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I. Introduction 

In 1988 a remarkable article by Bricmont and Kupiainen [BKl] settled the long-standing dis-
pute on the lower critical dimension of the random field Ising model through a rigorous mathematical 
proof of the existence of at least two phases at low temperatures in dimension three and above (the 
less disputed absence of a phase transition in dimension two was later proven by Aizenman and 
Wehr [AW]). Their proof was based on a renormalization group (RG) analysis that clearly should 
provide a valuable tool for the investigation of the low temperature phase of disordered systems 
in general. Unfortunately, the technical complexity of this approach has so far prevented more 
wide-spread applications, a notable exception being the proof by the same authors [BK2] of the 
diffusive behaviour of random walks in asymmetr.ic random environments in dimensions greater 
than two. 

Another problem of considerable interest that invites an application of this method is that 
of the stability of interfaces in random media; one may think in particular of domain walls in 
random bond or random field Ising models. In a series of articles [BoP,BoK1,BoK2] a hierarchical 
approximation of such interface models has been investigated; the purpose of the present paper is 
to go beyond this hierarchical approximation and to analyse the physically more realistic solid-on-
solid (SOS) model. We emphasize that the analysis of the hierarchical models shed considerable 
light on some aspects of this problem, in particular the more probabilistic ones, and has helped us 
in finding our way through the full model. We recommend reading of in particular Ref. [BoKl] as 

a warm-up before entering the technical parts of the present work. This reference also contains a 

fairly detailed introduction into the physical background and heuristic arguments which we prefer 
not to repeat here again in order to keep down the size of the present paper. For even more physical 
background on interfaces in random systems, we recommend the review by Forgacs et al. in Domb 
and Lebowitz Vol. 14 [FLN]. 

As is to be expected, the analysis of the interface model is in several respects considerable 
more complicated than that of the random field model; however, sometimes it is the case that 
added complications entail more clarity: it is our hope to convince the reader of the enormous 
virtues of this approach and of its conceptual clarity - and even simplicity - and in particular of 

its wide applicability and flexibility. From this point of view, we would like see the present work 
in a broader context as a generalization of the RG method for the analysis of the low-temperature 
phase of disordered systems to models with possibly non-compact single site state space. With this 
in mind, we have tried to give a fairly detailed and, hopefully, somewhat pedagogical exposition, 
emphasizing the conceptual ideas and presenting the method in more detail than has been done in 

[BK]. 

In presenting our approach we have chosen to stick to a concrete model and show how the RG 
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method can be used to solve it rather than to aim directly at more generally valid results. Overall, 
we have tried to stress the physically relevant ideas and keep the level of mathematical abstraction 
as low as compatible with rigour. This is clearly to some extent a matter of_ taste, but we hope -
that this choice will make our work more accessible to a wider audience. 

We would like to mention that another approach to the'low temperature phase of disordered 
systems has recently been announced by Zahradnik [Zal]. This approach is based on the Pirogov-
Sinai theory and aims at dealing with systems with finite spin space but possibly asymmetric ground 
states (like q-state Potts models). Although full details of this method have not yet been published, 
it is our believe that the two techniques are not incompatible and that an 'ultimate theory' of the 
low temperature disordered systems may be obtained by melting together these methods. 

Let us now describe the model we want to analyse. A SOS-surface is described by a family 

of heights, { h:iJ xezct, where hx takes values in 7Z. The Hamiltonian, that describes the energy 
difference 'between the 'fl.at' surface ( hx = 0) and an arbitrary one is formally given by 

H(h) = (1.1) 

where Jx(h) are random variables that describe the disorder in the system. We will generally 
assume that for x :f:. x', {Jx(h)hez and {Jxi(h)hez are independent stochastic sequences with 
identical distributions The properties of the stochastic sequences {Jx(h)hez themselves depend 

on the particular physical system under consideration. Two particular examples were highlighted 
in our previous work [BoP,BoK1,BoK2]: 

(i) (Random bond model) The distribution of the sequence {Jx(h)hez is stationary with respect 
to translations h --t h + k, k E 7Z. The marginal distributions satisfy gaussian bounds of the 
form 

(1.2) 

and the Jx(h) are centered, i.e. 

IEJx(h) = 0 (1.3) 

In fact, one may think of the Jx(h) as sequences of i.i.d. random variables. However, it turns 
out in the proofs that independence is unessential and impossible to maintain in t'he course of 
renormalization, while stationarity is an important invariant property. 

(ii) (Random field model) Here, a priori the Jx(h) should be thought of as sums of i.i.d. random 
variables. But again, this is not a property that is maintained under renormalization and is 
replaced by a weaker condition: Let Dx(h, h') = Jx(h) - Jx(h'). Then the distribution of 

the stochastic array {Dx(h, h')}h,h'EZ is invariant under the diagonal translations (h, h') --t 
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(h + k,h' + k), k E 7.l, 
IEDx(h, h') = 0 (1.4) 

and the marginals satisfy gaussian bounds of the form 

.. 2 

IP (Dx(h, h') > t) ~ e - 2cr 2 1Ji.-h'I (1.5) 

For further physical motivations of these choices we refer to our previous articles. Let us 
remark that the hamiltonian (1.1) differs from the one of the d-dimensional random field Ising 
model essentially only in that the variables h take values in 7.l rather than { -1, 1} (this has been 
observed in [BFG]) which fact suggests the application of the techniques of [BKl]. In the present 
paper we will actually consider only the case (i); the details in the case (ii) may be found in [K]. 

Our aim is to prove that, for d 2:'.: 3, at low temperature and for small a, there exist infinite 
volume Gibbs states corresponding to the Hamiltonian (1.1) describing surfaces with everywhere 
finite heights, for almost all realizations of the disorder. To be more precise, let us denote by 
n 7.lzc1. the configuration space and ~ the Borel sigma-algebra of n. For any finite subset 

A c 7.ld' we set nA = 7.lA and denote by ~A the sigma algebra generated by the functions 
hx, x E A. For any configuration h E n we write hA, hAe for the restrictions of the function h to 
A and Ac, respectively. For two configurations h and "I we write ( hA, 'f/Ae) for the element of n for 
which 

We set, for any finite volume A 

x,yEA: lx-yl=l 

, if x EA 
, if x fj. A 

11EA,11EAe 
111-111=1 

(1.6) 

(1.7) 
xEA 

This is of course always a finite sum. The local specifications (or finite volume Gibbs measures) are 
probability kernels on n such that for any ~-measurable function f' 

(1.8) . 

