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Abstract. Consider the catalytic super-Brownian motion X% (reactant) in R
d ; d � 3;

which branching rates vary randomly in time and space and in fact are given by an ordinary

super-Brownian motion % (catalyst). Our main object of study is the collision local time

L = L[%;X%]

�
d[s; x]

�
of catalyst and reactant. It determines the covariance measure in the

martingale problem for X% and re�ects the occurence of �hot spots� of reactant which can

be seen in simulations of X%. In dimension 2, spatial marginal collision densities exist and,

via self-similarity, enter as factor in the long-term random ergodic limit of L (di�usiveness

of the 2-dimensional model).

1. Introduction

The ordinary super-Brownian motion % = (%t ; t � 0) in Euclidean space Rd can be obtained

as a limit of branching particle systems. In this branching particle system, the particles evolve

according to independent Brownian motions in Rd , and additionally, with constant rate 
 > 0,

each particle splits independently into 2 or 0 particles with equal probability (this is a critical

binary branching mechanism).

We now interpret % as a catalyst process: %t(dx) is the amount of catalytic �particles� at

time t in the volume element dx of Rd . We then let a super-Brownian motionX%
= (X

%
t ; t � 0)

evolve in this catalytic random medium %. Intuitively X% describes reactant �particles� which

are evolving according to independent Brownian motions and which are performing a critical

binary branching, but at random time-space varying rates given by %. In fact, the rate of

branching of an intrinsic reactant particle with Brownian pathW is controlled by the collision

local time L[%;W ] of % and W , de�ned as the measure

L[%;W ](ds) := lim
"#0

ds

Z
%s(dy) p("; y �Ws);

where p is the standard heat kernel p(t; x) = [2�t]
�d=2

exp

�
�jxj2=2t

�
, (t; x) 2 (0;1) � R

d .

According to [BEP91], this collision local time L[%;W ] makes sense non-trivially in dimension

d � 3, and vanishes for d � 4 (where the Brownian reactant particles do not hit the catalyst

%). Thus we restrict our attention to d � 3 (since otherwise X% degenerates to the heat �ow).
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The catalytic super-Brownian motion X
% was constructed in [DF97a]. Let % and X% start

at time 0 with Lebesgue measures `c and `r ; respectively. From the papers [DF97a, DF97b,

EF98, FK97] it is known thatX
%

T converges in law as T " 1 to a limitX
%
1 with full expectation

`r (persistence)
1). The approach of [FK97] to solve the most di�cult case, namely convergence

in the critical dimension d = 2, was to study the local structure of X% and then to use a self-

similarity argument. In fact, they showed that in dimensions d = 2; 3, given the catalyst %;

the reactant X% has a density �eld �
%
:

X
%
t (dx) = �

%
t (x)dx; t > 0:

Moreover, o� the time-space support of the catalyst % (which is a Lebesgue zero set), �% can

be chosen as a (time-space) C1-function that solves the heat equation, just as intuitively

expected.

Simulations of (%;X%
) in dimension d = 2 (see the �gure in [FK97]) con�rm the heuristic

picture one has. Namely, at late times T ,

- the reactant X
%

T is rather uniform outside of the catalyst %T ,

- it is absent inside of the clumps of %T (since a huge rate of branching causes mainly

killing),

- but occasionally also some hot spots of the reactant occur in the interface of %T and

X
%

T ; that is in the boundary region of the catalytic clumps.

According to [FK97], in the two-dimensional case, the (local) long-term limit X
%
1 is in

fact a random multiple of Lebesgue measure [the factor is given by �
%
1(0)]: But so far the

investigations on the catalytic super-Brownian motion X% do not re�ect anything on the hot

spots seen in the pictures. Our approach to gain some information about them is to study

the collision local time L := L[%;X%] of % and X
% de�ned as the limit of

L"

�
d[s; x]

�
:= ds %s(dx)

Z
X

%
s (dy) p("; x � y);(1)

as " # 0.
Actually there is a further motivation to study this collision local time L[%;X%]. It occurs

indeed in the description of the martingale problem for the process X% (see Corollary 4 below).

For martingale problems of catalytic super-Brownian motions, see also [DF94, Del96, Led97].

Let us present the results. We prove that in all dimensions of non-trivial existence of X%

the collision local time L of catalyst and reactant makes non-trivially sense (see Theorem

3 below). [In dimension 1, it is known that both %s and X
%
s are absolutely continuous (cf.

[KS88] and [DFR91], respectively); thus L" and hence L simplify in this case.] This non-trivial

existence of L re�ects the high �uctuations of X% in the interface of catalyst and reactant,

seen as hot spots in simulations. Our main result however is that for d = 2 the marginal

measure of L = L[%;X%] concerning the space variable is absolutely continuous (Theorem 5).

Note that this is in contrast, for instance, with the (one-dimensional) single-point catalytic

model of [DF94], say X�0 ; where, together with the catalyst �0 , the space marginal of the

collision local time L[�0;X�0 ] is concentrated in the single space point 0, hence is singular (even

atomic). Finally, in dimension 2, using the self-similarity of L[%;X%] which follows from the

1) In the three-dimensional case, for simpli�cation it was assumed in [DF97b] that the catalyst process %

is already in its corresponding equilibrium.
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self-similarity of (%;X
%
) , we show that T�1

L
�
[0; T ]� (�)

�
has a random ergodic limit as

T " 1; which indicates di�usive features in the long-term behavior in d = 2.

It remains open whether also in dimension 3 space-marginal collision densities exist since

our L2-approach fails in this case (see Remark 6 below).

The outline of the paper is as follows. In Section 2 we introduce formal de�nitions of the

processes % and X% and state the results. The following two sections are then devoted to the

proofs of our two theorems. In an appendix we collect some results on ordinary and catalytic

super-Brownian motions used in the proofs.

2. Statement of results

2.1. Notation. The lower index + on a set will always refer to the collection of all its

nonnegative members. Similarly, f+ is the nonnegative part of f: The supremum norm is

denoted by k � k1 : Let c always refer to a (�nite) constant whose value may vary from place

to place.

