. Theorem 6.1 in [Li] states that

��;N (�)RN [��
D
< ��

�
] =

1

2
inf

h2H
�
D

�N (h) (7:10)

where H�

D
is the set of functions

H�

D
�
�
h : SN ! [0; 1] : h(�) = 0;8�02Dh(�0) = 1

	
(7:11)

and �N is the Dirichlet form associated to the chain RN ,

�N (h) �
X

�;s02�N

��;N (�)RN (�; �
0) [h(�) � h(�0)]

2
(7:12)
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Now we clearly majorize the in�mum by restricting it to functions that are constant on the

level sets of the map m, that is if we de�ne the set

eHxeD �
n
~h : �N ! [0; 1] : ~h(x) = 0;8

y2eD~h(y) = 1
o

(7:13)

we have that
inf

h2H�

�N (h) � inf
~h2H

m(s)

m(D)

�N (~h �m)
(7:14)

But

�N(~h �m) =
X

x;x02�N

h
~h(x)� ~h(x0)

i2 X
�:m(�)=(x);�0:m(�0)=x0

��;N (�)RN (�; �
0)

=
X

x;x02�N

h
~h(x)� ~h(x0)

i2
Q�;N (x)pN (x; x

0) � e�N (~h) (7:15)

where e�N is the Dirichlet form of the chain P. Using the analog of (7.10) for this new chain

we arrive at the inequality (7.6).}

We certainly expect that in many situations the Markov chain x(t) under the law PN has

essentially the same long-time behaviour than the non-Markovian image process m(�(t)).

However, we have no general results and there are clearly situations imaginable in which this

would not be true. In the next section we will apply our general results to a speci�c model

where this issue in particular can be studied nicely.

8. The random �eld Curie-Weiss model

The simplest example of disordered mean �eld models is the random �eld Curie-Weiss

model. Here S = f�1; 1g, q is the uniform distribution on this set. Its Hamiltonian is

HN [!](�) � �N

�
M1

N
(�)
�2

2
�

NX
i=1

�i[!]�i (8:1)

where

MN (�) �
1

N

NX
i=1

�i (8:2)

is called the magnetization. Here �i, i 2 N are i.i.d. random variables. The dynamics of this

model has been studied before: dai Pra and den Hollander studied the short-time dynam-

ics using large deviation results and obtained the analog of the McKeane-Vlasov equations

[dPdH]. Matthieu and Picco [MP1] considered convergence to equilibrium in a particularly

simple case where the random �eld takes only the two values �� (with further restrictions on

the parameters that exclude the presence of more than two minima).

In this section we take up this simple model in the more general situation where the

random �eld is allowed to take values in an arbitrary �nite set. The main idea here is that in
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this case we are, as we will see, in the position to construct an image of the Glauber dynamic

in a �nite dimensional space that is Markovian, while it will be possible to compare this to

the Markovian dynamics de�ned on the single parameter MN in the manner described in the

previous section.

We consider the Hamiltonian (8.1) where �i take values in the set

H � fh1; : : : ; hK�1; hKg (8:3)

Each realization of the random �eld f�[!]gi2N induces a random partition of the set � �
f1; : : : ; Ng into subsets

�k[!] � fi 2 � : �i[!] = hkg (8:4)

We may introduce k order parameters

mk[!](�) �
1

N

X
i2�k[!]

�i (8:5)

We denote bym[!] theK-dimensional vector (m1[!]; : : : ;mK [!]). Note that these take values

in the set

�N [!] � �K

k=1

�
��N;k[!];��N;k[!] + 2

N
; : : : ; �N;k[!]� 2

N
; �N;k[!]

	
(8:6)

where

�N;k[!] �
j�k[!]j
N

(8:7)

Note that the random variables �N;k concentrate exponentially (in N) around their mean

values Eh�N;k = P[�i = hk] � pk. Obviously m1[!](�) =
P

K

k=1mk[!](�) and m2[!](�) =P
k

`=1 hkmk(�), so that the Hamiltonian can be written as a function of the variablesm[!](�),

via

HN [!](�) = �NE(m[!](�)) (8:8)

where E : RK ! R is the deterministic function

E(x) �
1

2

 
KX
k=1

xk

!2

+

KX
k=1

hkxk (8:9)

The point is now that the image of the Glauber dynamics under the family of functions m`

is again Markovian. This follows easily by verifying the criterion given in Theorem 7.1.

On the other hand, it is easy to compute the equilibrium distribution of the variablesm[!].

Obviously,

��;N [!](m[!](�) = x) � Q�;N [!](x) =
1

ZN [!]
e�NE(x)

KY
k=1

2�N�N;k[!]

�
N�N;k[!]

N(1 + xk)=2

�
(8:10)
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where ZN [!] is the normalizing partition function. Stirling's formula yields the well know

asymptotic expansion for the binomial coe�cients

2�N�N;k[!]

�
N�N;k[!]