where dhA denotes the counting measure on nA. The constant z1,/3,J is a normalizatio~ constant 
chosen such that µ~ 1131 J(l) = 1, usually called the partition function. Measures µ~,J on (n, ~) are 
in fact called Gibbs measures for ry, if for all finite A, this measure conditioned on 'f/Ae coincides with 
µ1,13 ,J (these are the so-called DLR-equations (see [Ge]). More important for us is the fact that (at 
least) the extremal Gibbs measures can be constructed as weak limit points of sequences µ1.,.,/3,J' for 
sequences An that increase to 7.ld [Ge]. The problem of statistical mechanics is then to investigate 
the structure of the set of these limit points. Here, however, our ambitions are somewhat more 
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modest: we want to show that for constant configurations 'T/x = k, k E .m, and suitable sequences 
of volumes An, the sequences of measures µX.,.,/3,J converge to a limiting measure, for almost all 
J. It should be noted that for our models not even the existence of a limit I?oint is a non-trivial -
question, since a priori a sequence of probability measures on n need not converge to a measure, 
due to the non-compactness of the space .m! (As an example for such a situation, take the sequence 
of probability measures Pn on .m, which assign mass l/n to the atoms {1, ... , n} and mass zero to 

all others. Clearly this sequence has no limit point in the space of measures (cf. [CT] chap. 1.5, 

ex.6)). 

Finally we must mention that all the objects introduced above are of course random variables 
on some underlying probability space (0, :F, IP) on which the Jx(h) are defined. It should be 
noted in particular that due to the definition of H J,A, the local specifications µ1,{3,J are measurable 
w.r.t. the sigma algebras :FA (the sub-sigma algebras generated by the functions {Jx(h)}xEA). Care 
should be taken that then limits are taken, neither An nor 'T/ should depend on J. It is frequently 
possible to produce pathological results by choosing random boundary conditions1 . The central 
result of this paper is then the following 

THEOREM 1: Let d ~ 3 and assume that the random variables J x ( h) satisfy the conditions 
detailed under (i). Let An denote cubes of side-length Ln centered at the origin. Then there exists 
f3o < oo, ao > 0, such that for all f3 ~ f3o and a ~ ao, and for suitably chosen integer L, the 
sequence of measures µX.,. ,{3,J converges to a unique Gibbs measure µ~,J' for IP-almost all J, and 

for k f:. k', µ~,J and µ~',J are disjoint. 

Remark: The condition that the sequence of volumes be a sequence of cubes is only made to 

simplify some technical aspects of the proof. It is not difficult to prove the theorem for any (non-

random) sequence of increasing and absorbing volumes. The measures constructed in Theorem 1 
are clearly the only extremal Gibbs measures corresponding to 'translational invariant' boundary 
conditions. To analyse the full structure of the set of Gibbs measures remains an interesting, but 
difficult question. 

Before entering the details of the proof of this theorem, we would like to explain some of the 
main ideas and features of the RG approach. As always in statistical mechanics, the principal 
idea is to find a way of arranging the summations involved in the expression (1.8) for the local 

I' 

specifications in a suitable way as a convergent sum. In the low temperature phase, the usual way 
of doing this is by first finding the ground states (minima of HA) and then representing all other 
configurations as (local) deformations of these ground states (often called 'contours' or 'Peierls 

1 Newman and Stein [NS] have recently investigated interesting phenomena of this type in the context of spin 

glass models. 
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contours'). Under favourable circumstances, one may arrange the sum over all these deformations 
as a convergent expansion ('low temperature expansion'). As opposed to many 'ordered' systems, 
the first (and in some sense main) difficulty in most disordered systems is that t;h.e ground state 
configuration depends in general on the particular realization of the disorder, and, worse, may in 
principle depend strongly on the shape and size of the finite volume A! In our particular model 
this means that a ground state for the infinite system may not even exist! This latter situation is 
actually expected to occur in dimensions d::; 2. 2 In dimension d ~ 3, we expect, on the contrary, 
that a ground state in the infinite volume exists and moreover that this ground state itself may 
be seen as a 'small' deformation of the ground state of the ordered system. This property must, 
however, be proven in the course of the computation. 

The crucial observation that forms the ideological basis for the renormalization group approach 
is that while for large volumes A we have no a priori control on the ground state, for sufficiently small 
volumes we can give conditions on the random variables J that are fulfilled with large probability 
under which the ground state in this volume is actually the same as the one without randomness. 
Moreover, the size of the regions for which this holds true will depend on the variance of the r.v.'s 
and increases to infinity as the latter decreases. This allows to find 'conditioned' ground states, 
where the conditioning is on some property of the configuration on this scale (e.g. mean height 
over a certain region), except in some small region of space. Re-summing then over the fluctuations 
about these conditioned ground states one obtains a new effective model for the conditions (the 
coarse grained variables) with effective random variables that (hopefully!!) have smaller variance 
than the previous ones. In this case, this procedure may be iterated, as now conditioned ground 
states on a larger scale can be found. This is the basic idea of the renormalization group. 

To implement these ideas one has to overcome two major difficulties. The first is that one 
needs to find a formulation of the model, i.e. a representation of the degrees of freedom and of the 
interactions that is sufficiently general that its form remains invariant under the renormalization 
group transformation. There has been an extensive discussion recently in the literature (see [EFS]) 
on some 'pathological' aspects of the RG that indicates that a 'spin system' like formulation (like 
(1.1)) will in general be inadequate. We will see that a adequate solution of this problem can be 
given through a class of contour models. The second, and really the most fundamental difficulty 
is that the re-summation procedure as indicated above can only be performed outside a small, 

' 
random region of space, called the 'bad region'. Now while in the first step this may look like no 
big problem, in the process of renormalization even a very thin region will 'infect' a larger and larger 
portion of space, if nothing is done. Moreover, in each step some more bad regions are created from 

2 It is expected that the methods of Aizenman and Wehr [AW] used to prove the uniqueness of the Gibbs state 

in the two-dimensional random field Ising model can be used to prove such a result. 

6 



regions in which the new effective random variables have bad properties. This requires to get some 
control also in the bad regions and to get a precise notion of how regions with a certain degree 
of badness can be regarded as 'harmless' and be removed on the next scale. For the method to 
succeed we must then find ourselves in a situation where the bad regions 'die out' over the scales 
much faster than new ones are produced. This will generally depend on the geometry of the system 
and in particular on the dimension. 

