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Abstract. Analogues of stepping�stone models are considered where the

site�space is continuous, the migration process is a general Markov process,

and the type�space is in�nite. Such processes were de�ned in previous work of

the second author by specifying a Feller transition semigroup in terms of ex-

pectations of suitable functionals for systems of coalescing Markov processes.

An alternative representation is obtained here in terms of a limit of interacting

particle systems. It is shown that, under a mild condition on the migration

process, the continuum�sites stepping�stone process has continuous sample

paths. The case when the migration process is Brownian motion on the circle

is examined in detail using a duality relation between coalescing and annihilat-

ing Brownian motion. This duality relation is also used to show that a random

compact metric space that is naturally associated to an in�nite family of coa-

lescing Brownian motions on the circle has Hausdor� and packing dimension

both almost surely equal to 1

2
and, moreover, this space is capacity equivalent

to the middle� 1
2
Cantor set (and hence also to the Brownian zero set).

1. Introduction

Stepping�stone models originally arose in population genetics. The simplest ver-

sion can be described as follows. There is a a �nite or countable collection of sites

(the site�space). At each site there is a �nite population. Each population is com-

posed of individuals who can be one of two possible genetic types, say A or B. At

each site the genetic composition of the population evolves via a continuous�time

resampling mechanism. Independently of each other, individuals migrate from one

site to another according to a continuous�time Markov chain (the migration chain)

on the site�space.

If the number of individuals at each site becomes large, then, under appropriate

conditions, the process describing the proportion of individuals of type A at the

various sites converges to a di�usion limit. This limit can be thought of informally

as an ensemble of Fisher�Wright di�usions (one di�usion at each site) that are
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coupled together with a drift determined by the jump rates of the migration chain

(see, for example, [Shi80]).

A natural re�nement of this two�type di�usion model, considered in [Han90,

DGV95], is the corresponding in�nitely�many�types model. Here the Fisher�Wright

processes at each site are replaced by mutationless Fleming�Viot processes of evolv-

ing random probability measures on a suitable uncountable type�space (typically

the unit interval [0; 1]).
Much of the research on such interacting Fisher�Wright and Fleming�Viot di�u-

sion models (see, for example, [BCG86, FG94, FG96, Kle95]) has centred on their

clustering behaviour in the case when the space of sites is either the integer lattice

Zd or a discrete hierarchical group and the migration chain is a random walk. That

is, one asks how regions where �most of the populations are mostly of one type�

grow and interact with each other. The primary tool for analysing this behaviour

is the duality (in the sense of duality of martingale problems) between these models

and sytems of delayed coalescing random walks that was �rst exploited by [Shi80].

One of the factors that lead to interesting clustering is the scaling behaviour of

the migration process. However, because random walks on Zd in the domain of

attraction of a stable law and their analogues on discrete hierarchical group only

have approximate scaling, the role that scaling plays is somewhat obscured. In

order to make the e�ect of scaling clearer, related two�type models were considered

in [EF96] in the hierarchical group setting. In essence, the processes in [EF96] are

the result of taking a further limit in which one �stands back� from the site�space

so that the discrete hierarchical group approaches a continuous one and the random

walk converges to a �stable� Lévy process on the continuous hierarchical group that

does have exact rescaling. These continuum�sites, two�type stepping�stone models

have as their state�space the collection of measurable functions x from the site�

space (that is, the continuous hierarchical group) into [0; 1]. For a state x and site

e, the value x(e) is interpreted intuitively as the proportion of the population at

the site that is of type A.

One of the noteworthy feature of [EF96] is that the limit models are de�ned by

specifying moment�like quantities for the associated Feller transition semigroup in

terms of systems of delayed or instantaneously coalescing Lévy processes, using for-

mulae that are analogues of the duality relations between the discrete�sites models

and delayed coalescing random walks mentioned above (see Theorems 3 and 4 of

[EF96]). In particular, the limit models are not de�ned in�nitesimally via a gen-

erator, SDE/SPDE, or martingale problem formulation analogous to that of the

discrete�sites models. We note, however, that it should be possible to �stand back�

in a similar manner from a discrete�sites model where the migration chain is sim-

ple random walk on Z and obtain the process considered in [MT95]: this process is

constructed there as an SPDE on R but is also dual to delayed coalescing Brownian

motions via the same sort of formulae considered in [EF96]. However, the processes

in [EF96] that have their semigroups de�ned in terms of instantaneously coalesc-

ing Lévy processes do not appear to have even a very informal interpretation as

SPDE�like objects. Rather, a typical value for such a process is a function x such

that x(e) 2 f0; 1g for all sites e, and so such processes are more like continuum

analogues of particle systems (see Theorem 6 of [EF96]).

The programme of de�ning continuum�sites models in terms of �duality� for-

mulae using instantaneously coalescing Markov processes was continued in [Eva97]

(see Section 4 below for a recapitulation). There the in�nitely�many�types case
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was considered and the migration process (that is, the process used to build the

coalescing system) was taken to be a general Borel right process subject only to

a duality condition (with duality here taken in the sense of the general theory of

Markov processes). Now a state of the process, which we denote from now on by X ,

will be a function x from the site�space into the collection of probability measures

on an uncountable type�space. For a state x, a site e and a measurable subset G

of the type�space, the value x(e)(G) is interpreted intuitively as the proportion of

the population at the site possessing types from G.

We give a more concrete description of the in�nitely�many�types, continuum�

sites processX in Section 5. Under suitable conditions on the migration process, we

show (at the level of convergence of �nite�dimensional distributions) that X is the

high�density limit of a family of particle systems with the following description. The

particles move about in the Cartesian product of the site�space and the type�space.

The site�space�valued components of the particles evolve according to independent

copies of the migration process. When particles collide in the site�space a type

is chosen at random from the types of the particles participating in the collision

and the types of all the participating particles are changed to this randomly chosen

type.

One of the open problems left by [Eva97] was to determine conditions on the mi-

gration under which the process X (which is again a Feller process) has continuous

rather than just càdlàg sample paths. In Theorem 7.2, we establish the su�ciency

of a mild condition to the e�ect that the coalescing system doesn't coalesce too

rapidly. The condition holds, for example, for all Lévy processes on R.

By the same argument as in the proof of Proposition 5.1 of [Eva97], it is pos-

sible to show that if the migration process is a stable process on the circle T that

hits points, then, for �xed t > 0, there almost surely exists a random countable

subset fk1; k2; : : : g of the type�space such that for Lebesgue almost all e 2 T the

probability measure Xt(e) is a point mass at one of the ki. That is, rather loosely

speaking, at each site all individuals in the population have the same type and the

total number of types seen across all sites is countable. We improve this result in

Theorem 10.2 for the case of Brownian motion migration on T by showing that

the total number of types is, in fact, almost surely �nite and such a result holds

simultaneously at all positive times rather than just for �xed times.

The primary tool used in the proof of Theorem 10.2 is a duality relation be-

tween systems of coalescing and annihilating Brownian motions that is developed

in Section 9. This relation enables us to perform detailed computations with the

system of coalescing Brownian motions that begins with countably many particles

independently and uniformly distributed on T.

The latter process is an interesting object in its own right. In particular, it can

be used to de�ne a random metric on the positive integers by declaring that the

distance between i and j is the time until the descendents of the ith and jth particles

at time zero coalesce. In Theorem 11.2 we adapt the methods of [Eva98] to show

that the completion of the integers in this metric is almost surely compact, with

Hausdor� and packing dimensions both equal to 1
2
. Moreover, this space is capacity

equivalent to the middle� 1
2
Cantor set (and hence also to the Brownian zero set).

Notation 1.1. Write N := f1; 2; : : :g. We will adopt the convention throughout that

the in�mum of a subset of R or N is de�ned to be 1 when the subset is empty.
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2. Coalescing Markov processes and labelled partitions

Suppose that E is a Lusin space and that (Z; P z) is a Borel right process on E

with semigroup fPtgt�0 satisfying Pt1 = 1, t � 0, so that Z has in�nite lifetime (see

[Sha88] for a discussion of Lusin spaces and Borel right processes). Suppose that

there is another Borel right process (Ẑ; P̂ z) with semigroup fP̂tgt�0 and a di�use,

Radon measure m 6= 0 on (E; E) such that for all non-negative Borel functions

on f; g on E we have
R
m(de)Ptf(e)g(e) =

R
m(de) f(e)P̂tg(e) (our de�nition of

Radon measure is that given in Section III.46 of [DM78]). The space E is the site�

space and Ẑ is the migration process for the continuum�sites stepping�stone model

X , whereas Z will serve as the basic motion in the coalescing systems �dual� to X .

We remark that our assumption on the Markov processes Z and Ẑ is not quite

the usual notion of weak duality with respect to m (see, for example, Section 9 of

[GS84]); in order for weak duality to hold we would also require that Pm�a.s. (resp.

P̂
m�a.s.) the left�limit Z(t�) (resp. Ẑ(t�)) exists for all t > 0.
The following notation will be convenient for us. Given e = (e1; : : : ; en) 2 E

n,

for some n 2 N, with ei 6= ej for i 6= j, let Ze = (Ze1
; : : : ; Z

en) be an E
n�

valued process de�ned on some probability space (
;F ;P) such that Zei has the

distribution of Z under P ei and Ze1
; : : : ; Z

en are independent.

We now de�ne the system of coalescing Markov processes �
Z

e associated with

Z
e. Adjoin a point y, the cemetery, to E to form E

y := E [ fyg. Construct the

(Ey)n�valued process �Ze = ( �Ze

1 ; : : : ;
�
Z

e

n) inductively as follows. Suppose that times

0 =: �0 � : : : � �k � 1 and sets f1; : : : ; ng =: �0 � : : : � �k � f1g have already

been de�ned and that �
Z

e has already been de�ned on [0; �k[. If �k =1, then just

set �k+1 :=1 and �k+1 := �k. Otherwise, put

�k+1 := infft > �k : 9i; j 2 �k; i 6= j; Z
ei(t) = Z

ej (t)g;(2.1)

�k+1 :=

(
�k; if �k+1 =1;

fi 2 �k :6 9j < i; j 2 �k; Z
ei(�k+1) = Z

ej (�k+1)g ; otherwise;

(2.2)

and

�
Z

e

i (t) :=

(
Z
ei(t); �k � t < �k+1; if i 2 �k;

y; �k � t < �k+1; otherwise:
(2.3)

In other words, the coordinate processes of the coalescing Markov process �Ze evolve

as independent copies of Z until they collide. When two or more coordinate pro-

cesses collide (which happens at one of the times �` with 0 < �` <1), the one with

the smallest index �lives on� while the other coordinates involved in the collision

are sent to the cemetery y. The set �k is the set of coordinates that are still alive

at time �k. As the following lemma shows, for m
n�a.e. e almost surely only one

coordinate process of Ze is sent to the cemetery at a time in the construction of �Ze.

(Recall that (Z; P z) is said to be a Hunt process if Z has càdlàg sample paths and

is also quasi�left�continuous; that is, if whenever T1 � T2 � : : : are stopping times

for Z and T = supn Tn, then P
zflimn Z(Tn) = Z(T ); T < 1g = P

zfT < 1g for

all z 2 E.)
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Lemma 2.1. Let Y be an E�valued Markov process on some probability space

(�
; �F ; �P) with the same law as Z under P q :=
R
E
q(dz)P z, where q is a prob-

ability measure on (E; E) that is absolutely continuous with respect to m. Let

(T; V ) be a [0;1[�E�valued random variable that is independent of Y . Then
�PfY (T ) = V g = 0. Moreover, if Z is Hunt process, then �PfY (T�) = V g = 0,

also. A similar result holds with Y replaced by a process Ŷ with the same law as Ẑ

under P̂ q :=
R
E
q(dz) P̂ z.

Proof. For �xed t � 0 and v 2 E we have, writing h for the Radon�Nikodym

derivative of q with respect to m,

�PfY (t) = vg =
Z
E

m(dz)h(z)Pt1fvg(z) =

Z
E

m(dz)1fvg(z)P̂th(z) = 0(2.4)

by the duality assumption and the assumption that m is di�use. Moreover, under

the Hunt assumption,

�PfY (t) 6= Y (t�)g = 0:(2.5)

The result now follows by Fubini.

It will be convenient to embellish �
Z

e somewhat and consider an enriched process

�
e de�ned below that keeps track of which particles have collided with each other.

Let �n denote the set of partitions of Nn := f1; : : : ; ng. That is, an element

� of �n is a collection � = fA1; : : : ; Ahg of subsets of Nn with the property thatS
iAi = Nn and Ai \ Aj = ; for i 6= j. The sets A1; : : : Ah are the blocks of the

partition �. Equivalently, we can think of �n as the set of equivalence relations on

Nn and write i �� j if i and j belong to the same block of � 2 �n.

An E�labelled partition of Nn is a collection

� = f(A1; eA1
); : : : ; (Ah; eAh

)g;(2.6)

with fA1; : : : ; Ahg 2 �n, feA1
; : : : ; eAh

g � E, and eAi
6= eAj

for i 6= j. Let

�n denote the set of E�labelled partitions of Nn . Put �(�) := fA1; : : : ; Ahg and

"(�) := (eA)A2�(�).
For e 2 En with ei 6= ej for i 6= j, we wish to de�ne a �n�valued process �e (the

process of coalescing Markov labelled partitions) with the following intuitive descrip-

tion. The initial value of �e is the labelled partition f(f1g; e1); : : : ; (fng; en)g. As
t increases, the corresponding partition �(�e(t)) remains unchanged and the labels

"(�e(t)) evolve as a vector of independent copies of Z until immediately before two

(or more) such labels coincide. At the time of such a collision, the blocks of the

partition corresponding to the coincident labels are merged into one block (that is,

they coalesce). This new block is labelled with the common element of E. The

evolution then continues in the same way.