N(1 + xk)=2

�
= e�N�N;k[!][I(xk=�N;k[!])+JN (xk ;�N;k[!])] (8:11)

where

I(x) �
1 + x

2
ln(1 + x) +

1� x

2
ln(1� x) (8:12)

is the usual Cram�er entropy and

JN (x; �) = �
1

�N
ln

 
1� (x=�)

2

4
+

2x=�

1� (x=�)
2

!
+O

�
1

(�N)2

�
+

1

N2
C(�N) (8:13)

with C(�N) a constant independent of xk (and thus irrelevant) that satis�es C(�N) =

O (ln(�N)). Thus

FN [!](x) � �
1

�N
lnQ�;N [!](x) = F0;N [!](x) + F1;N [!](x) + CN (8:14)

with

F0;N (x) = �E(x) +
1

�

KX
k=1

�N;kI(xk=�N;k) (8:15)

CN = ��1
P

K

k=1 �N;kC(�N;kN) is constant and of order lnN , and F1;N of order 1=N , uni-

formly on compact subsets of � � �K

k=1(�pk; pk). Moreover, FN (x) converges almost surely

to the deterministic function

F0(x) = �E(x) +
1

�

KX
k=1

pkI(xk=pk) (8:16)

uniformly on compact subsets of �. The dominant contribution to the �nite volume cor-

rections thus comes from the 
uctuations part of the function F0;N , F0;N (x) � F0(x). One

easily veri�es that all conditions imposed on the functions FN in Section 1 are veri�ed in this

example.

The landscape given by F . The deterministic picture.

To see how the landscape of the function FN looks like, we begin by studying the deter-

ministic limiting function F0. Let us �rst look at the critical points. They are solutions of

the equation rF0(x) = 0, which reads explicitly

0 =
@

@xk
F0(x) = �

KX
`=0

x` � hkxk +
1

�
pkI

0(xk=pk); k = 1; : : : ;K (8:17)
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or equivalently
xk = pk tanh(�(m+ hk)); k = 1; : : : ;K

m =

KX
k=1

xk
(8:18)

These equations have a particularly pleasant structure. Their solutions are generated by

solutions of the transcendental equation

m =

KX
k=1

pk tanh(�(m+ hk)) = Eh tanh�(m+ h) (8:19)

Thus ifm(1); : : : ;m(r) are the solutions of (8.19), then the full set of solutions of the equations

(8.17) is given by the vectors x(1); : : : ; x(r) de�ned by

x
(`)

k
� pk tanh�(m

(`) + hk) (8:20)

Next we analyze the structure of the critical points. Using that I 00(x) = 1
1�x2

, we see that

@2

@xk@xk0
F0(x) = �1 +

�k;k0

�pk (1� x2
k
=p2

k
)

(8:21)

Thus at a critical point x(`),

@2

@xk@xk0
F0

�
x(`)
�
= �1 + �k;k0�k(m

(`)) (8:22)

where

�k(m) �
1

�pk(1� tanh2(�(m+ hk)))
(8:23)

Lemma 8.1: The Hessian of F0 at (x(`)) has at most one negative eigenvalue. A negative

eigenvalue exists if and only if

�Eh

�
1� tanh2(�(x(`) + h))

�
> 1 (8:24)

Proof: Consider any matrix of the form Akk0 = �1 + �k;k0�k with �k � 0. To see this, let

f�1; : : : ; �Lg denote the set of distinct values that are taken by �1; : : : ; �K . Put k` = fk :

�k = �`g and denote by j�`j the cardinalities of these sets. Now the eigenvalue equations read

�

 
KX
k=1

uk

!
+ (�k � 
)uk = 0 (8:25)

Let �` be such that j�`j > 1, if such a �` exists. Then we will construct j�`j � 1 orthogonal

solutions to (8.25) with eigenvalue 
 = �`. Namely, we set uk = 0 for all k 62 �`. The
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remaining components must satisfy
P

k2�`
uk = 0. But obviously, this equation has j�`j � 1

orthonormal solutions. Doing this for every �`, we construct altogether K � L eigenvectors

corresponding to the eigenvalues �`. Note that for all these solutions,
P

k
uk = 0. We are left

with �nding the remaining L eigenfunctions. Now take 
 62 f�1; : : : ; �Lg. Then (8.25) can be

rewritten as

uk =

P
K

k=1 uk

�k � 

(8:26)

Summing equation (8.26) over k, we get

KX
k=1

uk =

KX
k=1

uk

KX
k=1

1

�k � 

(8:27)

Since we have already exhausted the solutions with
P

K

k=1 uk = 0, we get for the remaining

ones the condition

1 =

KX
k=1

1

�k � 

=

LX
`=1

j�`j
�k � 


(8:28)

Inspecting the right-hand side of (8.28) one sees immediately that this equation has precisely

L solutions 
i that satisfy


1 < �1 < 
2 < �2 < 
3 < � � � < 
L < �L (8:29)

of which at most 
1 can be negative. Moreover, a negative solution 
 implies that

1 =

LX
`=1

j�`j
�k � 


<

LX
`=1

j�`j
�k

=

KX
k=1

1

�k
(8:30)

which upon inserting the speci�c form of �� yields (8.24). On the other hand, if
P

K

k=1
1
�k

> 1,

then by monotonicity there exists a negative solution to (8.28). This proves the lemma.}

The following general features are now easily veri�ed due to the fact that the analysis of

the critical points is reduced to equations of one single variable. The following facts hold:

(i) For any distribution of the �eld, there exists �c such that: If � < �c, there exists a single

critical point and F0 is strictly convex. If � > �c, there exist at least 3 critical points,

the �rst and the last of which (according to the value of m) are local minima, and each

minimum is followed by a saddle with one negative eigenvalue, and vice versa, with possibly

intermediate saddles with one zero eigenvalue interspersed.