The remainder of this paper is organized in three stages. In the next section we give a more 
detailed and more specific outline of the renormalization group method. This will serve to expose 
the conceptual framework and to introduce most of the notation for later use. It should give the 
reader who may not be bothered with the hard technical work a fairly good idea of what we are 

doing. Then, in Section III, these ideas are set to work for the analysis of the 'ground states' (i.e. 
the case of zero temperature) and to prove the corresponding special case of Theorem 1. Here 
again we have two purposes in mind: First, this case is still considerably less complicated than the 
case of finite temperature while already exhibiting most of the interesting features. Second, all of 
the estimates used here are also needed in the more general case and separating those pertinent 
to the ground states from those related to expansions about them may make things only more 
transparent. This section also contains (almost) all the probabilistic estimates that then apply 
(almost) unaltered in the finite temperature case. Section IV finally contains the analysis of the 
finite temperature Gibbs states and the proof of Theorem 1. In Section V we conclude with some 
remarks on possible future developments. An appendix contains the proofs of some est~mates of 
geometric nature. 
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II. The renormalization group and contour models 

This section is intended to serve two purposes. First, we want to describe the principal ideas 
behind the renormalization group approach for disordered systems in the low-temperature regime. 
We 'hope to give the reader an outline of what he is to expect before exposing him to the, admittedly, 
somewhat complicated technical details. Second, we want to present the particular types of contour 
models on which the renormalization group will act. In this sense the present section introduces 
the notation for the later chapters. Most of the basic ideas outlined here are contained explicitly 
or implicitly in [BK]. 

11.1. The renormalization group for measure spaces 

Let us recall first what is generally understood by a renormalization group transformation 
in a statistical mechanics system. We consider a statistical mechanics system to be given by a 
probability space (n, ~'µ),whereµ is an (infinite volume) Gibbs measure. One may think for the 
moment of n as the 'spin'-state over the lattice .7Zd, but we shall need more general spaces later. 
What we shall, however, assume is that n is assoeiated with the lattice .7Zd in such a way that for 
any finite subset A c .7Zd there exists a subset nA c n and sub-sigma algebras, ~A' relative to nA 
that satisfy ~A C ~A', if and only if A C A'. Nate that in this case any increasing and absorbing 

sequence of finite volumes, {An}nEZ+, induces a filtration {~n = ~A~ }nEZ+ of~- It should always 
be kept in mind that in the situations we ,.are interested in we have, a priori, no explicit knowledge 
of the measures µ, but only of their local specifications for finite volumes, i.e. the expectations 
ofµ conditioned on ~Ac (finite volume Gibbs measures with 'boundary conditions'). The other 
important notion that should be kept in mind is that the measuresµ are, by Kolmogorov's theorem 
[Ge], uniquely determined by their values on all cylinder functions on all finite volumes A ('local 
observables'). 

Ideally, a renormalization group transformation is a measurable map, n, that maps .7Zd ~ .7Zd 

and (n, ~) ~ (n, ~)in such a way that for 'any Ac .7Zd, 

(i) 'R(A) C A, and moreover 3n<oo : nn(A) = {O}, where n of course may depend on A. 

I 
We will see later that these conditions are slightly too restrictive in general, but for the moment 

we will stick to them. Note that the use of the same name, n, for the action of renormalization on 
the lattice and on the space n which should not create confusion. The action of n on space will 
generally be blocking3 , e.g. 'R(x) = c-1 x =: int (x/ L). The action on n has to be compatible with 
this blocking but needs to be defined carefully. We should like to stress that in different situations 

3 We call the blocking operator £- l for historical reasons. 
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it may be appropriate to use RG maps that are not based on the simple blocking operation e,-1 . 

Having the action of non the measurable space (f!, E) we may of course lift it to the measures 
on (n, E) via 

('Rµ)(A') = µ(n-1(A')) (2.1) 

for any Borel-set ·,A E 'R(E). The fundamental relation of the renormalization group allows to 
decompose the measure µ into a conditioned expectation and the renormalized measure . on the 
condition, i.e. for any Borel-set A E E we have 

µ(A)= ('Rµ)(µ(AI·)) = f µ (A1n-1(w 1
)) ('Rµ)(dw') 

j,R-(0} 
(2.2) 

A priori, all of the above are just trivialities. They are useful only if the map n can be chosen in 
such a manner that equation (2.2) and its iterates are useful in computing expectations of interest. 
This requires that the measure 'Rµ is 'simpler' in an appropriate sense than the measure µ itself, 
and that the conditioned expectations are more easy to control at least on a subspace that has large 
measure w.r.t. 'Rµ. This has to be verified in explicit computations. An example in which this 
can be easily carried through in full detail is given for instance by the hierarchical model treated 
in [BoK2]. 

So far, we have not made reference to the specific situation in random systems. In a random 
system, the measure µ is itself random, i.e. is a measure valued random variable on some underlying 
probability space (0, :F, IP) that describes the randomness of the system. In such a situation it 
may - and will - turn out that the specific choice of the renormalization group transformation has 
to be adapted to the particular realization of the disorder, i.e. will itself have to be a - complicated 
- random function. In particular, in such a case the renormalization group transformation cannot 
be simply iterated since after each step the properties of the new measure have to be taken into 
account when specifying the new map. As a matter of fact we will even go one step further and allow 
the underlying spaces n to be random and to change under the application of the renormalization 
group map (although this point is to some extend a question of taste and convenience). 

A final aspect that should be kept in mind is that of course the renormalized measures (or 
even their local specifications) can only in principle be computed exactly. In practice we must 
restrict our knowledge to certain bounds, and it is only on these that the renormalization maps 
may depend. 
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11.2. Contour models 

The concept of "contours" has been fundamental in the analysis of low-temperature phases 
of spin-systems since its introduction by Robert Peierls in 1936 [P]. It formed the basis for the 
first proof of the existence of a phase transition in the Ising model, and as such, in any model of 
statistical mechanics. They play the fundamental role in the most powerful modern method to 
analyse phase transitions, the Pirogov-Sinai theory (see e.g. [Za2]). The basic idea behind contours 
is to make explicit the region in space where a spin-configuration deviates from a ground state 
configuration and to use the fact that these regions carry energy proportional to their volume and 
therefore are suppressed sufficiently to counter their entropy, if the temperature is sufficiently small. 
It is thus natural that contour models should constitute the proper context for our analysis as well. 

As we have said before, the main new problem that arises in disordered systems is that the 
ground states are very difficult to come by, which seems to make the implementation of the contour 
idea impossible. However, in sufficiently simple situations - like the one we are studying -, one may 
guess that for sufficiently weak disorder the ground state should look almost like that of the ordered 
system. It is thus natural to build the contour model on the basis of the 'ideal' ground states and 
to let the contours themselves keep track of the deviations of the true ground state from these ideal 
ones. Section III will pinpoint this idea by dealing exclusively with the ground state problem while 
omitting the added complications of the thermal fluctuations. The basic notion here is that of the 
"bad regions" introduced in [BKl]. They are those regions in space where the randomness locally is 
sufficiently strong to potentially influence the ground state configuration. As long as these regions 
have a small density, they will be treated in a sense like deviations from ground states and kept 
track of with the contours. 

We will now become more specific and give the precise definitions of contours in our situation. 