We denote by B(E) the space of all real Borel measurable functions de�ned on a polish

space E. We also denote by B(E) the Borel ���eld of E.

For a �xed constant q > d; introduce the reference function �q 2 B(Rd) :

�q(x) :=

�
1 + jxj2

��q=2
; x 2 R

d
:(2)

Set Bq
:=

�
f 2 B(Rd ); kf=�qk1 <1

	
. Let Cc(R

d
) denote the collection of all continuous

functions on R
d with compact support.

If � is a Radon measure on Rd , we write (�; f) for
R
�(dx) f(x) (if the integral makes sense).

Let Mq denote the set of all Radon measures � on R
d such that (�; �q) < 1. This space

of tempered measures is endowed with the coarsest topology such that the maps � 7! (�; f)

are continuous for f 2 Cc(R
d
) [ f�qg, getting a Polish space. Since q > d, Lebesgue measure

belongs to Mq .

We consider the polish space C := C(R+ ;Mq) of all continuous functions from R+ to Mq

equipped with the topology of uniform convergence on compacta.

Let (Pt ; t � 0) denote the semigroup of heat �ow on R
d :

Pt[f ](x) :=

Z
dy p(t; x� y)f(y); t > 0; f 2 B+(R

d
):(3)

2.2. Catalyst and reactant process. We start by introducing the catalyst process.

De�nition 1 (catalyst process). Let 
 > 0 and � 2 Mq . There exists a unique probability

measure P� on
�
C;B(C)

�
, such that the coordinate process % = (%t ; t � 0) on C is a super-

Brownian motion with constant branching rate 
 and starting measure �. That is, % is a

continuous time-homogeneous strong Markov process with the following properties:

- P�-almost surely, %0 = �,

- for every f 2 Bq
+, t � r � 0; we have 2)

E �

h
e
�(%t ;f)

��� � (%s ; s 2 [0; r])

i
= e

�(%r ;w(t�r))
;(4)

2) We use the following convention: If P is a probability law, then the corresponding letter E refers to the

related expectation symbol.
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where w is the unique nonnegative solution on R+ � R
d of the log-Laplace equation

w(t; x) + 


Z t

0
ds Ps[w

2
(t� s)](x) = Pt [f ] (x):(5)

We write P for P� in the case � = ic`; where ic > 0 and ` is the (normalized) Lebesgue

measure on R
d . 3

From now on we assume that d � 3, and that % is distributed 3) according to P: Next we

recall the de�nition of the catalytic super-Brownian motion X% in the random medium % (see

[DF97a] for details).

De�nition 2 (catalytic super-Brownian motion). Fix (r; �) 2 R+ � Mq and � > 0. For

convenience, set C0 := C
�
[r;1);Mq

�
. There exists a (measurable) probability kernel % 7!

P
%
r;� from

�
C;B(C)

�
to
�
C0;B(C0)

�
such that the coordinate process X%

= (X
%
t ; t � r) on C0 is

a super-Brownian motion in the catalytic medium %. That is, P-a.s. under P
%
r;� , the process

X
% is continuous time-inhomogeneous Markov with the following properties:

- P
%
r;�-almost surely, X

%
r = �,

- for every f 2 Bq
+, t � s � r; we have

E
%
r;�

h
e
�(X%

t
;f)
��� � �X%

u ; u 2 [r; s]
�i

= e
�(X

%

s ; vt(s));(6)

where vt is the unique nonnegative solution on [r;1) � R
d of the catalytic log-Laplace

equation

v(s; x) + �

Z 1

s

du

Z
%u(dy) p(u� s; x� y) v

2
(u; y) = J(s; x);(7)

with J(s) := 1t�s Pt�s[f ].

Often, we also pass from the quenched distributions P
%
r;� to the annealed law E [P

%
r;�] : 3

2.3. Existence of collision local time of catalyst and reactant. For our constant q > d;

we introduce the function space Hq
:=
S

T�0H
q

T , where

H
q
T :=

n
g 2 B(R+ � R

d
); supp g � [0; T ]� R

d
; kg=�qk1 <1

o
;(8)

with kg=�qk1 = sup(s;x)2R+�Rd jg(s; x)j=�q(x); and supp g denoting the support of g.

Recall the approximated collision local time L" of % and X% introduced already in (1). We

are now ready to state our �rst result, the existence of the collision local time L = L[%;X%] of

% and X%. Recall that d � 3 and (r; �) 2 R+ �Mq :

Theorem 3 (collision local time). There exists a random variable denoted by L = L[%;X%]

de�ned on
�
C � C0;B(C � C0)

�
, taking values in the set of Radon measures on [r;1)�R

d
with

the following properties:

(i) (tempered measure): For every T � r, we have E
�
P
%
r;�(L;1[r;T ] �q)

�
<1.

(ii) (existence via convergence): For every ' 2 H2q
,

lim
"#0

(L" ; ') = (L;'); E [P
%
r;�]�a:s:

3) In [FK97] more generally a class of so-called �-di�usive measures � is introduced which allow that %

under P� may serve as the catalyst for X%:
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(iii) (regularity): For every ' 2 H2q
, and E [P

%
r;�]-a.s., the process

�
(L;1[r;t]'); t � r

�
is

continuous and adapted to the �ltration�
Ft := �(%) _ �

�
X

%
s ; s 2 [r; t]

�
; t � r

�
:

(iv) (moments): For every m � 1, ' 2 H2q
, P-a.s.,

E
%
r;�

"�Z
[r;1)�Rd

L
�
d[s; x]

�
'(s; x)

�m#
= m!

mX
k=1

1

k!