More formally, we will take �e to be de�ned in terms of Ze as follows (using

the ingredients �k and �k that went into the de�nition of �Ze). The corresponding

partition�valued process �e := �(�e) is constant on intervals of the form [�k; �k+1[
and �

e(�0) := ff1g; : : : ; fngg. Suppose for k � 0 that �e(�0); : : : ; �
e(�k) have

been de�ned and �k+1 < 1. Let �e(�k+1) be the partition that is obtained by

merging for each i 2 �k+1 those blocks of �e(�k) whose least elements j are such

that Zei(�k+1) = Z
ej (�k+1). Thus each block A of �e(�k+1) is such that the least

element minA of A is the unique element i 2 A for which �
Z

e

i (�k+1) 6= y. The

de�nition of �e is completed by labelling each block A of the partition �e(t) with
�
Z

e

minA(t) = Z
eminA(t).
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For 1 � i � n, put 
e = (
e1 ; : : : ; 

e

n), where



e

i (t) := minfj : j ��e(t) ig;(2.7)

and write

�e(t) := f
ei (t) : 1 � i � ng = fj : �Ze

j (t) 6= yg(2.8)

for the set of surviving indices at time t. Note that �e(�k) = �k.

3. The state-space � of the stepping�stone process

We need some elementary ideas from the theory of vector measures. A good

reference is [DU77]. Recall the measure space (E; E ;m) introduced in Section 2,

and let B be a Banach space with norm k � k. We say that a function � : E ! B

is simple if � =
Pk

i=1 xi1Ei for x1; : : : ; xk 2 B and E1; : : : ; Ek 2 E for some

k 2 N. We say that a function � : E ! B is m�measurable if there exists a

sequence f�ngn2N of simple functions such that limn!1 k�n(e) � �(e)k = 0 for

m-a.e. e 2 E.
WriteK for the compact, metrisable coin-tossing space f0; 1gN equipped with the

product topology, and let K denote the corresponding Borel �-�eld. Equivalently,

K is the �-�eld generated by the cylinder sets.

Write M(K) for the Banach space of �nite signed measures on (K;K) equipped
with the total variation norm k � kM(K). Let L1(m;M(K)) denote the space

of (equivalence classes of) m-measurable maps � : E ! M(K) such that

ess supfk�(e)kM(K) : e 2 Eg < 1, and equip L
1(m;M(K)) with the obvious

norm to make it a Banach space.

Write C(K) for the Banach space of continuous functions on K equipped

with the usual supremum norm k � kC(K). Let L1(m;C(K)), denote the Banach

space of (equivalence classes of) m-measurable maps � : E ! C(K) such thatR
m(de) k�(e)kC(K) < 1, and equip L1(m;C(K)) with the obvious norm to make

it a Banach space.

From the discussion at the beginning of �IV.1 in [DU77] and the fact that

M(K) is isometric to the dual space of C(K) under the pairing (�; y) 7! h�; yi =R
�(dk) y(k), � 2 M(K), y 2 C(K), we see that L1(m;M(K)) is isometric

to a closed subspace of the dual of L1(m;C(K)) under the pairing (�; x) 7!R
m(de) h�(e); x(e)i, � 2 L

1(m;M(K)), x 2 L
1(m;C(K)). Write M1(K) for

the closed subset of M(K) consisting of probability measures, and let � denote

the closed subset of L1(m;M(K)) consisting of (equivalence classes of) maps with

values in M1(K). From Corollary V.4.3 and Theorem V.5.1 of [DS58] we see that,

as L1(m;C(K)) is separable, � equipped with the relative weak� topology is a com-

pact, metrisable space. From now on, we always take � to be equipped with the

relative weak� topology.

We think of the set K as the space of possible types in the in�nitely�many�

types, continuum�sites, stepping�stone model X we will de�ne in Section 4. As we

remarked in Section 1, the type�space for in�nitely�many�types models is usually

taken to be [0; 1]. However, from a modelling perspective any uncountable set is

equally suitable, and, as pointed out in [Eva97], the set K is technically easier to

work with. The set E is the corresponding space of sites. The intuitive interpreta-

tion is that � 2 � describes an ensemble of populations at the various sites: �(e)(L)
is the �proportion of the population at site e 2 E that has a type belonging to the

set L 2 K�.
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Remark 3.1. One can think of � as a subset of the space of Radon measures on

E�K by identifying � 2 � with the measure that assigns mass
R
A
m(de)�(e)(B) to

the set A�B, where A 2 E and B 2 K. The topology we are using on � is not the

same as the trace of the usual topology of vague convergence of Radon measures.

However, the corresponding Borel ���elds do coincide. In particular, we can think

of ��valued random variables as random Radon measures on E �K.

For n 2 N let M(Kn) (respectively, C(Kn)) denote the Banach space of �nite

signed measures (respectively, continuous functions) on the Cartesian product Kn

with the usual norm k � kM(Kn) (respectively, k � kC(Kn)). With a slight abuse of

notation, write h � ; � i for the pairing between these two spaces.

De�nition 3.2. Given � 2 L1(m
n; C(Kn)), de�ne In( � ;�) 2 C(�) (:= the space

of continuous real�valued functions on �) by

In(�;�) :=

Z
En

m

n(de) h

nO
i=1

�(ei); �(e)i

=

Z
En

m

n(de)

Z
Kn

nO
i=1

�(ei)(dki)�(e)(k); � 2 �:

(3.1)

Write I for I1.

4. Definition of the stepping�stone process X

Theorem 4.1 below is Theorem 4.1 of [Eva97]. As discussed in Section 1, it is

motivated by the characterisation of in�nitely�many�types, discrete�sites stepping�

stone processes via duality with systems of delayed coalescing continuous�time

Markov chains (see [DGV95] and [Han90]). Recall that (
;F ;P) is the probability
space on which the processes Ze, �Ze, �e, �e, et cetera are de�ned.

Theorem 4.1. There exists a unique, Feller, Markov semigroup fQtgt�0 on �
such that for all t � 0, � 2 �, � 2 L1(m
n; C(Kn)), n 2 N, we haveZ

Qt(�; d�)In(�;�)

=

Z
En

m

n(de)P

24Z O
j2�e(t)

�(Ze

j (t))(dkj)�(e)(k
e1 (t); : : : ; k
en(t))

35
:

(4.1)

Consequently, there is a Hunt process, (X;Q� ), with state-space � and transition

semigroup fQtgt�0.
Remark 4.2. The integrand P[� � � ] in (4.1) should be interpreted as 0 on the m
n�

null set of e such that ei = ej for some pair (i; j). The integral inside the [ ] is
over a Cartesian product of copies of K, with the copies indexed by the elements

of �e(t).

Remark 4.3. The following equivalent formulation of Theorem 4.1 will be useful.

For n 2 N let Z[n] = (Z
[n]
1 ; : : : ; Z

[n]
n ) be an En�valued process de�ned on a �-�nite

measure space (
[n]
;F [n]

;P[n]), with

P[n]fZ[n] 2 Ag :=
Z
m

n(de)PfZe 2 Ag:(4.2)
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De�ne �
Z
[n], �[n], 
 [n] and �[n] from Z

[n] in the same manner that �
Z

e, �e, 
e and

�e were de�ned from Z
e. The right�hand side of (4.1) is just

P[n]

24Z O
j2�[n](t)

�(Z
[n]
j (t))(dkj )�(Z

[n](0))(k


[n]

1 (t)
; : : : ; k



[n]
n (t)

)

35
:(4.3)

Remark 4.4. As we noted in Remark 3.1, we can think of the process X as taking

values in the space of Radon measure on E�K by identifying Xt with the random

measure that assigns mass
R
A
m(de)Xt(e)(B) to the set A � B, where A 2 E and

B 2 K. A standard monotone class argument shows that if  is any non-negative

Borel function on En �K
n, then

Q�

"Z
En

m

n(de)

Z
Kn

nO
i=1

Xt(ei)(dki) (e;k)

#

=

Z
En

m

n(de)P

24Z O
j2�e(t)

�(Ze

j (t))(dkj ) (e; k
e1 (t); : : : ; k
en(t))

35
= P[n]

24Z O
j2�[n](t)

�(Z
[n]
j (t))(dkj ) (Z

[n](0); k


[n]

1 (t)
; : : : ; k



[n]
n (t)

)

35
:

(4.4)

5. A particle construction for the stepping�stone model X

In this section we �rst construct a �nite particle model in which particles move

through E �K, where we recall that E is our site�space and K is our type�space.

The E�valued components of the particles move independently according to the

dynamics of the migration process Ẑ. The particles interact only when they are

located at the same site in E, and the interaction that occurs is that the type of

one of the particles is replaced by the type of the other. The particle whose type

�wins� is chosen at random from the two particles, with both outcomes equally

likely. For our purposes here, we assume that the types are constant except for

these replacement interactions, although we could allow �mutation� of the types

between the replacement interactions.

Under suitable conditions on the migration process, we then pass to a high�

density limit and obtain a process taking values in the space of Radon measures �

on E �K with the property that �(A�K) = m(A) for A 2 E . Recalling Remark

3.1, we can think of the limit model as a ��valued process, and we establish that

as such it has the same �nite�dimensional distributions as the continuum�sites

stepping�stone process X .

Throughout this section we will work on a probability space (
̂; F̂ ; P̂) and we

will assume the following hypothesis (the de�nition of a Hunt process is recalled in

Section 2).

Assumption 5.1. The processes Z and Ẑ are Hunt.

For completeness, we recall the following de�nition and some of its consequences.

De�nition 5.2. Let (S;S) be a measurable space, and let � be a �-�nite measure

on S. Say that a map N from 
̂ into the collection of measures on (S;S) is a

Poisson random measure with mean measure � if
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a) For each A 2 S, N(A) is a f0; 1; : : : ;1g�valued random variable.

b) For each A 2 S with �(A) < 1, the random variable N(A) is Poisson dis-

tributed with parameter �(A).
c) For A1; A2; : : : 2 S disjoint, the random variables N(A1); N(A2); : : : are in-

dependent.

Remark 5.3. Assume that � is di�use. Then for x 2 S, N(fxg) must be zero or

one, and so we can identify N with its support. We will write x 2 N if N(fxg) = 1.
Note that

P̂

�Z
E

N(dx)f(x)

�
= P̂

"X
x2N

f(x)

#
=

Z
E

�(dx)f(x); f 2 L1(�);(5.1)

and more generally, for f 2 L1(�
n),

P̂

2666664
X

x1; : : : ; xn 2 N
xi 6= xj ; i 6= j

f(x1; : : : ; xn)

3777775 =

Z
En

�

n(dx)f(x1; : : : ; xn):(5.2)

5.1. Finite particle systems. Fix a non-zero di�use �nite measure �0 on E

and a probability kernel � : E � K ! [0; 1]. Write DE [0;1[ for the Skorohod

space of càdlàg E�valued paths and let cM denote a Poisson random measure on

DE[0;1[�K with mean measure

F �G 7!
Z
�0(dz) P̂

z(F )�(z;G)(5.3)

(recall that P̂ z is the law of Ẑ starting at z 2 E). Thus the push�forward of cM by

the map (�; k) 7! �(0) (:= the value of the path � at time 0) is a Poisson random

measure on E with mean measure �0. More generally, the push�forward of cM by

the map (�; k) 7! �(t) is a Poisson random measure on E with mean measure �t,

where �t(H) =
R
E
�0(dz) P̂t(z;H). We assume that �t is di�use for each t � 0. By

our duality assumption, this will certainly be the case if �0 is absolutely continuous

with respect to m.

Enumerate the atoms of cM as (Ẑ1; �
0
1); : : : ; (ẐJ ; �

0
J ) in such a way that the

conditional distribution of this collection given J = j is that of j i.i.d. DE [0;1[�K�

valued random variables with common distribution

F �G 7! �0(E)
�1

Z
�0(dz) P̂

z(F )�(z;G):(5.4)

We wish to de�ne a collection �1; : : : ; �J of K�valued processes in such way

that the collection (Ẑ1; �1); : : : ; (ẐJ ; �J) has the dynamics described above: that

is, we think of �i(t) as the type of the particle Ẑi at time t, and, after two or

more such particles collide, the particles participating in the collision must be of

the same type with the common type selected at random from among the types of

the participating particles (with each possible outcome equally likely).

Suppose that on the probability space (
̂; F̂ ; P̂) we also have de�ned for each

k 2 N a collection f�ik; i 2 Ng of i.i.d. random variables uniformly distributed on

[0; 1]. We will implement a speci�c construction of the �ik below. De�ne �1; : : : ; �J
and times �̂0 � �̂1 � : : : (with �̂k < �̂k+1 when �̂k <1) as follows.
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Put �i(0) = �
0
i and �̂0 = 0. Suppose that �̂0; : : : ; �̂k have already been de�ned

and, for 1 � i � J , the processes �i has been de�ned on [0; �̂k] (or [0;1[ if �̂k =1).

If �̂k =1, then the de�nition of �i, 1 � i � J , is complete and just de�ne �̂` =1
for ` > k. Suppose, then, that �̂k <1. Put

�̂k+1 := infft > �̂k : Ẑi(t) = Ẑj(t); �i(�̂k) 6= �j(�̂k); some i 6= jg:(5.5)

Put �i(t) := �i(�̂k) for �̂k � t < �̂k+1 and 1 � i � J . If �̂k+1 = 1, then this

completes the de�nition of �i, 1 � i � J . Otherwise, if �̂k+1 < 1, then de�ne

�i(�̂k+1), 1 � i � J , as follows. Let �̂i(�̂k+1) := fj : Ẑj(�̂k+1) = Ẑi(�̂k+1)g,
and let 
̂i(�̂k+1) 2 �̂i(�̂k+1) satisfy �
̂i(�̂k+1);k+1 � �j;k+1 for all j 2 �̂i(�̂k+1). We

set �i(�̂k+1) = �
̂i(�̂k+1)(�̂k). Note that if Ẑi(�̂k+1) = Ẑj(�̂k+1), then �̂i(�̂k+1) =

�̂j(�̂k+1), 
̂i(�̂k+1) = 
̂j(�̂k+1), and �i(�̂k+1) = �j(�̂k+1).
Our requirement that the types of colliding particles be changed to a type inde-

pendently and uniformly selected from those of the participants in a collision will

be met if for k 2 N, the collection f�ik; i 2 Ng is independent of F Ẑ
�̂k
_ F�

�̂k�1
,

where fF Ẑ
t gt�0 is the �ltration generated by (Ẑ1; : : : ẐJ) and fF�

t gt�0 is the �ltra-
tion generated by (�1; : : : ; �J). In particular, the distribution of the process (Ẑ; �)
will be the same regardless of how we de�ne the f�ikg as long as for each k, the

conditional distribution of f�ikg given F Ẑ
�̂k
_ F�

�̂k�1
is i.i.d. uniform on [0; 1].