DEFINITION 2 .1: A contour, r, is a pair (.[, h ), where f is a subset of 7£d, called the support of 
r, and h = h(r) : 7£d ~ 7£ is a map that is constant on connected components of .r_c. 

Note that h alone does not specify the contour as we do not require that f be restricted to the 
region where h is non-constant. We follow the usage of [BKl] in calling f the support, although 
this may be misleading. Of course, when mapping our SOS-model to a contour model, we must 
give a one-to-one map from heights to contours, but this information will always be assurfled to be 
contained in the measures (in other words, we start with a model where only certain contours have 
non-zero measure). In the sequel, n shall denote the space of all contours. Also, nA will denote 
the space of contours in the finite volume A. 4 

4 Let us remark that the space of contours can also be described as a more general spin ( h, a), where ax takes 

the values zero if x E £ and zero otherwise. 
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We will also need to consider spaces of contours satisfying some further constraints. To explain 
this, we must introduce some notation. Let D denote some subset of zzd x ZZ. Such sets will later 
arise as the so-called 'bad regions'. Let us note already here that the fact that bad regions are 
subsets of zzd x zz, that is the basic lattice times the space of the 'heights' is ~main difference to 
the random field case treated in (BKl), where bad regions are subsets of the base space zzd only. 
It is the non-compactness of our 'spin-space' that makes this modification necessary. Given D, we 
denote by D(h) the slices of D at height h, i.e. 

D(h) := {(x, h') E Dlh' = h} (2.3) 

Of course D(h) can be identified in a natural way with a subset of zzd by simply projecting. We 
must also define, for a given contour r the set 

D(r) = {x E ztdl(x, hx(r) E D} (2.4) 

Given a set D, we will denote by O(D) all those contours whose support contains D(r), i.e. 

n(n) = {r E n1n(r) c r.} (2.5) 

Note that this definition is consistent since on the one hand D(r) really only depends on the height 
part of r and the condition in the definition of (2.5) only affects the support of r. As a matter of 
fact, given any contour in r' E n we can easily associate to it a contour in O(D) by first computing 
D(r'), and then setting r_ := r_' U D(r'). Then r = (r., h(r') is a contour in O(D). 

As we have indicated above, a renormalization group transformation may depend on the star-
ting measure. In particular, the transformations we will use depend on the set D (which of course 
will be chosen in accordance with the measure µ, or more precisely some of the random parameters 
µdepends on). The sets D will necessarily also be affected by the renormalization, so that we will 
'have to construct maps nn, depending on D (as well as other parameters) that map the spaces 
O(D) into O(D') for a suitably computed D'. The resulting structure will then be a measurable map 
nn : (O(D), ~(D)) -t (O(D'), ~(D')) that can be lifted to the measureµ s.t. for any A E ~(D'), 

(nnµ)(A) = µ(n01 (A)) (2.6) 

Of course we want to iterate this procedure. At least here it becomes clear that it is necessary 
to find a parameterization of the measures we are dealing with that remains invariant under the 
RG transformations. As a first step, let us rewrite the original SOS model as a contour model. 
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11.3. The SOS model as a contour model 

One of the basic ideas in the reformulation of our model in terms of contours is that the form 
in which the contour weights are written should make manifest how the energy ·is associated to 
the supports of the contours, and more specifically, to the connected components of the supports. 
To do this, we first need to introduce some more notation. First, we will always use the metric 
d( x, y) = maxf=1 I xi - Yi I for points in ~d. We will call a set A C ~d connected, iff for all x E A, 

d( x, A\ { x}) ~ 1. A maximal connected subset of a set A will be called a connected component of 
A. We will also use the notation A for the set of points whose distance from A is not bigger than 
1, and we will write 8A = A \A and call 8A the boundary of A. A further important notion is that 
of the interior of a set A, intA. It is defined as follows: For any set A C ~d, let A C JRd denote 
the set in JRd obtained by embedding A into JRd and surrounding each of its points by the unit 
cube in d dimensions. Then the complement of A may have finite connected components. Their 
union with A is called int.A, and the intersection of this set with ~d is defined to be intA. 

Important operations will consist of the cutting and glueing of contours. First, for any contour 
r we may decompose its support, r, into connected components, 1i in the sense described above. 
Note that a contour is uniquely described by specifying its support r, the values of h on the support 
and the values h takes on each of the connected components of the boundary of the support. This 
makes it possible to associate with each connected component f. of the support a contour, {i, by 

-i 

furnishing the additional information of the heights on f. and on the connected components of 
-i 

a,.. We will call a contour with connected support a connected contour. In the same spirit we 
-i 

call a connected contour {i obtained from a connected component of the support of a contour r 
a connected component of r. A collection, { {1, ... , 'Yn} of connected contours is called compatible, 
if there exists a contour r, such that /i, . .. , rn are the connected components of r. This contour 
will also be called (/1, ... ,{n)· It is clear that the notion of compatibility has a simple expression 
in terms of the heights on the connected components of the boundaries of the 'Y .. 

-i 

Notice that the connected components of a contour are not entirely independent of each other, 
since a connected component may lie within the interior of another and thus has to adjust its 
exterior height to the corresponding height of.this outer contour. Therefore, we will have two use 
a second notion of connectedness that we call weak connectedness. We say that a set A C ~d is 
weakly connected, if int A is connected. All the notions of the previous paragraph then fi.nd their 
weak analogs. 

Finally, let us define the level sets Vh(r) of a contour by 

(2.8) 

12 



For any function F: .7Zd x 7Z--+ m, we introduce the notion 

(F,V(f)) = L L Fx(h) 
hEZ xEV,..(r) 

This notation will receive a considerable generalization shortly. 

We now come to the representation of the SOS-model as a contour model. Defining 

we could write 

c,ve!: 
lc..:..vl=l 

H(h) = Es(r) + (J, V(r)) 

(2.9) 

(2.9) 

(2.10) 

with r defined for a given function h as the set of x that possess a nearest neighbor y for which 
hy f:. hx. Then the term Es(r) could be written as a sum over connected components, Es(r) = 
L;i Es('Yi)i this would produce the contour activities and the term ( J, V(f)) would play the role 
of a 'field'. This would be reasonable, if the· configuration h = 0 were indeed the true ground 
state. However, the fields terms here may and will alter the ground state configuration, although 
only locally in rare places. As indicated above, we want to take this into account by adopting the 
definition 0f contours more closely to the real situation. Of course, due to our limited control over 
the random terms, this can be achieved only on a given finite length scale. To implement this, we 
allow only Jx(h) that are small enough to remain in the field term. For a fixed o > 0 that will be 
chosen appropriately later, we set 

(2.11) 