X
n1;:::;nk � 1;
n1+���+n

k
=m

kY
i=1

�
�; �ni(r)

�
;(9)

where the functions �n ; n � 1; belong to H
q
and are recursively de�ned by

�n(s; x) := �

Z 1

s

du

Z
%u(dy) p(u� s; x� y)

"
n�1X
i=1

�i(u; y)�n�i(u; y)

#
; n � 2;(10)

with the initial condition

�1(s; x) :=

Z 1

s

du

Z
%u(dy) p(u� s; x� y)'(u; y); (s; x) 2 R+ � R

d
:(11)

Consequently, in dimensions d � 3; the collision local time L = L[%;X%] of catalyst and reac-

tant exists non-trivially, re�ecting in particular the occurrence of hot spots in the mentioned

2-dimensional simulations.

The proof of this theorem is postponed to Section 3.

As an application, we can now describe the covariance measure of the martingale measure

associated with X%. Let C
1;2
b denote the set of bounded functions ' 2 B(R+ � R

d
) such that

the partial derivatives @'

@s
and @2'

@xi@xj
exist and are continuous and bounded. It is easy to

check that under E [P
%
r;�] the process (M'r;t ; t � r) de�ned by

M'r;t :=

�
X

%
t ; '(t)

�
�
�
X

%
r ; '(r)

�
�
Z t

r

ds

�
X

%
s ;

@'

@s
(s) +

1

2
�'(s)

�
;(12)

is an (Ft ; t � r)-martingale [note that Fr = �(%) _ �(Xr)]. Thanks to the Markov property

of X% (given %); and the moment formula (A.9) for X% stated in the appendix, we get that

for '; in C
1;2
b , P-a.s. for all s � r and t � r,

E
%
r;� [M'r;sM r;t] = 2�

Z
�(dx)

Z s^t

r

du

Z
%u(dy) p(u� r; x� y)'(u; y) (u; y):(13)

The functional M : ' 7! M' de�ned on C
1;2
b

can be extended to an orthogonal martingale

measure on H
q. Let hMi denote its covariance measure. Now we show how hMi can be

expressed in terms of the collision local time L = L[%;X%]. Recall that d � 3 and that

(r; �) 2 R+ �Mq :

Corollary 4 (covariance measure). For every ' 2 Hq
, E [P

%
r;�]-a.s. for every t � r, we have

hM'ir;t = 2�

Z
[r;t]�Rd

L
�
d[s; y]

�
'
2
(s; y):(14)
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Proof. Using the Markov property of X% (given %) and an obvious extension of the second

moment formula (13), we obtain for ' 2 Hq, P-a.s. for all t � s � r,

EE
%
r;�

�
(M'r;t)

2
�� Fs

�
= (M'r;s)

2
+ 2�

Z
X

%
s (dx)

Z t

s

du

Z
%u(dy) p(u� s; x� y)'

2
(u; y):

Since  Z
[r;t]�Rd

L
�
d[s; y]

�
'
2
(s; y); t � r

!

is in t non-decreasing and continuous, is adapted to (Ft ; t � r) ; and zero for t = r, we get

that  
hM'ir;t � 2�

Z
[r;t]�Rd

L
�
d[s; y]

�
'
2
(s; y); t � r

!

is a continuous martingale under E [P
%
r;�] with bounded variation starting at time t = r from

0. This martingale is then constant and, in fact, equal to 0, giving the claim (14).

2.4. Collision local time in dimension two. We now state our results for the collision

local time in the �critical� dimension d = 2. For convenience, we introduce the following

abbreviation for an annealed law:

P := E [P0;ir`] = E ic ` [P0;ir`] ; where ir > 0:

(That is, we now focus on the situation r = 0 and � = ir`:)

Theorem 5 (two-dimensional collision local time). Let d = 2.

(a) (local spatial L2 collision densities): For every t � s � 0 and z 2 R
2
,�Z

[s;t]�Rd
L
�
d[r; y]

�
p("; z � y); " > 0

�

converges in L
2
(P) as " # 0 to a random variable denoted by �[s;t](z). It has expectation

E
�
�[s;t](z)

�
= icir (t� s);

and its �nite variance is non-zero provided that s < t:

(b) (spatial absolute continuity): For t � s � 0, there exists a measurable version of

�[s;t] with respect to B(R2
)�Ft ; and P-a.s. the measure L

�
[s; t]� (�)

�
on R

2
is absolutely

continuous and can be represented as

L
�
[s; t]� dx

�
= �[s;t](x)dx:

(c) (self-similarity): Under P, the laws of the scaled collision local times

K
�2
L

�
K(�)�K

1=2
(�)
�

are independent of the scaling factor K > 0.

(d) (random ergodic limit): The following convergence inMq holds in law with respect

to P :

lim
T"1

T
�1
L
�
[0; T ] � (�)

�
= �[0;1](0) `

(with ` the Lebesgue measure and 0 < Var
�
�[0;1](0)

�
<1 ):
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Consequently, in dimension 2, the spatial marginal measures L
�
[s; t]� (�)

�
of the collision

local time L[%;X%] of catalyst and reactant have non-degenerated densities �[s;t](z) (provided

that s < t). Moreover, �[0;1](0) enters as random factor of Lebesgue measure in the long-term

ergodic limit. Recall that this re�ects the di�usive features of the hot spots.

Remark 6 (dimension three). The L2
(P)-convergence in part (a) does not hold for d = 3.

In fact, in the three-dimensional case an in�nite term would be involved in our calculations,

see the remark following (29) in the proof below. Recall on the other hand that in dimension

one, L[%;X%] should be rather �regular�. 3

Remark 7 (regularity). It is an open problem whether the spatial collision density functions

�[s;t] have some regularities properties in the space variable. Note also that the exceptional

set in the P-a.s. statement in (b) depends on [s; t]: One would also like to know whether this

situation can be improved. 3

The statement (c) follows from the self-similarity of (%;X%
) by standard arguments (com-

pare with [DF97b, Subsections 4.1 and 4.2]). Otherwise the proof of Theorem 5 will be

provided in Section 4.

3. Existence of collision local time (proof of Theorem 3)

Recall that d � 3: First of all we state the following lemma.