We note that P̂-a.s. there exists ` 2 N such that �̂` = 1, so that the above

construction does indeed lead to a value of �i(t), 1 � i � J , for all t � 0. To see this,
let Rh(t) = f1 � j � J : �j(t) = �h(t)g for 1 � h � J and 0 � t < supk �̂k. Since

there are only �nitely many particles, P̂fRh(�̂k) � Rh(�̂k+1) � � � � j F Ẑ
�̂k
_ F�

�̂k
g �

2�J > 0. Consequently, either there exists �̂k <1 such that Rh(�̂k) = f1; : : : ; Jg
or there exists a time after which Ẑh does not collide with any particle having a

di�erent type.

Now we will give an explicit construction of the f�ikg which leads to a useful

construction of our particle system (Ẑ1; �1); : : : ; (ẐJ ; �J ). We assign to each parti-

cle a distinct [0; 1]�valued initial level U0
i , 1 � i � J , at time 0 and use these initial

levels to de�ne a family of [0; 1]�valued processes of levels fUi(t)gt�0, 1 � i � J .

The f�ikg will be de�ned using these level processes. We will assume that the con-

ditional distribution of fU0
i g given cM is that of J i.i.d. random variables uniformly

distributed on [0; 1]. This assumption implies

JX
i=1

�
(Ẑi;�

0
i
;U0

i
)

(5.6)

is a Poisson random measure with mean measure

F �G�H 7!
Z
E

�0(dz) P̂
z(F )�(z;G) l(H);(5.7)

where l denotes Lebesgue measure on [0; 1]. We de�ne �i1 := U
0
i . For 0 � t < �̂1,

set Ui(t) := Ui(0) := U
0
i . If �̂1 < 1 and j�̂i(�̂1)j = 1, then put Ui(�̂1) := Ui(�̂1�).

If �̂1 < 1 and �̂i(�̂1) = fi1; : : : ; ing, n > 1, then put Uil(�̂1) := Ui�
l

(�̂1�) where
�1; : : : ; �n is a uniform random permutation of 1; : : : ; n selected independently of all
other quantities. Observe that U1(�̂1); : : : ; UJ(�̂1) are conditionally i.i.d. uniform

on [0; 1] given F Ẑ
�̂2
_ F�

�̂1
. De�ne �i2 := Ui(�̂1). Put Ui(t) := Ui(�̂1), �̂1 < t < �̂2.
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We continue inductively, at each time �̂k <1 randomly permuting the levels with

indices in each �̂i(�̂k) and de�ning �i;k+1 = Ui(�̂k).
Although the level assigned to a particle may change at the time of a collision,

since these changes only involve the permuation of the assignment of the levels,

the set of levels is the �xed random set U := fU0
i g. Consequently, we could index

the particles and their types by their corresponding level; that is, for u 2 U , de�ne
Ẑu(t) = Ẑi(t) and �u(t) = �i(t) if and only if Ui(t) = u. Since the particle assigned

to level u changes only when the newly assigned particle is at the same location

as the previously assigned particle, the strong Markov property implies that the

processes fẐu; u 2 Ug are conditionally independent given U and fẐu(0); u 2 Ug,
and conditionally each Ẑu is a Markov process with transition semigroup fP̂tg.
Note that

�̂k+1 = infft > �̂k : Ẑu(t) = Ẑv(t); �u(t�) 6= �v(t�); some u 6= vg;(5.8)

and if we de�ne �̂u(�̂k) := fv 2 U : Ẑv(�̂k) = Ẑu(�̂k)g and 
̂u(�̂k) := min(�̂u(�̂k)),
then �u(�̂k) = �
̂u(�̂k)(�̂k�). That is, if two or more particles collide, the particles

involved in the collision �look down� to the lowest level particle at the same location,

and change types to the type of that particle. (We note in passing that this construc-

tion is reminiscent of the �look down� construction of the Moran model in [DK96].)

Consequently, if we start with a Poisson random measure on DE[0;1[�K � [0; 1]X
u2U

�
(Ẑu;�0u;u)

(5.9)

with mean measure speci�ed by (5.7), then a particle model

	t =
X
u2U

�
(Ẑu(t);�u(t);u)

(5.10)

is completely determined by the requirement that whenever two or more particles

�collide� the types of the higher level particles involved in the collision switches

to the type of the lowest level particle in the collision. This observation allows

us to extend the construction to systems with in�nitely many particles with mild

additional assumptions.

5.2. Particle systems with stationary location processes. We now want to

extend the construction of the previous section to arrive at a model in which the

distribution of locations of particles is stationary in time, and we want to allow

for the possibility of there being in�nitely many particles. We emphasize that

Assumption 5.1 is in force throughout this section.

Consider a Poisson random measureX
u2U

�(Ẑu;�0u;u)
(5.11)

on DE [0;1[�K � [0; 1] with mean measure speci�ed by (5.7) with �0 = m. By

the assumption that m is Radon, there exist open sets E1 � E2 � � � � such that

m(En) <1 for all n 2 N and E =
S
nEn (of course, if m(E) is �nite we can take

En = E for all n 2 N). Put Un = fu 2 U : Ẑu(0) 2 Eng, and note thatX
u2Un

�(Ẑu;�0u;u)
(5.12)
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is a Poisson random measure on DE [0;1[�K � [0; 1] with �nite mean measure

speci�ed by (5.7) with �0 = m(� \ En). As in the previous subsection, we can

construct a corresponding �nite particle model

	[n](t) =
X
u2Un

�
(Ẑu(t);�

[n]
u (t);u)

(5.13)

and times �̂
[n]
0 � �̂

[n]
1 � : : : . We would like to de�ne 	t = limn!1	[n](t); however,

the type processes �
[n]
u may not converge without some additional assumptions

regarding the behavior of the migration processes fẐu; u 2 Ug.
Henceforth, we will also assume the following, which will ensure that for all

n 2 N and t � 0 the expectation P̂[ jfu 2 U : Ẑu(s) 2 En for some 0 � s � tgj ] is
�nite.

Assumption 5.4. The sequence fEng of open sets can be chosen so that

P̂
mf�En � tg <1; for all n 2 N and t > 0;

where

�A := infft � 0 : Ẑ(t) 2 Ag; A 2 E :

Remark 5.5. By our duality assumption, the measure m is stationary for Ẑ. It

follows easily that if for A 2 E the condition P̂mf�A � tg <1 holds for some t > 0,

then it holds for all t > 0. Furthermore, the condition P̂mf�A � tg <1 for all t > 0

is also equivalent to P̂m[exp(���A)] <1 for all (equivalently, some) � > 0. Using
this equivalence, the question of whether or not Asssumption 5.4 is satis�ed becomes

a standard question in capacity theory. Under our duality assumption and the

Assumption 5.1 that Z; Ẑ are Hunt, Assumption 5.4 will certainly hold (with fEng
any increasing sequence of relatively compact open sets such that

S
nEn = E) if the

Lusin space E is locally compact and �-excessive functions for both semigroups fPtg
and fP̂tg are lower semi�continuous (see, for example, Remark 2.10 of [Get84]). In

particular, Assumption 5.4 holds if E is locally compact and Z and Ẑ have strong

Feller ��resolvent operators (see Exercise II.2.16 of [BG68]). Also, Assumption 5.4

holds when Z and Ẑ are Lévy processes on Rd and m is Lebesgue measure (see

Lemma II.6 of [Ber96]).

Fix t > 0 and u 2 Un. Let
�n(u; t) := 0 _ supf0 < s < t : Ẑu(s) = Ẑv(s) some v < u; v 2 Ung;(5.14)

and let �n(u; t) be the corresponding value of v 2 Un, with �n(u; t) := u if �n(u; t) =
0. Lemma 2.1 implies that �n(u; t) is well-de�ned. In general, �n(u; t) will not be

one of the times f�̂ [n]k g, but we will have
�
[n]
u (t) = �

[n]
u (�n(u; t)) = �

[n]

�n(u;t)
(�n(u; t)):(5.15)

De�ne �
t
n;u(s) := u for �n(u; t) < s � t and �

t
n;u(s) := �n(u; t) for

�n(�n(u; t); �n(u; t)) < s � �n(u; t). This de�nition extends iteratively to de-

termine �tn;u(s) on the interval 0 � s � t with the property that

�
[n]
u (t) = �

[n]

�t
n;u

(s)
(s);(5.16)

so, in particular, �
[n]
u (t) = �

0
�t
n;u

(0)
. Consequently, convergence of �

[n]
u (t) is equiva-

lent to convergence of �tn;u.
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For t > 0 and u 2 U set

�(u; t) := 0 _ supf0 < s < t : Ẑu(s) = Ẑv(s) some v < u; v 2 Ug:(5.17)

Let U be a [0; 1]�valued random variable that is �(U)�measurable and takes values

in the random set U (that is, U is a �(U)�measurable selection from U). By the

duality assumption and the Hunt hypothesis Assumption 5.1 (cf. Proposition 15.7

of [GS84]), t� �(U; t) has the same distribution as

inffs > 0 : ZU (s) = Zv(s) some v < U; v 2 Ug ^ t;(5.18)

where
P

u2U �(Zu;u) is any Poisson random measure with mean measure

F �H 7!
Z
E

m(dz)P z(F ) l(H)(5.19)

constructed from U using suitable further randomisation. Let �(u; t) be the corre-
sponding value of v 2 U in (5.17), with �(u; t) := u if �(u; t) = 0. De�ne �tu(s) := u

for �(u; t) < s � t and �tu(s) := �(u; t) for �(�(u; t); �(u; t)) < s � �(u; t). Extend-
ing this de�nition iteratively, either we determine �tu(s) on the interval 0 � s � t

and there are only �nitely many levels in the range of �tu or there exists T tu � 0
such that lims#T t

u
�
t
u(s) = 0. We show that this latter possibility cannot occur.

Suppose that the latter possibility does occur. As above, let U be a �(U)�
measurable random variable taking values in U . De�ne T tU by analogy with T

t
u,

with the convention that T tU := t if there are only �nitely many levels in the range

of �tU . Set

Z
t
U (r) := lim

r0#r
Ẑ�t

U
(t�r0)(t� r

0); 0 � r < t� T
t
U :(5.20)

Then by the strong Markov property, the duality assumption and Assumption 5.1,

fZt
U(r); 0 � r < t � T

t
Ug is a càdlàg Markov process with transition semigroup

fPrg. In particular, the range of this process is almost surely relatively compact

and is contained in one of the En for n su�ciently large. Now, by Assumption 5.4,

the cardinality of the set

fv 2 U : v < U; Ẑv(s) 2 En some 0 � s � tg(5.21)

is P̂-a.s. �nite for all n 2 N. Consequently, P̂-a.s. there are indeed only �nitely

many levels in the range of �tU and hence only �nitely many levels in the range of

�
t
u for all u 2 U . It follows that P̂-a.s. we have limn!1 �

t
n;u = �

t
u and hence

lim
n!1

�
[n]
u (t) = �

0
�t
u
(0) =: �u(t)(5.22)

for all u 2 U .
If �tu1(s) = �

t
u2
(s) for some 0 � s � t, then �tu1(s

0) = �
t
u2
(s0) for all 0 � s

0 � s.

Moreover, if we de�ne

Z
t
u(r) = lim

r0#r
Ẑ�t

u
(t�r0)(t� r

0); 0 � r � t;(5.23)

for each u 2 U , then conditional on U each Zt
u is a Markov process with transition

semigroup fPrg. In particular, fZt
u; u 2 Ug form a coalescing system of Markov

processes, and for 0 � r � t the equivalence relation de�ned by u � v if and

only if �tu(t � r) = �
t
v(t � r) determines a partition fU tk(r)g of the set of levels

U . For de�niteness, assume that U is ordered U = fU1; U2; : : : g where the Ui are

U�measurable random variables, and let U t1(r) be the equivalence class containing
U1, let U t2(r) be the equivalence class containing the Ui with smallest index not
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contained in U t1(r), etc. For each k, Zt
u(r) has the same value for all u 2 U tk(r),

which we denote by Zt
k(r). Then ((Zt

1;U t1); (Zt
2;U t2); : : : ) forms a coalescing Markov

labelled partition of U .
Since the initial particle types f�0ug are conditionally independent given fẐu; u 2

Ug and U , and

P̂

h
g(�0u1 ; : : : ; �

0
un
) j fẐu; u 2 Ug; U

i
=

Z
Kn

�(Ẑu1(0); dk1) � � ��(Ẑun(0); dkn)g(k1; : : : ; kn);
(5.24)

for u1; : : : ; un 2 U , we have

P̂

h
f(Ẑu1(t); �u1(t); : : : ; Ẑun(t); �un(t))

��� fẐu(t)g; Ui
= Htf(Ẑu1(t); : : : ; Ẑun(t));

(5.25)

where, in the notation of Section 2,

Htf(e1; : : : ; en) := P̂

24Z O
j2�e(t)

�(Ze

j (t); dkj)f(e1; k
e1 (t); : : : ; en; k
en(t))

35(5.26)

for e1; : : : ; en 2 E with ei 6= ej , i 6= j.

By (5.2) and (5.25) we have

P̂

2666664
X

u1; : : : ; un 2 U
ui 6= uj ; i 6= j

f(Ẑu1(t); �u1(t); : : : ; Ẑun(t); �un(t)

3777775
=

Z
En

m

n(de)Htf(e);

(5.27)

for f a bounded measurable function on (E �K)n. This identity gives a duality

in the sense of (4.4.36) of [EK86] between the discrete�particle, continuum�sites

model and the corresponding coalescing Markov labelled partition process.