Here and everywhere in the sequel lix denotes the indicator function of the event X (i.e. lix = 1 
if X holds and lix = 0 otherwise). For fields that are not small in this sense, we introduce a new 
field that only keeps roughly track of their size. It is defined as 

(2.12) 

Here we chose the prefactor 5-1 so that the control fields have minimal size one. This is not 
particularly significant but makes some of our later estimates more easily comparable with those 
in [BK]. The region D, the bad region is then defined as 

(2.13) 

where L is a positive integer (it will be the blocking scale of the RG transformation) and c > 0 is 
a suitably determined positive constant. Now we define the mass of a contour r as 

µ(r) = { ~(r)e-fl(s,vcrn , if.[= {xljy:lx-yl=t : hy(f) f:. hx(f)} U D(r) 
, otherwise 
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where 
p(r) = e-t3(E,(r)+( J, v(r)nn(r)nr.> (2.15) 

The important fact here is that p(r) factors over the connected components of r, i.e. if r = 
({1, ... ,{n), then 

n 

p(r) = II p( ri) (2.16) 
i=l 

(Note that it is to have (2.16) that we wrote D(r) U .r. rather than simply D(r). We must note here 
that the connected components of a contour will, of course, not in general satisfy the constraint to 
contain the bad region of that contour!). 

Note that (2.14) gives a one-to-one relation between height-configurations and contours with 
non-zero weight. All quantities of interest in the SOS-model can thus be computed in the contour 
model defined above. 

In an ideal situation, we would hope that the form of the measures on the contours would 
remain in this form under renormalization, i.e. activities factorizing over connected components 
plus a 'small-field' contribution. Unfortunately, the truth will not be that simple, except in the 
case of zero temperature, as will be shown in Section III. In general, the renormalization will 
introduce non-local interactions between connected components of supports as well as a non-local 
'small random field', { S 0 } indexed by the connected subsets C of JZd. The final structure of the 
contour measures will be the following: 

(2.17) 

where p(r, G) are activities that factor over the connected components of G. Z is as usual the 
normalization constant that turns µ into a probability measure. For non-local fields the notion 

(S, V(r)) is extended to abbreviate 

(S,V(r)) = L L Sc(h) (2.18) 
hEZ CCVh(r) 

the sum over C being here and always a sum over connected sets. The functions S, the activities 
p and the fields N will be the parameters on which the action of the renormalization group will 
finally be controlled. Of course these quantities will have to satisfy certain bounds that will be 
specified later, and it will be these bounds that eventually have to be controlled in the process of 

renormalization. 
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11.4. Renormalization of the contours 

As the last point of this section we will now define the action of the renormalization group 
on the contours themselves. We should remark that this cannot yet be done completely, since, as 
indicated above, the renormalization group map will depend on the bad regions and even to some 
extend on the starting measure µ itself (basically through the fields N x( h)). Thus at present we 
give the general outline while the details must be filled in the appropriate places of Sections III and 
IV. 

The renormalization group transformation we shall construct consists of three distinct steps: 

(i) Summation of small connected components of contours 

(ii) Blocking of the remaining large contours 

(iii) Dressing of the supports by the new bad region 

Note that step (iii) is to some extent cosmetic and requires already the knowledge of the 
renormalized bad regions. We note that this causes no problem, as the bad regions may in practice 
already be computed after step (i). 

Let us now give a brief description of the individual steps. 

STEP 1: In principle we would like to sum in this step over all those classes of contours for which 
we can get a convergent expansion in spite of the random fields. In practice, we restrict ourselves to 
a much smaller, but sufficiently large, class of contours. Namely we define a connected component 
as 'small', if it is geometrically small (in the sense that d(Ti) < L - 2) and if its support does 
not intersect the bad region, with the exception of a suitably defined 'harmless' subset of the bad 
region. This latter point is important since it will allow us to forget about this harmless part in 
the next stage of the iteration and this will assure that the successive bad regions become sparser 
and sparser. Precise definitions (although certainly not the optimal ones) are given in Section III. 

A contour which contains no s!Ilall connected component is called large, and we denote by 
nz(D) the subspace of large contours. The first step of RG transformation is then nothing but the 
canonical projection form n(D) to nz(D), i.e. to any contour inn we associated the large contour 
composed of only the large components of r. 

STEP 2: In this step the large contours are mapped to a coarse-grained lattice. We choose the 
simplest action of n on ~d, namely (1?.x )i = £-1 = int (xi/ L). We will denote by £x the set of 
all poip.ts y s.t. £-1 y = x. Now the action of £-1 on height configurations of large contours is 
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defined as averaging, i.e. 

(2.19) 

with this definition we have the action of c-1 on large contours as 

(2.20) 

STEP 3: The action of n given by (2.19) does not yet give a contour in D.(D'). Thus, the last step 
in the RG transformation consists of enlarging the supports of the contours by the newly created 
bad regions, which of course requires first to compute those. This will in fact be the most subtle 
and important part of the entire renormalization program and will be explained later. Given a new 
region D', the effect on the contours is just to replace c-1r by c-1r U D'(£-1r), so that finally 
the full RG transformation on the contours can be written as 

(2.21) 

We have now set up the basic formalism for our RG program. The remaining task is now to 
analyze the induced action on measures of the type described above and to show that this technique 
has the computational power to prove the theorem announced in the introduction. 
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III. The ground states 

As we have indicated in the introduction, the crucial new feature in the analysis of the low 
temperature phase of disordered systems as opposed to that of ordered ones lies in the fact that 
even the analysis of the properties of the ground state becomes highly non-trivial and the result 
crucial for th~· structure of the low-temperature phases. But while the essential conceptual features 
are already present, on the technical level this is still much simpler than the situation at finite 
temperature, mainly due to the fact that we need not perform any cluster expansions. We think 
it is helpful for the understanding of this method to separate difficulties of diffferent origin and 
therefore we devote this section entirely to this particular case. The results obtained here will then 
prove useful in the general case that we will treat fa Section IV. 

i:II.1 Formalism and set-up 

We will try to make this section as self-contained as possible, but refer to notations introduced 
in Section II. Let r denote a contour as defined in Definition 2.1. and let n be the space of 
all contours. For a given energy function H : n ~ IR, we must define the proper notion of a 
ground state contour; in particular, we are interested in ground states corresponding to 'boundary 
conditions zero at infinity'. In the sequel, let A a~ways denote a finite subset of ztd. We need to 
define restrictions HA of H to finite volumes that are finite functions from n into IR. The precise 
definition of these restrictions for contour models will be given in a moment. Now define the sets 
gr) to be the contours of lowest energy in A for given external configuration r Ac , i.e. 

(3.1) 

Here r Ac denotes the restriction of r to Ac. The set of all infinite volume ground states is usually 
defined (see [AL]) as 

(3.2) 

Remark: Under some weak smoothness assumptions on the measure IP the sets 9ir) consist 

JP-a.s. of single elements. 