Lemma 8 (approximated moment increments). For every m � 1, r � 0, � 2 Mq, T � 0,

� 2 (0; 1=4), P-a.s. there exists a �nite constant Mm (depending on %) such that for every

' 2 H2q
T , t

0 � t � 0, 1 � "
0 � " > 0,

E
%
r;�

�
(L" ; '1[t;t0])

2m
�
� Mm k'=�2qk2m1

h��t� t
0
��� �1 + log+

�
1=jt� t

0j
��i2m

;(15)

E
%
r;�

h�
(L" ; ') � (L"0 ; ')

�2mi � Mm k'=�2qk2m1
h��"� "

0
��� �1 + log+

�
1=j" � "

0j
��i2m

:(16)

Based on this lemma, the proof of Theorem 3 (ii) and (iii) are similar to the proof of

Proposition 5.1 based on Lemma 5.2 in [Del96] with the obvious changes and is left to the

reader. (iv) is not stated in Proposition 5.1 there, but it is a by-product of its proof [take the

limit in (32)]. Eventually, (i) is proved by using the monotone convergence theorem with the

moment formula (9) and (A.2) (in the appendix) with m = 1 and the inequality (A.1).

Proof of Lemma 8. Fix � 2 Mq ; � 2 (0; 1=4); and T � r � 0 (otherwise the moments

disappear). We will verify (15); the proof of (16) is similar and is left to the reader.

Note �rst that for �xed " > 0,

sup

x2Rd; y2Rd

�q(y) p("; x� y)

�q(x)
< 1:(17)

Let ' 2 H2q
T . Since % is P-a.s. a continuousMq-valued path, it is then clear that the functions

(s; x) 7!
R
%s(dy) p("; x� y)'(s; y) belong to H

q

T
. Thanks to the remarks at the beginning of

Subsection A.1, we see that, for �xed t; t0; "; the functions

(s; x) 7! J"(s; x) :=

Z 1

s

du

Z
dz p(u� s; x� z)

Z
%u(dy) p("; z � y)'(u; y)1[t;t0 ](u)(18)
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are well-de�ned and belong to H
q

T .

We will now prove that P-a.s. there exists a �nite constant c such that for every ' 2 H2q
T ,

t
0 � t � 0, 1 � " > 0,��J"(s; x)�� � c1[0;T ](s)�q(x) k'=�2qk1

h��t� t
0
��� �1 + log+

�
1=jt� t

0j
��i

:(19)

Clearly
��J"(s; x)�� = k'=�2qk1 is bounded from above by

K1 := 1[0;T ](s)

Z T

s

du

Z
%u(dy) p(u � s+ "; x� y)�2q(y)1[t;t0](u):

We assume that T � t (otherwise K1 = 0). Introduce the quantity

K2 := 1[0;T^t0](s)

Z T^t0

s_t

du

Z
%u(dy) p(u � s _ t; x� y)�2q(y):

Thanks to (A.6), we have K2 � 1[0;T ](s)C2 jt� t
0j� �q(x). Now

jK1 �K2j � 1[0;T^t0](s)

Z T^t0

s_t

du

Z
%u(dy)

��p(u� s+ "; x� y)� p(u� s _ t; x� y)
���2q(y):

Using the inequality

��p(v1; z) � p(v2; z)
�� � c

Z v2

v1

dv v
�1
p(2v; z);(20)

where the constant c is independent of z 2 R
d and v2 � v1 > 0, we get that

jK1 �K2j � c1[0;T^t0](s)

Z T^t0

s_t

du

Z
%u(dy)�2q(y)

Z u�s+"

u�s_t

dv v
�1
p(2v; x � y)

= c1[0;T^t0](s)

Z T^t0�s+"

0
dv v

�1

Z T^t0^(v+s_t)

s_t_(v+s�")
du

Z
%u(dy)�

2
q(y) p(2v; x � y):

In view of (A.5) and (A.1), we may continue with

� c1[0;T^t0](s)�q(x)

Z T^t0�s+"

0
dv v

�1
��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")

��� ;
where c is independent of t0; t; "; x. It is easy to check thatZ T^t0�s+"

0
dv v

�1
��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")

���
� c

��t0 � t
��� �1 + log+

�
1=jt0 � tj

��
;(21)

where c is independent of t0; t and ". As a conclusion we obtain (19).

Using the estimate (A.6), a straight forward induction shows that all the functions �n ;

n � 1; of the recurrence relation (10) with initial condition �1 = J" belong to H
q

T and satisfy���n(s; x)�� � c1[0;T ](s)�q(x) k'=�2qkn1
h��t� t

0
��� �1 + log+

�
1=jt� t

0j
��in

:
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(Note that c is independent of '; t; t0 and ".) Then the claim (15) is a consequence of (A.9)

with f = 0 and

g(s; z) :=

Z
%s(dy) p("; z � y)'(s; y)1[t;t0](s);(22)

�nishing the proof.

4. Two-dimensional collision local time (proof of Theorem 5)

We now assume that d = 2:

4.1. Local spatial collision densities [proof of (a)]. For the claimed L2-convergence, it

is enough to check that, for �xed s; t; z,

J
";"0

:= E

"Z
[s;t]�R2

L
�
d[r; y]

�
p("; z � y)

Z
[s;t]�R2

L
�
d[r

0
; y
0
]

�
p("

0
; z � y

0
)

#
(23)

converges in R+ as " and "0 decrease to 0.

For f 2 L1
+(R

2
) with

R
dx f(x) = 1; and " > 0, z 2 R

2 , we set

f";z(x) := "
�1
f

�
"
�1=2

(x� z)

�
:(24)

Note that f";z(x)dx converges weakly to �z(dx), the Dirac mass at z, as " decreases to 0. We

will prove the following stronger result.

Lemma 9. For �xed s; t; z; z
0
, f; f

0 2 L
1
+(R

2
) such that

R
dx f(x) = 1 =

R
dx f

0
(x), the

well-de�ned quantity

J
";"0

(z; z
0
) := E

"Z
[s;t]�R2

L
�
d[r; y]

�
f";z(y)

Z
[s;t]�R2

L
�
d[r

0
; y
0
]

�
f
0
"0;z0(y

0
)

#

converges to a �nite limit independent of f; f
0
, as " and "

0
decrease to 0.