Write

	1
t =

X
u2U

�(Ẑu(t);�u(t);u)
(5.28)

and

X
1
t =

X
u2U

�(Ẑu(t);�u(t))
:(5.29)

Set FX1

t = �(X1
s : s � t). The levels of the particles are independent of FX1

t , so if

f(e; k; u) satis�es
R
E�[0;1]

m(de) l(du) supk2K jf(e; k; u)j <1, then

P̂

"Z
E�K�[0;1]

d	1
tf

���FX1

t

#
=

Z
E�K�[0;1]

X
1
t (de� dk) l(du) f(e; k; u):(5.30)
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Moreover, if f(e; k; u) satis�es
R
E�[0;1]

m(de) l(du) (exp(supk2K f(e; k; u))�1) <1,

then

P̂

"
exp

 Z
E�K�[0;1]

d	1
tf

! ���FX1

t

#

= exp

 Z
E�K

X
1
t (de� dk) log

Z
[0;1]

l(du) exp(f(e; k; u))

!
:

(5.31)

5.3. Measure�valued, continuum�sites, stepping�stone model. We empha-

size that Assumptions 5.1 and 5.4 are still in force. Consider � > 1. We increase

the �local density� of particles in the above construction by replacing m by �m and

select the levels U� to be i.i.d. uniform on [0; �] rather than [0; 1]. Following the

construction of 	1 and X1 above, de�ne

	�
t =

X
u2U�

�(Ẑu(t);�u(t);u)
(5.32)

and

X
�
t =

1

�

X
u2U�

�
(Ẑu(t);�u(t))

:(5.33)

Note that �u only depends on locations and types of particles at levels v � u

and we can construct 	�0 from 	� simultaneously for all 1 � �
0 � � by taking 	�0

t

to be the restriction of 	�
t to the particles with levels in [0; �0]; that is,

	�0

t =
X

u2U�; u��0

�(Ẑu(t);�u(t);u)
:(5.34)

Consequently, we may carry out the obvious construction to build 	1t and U1
with levels in [0;1[. The initial locations and the levels are such that

	10 =
X
u2U1

�
(Ẑu(0);�u(0);u)

(5.35)

is a Poisson random measure with mean measure given by

A�B � C 7!
Z
A

m(dz)�(z;B) l(C);(5.36)

where l is now Lebesgue measure on [0;1[, and for 1 � � <1 each of the 	�
t can

now be de�ned via (5.32) with U� := fu 2 U1 : u � �g. The analogue of (5.27)

becomes

P̂

2666664
X

u1; : : : ; un 2 U�
ui 6= uj ; i 6= j

f(Ẑu1(t); �u1(t); : : : ; Ẑun(t); �un(t))

3777775
= �

n

Z
En

m

n(de)Htf(e);

(5.37)

where Ht is de�ned as in (5.26).
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De�ne F�
t = �(X�

s ;	
1
s �	�

s : s � t), and note that, as in (5.30) and (5.31), we

have

P̂

"Z
E�K�[0;�]

d	�
t f

���F�
t

#
=

Z
E�K�[0;�]

X
�
t (de� dk) l(du) f(e; k; u)(5.38)

and

P̂

"
exp

 Z
E�K�[0;�]

d	�
t f

! ���F�
t

#

= exp

 Z
E�K

X
�
t (de� dk)� log

 
1 +

1

�

Z
[0;�]

l(du) (exp(f(e; k; u))� 1)

!!
:

(5.39)

Suppose that f(e; k; u) = 0 for u > �0. Then for � > �0, the random variables

on the left of (5.38) and (5.39) do not depend on �. Since for �xed t � 0 the ��

�elds F�
t are decreasing in �, the left sides of (5.38) and (5.39) are positive, reverse

martingales, and hence converge P̂-a.s. as � " 1. It follows that X�
t converges

P̂-a.s. to a random measure X1t satisfying

P̂

"Z
E�K�[0;1[

d	1t f
���FX1

t

#

=

Z
E�K�[0;1[

X
1
t (de� dk) l(du) f(e; k; u);

(5.40)

and

P̂

"
exp

 Z
E�K�[0;1[

d	1t f

! ���FX1

t

#

= exp

 Z
E�K�[0;1[

X
1
t (de� dk) l(du) (exp f(e; k; u)� 1)

!
:

(5.41)

In particular, by (5.41), for each t � 0, 	1t is a doubly stochastic Poisson process

(that is, a Cox process) with random mean measure given by X1t 
 l.

Dividing both sides of (5.37) by �n and letting �!1, we have

P̂

"Z
(E�K)n

X
1
t (de1 � dk1) � � �X1t (den � dkn) f(e1; k1; : : : ; en; kn)

#

=

Z
En

m

n(de)Htf(e):

(5.42)

Note also that

X
1
t (� �K) = m:(5.43)

By Remark 3.1 we can regard the measure m(de)�(e; dk) as an element of � (which

we will also denote by �) and the random measure X1t as a ��valued random

variable. By Theorem 4.1, X1t has the same law as Xt under Q
� for each t � 0.

In fact, it is not di�cult to show that (X1t ; t � 0) is a Markov process with the

same �nite�dimensional distributions as X under Q� . We stress, however, that we

have only constructed X1t as an almost sure limit for each �xed t � 0 rather than

as an almost sure limit in some space of càdlàg paths.
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6. Dissimilarity for the stepping�stone process X

Suppose in this section that the reference measure m is �nite. Without loss of

generality, we can take m to be a probability measure.

De�nition 6.1. Consider � 2 �. For n = 2; 3; : : : de�ne the nth�order dissimilar-

ity of � to be the quantity

Dn(�) :=

Z
m

n(de)

nO
i=1

�(ei) (fk 2 Kn : kj 6= k`; for all j 6= `g) :(6.1)

Note that 1 � D2(�) � D3(�) � � � � � 0. Write �
D(�) := supfn : Dn(�) > 0g for

the maximal dissimilarity of �, where we set sup ; = 1.

As we remarked in the Introduction, it is possible, by exactly the same argument

used in Proposition 5.1 of [Eva97], to show that if Z (and hence also Ẑ) is a

symmetric ��stable process on the circle T with index 1 < � � 2, then for �xed

t > 0 there Q��a.s. exists a random countable subset fk1; k2; : : : g of the type�

space K such that for Lebesgue almost all e 2 T the probability measure Xt(e) is a
point mass at one of the ki. Indeed, under suitable hypotheses a similar argument

should extend to certain other processes for which points are regular. It is clear

that if Xt also has �nite maximal dissimilarity Q��a.s., then the set fk1; k2; : : : g
is, in fact, �nite Q��a.s. Theorem 6.4 below provides a su�cient condition for

the maximal dissimilarity �
D(Xt) to be �nite. We are able to verify this condition

when Z (and hence also Ẑ) is Brownian motion on T (see Corollary 9.3 and the

beginning of the proof of Theorem 10.2). We suspect that the condition is also true

for Lévy processes on T for which points are not essentially polar (see [EP98] for

an indication that this might be so).

De�nition 6.2. Observe that if n0 > n, then�
(Z

[n0]
1 ; : : : ; Z

[n0]
n ); (


[n0]
1 ; : : : ; 


[n0]
n ); �

[n0]

jNn

�
(6.2)

has the same distribution as (Z[n]
;


[n]
; �

[n]), where we write �
[n0]

jNn
(t) for the re-

striction of the partition �[n
0](t) to Nn . Consequently, on some probability space

(
[1]
;F [1]

;P[1]) there is an E1�valued process Z, an N1�valued process 
, and a

process � taking values in the space of partitions of N such that, in an obvious nota-

tion, ((Z1; : : : ; Zn); (
1; : : : ; 
n); �jNn) has the same distribution as (Z[n]
;


[n]
; �

[n]).

Remark 6.3. Recall the de�nition of Z[n], �
Z
[n] and �

[n] from Remark 4.3. Let
�
Z
[n]l and �

[n]l be de�ned from Z
[n] in a similar manner to �

Z
[n] and �

[n], with

the di�erence that when two coordinate processes of Z[n] collide, rather than the

one with the higher index being killed, a colliding particle is killed at random

independently of the past (with both possibilities equally likely). It is immediate

from the strong Markov property that (Z[n]
; �

[n]l) has the same distribution as

(Z[n]
; �

[n]) for all n 2 N. Consider t � 0 and a bijection � : N ! N and de�ne

�
(�)(t), a random partition of N, by i ��(�)(t) j if and only if ��1(i) ��(t) �

�1(j).

Then ((Z�(i)(0))i2N; �
(�)) has the same distribution as ((Zi(0))i2N; �). In particular,

for each t � 0 the random partition �(t) is exchangeable in the sense of Kingman's

de�nition of exchangeable random partitions (see Section 11 of [Ald85]).
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Theorem 6.4. For any � 2 � and t � 0, the maximal dissimilarity �
D(Xt) under

Q� is stochastically dominated by the number of blocks in the partition �(t). In

particular, if for some t > 0 the partition �(t) has �nitely many blocks P[1]�a.s.,

then �
D(Xt) <1, Q� -a.s.

Proof. Fix a di�use probability measure � on K (for example, � could be fair

coin�tossing measure). Given another probability measure � on K, let �! de-

note the push�forward of the measure � 
 � on K �K by the mapping (k; h) 7!
(k1; h1; k2; h2; k3; : : : ) from K �K into K. Let � denote the push�forward of �

by the mapping k 7! (k1; k3; k5; : : : ) from K into K. Thus the operations � 7! �
!

and � 7! �
 are one�sided inverses of each other: we have (�!) = �. Given

� 2 �, de�ne �!; � 2 � by �!(e) := �(e)! and � (e) := �(e) . Of course, the
operations � 7! �

! and � 7! �
 are also one�sided inverses of each other. Note

for any � 2 � that �!(e) is di�use for all e 2 E.
Fix t � 0. It is straighforward to check from the de�nition in Theorem 4.1 that

the distribution of X t under Q�
!

coincides with the distribution of Xt under Q
� .

(This is, of course, what we expect from the stepping�stone model interpretation:

a model that keeps track of the types for one trait should look the same as a model

that keeps track of the types for two traits if we don't look at one of the traits.)

Clearly, Dn(�
 ) � Dn(�) for any n and � 2 �, so �

D(� ) � �
D(�). Consequently,

�
D(Xt) under Q

� is stochastically dominated by �
D(Xt) under Q

�! .

We can use Remark 4.4 to compute multivariate moments of the form

Q� [fDn1(Xt)ga1 : : : fDn`(Xt)ga` ] ; ni 2 f2; 3; : : :g; ai 2 N; 1 � i � `; ` 2 N;

and discover that they are independent of � within the class of � 2 � with the

property that �(e) is di�use for all e 2 E. Because 0 � Dk(Xt) � 1 for all k � 2,
the multivariate moment problem for each of the vectors (Dn1(Xt); : : : ; Dn`(Xt))
is well�posed and hence the joint distribution of (D2(Xt); D3(Xt); : : : ) under Q

� is

the same for all such �. Consequently, the distribution of �
D(Xt) under Q

� is also

the same for all such �. In particular, if � 2 � is de�ned by �(e) := � for all e 2 E,
then the distributions of �

D(Xt) under Q
�! and Q� are the same.

Putting the above observations together, we see that it su�ces to show that
�
D(Xt) under Q

� is stochastically dominated by the number of blocks of �(t).

Let (~Li)i2N be an i.i.d. sequence of K�valued random variables (which we sup-

pose are also de�ned on (
[1]
;F [1]

;P [1])) that is independent of Z with ~
Li having

distribution �. Put Li = ~
L
i(t), so that Li = Lj if and only if i ��(t) j, P

[1]�a.s. It

follows from Remark 6.3 that the sequence ((Zi(0); Li))i2N of E�K�valued random

variables is exchangeable.

Let �i denote the point mass at (Zi(0); Li). By an extension of the standard

reverse martingale proof of de Finetti's theorem, as n!1 the sequence of random

probability measures Yn := n
�1
Pn

i=1�i converges P
[1]�a.s. in the weak topology

to a random probability measure Y on E � K. Moreover, if we let I denote

the permutation invariant �-�eld corresponding to ((Zi(0); Li))i2N (that is, I :=T
n �fYn; Yn+1; : : : g), then we have

P[1] [� ((Z1(0); L1); : : : ; (Zn(0); Ln)) j I] =
Z
dY

n
�(6.3)
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for any bounded Borel function � on (E �K)n. (See the proof of Theorem 2.4 of

[DK96] for the details of this sort of argument.)

We claim that Y has the same distribution as Xt under Q
� (recall from Remark

3.1 that we can identify � 2 � with the probability measure m(de)�(e)(dk) on

E �K and that ��valued random variables become random probability measures

on E � K when thought of in this way). If � is a bounded Borel function on

(E �K)n for some n 2 N, then, by (6.3),

P[1]

�Z
dY

n
�

�
= P[1] [� ((Z1(0); L1); : : : ; (Zn(0); Ln))]

= P[n]

24Z O
j2�[n](t)

�(dkj)�
�
(Z

[n]
1 (0); k



[n]

1 (t)
); : : : ; (Z [n]

n (0); k


[n]
n (t)

)
�35

= P[n]

24Z O
j2�[n](t)

�(Z
[n]
j (t))(dkj)�

�
(Z

[n]
1 (0); k



[n]

1 (t)
); : : : ; (Z [n]

n (0); k


[n]
n (t)

)
�35

:

Comparing this with the equivalent de�nition of (X;Q� ) in Remark 4.3 shows that

Y does indeed have the same distribution as Xt under Q
� .

Finally, by (6.3) we have

Dn(Y ) = P[1] fLi 6= Lj ; 1 � i < j � n j Ig
� P[1]

�
9`1; : : : ; `n : L`i 6= L`j ; 1 � i < j � n j I

	
= 1

�
9`1; : : : ; `n : L`i 6= L`j ; 1 � i < j � n

	
= 1 f�(t) has at least n blocksg :

(6.4)

It is thus certainly the case that �
D(Xt) under Q

� is stochastically dominated by

the number of blocks of �(t).

Remark 6.5. If Z and Ẑ are both Hunt processes (that is, if Assumption 5.1 holds),

then the particle representation of Section 5 can be used to give a somewhat more

direct proof of Theorem 6.4 (note that Assumption 5.4 holds because m is a prob-

ability measure). We can sketch the proof as follows. The set of levels U1 in the

construction of Section 5 is the set of points of a Poisson random measure on [0;1[
with Lebesgue intensity and hence U1 is discrete. The dissimilarity Dn(X

1
t ) is

just the conditional probability (conditioning on X1t ) that the particles with the n

lowest levels are all of di�erent types. The argument that lead to (5.27) establishes

that the total number of types exhibited by all particles is just the number of blocks

in the corresponding coalescing Markov labelled partition.