The problem of determining the entire set of ground states is, at least in our situation, far too 
ambitious and we will content ourselves with proving the existence of groundstates cdrresponding 
to roughly fiat interfaces with a given typical height. More precisely, we will proceed as follows. 
Let An denote the cube centered at the origin of sidelength Ln. Then define the cylinder set 

(3.3) 

(this is the set of all contours that within A look like a ground state for the finite volume An with 
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boundary condition (0, h~ = h). Now set 

00 n g(h) A.,,,,A (3.4) 

It is easy to convince oneself that 

(3.5) 

(this is in fact analogous to the observation that weak limit points of local specifications yield 
infinite volume Gibbs states). The purpose of the.present section is to prove that 9~) is non-empty 
if d 2:: 3 and the disorder weak enough. It will also follow that these sets are disjoint for different 
values of h. By stationarity, it will in fact be enough to consider the case h = 0 which we will do 
from now on. 

To construct an element of 9~) we have to study elements r• of the sets 9i0l and show that 
for any fixed finite volume A the restriction rA_ becomes independent of n for n sufficiently large. 
Let us introduce the abbreviation nn = n~~. The analysis of ground states via the renormalization 
group method then consists of the following inductive procedure. Let n be a map n : nn ~ nn-l · 
Then clearly 

(3.6) 

which suggests to define 

(nHA,,,_J(f) = inf # HA...(r) 
PE'R.- 1 r 

(3.7) 

Since n is in general not invertible, n-1f denotes the set pre-images off' in nn. Then, defining 
ngi0l_ 1 to be the set of ground states with respect. to the energy function RH. Then we have that 

(3.8) 

that is, if we can determine the ground states with respect to RH in the smaller volume An-1, 
then we have to search for the true ground state only within the inverse image of this set. The 
proper setting up of a RG scheme consists of finding maps n such that both tasks become simpler 
than the original one. 

We will now give a precise description of the class of admissible energy functions. The original 
energy function describing the SOS-model was already introduced in the introduction and adopted 
to the contour formulation in Section II. In that section the relation between the original random 
fields Jx(h) and the 'small field' Sx(h) and the auxiliary field Nx(h) and the 'bad region' D was 

. explained. To describe the general class of models that will appear in the RG process, we begin 
with the auxiliary or 'control' fields N. Thus we let { N x( h )}~~f ... be a family of non-negative 
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real numbers. In fact, they will later be assumed to be a random field satisfying certain specific 
probabilistic assumption. Given such N, we may now define the 'bad region' corresponding to it, 
namely 

DEFINITION 3 .1: Given a control field N, the set 

D = D(N) = { (x, h) E An x ~1 ~.~~ ( N~(h + h') - :J;ih'I) > 0} (3.9) 

is called the 'bad region'. Here c is a constant that may be chosen e.g. c = 1/16. Given a contour 

r En, we denote by D(r) the set 

D(r) = {x E Anl(x, hx(r)) ED} (3.10) 

and we denote by !ln ( D) c !ln the space 

(3.11) 

DEFINITION 3.2: An N-bounded contour energy e of level k is a map e: !ln(D) ~IR, s.t. 

( 1) If !1, ... , rm are the connected components of r, then 

m 

e(r) = Le( ri) (3.12) 
i=l 

(ii) If r is a connected contour in !ln(D) then 

(3.13) 

wher~ Es (r) is the strictly deterministic surface energy defined in { 2. 9). 

(iii) Let CcD(h) be connected and "Y = (C, hx = h) be the connected component of a contour 

r C !ln(D). Then 
e("Y) ~ L Nx.(h) (3.14) 

xEO 

An N -bounded energy function of level k is a map HA.,,, : nn -t IR of the form 

HA.,,, (r) = e(f) + (S, V(r)) (3.15) 

where Sx(h) are bounded random fields (see e.g. (2.11)) and e is a N-bounded contour energy of 

level k. 
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Remark: The 'level' kin the definition refers to the fact that some properties of energy function 
change under the application of the RG transformation. A energy function for the SOS-model will 
be a energy function of level k after k iterations of the RG. 

Remark: The appearance of the dimension and k dependent constant in the lower bound (3.14) 
is due to the fad that in the RG process no uniform constant suppressing supports of contours 
outside the bad region is maintained. The specific form of this constant is somewhat technical. 

Remark: Restrictions of energy functions to more general finite volumes A are defined as 

HA(r) = :E E(T'i) + (S, vh(r) n A) (3.16) 
i:"Y;nA:j:0 

We are now ready to define what we mean specifically be a RG transformation 

DEFINITION 3.3: For a given control field N, a proper renormalization group transformation, 

R,(N), is a map from nn(D(N)) into nn-1(D(N'-)), such that if HA~ is of the form {3.16) with€ 

a N -bounded contour energy of level k, then HL:...
1 
= R,(N) HA~ is of the form 

HL_1 (r) = E'(r) + (S', v(r)) (3.17) 

where €1 is a N'-bounded contour energy of level k + 1, and S' is a new bounded random field and 
N' is a new control field. 

From the above definition it is obvious that in order to make use of a RG transformation, it 
is crucial to be able to compute N' and S', i.e. to study the action of the RG on the random 
and control fields. As both are random fields, this control will be probabilistic, i.e. consist of 
statements an the effective probability distributions. We must therefore specify more precisely the 
corresponding assumptions. 

Recall that the energy functions H are random functions on a probability space (0, :F, IP) 
and that HA~ is assumed to be :FA~ -measurable (this is evident e.g. in the original SOS-model, 
where HA~ is a function of the stochastic sequences Jx(h) with x E An only, and :FA~ is the 
sigma-algebra generated by these sequences). Of course, the renormalized energy functions are still 
random variables on this same probability space. It is useful to consider an adion of the RG map 
on the sigma-algebras and to introduce :F(k) = R,k :F, where in particular n:F'A_k) c :F~~-l)' such 
that after k iterations of the RG the resulting energy function is :F(kLmeasurable. N atur'hlly, :F(k) 

is endowed with a filtration with respect to the renormalized lattice. In the general step we will 
drop the reference to the level in the specifica~ion of this sigma-algebra and write simply :F. We 
need to maintain certain such locality properties that we state as follows: 

(i) The stochastic sequences {Nx(h)}hEZ and {Sx(h)}hEZ are measurable w.r.t. the sigma-
algebras :F-x. 
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(ii) For any connected contour 'YE nn(D), E('Y) is measurable w.r.t. F"f 

A further important assumption on the random quantities is that of stationarity w.r.t. shift 
in the height variables: 

(iii) The stochastic sequences {Nx(h)hez and {Sx(h)hez are stationary w.r.t. the shifts h ~ 
h + h', h' E .76. 