Note that we need the convergence for z = z
0 to prove (23) and then (a). Note also that

although f and f 0 are not in Bq a priori, we show that J";"
0
is well-de�ned.

Proof of Lemma 9. By a standard monotone class argument, we deduce from the quenched

moment formula (9) for collision local time with m = 2, that for g 2 B+

�
(R+)

2 � (R
2
)
2
�
,

E

�Z
R+�R2

L
�
d[r; y]

� Z
R+�R2

L
�
d[r

0
; y
0
]

�
g(r; r

0
; y; y

0
)

�

= E

"
2 ir�

Z
dx

Z 1

0
ds1

Z
%s1(dy1) p(s1; y1 � x)

Z 1

s1

ds2

Z
%s2(dy2) p(s2 � s1; y2 � y1)

Z 1

s1

ds3

Z
%s3(dy3) p(s3 � s1; y3 � y1) g(s2; s3; y2; y3)

+ i
2
r

Z
dx1

Z 1

0
ds1

Z
%s1(dy1) p(s1; y1 � x1)

Z
dx2

Z 1

0
ds2

Z
%s2(dy2) p(s2; y2 � x2) g(s1; s2; y1; y2)

#
:
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Thus we can write

J
";"0

= 2 ir�J
";"0

1 + i
2
rJ

";"0

2 ;(25)

where

J
";"0

1 (z; z
0
) :=

Z t

0
ds1 E

� Z t

s1_s

ds2

Z t

s1_s

ds3

Z
%s1(dy1)

Z
%s2(dy2)

Z
%s3(dy3)

p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f
0
"0;z0(y3)

�

and

J
";"0

2 (z; z
0
) := E

� Z t

s

ds1

Z t

s

ds2

Z
%s1(dy1)

Z
%s2(dy2) f";z(y1) f

0
"0;z0(y2)

�

are third and second moment expressions of the catalyst process only, respectively. We easily

compute J
";"0

2 thanks to the moment formula (A.2) for ordinary super-Brownian motion (with

f = 0 and g properly chosen):

J
";"0

2 (z; z
0
) = 2
 ic

Z
dx

Z t

0
ds3

Z t

s3_s

ds1

Z t

s3_s

ds2

Z
dy1

Z
dy2

Z
dy3

p(s3; y3 � x) p(s1 � s3; y1 � y3) p(s2 � s3; y2 � y3) f";z(y1) f
0
"0;z0(y2)

+ i
2
c

Z
dx1

Z
dx2

Z t

s

ds1

Z t

s

ds2

Z
dy1

Z
dy2

p(s1; y1 � x1) p(s2; y2 � x2) f";z(y1) f
0
"0;z0(y2)

= 2
 ic

Z
dy1 f";z(y1)

Z
dy2 f

0
"0;z0(y2)Z t

0
ds3

Z t

s3_s

ds1

Z t

s3_s

ds2 p(s1 + s2 � 2s3; y1 � y2)

+ i
2
c (t� s)

2

� 2
 ic

Z t

0
ds3

Z t

s3_s

ds1

Z t

s3_s

ds2 p(s1 + s2 � 2s3; 0) + i
2
c (t� s)

2
=: K2 <1:

As ("; "0) # 0, the quantity J";"02 (z; z
0
) converges to

J
0
2 (z; z

0
) := 2
 ic

Z t

0
ds3

Z t

s3_s

ds1

Z t

s3_s

ds2 p(s1 + s2 � 2s3; z � z
0
) + i

2
c (t� s)

2 � K2:(26)
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We can also compute J
";"0

1 using the Markov property of % at time s1 and twice the moment

formula (A.2):

J
";"0

1 (z; z
0
) = 2


Z t

0
ds1 E

� Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3

Z
%s1(dy1)

Z
%s1(dy5)

Z
dy4

Z
dy2

Z
dy3

p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)

p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f
0
"0;z0(y3)

�

+

Z t

0
ds1 E

� Z t

s1_s

ds2

Z t

s1_s

ds3

Z
%s1(dy1)

Z
%s1(dy4)

Z
%s1(dy5)

Z
dy2

Z
dy3

p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1)

p(s3 � s1; y3 � y1) f";z(y2) f
0
"0;z0(y3)

�
:

With obvious notation we write

J
";"0

1 = 2
J
";"0

3 + J
";"0

4 :(27)

Using again the moment formula, we get

J
";"0

3 = 2
 ic J
";"0

5 + i
2
c J

";"0

6 ;(28)

where

J
";"0

5 (z; z
0
) :=

Z t

0
ds1

Z s1

0
ds5

Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3

Z
dy1

Z
dy2

Z
dy3

Z
dy4

Z
dy5

Z
dy6

p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6) p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4)

p(s3 � s4; y3 � y4) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3)

and

J
";"0

6 (z; z
0
) :=

Z t

0
ds1

Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3

Z
dy1

Z
dy2

Z
dy3

Z
dy4

Z
dy5

p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)

p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):

We now compute J
";"0

6 : Integrating over dy1; dy5; and dy4 gives

J
";"0

6 (z; z
0
) =

Z t

0
ds1

Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3

Z
dy2

Z
dy3

p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3) f";z(y2) f"0;z0(y3):

The function

H6(y2; y3) :=

Z t

0
ds1

Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3 p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3)

is continuous in (y2; y3) and bounded from above by H6(y; y) = K6 which is �nite since d = 2.

Thus J
";"0

6 (z; z
0
) is uniformly bounded by K6. Using that f";z(y2) f"0;z0(y3)dy2dy3 converges
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weakly to �z(dy2)�z0(dy3), we deduce that J
";"0

6 converges to

J
0
6 (z; z

0
) := H6(z; z

0
) � K6:(29)

Note that H6(z; z) = 1 if d = 3, which implies that J";"
0
(z; z) doesn't converge for d = 3,

however it is well-de�ned at least for f(x) = f
0
(x) = p(1; x).