Remark 6.6. In the spirit of the previous remark, it is easy to see that �
D(Xt) is

almost surely �nite for all t > 0 when Z (and hence also Ẑ) is Brownian motion on

the circle T and m is normalised Lebesgue measure. Once again, we just sketch the

argument as a more quantitative result will follow from Corollary 9.3 below. Almost

surely, there will exist two particles, say with the mth and nth lowest levels, m < n,

such that by time t these two particles have collided and after the collision the �rst

particle moved around the circle clockwise while the second particle moves around
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anti�clockwise until they collided again. The total number of types exhibited by

all particles at time t is then at most n� 1.

7. Sample path continuity of the stepping�stone process X

Our aim in this Section is to present a su�cient condition for X to have con-

tinuous sample paths (Theorem 7.2) and use it to establish that if the migration

Markov process is a Lévy process or a �nice� di�usion, then X has continuous sam-

ple paths (Corollary 7.3, Corollary 7.4 and Remark 7.5). The proof of Theorem 7.2

is postponed to the next section. We emphasize that we are no longer assuming

that the reference measure m is �nite.

De�nition 7.1. For e = (e1; e2) 2 E2 with e1 6= e2, let T
e := infft � 0 : Ze1(t) =

Z
e2(t)g denote the �rst time that Ze1 and Ze2 collide.

Theorem 7.2. Suppose there exists " > 0 such that for all non-negative  2
L
1(m) \ L1(m),

lim sup
t#0

t
�"

Z
m

2(de) 
2(e)PfT e � tg <1:

Then X has continuous sample paths Q� -a.s. for all � 2 �.

Corollary 7.3. Suppose that Z is a Lévy process on Rd or the torus Td for some

d 2 N, and m is Lebesgue measure. Then X has continuous sample paths Q� -a.s.

for all � 2 �.

Proof. For d � 2 we have that T e =1, P�a.s. for m
2�a.e. e, and so Theorem 7.2

certainly gives the result. In fact, it follows from the remarks at the beginning of

Section 5 in [Eva97] that X evolves deterministically and continuously in this case.

Now consider the case where Z is R-valued. The T-valued case is similar and is

left to the reader.

Write ( �Z; �P z) for the Lévy process that is the symmetrisation of Z. That is, the

distribution of �
Z starting at 0 is the same as that of Z 0�Z 00, where Z 0; Z 00 are two

independent copies of Z both started at 0. Put

�
T
0 := infft � 0 : �Z(t) = 0g:(7.1)

Then for non-negative  2 L1(m) \ L1(m),Z
m

2(de) 
2(e)PfT e � tg =

Z
m

2(de) 
2(e) �P e1�e2f �T 0 � tg

=

Z
m(dx) � (x) �P xf �T 0 � tg;

(7.2)

where �
 (x) :=

R
m(dy) (x+y) (y) 2 L1(m)\L1(m) and we are, of course, using

the shift invariance of m.

For � > 0 write �
C
�, �
U
� and �e� for the �-capacity, �-resolvent and �-energy

corresponding to �
Z (see Sections I.2, II.3 and II.4 of [Ber96] for de�nitions). Because

�
Z is symmetric, these coincide with the corresponding dual objects. Write 	 for the

characteristic exponent of �Z (see Section I.1 of [Ber96]). Note that 	 is real�valued

and non-negative.
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Using the convention 1
1

= 0, we have from Theorems II.7 and II.13 of [Ber96]

that Z
m(dx) � (x) �P x[exp(�� �

T
0)] = �

C
�(f0g) �U� �

 (0) �
�
U
� �
 (0)

�e�(f0g) �
k � k1

��e�(f0g) :(7.3)

By Proposition I.2 of [Ber96],

	(z) � cz
2
; jzj � 1;(7.4)

for a suitable constant c, and so, for � � 1,

��e�(f0g) = �

2�

Z 1
�1

1

�+	(z)
dz � �

2�

Z
jzj�1

1

�+ cz
2
dz � c

0
�

1
2(7.5)

for a suitable constant c0.

Use the inequality 1[0;t](x) � e
��x + 1� e

��t � e
��x + �t and take � = t

� 2
3 to

get, for t � 1,Z
m(dx) � (x) �P xf �T 0 � tg � c

00k � k1��
1
2 + k � k1�t � c

�(k � k1 + k � k1)t
1
3 ;(7.6)

for suitable constants c00 and c�. Now apply Theorem 7.2 with " = 1=3.

Corollary 7.4. Let d be a metric inducing the topology of the Lusin space E. Write

B(x; r) := fy 2 E : d(x; y) � rg for the closed ball of radius r > 0 centred at x 2 E
and Sr := infft � 0 : Z(t) =2 B(Z(0); r)g for the time taken by Z to �rst travel

distance r from its starting point. Suppose that there are constants �; �; 
 > 0 such

that

lim sup
r#0

r
�� sup

x2E
m(B(x; r)) <1

and

lim sup
r#0

r
�
 sup

x2E
P
xfSr� � rg <1:

Then X has continuous sample paths Q� -a.s. for all � 2 �.

Proof. For non-negative  2 L1(m) \ L1(m) and � > 0 we haveZ
m

2(de) 
2(e)PfT e � tg

=

Z
m

2(de) 
2(e)1fd(e1; e2) � �gPfT e � tg

+

Z
m

2(de) 
2(e)1fd(e1; e2) > �gPfT e � tg

� k k1k k1 sup
x2E

m(B(x; �)) + 2k k21 sup
x2E

P
xfS�=2 � tg:

(7.7)

Take � = t
� to get that the hypothesis of Theorem 7.2 holds with " = (��)^
.

Remark 7.5. The above result can be applied to the case where Z is a regular

di�usion on R in natural scale. In this case m is the speed measure and Ẑ = Z. If

m(dx) = a(x)dx with a bounded away from 0 and 1 and d is the usual Euclidean

metric on R, then it is not di�cult to see that the conditions of the corollary hold

for � = 1, � < 1=2, and any 
 > 0. We leave the details to the reader.
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8. Proof of Theorem 7.2

The proof of Theorem 7.2 will involve checking Kolmogorov's criterion for the

sample path continuity of real�valued processes of the form (I(Xt;�))t�0 for suit-

able � 2 C(K), where I(�; �) is de�ned in De�nition 3.2. The proof will be via

several lemmas.

Remark 8.1. In performing the necessary moment computations for Kolmogorov's

criterion we will need to consider the various orders in which particles can coalesce

in the coalescing system that de�ne these moments and estimate the contribution

of each possible sequence of collisions. We will repeatedly use the fact that if, for

�xed i 6= j, we �swap� Zei(t) and Zej (t) immediately after a stopping time S for

Z
e at which Z

ei(S) = Z
ej (S) to form a new process ~

Z
e, then ~

Z
e has the same

distribution as Ze. More precisely, if we de�ne

~
Z

e

i (t) :=

(
Z

e

i (t); for t � S;

Z
e

j (t); for t > S;

(8.1)

~
Z

e

j (t) :=

(
Z

e

j (t); for t � S;

Z
e

i (t); for t > S;

(8.2)

and

~
Z

e

h := Z
e

h; h =2 fi; jg;(8.3)

then, by the strong Markov property, ~Ze has the same distribution as Ze.

De�nition 8.2. For n
0
; n
00 2 N consider e

0 2 E
n0 and e

00 2 E
n00 with

e
0
1; : : : ; e

0
n0 ; e

00
1 ; : : : e

00
n00 distinct. De�ne a process �e

0je00 taking values in the col-

lection of �nite sequences of two element subsets of fe01; : : : ; e0n0 ; e001 ; : : : e00n00g and

stopping times 0 = T

e
0je00

0 � T

e
0je00

1 � : : : as follows. For e0i 2 fe01; : : : ; e0n0g, write

S

e
0je00

e0
i

:= infft � 0 : Ze0
i(t) = Z

e0
j (t) for some j 6= i

orZe0
i(t) = Z

e00
k (t) for some k such that �Ze

00

k (s) 6= y for all s < tg:
For e00i 2 fe001 ; : : : ; e00n00g write

S

e
0je00

e00
i

:= infft � 0 : Ze00
i (t) = Z

e0
j (t) for some j

orZe00
i (t) = Z

e00
k (t) for some k 6= i such that �

Z
e
00

k (s) 6= y for all s < tg:
Loosely put, we are thinking of the particles starting at coordinates of e0 as evolving

freely without coalescence whereas the particles starting at coordinates of e00 are

undergoing coalescence among themselves. Moreover, S
e
0je00

e (if it is �nite) is the

�rst time that the particle starting at e (where e is either a coordinate of e0 or e00)

collides with a �living� particle starting at one of the other coordinates.

Let Re
0je00

< n
0 + n

00 denote the cardinality of the random set of time pointsn
S
e
0je00

e : e 2 fe01; : : : ; e0n0 ; e001 ; : : : e00n00g and Se
0je00

e <1
o

(8.4)

and, if Re
0je00

> 0, write T
e
0je00

1 < : : : < T

e
0je00

Re
0
je
00 for an ordered listing of this set.

Put T
e
0je00

0 := 0 and T
e
0je00

` :=1 for ` > R
e
0je00 .
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Set �e
0je00(T

e
0je00

0 ) := ;. For 1 � k � R
e
0je00 write

fxk; ykg � fe01; : : : ; e0n0 ; e001 ; : : : ; e00n00g;(8.5)

for the P�a.s. unique unordered pair such that Zxk(T
e
0je00

k ) = Z
yk(T

e
0je00

k ). By

de�nition, at most one of xk and yk belong to fx1; y1; : : : ; xk�1; yk�1g. Put

�e
0je00(T

e
0je00

k ) := (fx1; y1g; : : : ; fxk; ykg). Complete the de�nition of �e
0je00 by

setting �e
0je00(t) := �e

0je00(T
e
0je00

` ), where ` � 0 is such that T
e
0je00

` � t < T

e
0je00

`+1 .

De�nition 8.3. Given e 2 E
n, n 2 N, with e1; : : : ; en distinct, de�ne a process

�e taking values in the collection of �nite sequences of two element subsets of

fe1; : : : ; eng and stopping times 0 = T
e

0 � T
e

1 � : : : by (with a slight abuse) re-

using the de�nitions of �e
0je00 and T

e
0je00

k with e
0 = e and e00 the null vector. That

is, all particles evolve freely with none of them killed due to coalescence. Note that

if n = 2, then T e

1 = T
e, where T e is the �rst collision time from De�nition 7.1.

Notation 8.4. Given e0 2 En0 and e
00 2 En00 , write e0 : e00 for the concatenation of

these two vectors. That is, e0 : e0 := (e01; : : : ; e
0
n0 ; e

00
1 ; : : : e

00
n00) 2 En0+n00 .

Notation 8.5. For x 2 R write bxc for the greatest integer less than or equal to x.

Lemma 8.6. For non-negative  2 L
1(m) \ L1(m), t � 0, and q; n0; n00 2 N we

have Z
m

n0 
m


n00(de0 
 de
00) 
n

0

(e0) 
n
00

(e00)PfT e
0je00

q � tg

�
Z
m

n0 
m


n00(de0 
 de
00) 
n

0

(e0) 
n
00

(e00)PfT e
0:e00

q � tg

� c(n0 + n
00
; q;  )

�Z
m

2(de) 
2(e)PfT e � tg

�b q
3
c

(8.6)

for some constant c(n0 + n
00
; q;  ) that depends only on n0 + n

00, q and  .

Proof. By de�nition, Se
0:e00

e � S

e
0je00

e for any e 2 fe01; : : : ; e0n0 ; e001 ; : : : e00n00g, and so

T
e
0:e00

q � T

e
0je00

q for all q. It therefore su�ces to show that for q; n 2 NZ
m

n(de) 
n(e)PfT e

q � tg

� c(n; q;  )

�Z
m

2(de) 
2(e)PfT e � tg

�b q
3
c

:

(8.7)

We begin with some notation. For any sequence of pairs

H = (fx1; y1g; : : : ; fx`; y`g);with xi; yi 2 E, and xi 6= yi for 1 � i � jH j := `;

and t > 0, de�ne an event

A
H
t := fT (x1;y1) � T

(x2;y2) � : : : � T
(x`;y`) � tg:(8.8)

It is easy to see that AH0

t � A
H
t for any subsequence H

0 of H . Put H :=S`
i=1fxi; yig � E. For z 2 H , de�ne �(z;H) = f1 � i � jH j : z 2 fxi; yigg to

be the set of indices of the pairs in which z appears.

Now �x G = (fx1; y1g; : : : ; fxq ; yqg), with xi; yi 2 E, xi 6= yi, 1 � i � q, and

G :=
Sq
i=1fxi; yig � fe1; : : : ; eng. We wish to estimate P(AG

t ).
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Let (i1; : : : ; ih) be the subsequence of (1; 2; : : : ; q) obtained by listing the ele-

ments of fmax �(z;G); z 2 Gg in increasing order. De�ne a subsequence G� of G

by

G� := (fxi1 ; yi1g; : : : ; fxih ; yihg) =: (fx0;1; y0;1g; : : : ; fx0;jG�j; y0;jG�jg)(8.9)

(the reason for the alternative indexing will become clear as we proceed). Note that

jGj = jG�j because for all z 2 G, z 2 fxmax �(z;G); ymax �(z;G)g � G�: By de�nition,

for 1 � j � jG�j the inequalities max �(xij ; G�) � j and max �(yij ; G�) � j hold,

and at least one of these inequalities is an equality. In other words,

minfmax �(x0;j ; G�);max �(y0;j ; G�)g = j; 1 � j � jG�j:(8.10)

Without loss of generality we can assume that i1 = max �(xi1 ; G) � max �(yi1 ; G).
Then xi1 62 fxr; yrg for i1 < r � q, and, a fortiori, xi1 62 fxip ; yipg for 1 < p � h.

Hence, �(x0;1; G�) = �(xi1 ; G�) = f1g and we are now in one of the following three

cases:

Case I: j�(y0;1; G�)j = 1. Let G1 be the subsequence of G� obtained by deleting

fx0;1; y0;1g. Then G1 \ fx0;1; y0;1g = ;,

P(AG
t ) � P(AG�

t ) � P

�
fT (x0;1;y0;1) � tg \ AG1

t

�
= PfT (x0;1;y0;1) � tgP(AG1

t );
(8.11)

and jG1j = jG�j � 2 = jGj � 2.