(iv) E('Y) is stationary w.r.t. the shift (I, {h:z:}:z:eA,..) ~(I, {h:z: + h'}:z:eAJ, h' E .76. (Note that for 
components touching the boundary of An, stationarity holds only if the apply the shift also to 
the external height). 

Finally, we need assumptions on the smallness of the disorder. Here the S-fields are centered 
and bounded, i.e. 

(v) lESx(h) = 0 

(vi) ISx(h)I ~ o, with o some suitable small constant (for instance o = 16Lc\+a>, with 1 ~ a > 0 
will work). 

The distribution of the the S satisfies the bounds 

(vii) 

IP (S,,(h) 2.'. E]:::; exp (- 2~~) and 

JP(S,,(h):::; -E]:::; exp (- 2~~) 
(3.18) 

Here the constants ak are parameters that will change in the course of renormalization (we will 
prove later that a~= Ld-2 -11a~) and those flow will have to be controlled. The control fields Nx(h) 
should also satisfies bounds like (3.18), but actually the situation there is quite more complicated. 
Notice that in the original model the N-fields as defined in (2.12) satisfy bounds IP(Nx(h) > z) ~ 
2 exp (- 2~2 ), and moreover the smallest non-zero value they take is o. This latter fact is crucial 
in that it ensures that D(N) is a fairly sparse set! It will be important to maintain such a property 
in the course of the RG process. As the exact form of these constraints is fairly complicated and 
difficult to motivate a priori, we postpone the precise formulation to Section III.5. 

We have now a sufficient description of the general class of models on which the RG is to be 
performed. The RG transformation is now performed in three steps, as indicated in Section IL 

111.2 Absorbtion of small contours 

In Section II we explained that the first part of the RG map consists of the re-summing of 
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so-called 'small contours'. These can be defined as connected components of small size (on scale L) 
with support outside the bad regions. Now the definition of the bad regions is such that they exclude 
in fact the existence of such small components in a (conditioned) ground state cpntour. Actually, 
there is even a large portion of the bad region that may be removed if we are willing to allow for 
the appearance .of 'flat' small contours, i.e contours with non-empty supports but constant height 
even on their support. It will be crucial to take advantage of this fact. The following definition 
describes this 'harmless' part of the bad region. 

DEFINITION 3.4: Let Di(h) denote the L 112-connected5 components of D(h). Such a connected 

component is called small, on level k, if 

(i) ·· 1ni(h)I < L(l-a)/2 

(ii) d(Di(h)):::; L/4 

(iii) L;yED,(h) suph'Ez(Ny(h + h')- f lh'I) < LL-(d-2)ka2 

Here a > 0 is a constants that will be fixed later and a 2 = a5 refers to the variance of the original 

random fields, not to those at level k. Define now 

V(h) = u Di(h) and 
D,(h) small (3.19) 

1) = u (7J(h) x {h}) 
hEZ 

Remark: The definition of the slices V(h) follows closely that used in [BK], allowing us to carry 
over many of the geometric estimates used there. It is certainly not optimal. An important aspect 
of the definition of 1) is that it is 'local' in the following sense: If we consider a fixed point x and a 
set EC An containing x, then the event {Eis a component of V(h)} can only depend on Nxi-fields 
within the region d(x, x') :::; L/4 + 2L(l-a)/2 , i.e. the sigma-algebra generated by such events is 

independent of {Nx1(h)}x':x'EA,hEZ if d(x, A)> L/4 + 2L(l-a)/2 • 

In the light of this definition, we may now define the 'small contours': 

DEFINITION 3.5: A connected contour 1 E On(D) is called small (given N), iff 

(i) d(1) < L - 2, and 

(ii) (D(h-r)\V(h-r)) n int1=0 

5 It should be clear what is meant by L 112-connectedness: A set A is said to be L 112-connected, if there exists 

a path in A with steps of length less that or equal to L1f 2 joining each point in A. 
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Here h,., is defined as the height h( 7) on the boundary of int1. A contour r is called small iff 
all its connected components are small and a contour which contains no small connected component 
is called large. We denote by f!~(D) the set of small contours and by n~(D) the set of large 
contours. 

Remark: Notice that f!~(D) c fln(D\'D), but in general it is not a subset of f!n(D)! 

DEFINITION 3.6: The first step in the RG transformation is a map Ti that is nothing but the 

canonical projection from fln(D) onto f!~(D), i.e. if r = ( 1'i, ... , {r, 1'r+i, ... , rq) with '"Yi large for 
i = 1, ... , t and small for i = r + 1, ... , q, then 

(3.20) 

To give a precise description the conditioned ground states under the projection Ti, we need 
to define the following sets. First let 'Di(h) denote the ordinary connected components of 'D(h) (in 

contrast to the definition of Di(h)!). Given a contour rz E f!~(D) we write Ei(rz, h) := 'Di(h)\rz for 

all those components such that 1Ji(h) c Vh(rz)\rz. Let E(rz) = Ui,hEi(rz,h) = 1J(rz)\rz. Finally 
we set 1Ji(h) = 1Ji(h) n 1J(h). Note that these 'Di(h) need not be connected. 

Let us denote by 9r1,i the set of contours in fln(D) that minimize Hn under the condition 
that Tir = rz. We have the following characterization of this set: 

LEMMA 3.1: Let rz E f!i(D) Then, for any r E 9i,ri 

{i) I\rz c E(rz), and 

(ii) For all x, hx(r) = hx(rz). 

Remark: This Lemma is the crucial result of the first step of the RG transformation. It makes 
manifest that fluctuations on length scale L can only arise due to 'large fields in the bad regions'. 
Since this statement will hold in each iteration of the RG, it shows that any :fluctuations of the 
surface are localized in the bad regions. We will come back to this more specifically later. 

Before giving the proof of this Lemma, the following Lemma gives a formula for the renorma-
lized energy function under Ti. We set 

eh(Ei(rz, h)) = inf e( 1') 
-y:1>,(h)C.:r_CB,(r1 ,h),-y=(.:r_,h., ::h) 

(3.21) 

(Note that 7 here is not necessarily connected). 

LEMMA 3.2: Let for any rt E f!~(D) denote 

(TiHn)(rz) = inf Hn(r) 
rEO~(D): T1(r)=r1 . 

(3.22) 
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Then 

(T1Hn)(rz) - Hn(rz) = L Eh(Bi(rz, h)) (3.23) 
i,h 

Note that in the expression Hn(rz), we view rz as a contour in nn(D\'D); that is, the contributions 
to the energy in t.he regions 'D\rz is ignored. 