For J
";"0

5 we get

J
";"0

5 (z; z
0
) =

Z t

0
ds1

Z s1

0
ds5

Z t

s1

ds4

Z t

s4_s

ds2

Z t

s4_s

ds3

Z
dy1

Z
dy2

Z
dy3

Z
dy4

p(s1 + s4 � 2s5; y1 � y4) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)

p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):

We set

h5(s1; s2; s3; s4; s5; y2; y3)

:= 10<s5<s1<s4<s2^s3

Z
dy1

Z
dy4 p(s1+ s4�2s5; y1�y4) p(s2� s4; y2�y4) p(s3� s4; y3�y4)

p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1);

and

H5(y2; y3) :=

Z
ds1

Z
ds2

Z
ds3

Z
ds4

Z
ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3);

so that

J
";"0

5 (z; z
0
) =

Z
dy2

Z
dy3 f";z(y2) f"0;z0(y3)H5(y2; y3):

Let us now prove that H5 is bounded and continuous. Note �rst that p(s1+s4�2s5; y1�y4) �
p(s1 + s4 � 2s5; 0). Thus, we easily get

h5(s1; s2; s3; s4; s5; y2; y3)

� 10<s5<s1<s4<s2^s3 p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0):

Now it is easy to check that

H5(y2; y3) =

Z
ds1 � � �

Z
ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3)

�
Z t

s

ds2

Z t

s

ds3

Z s2^s3

0
ds4

Z s4

0
ds1

Z s1

0
ds5

p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0) = K5 <1:

The function h5 is continuous and bounded in (y2; y3). From dominated convergence we

deduce that H5 is continuous and bounded. Using that f";z(y2)f
0
"0;z0(y3)dy2dy3 converges

weakly to �z(dy2)�z0(dy3), we see that J
";"0

5 tends to

J
0
5 (z; z

0
) := H5(z; z

0
) � K5(30)

when " and "0 decrease to 0. Note that J
";"0

5 (z; z
0
) is uniformly bounded by K5.
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Finally, we study J
";"0

4 . Let g 2 B+

�
(R

2
)
3
�
and g(x1; x2; x3) :=

P
� g(x�(1); x�(2); x�(3)),

where the sum is over all the permutations � of f1; 2; 3g. By a standard monotone class

argument we deduce from the moment formula (A.2) for % that

E

�Z
%v(dy1)

Z
%v(dy4)

Z
%v(dy5) g(y1; y4; y5)

�

= 2 ic

2

Z v

0
ds4

Z v

s4

ds5

Z
dy1

Z
dy4

Z
dy5

Z
dy6 p(v + s5 � 2s4; y1 � y6)

p(v � s5; y4 � y6) p(v � s5; y5 � y6) g(y1; y4; y5)

+ i
2
c 


Z v

0
ds4

Z
dy1

Z
dy4

Z
dy5 p(2v � 2s4; y1 � y4) g(y1; y4; y5)

+
1

3!
i
3
c

Z
dy1

Z
dy4

Z
dy5 g(y1; y4; y5):

This implies

J
";"0

4 = 2 ic

2
J
";"0

7 + i
2
c 
J

";"0

8 +
1

3!
i
3
c J

";"0

9 ;(31)

where

J
";"0

7 (z; z
0
) := 2

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3

Z s1

0
ds4

Z s1

s4

ds5

Z
dy1

Z
dy4

Z
dy5

Z
dy2

Z
dy3

Z
dy6

p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)

f";z(y2) f
0
"0;z0(y3)�

p(s1 + s5 � 2s4; y1 � y6) p(s1 � s5; y4 � y6) p(s1 � s5; y5 � y6)

+ p(s1 + s5 � 2s4; y4 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6)

+ p(s1 + s5 � 2s4; y5 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y4 � y6)

�

and

J
";"0

8 (z; z
0
) :=2

Z t

0
ds1

Z s1

0
ds4

Z t

s1_s

ds2

Z t

s1_s

ds3

Z
dy1

Z
dy4

Z
dy5

Z
dy2

Z
dy3 p(s2 � s1; y2 � y4)

p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f
0
"0;z0(y3)h

p(2s1 � 2s4; y1 � y4) + p(2s1 � 2s4; y1 � y5) + p(2s1 � 2s4; y4 � y5)

i
as well as

J
";"0

9 (z; z
0
) := 3!

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3

Z
dy1

Z
dy4

Z
dy5

Z
dy2

Z
dy3 p(s2 � s1; y2 � y4)

p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f
0
"0;z0(y3):

We are left to study the convergence of J
";"0

9 ; J
";"0

8 and J
";"0

7 .
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First of all, we have

J
";"0

9 (z; z
0
) = 3!

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3

Z
dy2

Z
dy3 p(s2 + s3 � 2s1; y2 � y3)f";z(y2) f

0
"0;z0(y3)

� 6

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3 p(s2 + s3 � 2s1; 0) =: K9 <1:

As " and "0 decrease to zero, J
";"0

9 converges to

J
0
9 (z; z

0
) := 6

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3 p(s2 + s3 � 2s1; z � z
0
) � K9:(32)

Next, we have

J
";"0

8 (z; z
0
) =

Z
dy2

Z
dy3 f";z(y2) f

0
"0;z0(y3)H8(y2; y3);

where

H8(y2; y3) = 2

Z t

0
ds1

Z s1

0
ds4

Z t

s1_s

ds2

Z t

s1_s

ds3� Z
dy1 p(s2 + s1 � 2s4; y1 � y2) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)

+

Z
dy1 p(s3 + s1 � 2s4; y3 � y1) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)

+ p(s2 + s3 � 2s1; y2 � y3) p(s2 + s3 � 2s4; y3 � y2)

�
:

Since p(s2+s1�2s4; y1�y2) � p(s2+s1�2s4; 0) and p(s3+s1�2s4; y3�y1) � p(s3+s1�2s4; 0),

we deduce that

H8(y2; y3) � 6

Z t

0
ds1

Z s1

0
ds4

Z t

s1_s

ds2

Z t

s1_s

ds3 p(s2 + s1 � 2s4; 0) p(s2 + s3 � 2s1; 0)