Case II: j�(y0;1; G�)j = 2. Write �(y0;1; G�) = f1; j2g. De�ne a subsequence G1 of

G� by deleting fx0;1; y0;1g and fx0;j2 ; y0;j2g) from G�. Then G1 \ fx0;1; y0;1g = ;,

P(AG
t ) � P(AG�

t ) � P

�
fT (x0;1;y0;1) � tg \ AG1

t

�
= PfT (x0;1;y0;1) � tgP(AG1

t );
(8.12)

and jG1j � jG�j � 3 = jGj � 3.

Case III: j�(y0;1; G�)j > 2. Write �(y0;1; G�) = f1; j2; : : : ; jpg where 1 < j2 <

: : : < jp and y0;1 = y0;j2 = : : : = y0;jp . Then max �(x0;j2 ; G�) = j2 because

max �(y0;j2 ; G�) = jp > j2. Let

G�� := (fx0;1; y00;1g; : : : ; fx0;jG�j; y00;jG�jg);(8.13)

where

y
0
0;j :=

(
y0;j ; if j � j2 or y0;j 6= y0;1;

x0;j2 ; if j > j2 and y0;j = y0;1.
(8.14)

We then have G� = G�� and by, switching Zx0;j2 and Zy0;j2 at time T (x0;j2 ;y0;j2 )

in the manner described in Remark 8.1, we also have P(AG�
t ) = P(AG��

t ). More-

over, �(x0;1; G��) = 1 because x0;1 =2 Sq
j=j2

fx0;j ; y0;jg =
Sq
j=j2

fx0;j ; y00;jg. Now

j�(y0;1; G��)j = 2 and we are in Case II with G� replaced by G��. From the dis-

cussion in Case II we know that there exists a subsequence G1 of G�� such that

G1 \ fx0;1; y0;1g = ;;

P(AG
t ) � P(AG�

t ) = P(AG��
t ) � P

�
fT (x0;1;y0;1) � tg \ AG1

t

�
= PfT (x0;1;y0;1) � tgP(AG1

t );
(8.15)
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and jG1j � jG��j � 3 = jG�j � 3 = jGj � 3.

The reduction procedure that transformed G into G1 can be repeated at least

(bjGj=3c � 1)+ more times. That is, for 0 � ` � bjGj=3c, there exist sequences

G` = (fx`;1; y`;1g; : : : ; fx`;jG`j; y`;jG`jg such that G0 = G and for 0 � ` � bjGj=3c�1

P(AG`

t ) � P

�
fT (x`;1;y`;1) � tg \AG`+1

t

�
= PfT (xl;1;yl;1) � tgP(AGl+1

t );(8.16)

with G`+1 \ fx`;1; y`;1g = ;, Gl+1 � G`, and jGl+1j � jG`j � 3.
It follows that

P(AG
t ) � PfT (x0;1;y0;1) � tgP(AG1

t ) � : : : �
b
jGj

3
c�1Y

i=0

PfT (xi;1;yi;1) � tg;(8.17)

where the sets fxi;1; yi;1g, i = 0; 1; : : : ; bjGj=3c � 1, are pairwise disjoint.
Write G e

t for the set of possible values of �e(T e

q ) on the event T e

q � t. Note that

jGj > q for any G 2 G e and so the rightmost product in (8.17) has at least bq=3c
terms. Therefore, if we let c(n; q;  ) denote a constant that only depends on n; q;  

(but not t), we have from (8.17) thatZ
m

n(de) 
n(e)PfT e

q � tg

=

Z
m

n(de) 
n(e)

X
G2Ge

t

Pf�e(T e

q ) = G; T
e

q � tg

�
Z
m

n(de) 
n(e)

X
G2Ge

t

P(AG
t )

� c(n; q;  )

�Z
m

2(de) 
2(e)PfT e � tg

�b q
3
c

:

(8.18)

Notation 8.7. Given � 2 �, de�ne �t 2 �, t � 0, by

I(�t;�) :=

Z
m(de)P

�Z
�(Ze(t))(dk)�(e)(k)

�
=

Z
m(de)P

�Z
�(e)(dk)�(Ẑe(t))(k)

�
;

(8.19)

so that I(�t;�) = Q� [I(Xt;�)].

Lemma 8.8. Consider � 2 �, t � 0, q 2 N, and � =  
 � with non-negative

 2 L
1(m) \ L1(m) and non-negative � 2 C(K). There exists a constant c(�; q)

that only depends on � and q (and not � or t) such that

Q�
h
fI(Xt;�) � I(�t;�)g2q

i
� c(�; q)

�Z
m

2(de) 
2(e)PfT e � tg

�b q
3
c

:
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Proof. Given n
0
; n
00 2 N and vectors f 0 2 E

n0 and f
00 2 E

n00 with f
0
1; : : : ; f

0
n0 ,

f
00
1 ; : : : f

00
n00 distinct, write

L
f
0jf 00(t) :=

Z n0O
i0=1

�(Zf 0
i0 (t))(dk0i0 )


n00O
i00=1

�(Zf 00
i00 (t))(dk00i0 )

� �

n0 (k01; : : : ; k

0
n0)�


n00
�
k
00

f
00

1 (t)
; : : : ; k

00

f
00

n00
(t)

�
:

(8.20)

Then, by de�nition,

Q�
h
fI(Xt;�) � I(�t;�)g2q

i
=

2qX
i=0

(�1)i
�
2q

i

�
I
2q�i(�t;�)Q

� [I i(Xt;�)]

=

2qX
i=0

(�1)i
�
2q

i

�Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)P
h
L
e
0je00(t)

i
:

Therefore, by Lemma 8.6, it su�ces to show that

2qX
i=0

(�1)i
�
2q

i

�Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)

� P

h
L
e
0je00(t)1

n
T

e
0je00

p � t < T

e
0je00

p+1

oi
= 0

(8.21)

for 0 � p � q � 1.
For e

0 2 E
2q�i and e

00 2 E
i with e

0
1; : : : ; e

0
2q�i; e

00
1 ; : : : ; e

00
i distinct, write

S
e
0je00

j;h , 0 � j � 2q � i, 0 � h � i, for the collection of subsets of

fe01; : : : ; e02q�i; e001 ; : : : ; e00i g with exactly j elements from fe01; : : : ; e02q�ig and exactly

h elements from fe001 ; : : : ; e00i g. Put

C
i
j;h := jSe

0je00

j;h j =
�
2q � i

j

��
i

h

�
; 0 � j � 2q � i; 0 � h � i:(8.22)

It is clear by construction that, recalling the transformation H 7! H from the proof

of Lemma 8.6,

Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)P
h
L
e
0je00(t)1

n
T

e
0je00

p � t < T

e
0je00

p+1

oi
=
X
j;h

Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)

� P

264Le
0je00(t)1

n
T

e
0je00

p � t < T

e
0je00

p+1

o X
S2S

e
0
je
00

j;h

1

n
�e

0je00(T e
0je00

p ) = S

o375
=
X
j;h

C
i
j;h

Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)

� P

h
L
e
0je00(t)1

n
T

e
0je00

p � t < T

e
0je00

p+1 ; �e
0je00(T e

0je00

p ) = fe01; : : : ; e0j ; e001 ; : : : ; e00hg
oi
:
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Note that j�e
0je00(T

e
0je00

p )j � 2p, and so a necessary condition on j; h for a summand

in the last term to be non-zero is that j + h � 2p < 2q.
For �xed e

0 and e
00 write e

� := (e01; : : : ; e
0
2q�i; e

00
h+1; : : : ; e

00
i ) and e

�� :=
(e001 ; : : : ; e

00
h). Observe thatn
T

e
0je00

p � t < T

e
0je00

p+1 ; �e
0je00(T e

0je00

p ) = fe01; : : : ; e0j ; e001 ; : : : ; e00hg
o

=
n
T

e
�je��

p � t < T

e
�je��

p+1 ; �e
�je��(T e

�je��

p ) = fe01; : : : ; e0j ; e001 ; : : : ; e00hg
o
:

(8.23)

Moreover, on this event the partition �e
��

(t) is the restriction of the partition �e
00

(t)

to Nh , and hence Le
0je00(t) = L

e
�je��(t) on this event. Therefore, the quantity

Z
m

2q�i(de0)
m


i(de00) 
2q�i(e0) 
i(e00)

� P

h
L
e
0je00(t)1

n
T

e
0je00

p � t < T

e
0je00

p+1 ; �e
0je00(T e

0je00

p ) = fe01; : : : ; e0j ; e001 ; : : : ; e00hg
oi

(8.24)

does not vary as i ranges from h to 2q � j.

The proof is complete once we note that for �xed h; j with h < 2q � j we have

2q�jX
i=h

(�1)i
�
2q

i

�
C
i
j;h

=
(2q)!(�1)h

(2q � j � h)!j!h!

2q�jX
i=h

(�1)i�h (2q � j � h)!

(i� h)!(2q � i� j)!

=
(2q)!(�1)h

(2q � j � h)!j!h!
(1� 1)2q�j�h

= 0:

(8.25)

Completion of the Proof of Theorem 7.2. Because X (as a Hunt process) has

càdlàg paths Q� -a.s. for all � 2 �, it su�ces to show that I(X�;�) has continuous
sample paths Q� -a.s. for all � 2 � and all � belonging to some countable subset

of L1(m;C(K)) that is separating for �. Moreover, because I(X�;�) already has

càdlàg paths, verifying Kolmogorov's criterion establishes that these paths are, in

fact, Q��a.s. continuous. That is, verifying Kolmogorov's criterion does more than

just establish the existence of a continuous version of X , it establishes that the

version we already have is continuous.

Let fÛ�g�>0 denote the resolvent corresponding to the semigroup fP̂tgt�0. Sup-
pose that S is a countable collection of bounded, m-integrable, continuous, non-

negative functions on E with dense linear span in L
1(m) (such a collection can

be seen to exist by combining Lemma A.1 of [Eva97] with Proposition 3.4.2 of

[EK86]). Note that if � 2 S, then �Û
�
� converges to � pointwise as � ! 1.

Also,
R
m(dx)�Û�

�(x) =
R
m(dx)�(x) < 1 by the duality hypothesis for the

pair Z; Ẑ. By a standard extension of Lebesgue's dominated convergence theorem

(see, for example, Proposition 18 in Chapter 11 of [Roy68]), if g 2 L
1(m), then

lim�!1

R
m(dx)�Û�

�(x)g(x) =
R
m(dx)�(x)g(x).
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Write D := fÛ�
� : � 2 S; � rationalg � L

1(m) \ L1(m). It follows easily from

what we have just observed that if ~
C is a countable dense subset of f� 2 C(K) :

� � 0g, then the countable collection of functions of the form  
 �, with  2 D
and � 2 ~

C , is separating for �.
Fix  2 D (with  = Û

�
� for � 2 S and � rational), � 2 ~

C, and q 2 N such

that bq=3c" > 1, where " > 0 is as in the statement of the theorem. In order to

show that I(X�; 
�) has Q� -a.s. continuous sample paths for all �, it su�ces by

the Markov property of X and Kolmogorov's continuity criterion to show for some

constants c and � which depend only on  ; �; q that

Q�
h
fI(Xt; 
 �)� I(�; 
 �)g2q

i
� ct

1+�(8.26)

for all t � 0 and � 2 �. This, however, follows from Lemma 8.8 and the observation

that

jI(�t; 
 �)� I(�; 
 �)j �
Z
m(dx)

���P̂t (x)�  (x)
���

=

Z
m(dx)

����Z 1
t

�
e
��(s�t) � e

��s
�
P̂s�(x) ds �

Z t

0

e
��s

P̂s�(x) ds

����
� 2��1(1� e

��t)

Z
m(dx)�(x) � 2t

Z
m(dx)�(x);

(8.27)

where we have used the consequence of the duality hypothesis on Z, Ẑ thatR
m(dx)�P̂t�(x) =

R
m(dx)�(x).

9. Coalescing and annihilating circular Brownian motions

In this section we develop a duality relationship between systems of coalescing

Brownian motions on T, the circle of circumference 2�, and systems of annihilating

Brownian motions on T (Proposition 9.1). This relation will be used in Section 10

to investigate the properties of the stepping�stone model X when the migration

process is Brownian motion on T. It will also be used in Section 11 to study the

random tree associated with in�nitely many coalescing Brownian motions on T. We

mention in passing that coalescing Brownian motion has recently become a topic

of renewed interest (see, for example, [TW97] and [Tsi98]).

For the rest of this paper, Z (and hence Ẑ) will be standard Brownian motion

on T, and m will be normalised Lebesgue measure on T.

Given a �nite non�empty set A � T, enumerate A as fe1; : : : ; eng, put e :=
(e1; : : : ; en), and de�ne a process WA, the set�valued coalescing circular Brownian

motion, taking values in the collection of non�empty �nite subsets of T by

W
A(t) := f �Ze


e1(t)
(t); : : : ; �Ze


e
n
(t)(t)g = fZe


e1 (t)
(t); : : : ; Ze


e
n
(t)(t)g; t � 0:(9.1)

Equivalently, WA(t) is the set of labels of the coalescing Markov labelled partition

process �e(t). Of course, di�erent enumerations of A lead to di�erent processes,

but all these processes will have the same distribution. In words, WA describes

the evolution of a �nite set of indistinguishable Brownian particles with the feature

that particles evolve independently between collisions but when two particles collide

they coalesce into a single particle.

Write O for the collection of open subsets of T that are either empty or consist

of a �nite union of open intervals with distinct end�points. Given B 2 O, de�ne on
some probability space (�;G;Q) an O�valued process V B , the annihilating circular
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Brownian motion as follows. The end�points of the constituent intervals execute

independent Brownian motions on T until they collide, at which point they anni-

hilate each other. If the two colliding end�points are from di�erent intervals, then

those two intervals merge into one interval. If the two colliding end�points are from

the same interval, then that interval vanishes (unless the interval was arbitrarily

close to T just before the collision, in which case the process takes the value T).

The process is stopped when it hits the empty set or T.

We have the following duality relation between WA and V B .