(ii) Assume � > �c. Then each pair of consecutive critical points of F0 can be joined by a

unique integral curve of the the vector �eld rF0(x).

The exact picture of the landscape depends of course on the particular distribution of the

magnetic �eld chosen. In particular, the exact number of critical points, and in particular

of minima, depends on the distribution (and on the temperature). The reader is invited to

use e.g. mathematica and produce diverse pictures for her favorite choices. We see that a
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major e�ect of the disorder enters into the form of the deterministic function F0(x). Only

a secondary rôle is played by the remnant disorder whose e�ect will be most notable in

symmetric situations where it can break symmetries present on the level of F0.

Fluctuations

In the present simple situation it turns out that the 
uctuations of the function F0;N can

also be controlled in a precise way. We will show the following result.

Proposition 8.3: Let gk; k = 1; : : : ;K be a family of independent Gaussian random vari-

ables with mean zero and variance pk(1�pk). Then the function
p
N [FN (x)�F0(x)] converges

in distribution, uniformly on compact subsets of � to the random function

1

�

KX
k=1

gk

�
xk

p2
k

I 0(xk=pk)� I(xk=pk)

�
(8:31)

Proof: Since FN � F0;N converges to zero uniformly, it is enough to consider

F0;N (x)� F0(x) =
1

�

X
k

(�N;kI(xk=�N;k)� pkI(xk=pk))

=
1

�

X
k

�
(�N;k � pk)I(xk=pk) + pk(I(xk=�N;k)� I(xk=pk))

+ (�N;k � pk)(I(xk=�N;k)� I(xk=pk))
�

(8:32)

Now in the interior of � we may develop

I(xk=�N;k)� I(xk=pk) = (�N;k � pk)
1

p2
k

I 0(xk=pk) +O((�N;k � pk)
2) (8:33)

Now the �N;k are actually sums of independent Bernoulli random variables with mean pk,

namely �N;k =
1
N

P
N

i=1 �hk;�i . Thus, by the exponential Chebyshev inequality,

P [j�N;k � pkj > �] � 2 exp (�NIpk (�)) (8:34)

where Ip(�) � 0 is a strictly convex function that takes its minimum value 0 at � = 0. Thus

with probability tending to one rapidly, we have that e.g. (�N;k�pk)
2 � N�3=4 which allows

us to neglect all second order remainders. Finally, by the central limit theorem the family

of random variables
p
N(�N;k � pk) converges to a family of independent Gaussian random

variables with variances pk(1� pk). This yields the proposition.}

Relation to a one-dimensional problem.

We note that the structure of the landscape in this case is quasi one-dimensional. This

is no coincidence. In fact, it is governed by the rate function of the total magnetization,

� 1
�N

��;N (m
1(�) = m) which to leading orders is computed, using standard techniques, as

G0;N(m) = �
m2

2
+ sup

t2R

 
mt�

1

�

KX
k=1

�N;k ln cosh �(hk + t)

!
(8:35)
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The most important facts for us are collected in the following Lemma.

Lemma 8.2: The functions G0;N and F0;N are related in the following ways.

(i) For any m 2 [�1; 1],
G0;N(m) = inf

x2RK:
P

k
xk=m

F0;N (x) (8:36)

(ii) If x� is a critical point of F0;N , then m� �
P

k
x�
k
is a critical point of G0;N .

(iii) If m� is a critical point of G0;N , then x�(m�), with components x�
k
(m) � �N;k tanh�(m

�+

hk) is a critical point of F0;N .

(iv) At any critical point m�, G0;N(m
�) = F0;N (x

�(m�)).

The prove of this lemma is based on elementary analysis and will be left to the reader.

The point we want to make here is that while the dynamics induced by the Glauber

dynamics on the total magnetization is not Markovian, if we de�ne a Markov chain m(t) that

is reversible with respect to the distribution of the magnetization in the spirit of Section 8

and compare its behaviour to that of the Markov chain m(t) = m(�(t)), the preceding result

assures that their long-time dynamics are identical since all that matters are the precise

values of the respective free-energies at its critical points, and these coincide according to the

preceding lemma (up to terms of order 1=N , and the asymptotics given in (8.12), (8.13), up

to (K-dependent) constants). In other words, the two dynamics, when observed on the set

of minima of their respective free energies, are identical on the level of our precision.
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