= K8 <1:

Arguments similar to those used for the convergence of J
";"0

5 show that H8 is continuous and

bounded. Thus J
";"0

8 (z; z
0
) is uniformly bounded by K8 and converges to

J
0
8 (z; z

0
) := H8(z; z

0
) � K8:(33)

Finally, we have

J
";"0

7 (z; z
0
) =

Z
dy2

Z
dy3 f";z(y2) f

0
"0;z0(y3)H7(y2; y3);
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where

H7(y2; y3) := 2

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3

Z s1

0
ds4

Z s1

s4

ds5

Z
dy1

Z
dy6�

p(s2 � s5; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)

p(s3 � s1; y3 � y1) p(s1 + s5 � 2s4; y1 � y6)

+ p(s2 + s5 � 2s4; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)

p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)

+ p(s2 � s5; y2 � y6) p(s3 + s5 � 2s4; y3 � y6) p(s2 � s1; y2 � y1)

p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)

�
:

Check now that the following upper bound is �nite:

K7 := 2

Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3

Z s1

0
ds4

Z s1

s4

ds5h
p(s2 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0) p(s1 + s5 � 2s4; 0)

+ p(s2 + s5 � 2s4; 0) p(s1 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0)

+ p(s3 + s5 � 2s4; 0) p(s1 + s2 � 2s5; 0) p(s2 + s3 � 2s1; 0)

i
:

Arguments similar to those used for the convergence of J
";"0

5 show that H7 is continuous and

bounded by K7 <1. Thus J
";"0

7 (z; z
0
) is uniformly bounded by K7 and converges to

J
0
7 (z; z

0
) := H7(z; z

0
) � K7:(34)

Altogether, for each i 2 f1; : : : ; 9g, J";"0i exists, is uniformly bounded and has a �nite limit

as ("; "
0
) # 0. Thus, J";"

0
(z; z

0
) is well-de�ned and converges in R+ as " and "

0 decrease to

0.

Completion of the proof of (a). The claimed expectation expression for �[s;t](z) easily follows

from the moment formula (9) for L in the case m = 1.

The second moment of �[s;t](z) is given by the limit J0
; say, of J";"(z; z) from Lemma 9 as

" # 0: By the formulas (25), (27), (28), and (31),

J
0
= 2 ir�

�
2

�
2
 ic J

0
5 + i

2
c J

0
6

�
+

�
2 ic


2
J
0
7 + i

2
c 
J

0
8 +

1

3!
i
3
c J

0
9

��
+ i

2
rJ

0
2 < 1(35)

which, in the case s < t; is strictly larger than
�
E[�[s;t](z)]

�2
, occurring from the J0

2 -term [see

(26)]. This completes the proof of (a).

Remark 10 (variance formula). For t � s � 0 and z 2 R
d
, from the representation (35)

combined with (30), (29), (34), (33), (32), and (26), as well as the expectation formula in (a),
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we obtain the following formula for the variance of �[s;t](z) :

2ic ir

�
i
2
c �+ ir


� Z t

0
ds1

Z t

s1_s

ds2

Z t

s1_s

ds3 p(s2 + s3 � 2s1; 0)

+ 8 i
2
c ir
 �

Z t

0
ds1

Z t

s1

ds2

Z t

s2_s

ds3

Z t

s2_s

ds4 p(s3 + s4 � 2s2; 0) p(s3 + s4 � 2s1; 0)

+ 8 i
2
c ir
 �

Z t

0
ds1

Z t

s1

ds2

Z t

s2_s

ds3

Z t

s2_s

ds4

Z
dy p(s2 + s3 � 2s1; y) p(s3 � s2; y)

p(s4 � s2; y)

+ 16 ic ir

2
�

Z t

0
ds1

Z t

s1

ds2

Z t

s2

ds3

Z t

s3_s

ds4

Z t

s3_s

ds5

Z
dy1

Z
dy2

p(s2 + s3 � 2s1; y1 � y2) p(s4 � s2; y1) p(s4 � s3; y2)

p(s5 � s2; y1) p(s5 � s3; y2)

+ 16 ic ir

2
�

Z t

0
ds1

Z t

s1

ds2

Z t

s2

ds3

Z t

s3_s

ds4

Z t

s3_s

ds5

Z
dy1

Z
dy2

p(s2 + s4 � 2s1; y2 � y1) p(s4 � s3; y2) p(s3 � s2; y1)

p(s5 � s2; y2 � y1) p(s5 � s3; y2):

3

4.2. Spatial absolute continuity [proof of (b)]. We �rst prove that,

�q(x)

Z
L
�
d[r; y]

�
1[s;t](r) p("; x� y);(36)

converges in L
1
(` 
 P) as " decreases to 0, to �q(x)�(x), where for almost every x, P-a.s.

� = �. Thanks to the statement (a), it is enough to check that the function

(x; ") 7! E

�Z
L
�
d[r; y]

�
1[s;t](r) p("; x� y)

�
;(37)

is uniformly bounded on R
2 � (0; 1]. But this is clear since

E

�Z
L
�
d[r; y]

�
1[s;t](r) p("; x� y)

�
= E

�Z t

s

dr ir

Z
dz

Z
%r(dy) p(r; z � y) p("; x� y)

�
= iric (t� s):

Statement (b) is then a straight forward consequence of the following criterion with �(dy) =

L
�
[s; t]; dy

�
[recall Theorem 3 (i)].