Proposition 9.1. For all �nite, non�empty subsets A � T, all sets B 2 O, and
all t � 0,

PfWA(t) � Bg = QfA � V
B(t)g:

Proof. For N 2 N, let ZN := f0; 1; : : :N � 1g denote the integers modulo N . Let

Z
1
2

N := f 1
2
;
3
2
; : : : ;

2N�1
2

g denote the half�integers modulo N . A non-empty subset

D of ZN can be (uniquely) decomposed into �intervals�: an interval of D is an

equivalence class for the equivalence relation on the points of D de�ned by x � y if

and only if x = y, fx; x+1; : : : ; y�1; yg � D, or fy; y+1; : : : ; x�1; xg � D (with

all arithmetic modulo N). Any interval other than ZN itself has an associated pair

of (distinct) �end�points� in Z
1
2

N: if the interval is fa; a+ 1; : : : ; b� 1; bg, then the

corresponding end�points are a� 1
2
and b+ 1

2
(with all arithmetic modulo N). Note

that the end�points of di�erent intervals of D are distinct.

For C � ZN, let W
C
N be a process on some probability space (
0;F 0;P0) taking

values in the collection of non�empty subsets of ZN that is de�ned in the same

manner as WA, with Brownian motion on T replaced by simple, symmetric (con-

tinuous time) random walk on ZN (that is, by the continuous time Markov chain

on ZN that only makes jumps from x to x+1 or x to x�1 at a common rate � > 0
for all x 2 ZN). For D � ZN, let V

D
N be a process taking values in the collection

of subsets of ZN that is de�ned on some probability space (�0;G0;Q0 ) in the same

manner as V B , with Brownian motion on T replaced by simple, symmetric (contin-

uous time) random walk on Z
1
2

N (with the same jump rate � as in the de�nition of

W
C
N ). That is, end�points of intervals evolve as annihilating random walks on Z

1
2

N.

The proposition will follow by a straightforward weak limit argument if we can

show the following duality relationship between the coalescing �circular� random

walk WC
N and the annihilating �circular� random walk V D

N :

P0fWC
N (t) � Dg = Q0fC � V

D
N (t)g(9.2)

for all non�empty subsets of C � ZN, all subsets of D � ZN, and all t � 0.
It is simple, but somewhat tedious, to establish (9.2) by a generator calculation

using the usual generator criterion for duality (see, for example, Corollary 4.4.13

of [EK86]). However, as Tom Liggett pointed out to us, there is an easier route. A

little thought shows that V D
N is nothing other than the (simple, symmetric) voter

model on ZN. The analogous relationship between the annihilating random walk

and the voter model on Z due to [Sch76] is usually called the border equation (see

Section 2 of [BG80] for a discussion and further references). The relationship (9.2) is

then just the analogue of the usual duality between the voter model and coalescing

randomwalk onZand it can be established in a similar manner by Harris's graphical

method (again see Section 2 of [BG80] for a discussion and references).
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Remark 9.2. We have been unable to �nd an explicit reference to Proposition 9.1

or its analogue for Brownian motion on R. However, if, in the R�valued analogue,

one considers a limit where A approaches a dense subset of R, so that the system

of coalescing Brownian motions converges to a coalescing Brownian �ow, then the

analogous result for the limiting �ow can be found on p18 of [Arr79].

Recall Z and 
 from De�nition 6.2. De�ne set�valued processes W [n], n 2 N,

and W by

W
[n](t) := fZ
1(t)(t); : : : ; Z
n(t)(t)g � T; t � 0;(9.3)

and

W (t) := fZ
1(t)(t); Z
2(t)(t); : : : g � T; t � 0:(9.4)

Thus, W [1](t) � W
[2](t) � : : : and

S
n2NW

[n](t) = W (t). Recall that (W [n](t)t�0

has the same law as (fZ [n]



[n]

1 (t)
(t); : : : ; Z

[n]



[n]
n (t)

(t)g)t�0. Put N(t) := jW (t)j, the
cardinality of the random set W (t). Note that N(t) is also the number of blocks

in the partition �(t), which is in turn the cardinality of the random set �(t). It is
clear that P[1]-a.s. N(t) is a non�increasing, right�continuous function of t and if

N(t0) <1 for some t0 � 0, then N(t)�N(t�) is either 0 or �1 for all t > t0. By

the following corollary, N(t) <1, P[1]-a.s., for all t > 0.

Corollary 9.3. For t > 0,

P[1] [N(t) ] = 1 + 2

1X
n=1

exp

�
�
�
n

2

�2
t

�
<1

and

lim
t#0

t

1
2P[1] [N(t) ] = 2

p
�:

Proof. Note that if B is a single open interval (and hence for all t � 0 the set V B(t)
is either an interval or empty) and we let L(t) denote the length of V B(t), then L
is a Brownian motion on [0; 2�] with VarL(t) = 2t that is stopped at the �rst time

it hits f0; 2�g.
Now, for M 2 N and 0 � i �M � 1 we have from the translation invariance of

Z and Proposition 9.1 that

P[1]
n
W

[n](t) \ [2�i=M; 2�(i+ 1)=M ] 6= ;
o

= 1� P[1]
n
W

[n](t) �]0; 2�(M � 1)=M [
o

= 1� P[1]
n
W

[n](0) � V
]0;2�(M�1)=M [(t)

o
;

(9.5)

where we take the annihilating process V ]0;2�(M�1)=M [ to be de�ned on the same

probability space (
[1]
;F [1]

;P[1]) as the process Z that was used to construct

W
[n] and W , and we further take the processes V ]0;2�(M�1)=M [ and Z to be inde-

pendent. Thus,

P[1] fW (t) \ [2�i=M; 2�(i+ 1)=M ] 6= ;g

= 1� P[1]
n
V

]0;2�(M�1)=M [(t) = T

o
= 1� ~P

n
~� � 2t; ~

B(~� ) = 2� j ~B(0) = 2�(M � 1)=M
o
;

(9.6)
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where ~
B is a standard one�dimensional Brownian motion on some probability space

(~
; ~F ; ~P) and ~� = inffs � 0 : ~B(s) 2 f0; 2�gg.
By Theorem 4.1.1 of [Kni81] we have

P[1] [ jW (t)j ]

= lim
M!1

P[1]

"
M�1X
i=0

1 fW (t) \ [2�i=M; 2�(i+ 1)=M ] 6= ;g
#

= lim
M!1

M

�
1� ~P

n
~� � 2t; ~

B(~� ) = 2� j ~B(0) = 2�(M � 1)=M
o�

= 1� lim
M!1

M

2

�

1X
n=1

(�1)n
n

sin

�
n�

�
M � 1

M

��
exp

�
�
�
n

2

�2
t

�

= 1 + 2

1X
n=1

exp

�
�
�
n

2

�2
t

�
= �

�
t

4�

�
<1;

where

�(u) :=

1X
n=�1

exp(��n2u)(9.7)

is the Jacobi theta function (we refer the reader to [BPY98] for a survey of many of

the other probabilistic interpretations of the theta function). The proof is completed

by recalling that � satis�es the functional equation �(u) = u
� 1

2 �(u�1) and noting

that limu!1 �(u) = 1.

We conjecture that t
1
2N(t)! 2

p
� as t # 0, P[1]�a.s. However, we are only able

to prove the following weaker result, which will be used in Section 11. The proof

will be given at the end of this section after some preliminaries.

Proposition 9.4. With P[1]�probability one,

0 < lim inf
t#0

t

1
2N(t) � lim sup

t#0

t

1
2N(t) <1:

For t > 0 the random partition �(t) is, by Remark 6.3 and Corollary 9.3, ex-

changeable with a �nite number of blocks. Let 1 = x
t
1 < x

t
2 < : : : < x

t
N(t) be

the list in increasing order of the minimal elements of the blocks of �(t) (that is,
a list in increasing order of the elements of the set �(t)). Results of Kingman (see

Section 11 of [Ald85] for a uni�ed account) and the fact that � evolves by pairwise

coalescence of blocks give that P[1]�a.s. for all t > 0 the asymptotic frequencies

Fi(t) = lim
n!1

n
�1jfj 2 Nn : j ��(t) x

t
igj(9.8)

exist for 1 � i � N(t) and F1(t) + � � �+ FN(t)(t) = 1.

Lemma 9.5. With P[1]�probability one,

lim
t#0

t
� 1

2

N(t)X
i=1

Fi(t)
2 =

2

�
3=2

:
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Proof. Put Tij := infft � 0 : Zi(t) = Zj(t)g for i 6= j. Observe that

P[1]

24N(t)X
i=1

Fi(t)
2

35 = P[1]

"
lim
n!1

1

n
2

nX
i=1

nX
k=1

1

�
j ��(t) k

	#
= P[1]f1 ��(t) 2g
= P[1]fT12 � tg:

From Theorem 4.1.1 of [Kni81] we have

P[1]fT12 � tg

=
1

2�

Z 2�

0

1� 4

�

1X
n=1

sin

�
(2n� 1)x

2

�
1

2n� 1
exp

 
�
�
2n� 1

2

�2

t

!
dx

=
8

�
2

1X
n=1

1

(2n� 1)2

(
1� exp

 
�
�
2n� 1

2

�2

t

!)

=
2

�
2

Z t

0

1X
n=1

exp

 
�
�
2n� 1

2

�2

s

!
ds

=
2

�
2

Z t

0

1

2

(
1X

n=�1

exp
�
�n2 s

4

�
�

1X
n=�1

exp
�
�n2s

�)
ds

=
1

�
2

Z t

0

n
�

�
s

4�

�
� �

�
s

�

�o
ds;

where � is again the Jacobi theta function de�ned in (9.7). By the properties of �

recalled after (9.7),

lim
t#0

t
� 1

2P[1]

24N(t)X
i=1

Fi(t)
2

35 = lim
t#0

t
� 1

2P[1]fT12 � tg = 2

�
3=2

:(9.9)

Now

P[1]

264
0@N(t)X

i=1

Fi(t)
2

1A2
375

= P[1]

"
lim
n!1

1

n
4

nX
i1=1

nX
i2=1

nX
i3=1

nX
i4=1

1

�
i1 ��(t) i2; i3 ��(t) i4

	#
= P[1]f1 ��(t) 2; 3 ��(t) 4g;

and so

Var

0@N(t)X
i=1

Fi(t)
2

1A = P[1]f1 ��(t) 2; 3 ��(t) 4g � P[1]fT12 � tg2

= P[1]f1 ��(t) 2; 3 ��(t) 4g � P[1]fT12 � t; T23 � tg:

(9.10)
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Observe that

P[1]fT12 � t; T34 � t; T13 > t; T14 > t; T23 > t; T24 > tg
� P[1]f1 ��(t) 2; 3 ��(t) 4; ff1; 2; 3; 4gg 6= �

[4](t)g
� P[1]fT12 � t; T34 � tg

and

P[1]fT12 � t; T34 � tg � P[1]fT12 � t; T34 � t; T13 > t; T14 > t; T23 > t; T24 > tg
�
X
i=1;2

X
j=3;4

P[1]fT12 � t; T34 � t; Tij � tg:

Thus

Var

0@N(t)X
i=1

Fi(t)
2

1A � P[1]f1 ��(t) 2 ��(t) 3 ��(t) 4g

+
X
i=1;2

X
j=3;4

P[1]fT12 � t; T34 � t; Tij � tg:
(9.11)

Put Dij := jZi(0)� Zj(0)j. We have

P[1]f1 ��(t) 2 ��(t) 3 ��(t) 4g
= P[1]fT12 � t; T13 ^ T23 � t; T14 ^ T24 ^ T34 � tg

= P[1]

�
fT12 � t; T13 ^ T23 � t; T14 ^ T24 ^ T34 � tg

n fD12 � t

2
5 ; (D13 ^D23) � t

2
5 ; (D14 ^D24 ^D34) � t

2
5 g
�

+ P[1]fD12 � t

2
5 ; (D13 ^D23) � t

2
5 ; (D14 ^D24 ^D34) � t

2
5 g

�
X

1�i<j�4

P[1]fTij � t; Dij > t

2
5 g+ P[1]

�
max

1�i<j�4
Dij � 3t

2
5

�
;

(9.12)

where we have appealed to the triangle inequality in the last step. Because 2
5
<

1
2
,

an application of the re�ection principle and Brownian scaling certainly gives that

the probability P[1]fTij � t; Dij > t

2
5 g is o(t�) as t # 0 for any � > 0. Moreover, by

the translation invariance of m (the common distribution of the Zi(0)), the second
term in the rightmost member of (9.12) is at most

P[1]fjZ2(0)� Z1(0)j � 3t
2
5 ; jZ3(0)� Z1(0)j � 3t

2
5 ; jZ4(0)� Z1(0)j � 3t

2
5 g

= P[1]fjZ2(0)j � 3t
2
5 ; jZ3(0)j � 3t

2
5 ; jZ4(0)j � 3t

2
5 g

= ct

6
5 ;

for a suitable constant c when t is su�ciently small. Therefore,

P[1]f1 ��(t) 2 ��(t) 3 ��(t) 4g
= P[1]ffT12 � t; T13 ^ T23 � t; T14 ^ T24 ^ T34 � tg
= O(t

6
5 ); as t # 0.

(9.13)
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A similar argument establishes that

P[1]fT12 � t; T34 � t; Tij � tg = O(t
6
5 ); as t # 0;(9.14)

for i = 1; 2 and j = 3; 4.
Substituting (9.13) and (9.14) into (9.11) gives

Var

0@N(t)X
i=1

Fi(t)
2

1A = O(t
6
5 ); as t # 0.(9.15)

This establishes the desired result when combined with the expectation calcula-

tion (9.9), Chebyshev's inequality, a standard Borel�Cantelli argument, and the

monotonicity of
PN(t)

i=1 Fi(t)
2.