Proposition 11 (su�cient criterion for absolute continuity). Let � 2Mq be a random vari-

able de�ned on a probability space (
;F ;P). We assume that E
�
(�; �q)

�
<1 and that�

(x; !) 7! �q(x)

Z
�(dy) p("; x� y); " > 0

�
(38)
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converges in L
1
(` 
 P) to some �q� as " # 0. Then P-a.s. the measure � is absolutely

continuous (with respect to the Lebesgue measure) and has the density function � :

�(dy) = �(y)dy:(39)

Proof. Let � be any bounded random variable on (
;F ;P), and f 2 Bq continuous. Because

of the assumed convergence in L1
(`
P), we get that

J" :=

Z
dx f(x) E

�
�

Z
�(dy) p("; x� y)

�

converges to
R
dx f(x) E [� �(x)] as " # 0. On the other hand, the function

(y; ") 7!
Z
dx f(x) p("; x� y)

is bounded by �q(y) [thanks to (A.1)], continuous and converges to f as " # 0. By dominated

convergence, we get that J" converges to E [� (�; f)]. Since � and f are arbitrary, the equalityZ
dx f(x) E [� �(x)] = E [� (�; f)]

implies that � is P-a.s. absolutely continuous with respect to the Lebesgue measure, and that

�(dy) = �(y)dy; P-a.s.

4.3. Random ergodic limit [proof of (d)]. Let f 2 L1
+(R

2
). Thanks to Lemma 9, we know

that T�1
R
[0;T ]�R2 L

�
d[r; y]

�
f(y) is well-de�ned and even belongs to L2

(P ). By self-similarity

this has the same law as

IT = T

Z
[0;1]�R2

L
�
d[r; y]

�
f(y

p
T ):

Thanks to Lemma 9 and (a), we see that IT converges in L2
(P ) to �[0;1](0)

R
dx f(x) as T " 1.

Thus we deduce that for any f 2 L1
+(R

2
), the following convergence in law holds with respect

to P :

lim
T"1

1

T

Z
[0;T ]�R2

L
�
d[r; y]

�
f(y) = �[0;1](0)

Z
dx f(x):

This ends the proof of (d).

A. Appendix: Some basic properties of catalyst and reactant

A.1. Moment formulas for the catalyst. Let d � 1 and �x � 2 Mq : It is easy to check

that for every T > 0, there exists a constant c > 0 such that for every x 2 R
d and " 2 (0; T ],Z

dy p("; x� y)�q(y) � c �q(x):(A.1)

Therefore we get that if g 2 H
q
T , then the function (r; x) 7!

R1
r
ds Ps�r[g(s)](x) is well-

de�ned and belongs to H
q
T . If f 2 Bq, then the function (r; x) 7! 1t�r Pt�r[f ](x) is also

well-de�ned and belongs to H
q
t .
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It is well-known that for every t � 0; g 2 Hq, f 2 Bq, and m � 1,

E �

�h
(%t ; f) +

Z 1

0
ds
�
%s ; g(s)

� im�
= m!

mX
k=1

1

k!

X
n1;:::;nk � 1;
n1+���+n

k
=m

kY
i=1

�
�; �ni(0)

�
;(A.2)

where the sequence (�n ; n � 1) is de�ned by the recurrence formula

�n(r; x) := 


Z 1

r

ds

Z
dy p(s� r; x� y)

"
n�1X
i=1

�i(s; y)�n�i(s; y)

#
;(A.3)

(r; x) 2 R+ � R
d
; n � 2; with initial condition

�1(r; x) := 1t�r Pt�r[f ](x) +

Z 1

r

ds Ps�r[g(s)](x); (r; x) 2 R+ � R
d
:(A.4)

Thanks to the remark at the beginning of this subsection, we see that the functions �n ; n � 1;

are well-de�ned and belong to Hq.

A.2. Regularity properties of the catalyst. We now assume that d � 3. Recall that we

write P for Pic` : It is clear from the Hölder continuity Theorem 3 of [DF97a] (p254) that for

every � 2 (0; 1=4), T � 0, P-a.s. there exists a constant C1 := C(T; %; �) such that for every

T � t � r � 0, f 2 B+(R
d
),Z t

r

ds

Z
%s(dz)�q(z)f(z) � C1 jt� rj�

Z
f(z)dz:(A.5)

We have also [cf. De�nition 2 b) and Theorem 4 of [DF97a], pp 224 and 259, respectively] that

for every T � 0, � 2 (0; 1=4), P-a.s. there exists C2 := C(T; %; �) such that for every x 2 R
d ,

T � t � r � 0, Z t

r

ds

Z
%s(dz) p(s� r; x� z)�

2
q(z) � C2 jt� rj� �q(x):(A.6)

A.3. Moment formulas for the reactant. Recall that d � 3. Using the Markov property

of X% (given %); it is easy to get that P-a.s. for every n � 1, tn � � � � � t1 � 0, and

fn ; � � � ; f1 2 Bq
+,

E
%
r;�

h
e
�
P

t
i
�r

(X%

t
i
;fi)
i

= e
�(�;v(r))

;(A.7)

where v is the unique nonnegative solution of the catalytic log-Laplace equation (7) with

J(s) :=
P

ti�s
Pti�s [fi]. Using the continuity of X%, it can be shown that P-a.s. for every

nonnegative g 2 Hq,

E
%
r;�

h
e
�
R1
r

ds (X
%

s ;g(s))
i

= e
�(�;v(r))

;(A.8)

where v is the unique nonnegative solution of (7) with J(s) :=
R1
s
du Pu�s [g(u)].

We deduce the next result on the moments of the reactant process X
% from Theorem 4,

Lemma 4 and Remark 2 of [DF97a] (pp 259 and 232, respectively). We have P-a.s. for every
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t � 0; g 2 Hq, f 2 Bq, and m � 1,

E
%
r;�

�h
(X

%
t ; f) +

Z 1

r

ds
�
X

%
s ; g(s)

� im�
= m!

mX
k=1

1

k!

X
n1;:::;nk � 1;
n1+���+n

k
=m

kY
i=1

(�; �ni(r));(A.9)

where (�n ; n � 1) is de�ned by the recurrence formula (10) with initial condition

�1(s; x) := 1t�s Pt�s[f ](x) +

Z 1

s

du Pu�s[g(u)](x) (s; x) 2 R+ � R
d
:(A.10)

Since �1 2 Hq, inequality (A.6) implies that all the functions �n belong to Hq.
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