We may suppose that on our probability space (
[1]
;F [1]

;P[1]) there is a se-

quence B1; B2; : : : of i.i.d. one�dimensional standard Brownian motions with initial

distribution the uniform distribution on [0; 2�] and that Zi is de�ned by setting

Zi(t) to be the image of Bi(t) under the usual homomorphism from R onto T. For

n 2 N and 0 � j � 2n � 1, let In;j1 � I

n;j
2 � : : : be a list in increasing order

of the set of indices fi 2 N : Bi(0) 2 [2�j=2n; 2�(j + 1)=2n[g. Put B
n;j
i := BI

n;j

i

and Z

n;j
i := ZI

n;j

i

. Thus (Bn;j
i )i2N is an i.i.d. sequence of standard R�valued

Brownian motions and (Zn;j
i )i2N is an i.i.d. sequence of standard T�valued Brow-

nian motions. In each case the corresponding initial distribution is uniform on

[2�j=2n; 2�(j + 1)=2n[. Moreover, for n 2 N �xed the sequences (Bn;j
i )i2N are

independent as j varies and the same is true of the sequences (Zn;j
i )i2N.

Let W (resp. Wn;j , Wn;j) be the coalescing system de�ned in terms of (Bi)i2N
(resp. (Bn;j

i )i2N, (Z
n;j
i )i2N) in the same manner that W is de�ned in terms of

(Zi)i2N.
It is clear by construction that

N(t) = jW (t)j �
2n�1X
i=0

jWn;i(t)j �
2n�1X
i=0

jWn;i(t)j; t > 0; n 2 N:(9.16)

Lemma 9.6. The expectation P[1][ jW (1)j ] is �nite.

Proof. There is an obvious analogue of the duality relation Proposition 9.1 for

systems of coalescing and annihilating one�dimensional Brownian motions. Using

this duality and arguing as in the proof of Corollary 9.3, it is easy to see that,

letting �
L and �

U be two independent, standard, real-valued Brownian motions on
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some probability space (�
; �F ; �P) with �
L(0) = �

U(0) = 0,

P[1][jW (1)j]

= lim
M!1

1X
i=�1

P[1] fW (1) \ [2�i=M; 2�(i+ 1)=M ] 6= ;g

= lim
M!1

1X
i=�1

�P

�
min
0�t�1

�
( �U(t) + 2�(i+ 1)=M)� (�L(t) + 2�i=M)

�
> 0;

[ �L(1) + 2�i=M;
�
U(1) + 2�(i+ 1)=M ] \ [0; 2�] 6= ;

�
� lim sup

M!1

c
0
M

�P

�
1

�
min
0�t�1

�
�
U(t)� �

L(t)
�
> �2�=M

� �
�
U(1)� �

L(1) + c
00
��

for suitable constants c0 and c00. Noting that ( �U � �
L)=

p
2 is a standard Brownian

motion, the result follows from a straightforward calculation with the joint distri-

bution of the minimum up to time 1 and value at time 1 of such a process (see, for

example, Corollary 30 in Section 1.3 of [Fre83]).

Proof of Proposition 9.4. By the Cauchy�Schwarz inequality,

1 =

0@N(t)X
i=1

Fi(t)

1A2

� N(t)

N(t)X
i=1

Fi(t)
2
;(9.17)

and hence, by Lemma 9.5,

lim inf
t#

t

1
2
N(t) � �

3
2

2
; P[1] � a:s:(9.18)

On the other hand, for each n 2 N, jWn;i(2�2n)j, i = 0; : : : ; 2n � 1, are i.i.d.

random variables which, by Brownian scaling, have the same distribution as jW (1)j.
By (9.16),

t

1
2N(t) � 1

2n�1

2n�1X
i=0

jWn;i(2�2n)j(9.19)

for 2�2n < t � 2�2(n�1). An application of Lemma 9.6 and the following strong

law of large numbers for triangular arrays completes the proof.

Lemma 9.7. Consider a triangular array fXn;i : 1 � i � 2n; n 2 Ng of identically

distributed, real�valued, mean zero, random variables on some probability space

(
;F ;P) such that the collection fXn;i : 1 � i � 2ng is independent for each

n 2 N. Then

lim
n!1

2�n (Xn;1 + � � �+Xn;2n) = 0; P� a:s:

Proof. This sort of result appears to be known in the theory of complete conver-

gence. For example, it follows from the much more general Theorem A in [AK80] by

taking Nn = 2n and  (t) = 2t in the notation of that result (see also the Example

following that result). For the sake of completeness, we give a short proof that was

pointed out to us by Michael Klass.
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Let fYn : n 2 Ng be an independent identically distributed sequence with the

same common distribution as the Xn;i. By the strong law of large numbers, for any

" > 0 the probability that jY1 + � � �+ Y2n j > "2n in�nitely often is 0. Therefore, by
the triangle inequality, for any " > 0 the probability that jY2n+1 + � � � + Y2n+1 j >
"2n in�nitely often is 0; and so, by the Borel�Cantelli lemma for sequences of

independent events, X
n

PfjY2n+1 + � � �+ Y2n+1 j > "2ng <1(9.20)

for all " > 0. The last sum is alsoX
n

PfjXn;1 + � � �+Xn;2n j > "2ng;(9.21)

and an application of the �other half� of the Borel�Cantelli lemma for possibly

dependent events establishes that for all " > 0 the probability of jXn;1 + � � � +
Xn;2n j > "2n in�nitely often is 0, as required.

10. Finitely many pure types for circular Brownian migration

Recall that Z and Ẑ are standard Brownian motions on the circle T and m is

normalised Lebesgue measure. Recall also that O is the collection of open subsets

of T that are either empty or the union of a �nite number of disjoint intervals.

De�nition 10.1. Let �o denote the subset of � consisting of � such that there

exists a �nite set fk�1 ; : : : ; k�Ng � K (depending on �) with the property that for

m-a.e. e 2 T we can take �(e) = �k�
i
for some i, and, moreover, we can choose a

version of � such that the sets fe 2 T : �(e) = �k�
j
g 2 O for 1 � j � N .

Theorem 10.2. For all � 2 �, Q�fXt 2 �o for all t > 0g = 1.

Proof. Fix � 2 � and t > 0. We will �rst show that

Q�fXt 2 �og = 1:(10.1)

By the same argument as in Proposition 5.1 of [Eva97], Q� -a.s. there is a random

countable set of types K� such that Xt(e) 2 f�k : k 2 K
�g for m-a.e. e 2 T. We

can also require that K� has been chosen �minimally� so that m(fe 2 E : Xt(e) =
�kg) > 0 for all k 2 K

�, Q� -a.s., and this requirement speci�es K� uniquely, Q� -

a.s. For n 2 N it is clear that on the event where K� has cardinality at least n

the dissimilarity Dn(Xt) (recall De�nition 6.1) is strictly positive Q� -a.s. It follows

from Theorem 6.4 and Corollary 9.3 that K� is �nite Q� -a.s.

In order to show that a representative of the equivalence class of Xt in � may

be de�ned so that fe 2 T : Xt(e) = �kg 2 O for all k 2 K�, it su�ces by the device

used in the proof of Theorem 6.4 to consider the case where the probability measure

�(e) is di�use for all e 2 T and to show in this case that Q� -a.s. for all k 2 K� the
support of the measure 1(Xt(e) = �k)m(de) (which does not depend on the choice

of equivalence class representative) is a connected set. For this, it in turn su�ces to

check that if a1; b1; c1; d1; a2; b2; c2; d2 are arranged in anti�clockwise order around
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T, then we haveZ
m

4(de)1 fe1 2]a1; b1[; e2 2]a2; b2[; e3 2]c1; d1[; e4 2]c2; d2[g

�
Z 4O

i=1

Xt(ei)(dki)1 fk3 6= k1 = k2 6= k4g = 0; Q� -a.s.

(10.2)

or, equivalently by Remark 4.4,

1

n
Z

[4]
1 (0) 2]a1; b1[; Z [4]

2 (0) 2]a2; b2[; Z [4]
3 (0) 2]c1; d1[; Z [4]

4 (0) 2]c2; d2[
o

� 1

n



[4]
3 (t) 6= 


[4]
1 (t) = 


[4]
2 (t) 6= 


[4]
4 (t)

o
= 0; P[4]-a.s.

(10.3)

Write, for our �xed t > 0,

Tij = inff0 � s � t : Z
[4]
i (s) = Z

[4]
j (s)g; 1 � i < j � 4;(10.4)

for the �rst collision time of Z
[4]

i and Z
[4]

j before time t, with our standing convention

that inf ; =1. We have P[4]fTij = Tk` 6=1g = 0 for (i; j) 6= (k; `). Suppose that
we have a realisation with the properties

Z

[4]
1 (0) 2]a1; b1[; Z [4]

2 (0) 2]a2; b2[; Z [4]
3 (0) 2]c1; d1[; Z [4]

4 (0) 2]c2; d2[;(10.5)




[4]
3 (t) 6= 


[4]
1 (t) = 


[4]
2 (t) 6= 


[4]
4 (t);(10.6)

and

Tij 6=1 implies Tij 6= Tk` for (i; j) 6= (k; `):(10.7)

In order that 

[4]
1 (t) = 


[4]
2 (t) holds, we must have T12 6=1. From the continuity

of the paths of circular Brownian motion and (10.7), in order that (10.5) holds it

must then be the case that

T13 ^ T14 ^ T23 ^ T24 < T12 ^ T34:(10.8)

By construction, this would imply that 

[4]
3 (t) = 


[4]
1 (t) = 


[4]
2 (t) or 


[4]
4 (t) =




[4]
1 (t) = 


[4]
2 (t), contradicting (10.6). Thus (10.3) holds and the proof of (10.1)

is complete.

In order to establish the claim of the theorem, it su�ces by (10.1) and the

Markov property to consider the special case of � 2 �o. Write fk�1 ; : : : ; k�Ng � K

for the corresponding set of types k such that m(fe 2 T : �(e) = �kg) > 0. Fix

1 � i � N . Let G � K be a closed and open set such that k�i 2 G and k�j =2 G

for j 6= i (writing k�i = (h1; h2; : : : ) one can take G = f(h01; h02; : : : ) 2 K : h01 =
h1; : : : ; h

0
n = hng for some su�ciently large n). It su�ces to show for each such G

that if we put Yt(e) := Xt(e)(G) 2 [0; 1], then Q��a.s. for all t � 0 we can choose

a representative of Yt 2 L
1(T;m) such that Yt(e) 2 f0; 1g for m-a.e. e 2 T and

fe 2 T : Yt(e) = 1g 2 O.
By the remarks at the end of Section 4 of [Eva97], we have that Y is a Feller

process with state-space the subset L1(T;m; [0; 1]) of L1(T;m) consisting of [0; 1]-
valued functions (where L1(T;m; [0; 1]) is equipped with the relative weak� topol-

ogy). Put B := fe 2 T : �(e) = �k�
i
g 2 O. By the de�nition of X in Theorem 4.1
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and Proposition 9.1, for  2 L1(m),

Q�

"Z
m

n(de) 
n(e)

nY
i=1

Yt(ei)

#

=

Z
m

n(de)P

24
 

n(e)

Y
j2�e(t)

1B(Z
e

j (t))

35
=

Z
m

n(de)P

h
 

n(e)1

n
W

fe1;::: ;eng
t � B

oi
= Q

�Z
m

n(de) 
n(e)1

�
fe1; : : : ; eng � V

B(t)
	�

= Q

"Z
m

n(de) 
n(e)

nY
i=1

1V B(t)(ei)

#

(10.9)

(recall that V B is de�ned on the probability space (�;G;Q)). Consequently, the

L
1(T;m; [0; 1])�valued processes Y and 1V B have the same �nite�dimensional dis-

tributions. Clearly, t 7! 1V B(t) is continuous (in the weak� topology). Therefore,

choosing our representative of Yt to be 1V B(t) for all t � 0 establishes the desired

conclusion.

11. The tree associated with coalescing circular Brownian motions

Recall that Z and Ẑ are standard Brownian motions on T and m is normalised

Lebesgue measure.

De�nition 11.1. Given i; j 2 N, let �ij := infft � 0 : i ��(t) jg denote the �rst

time that i and j belong to the same block. By Remark 6.3, the �ij are identically

distributed. Metrise N with the (random) metric � given by �(i; j) := �ij . Observe

that � is an ultrametric; that is, the strong triangle inequality �(i; j) � �(i; k)_�(k; j)
holds for all i; j; k. Let (F; �) denote the completion of (N; �). The space (F; �) is

also ultrametric. We refer the reader to Sections 18 and 19 of [Sch84] for basic facts

about ultrametric spaces.

Some discussion of the space (N; �) can be found in Section 4 of [Ald93]. The

analogue of (F; �) for another process of coalescing exchangeable partitions of N,

namely Kingman's coalescent, is considered in [Eva98] and the counterpart of The-

orem 11.2 below is obtained.

For background on Hausdor� and packing dimension see [Mat95]. In order to

establish some notation, we quickly recall the de�nitions of energy and capacity.

Let (T; �) be a metric space. Write M1(T ) for the collection of (Borel) probability

measures on T . A gauge is a continuous, non�increasing function f : [0;1[! [0;1],
such that f(r) <1 for r > 0, f(0) =1, and limr!1 f(r) = 0. Given � 2M1(T )
and a gauge f , the energy of � in the gauge f is the quantity

Ef (�) :=
Z
�(dx)

Z
�(dy) f(�(x; y)):

The capacity of T in the gauge f is the quantity

Capf (T ) := (inffEf (�) : � 2M1(T )g)�1
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(note by our assumptions on f that we need only consider di�use � 2M1(T ) in the

in�mum).

Let C 1
2
� [0; 1] denote the middle� 1

2
Cantor set equipped with the usual Eu-

clidean metric inherited from [0; 1]. One of the assertions of the following result

is, in the terminology of [PP95] (see, also, [BP92, PPS96, Per96]), that F is a.s.

capacity�equivalent to C 1
2
. Hence, by the results of [PPS96], F is also a.s. capacity�

equivalent to the zero set of (one�dimensional) Brownian motion.

Theorem 11.2. With P[1]�probability one, the ultrametric space (F; �) is compact

with Hausdor� and packing dimensions both equal to 1
2
. There exist random vari-

ables K�;K�� such that P[1]�almost surely 0 < K
� � K

��
< 1 and for every

gauge f

K
�Capf (C 1

2
) � Capf (F) � K

��Capf (C 1
2
):(11.1)

Proof. The proof is essentially a reprise of the proof of Theorem 1.1 in [Eva98],

with our Proposition 9.4 and Lemma 9.5 playing the role of the statements (2.1)

and (2.2) in [Eva98].
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