Proof: (Of Lemmas 3.1 and 3.2) We first prove Lemma 3.1. We will show that for any r s.t. 
T1(r) = rz the quantity 

. (3.24) 

unless r obeys the conditions stated in Lemma 3.1. Let 71, ... , Ir denote the small weakly connected 
components ofr. Clearly, the difference Hn(r)-Hn(rz) can be written as a sum over these weakly 
connected components, namely 

r 

Hn(r) - Hn(rz) = L ( E(ri) + (S, V(r) n int 1) - (S, V(rz) n int 1i)) (3.25) 
i=l 

Similarly, we may split the sum over the Bj(rz, h) into sums over those contained in a given 
int 1i (Note that all Bj(rz, h) must be contained in some such connected component, as r is 

constrained to contain all of D, and thus the supports of the small connected components of it 
must contain 'D\rz). Thus we are left to show that for any small weakly connected component 7 
of r' the quantities 

!:l.E(r) = €(/) + (S, V(r) n int1) - (S, V(rz) n int1)-
j,h:B;(I' 1 ,h)C int 1. 

are strictly positive, unless 7 has constant height and support contained in 'D. To show this, 
we insert the lower bounds (3.14) on€ for E(r), and an upper bound on Eh(Bj(rz,h)) obtained 
by bounding the infimum in (3.21) by the value obtained with the flat contour whose support is 
'.Dj{rz, h) and bounding the result through the upper bound (3.15). Using moreover that ISx(h)I ~ o, 
this yields 

- s L lih.,(I'):;ih.,(I'') 
xE int 1. 

To continue, we need the following geometrical Lemma: 
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LEMMA 3. 3: (local lower bound on the surface energy) Let 'Y be a weakly connected contour s. t. 
d( int']_) ::; L. Let h-r denote the height of 'Y on 8 int']_. Then 

(3.28) 

The proof of this Lemma will be given in appendix G, where all geometrical estimates of this 
type are· collected and proven. Using this bound, we get 

(3.29) 

Now using condition (iii) from Definition 3.4 of 'D, we see that, if c::; ~ and if o::; 2~, 

'""" (d +Lo z z ) 1 (d 2)k -Li L lhx('Y)- hx(r )I - o1Ih.,('Y):;th.,(r') - Nx(h('Y))- Nx(h(r )) + 2L- - l1\D(1)I 
xE int 1 
~ _ 2LL-(d-2)ka2 

(3.30) 
Note that the lower bound corresponds to such 'Y those support contains a single component Di(h); 
for fiat contours containing several such components must support of volume of the order of L112 

outside of~(!), due to the fact that the Di(h) are the L112-connected components of D(h). Thus 

~E(1) ~ L d-L Lo lhx('Y) - hx(rl)I + ~L-(d-2)kl1\D(1)I - 2LL-(d-2)ka2 
xE int -y 

(3.31) 

Now if d£L6 > 2LL-(d-2)ka2 and 2La2 < 1, the lower bound in (3.31) is strictly positive unless 

hx(f) = hx(rz) and 1\D(1) = 0, which proves Lemma 3.1. Lemma 3.2 now follows immediately. 

0 

Remark: Note that the prove imposes a smallness condition on a2 w.r.t. L and a condition on 

the constant c' in Definition 3.4. 

From the previous Lemmas, and the Definition 3.4, we finally obtain the following uniform 
JI 

bounds on the Eh. 

LEMMA 3 .4: For any rz, and any component Bi(ri, h) 

(3.32) 
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Here we see an additional rational for the definition of the harmless part of the large field 
region, namely that the ground state contours supported in then only introduce an extremely small 
correction to the energy which can, as we will see in the next step, be absorbed loc~y in the small 
fields. 

111.3 The blocking 

We now come to the crucial step in the RG transformation, that is the mapping of the con-

figuration space On to On-1 · The corresponding operator, T2, will be chosen as T2 = c-1 , with 
c-1 defined in Section II ( c.f. eq. (2.19 ,20)). We will generally use the name c-1 when referring 
to the purely geometric action of T2 • Notice that c-1 is naturally a map from On(D\V) into 
nn_1 (£-1 (D\V)), where c-1 (D\V) is naturally defined as the union of the sets c-1 (D(h)\V(h)). 
We must now construct the induced action of this map on the energy functions and on the random 
fields S and N. We consider first the small fields. Recall that we wanted to absorb the contributions 
of the small contours into the renormalized small fields. This would be trivial, if there were no 
interaction between the small contours and the supports of the large ones, i.e. if the Bi(r', h) did 

not depend on r'. To take this effect into account, we proceed by writing 

(3.33) 

and adding the first term to the small fields while the second is non-zero only for Vi( h) that touch 
the contours of rz and will later be absorbed in the new contour energies. Thus we define the 

(preliminary) new small fields by 

Sy' (h) =: L-(d-1-cx) ( ~ S (h) + ~ Eh(1J;(h)) ) 
~ x ~ 1c-1v·(h)I 

xE.Cy i:'Di(h)n.Cy:f:0 ' 

(3.34) 

The pre-factor in this definition anticipates the scaling factor of the surface energy term under 

blocking. Note here that the S~ satisfy the locality conditions (i): S~ and S~, are independent 
stochastic sequences if IY - y'I > 1, since the Vi(h) cannot extend over distances larger than L. 

The (preliminary) new control field is defined as 

N~(h) = L-(d-l-a) L sup ( N.(h+ h')- ~Jh'I) 
xE.Cy\ V(h) h' EZ 8 

(3.35) 

Note here that the summation over x excludes the regions V, as the contributions there are dealt 

with elsewhere. This is crucial, as otherwise the regions with positive N' would grow rather than 
shrink in the RG process. Note that the constant s1£ in the definition is to some extend arbitrary. 

We now define the induced energy function T2T1Hn on nn_1 (£-1 (D\V)) by 

(3.36) 
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The following Lemma states that this energy function is essentially of the same form as H n: 

LEMMA 3.5: For any r' E On-1(.C-1(D\'D)) we have 

(T2T1Hn)(r') = Ld-t-a (t f('y;} + (S', V(r'))) (3.37) 

where the "'d are the connected components of r', and € is a N'-bounded contour energy of level 

k + 1. 

Proof: Let us write the energy of a large contour in the form 

(T1E(I'l) - (S, V(rl)) = 
:E€(1'i) + :E (€h(Bi(rz,h))- €h('Di(h))) + 

i,h.:1'\ (1t.)n~:;i:0 

1'\{h.}CV1t.(r)\~ 

(3.38) 

Note that here the condition that 'Di(h) n rl =/= 0 in the second sum makes explicit the fact that 
the summand vanishes otherwise. Let us introduce the notation 

Sc(h) = :E Eh('Di(h))lI0 ='D,(h) 
i 

(3.40) 

for any finite subset C C An. Let us note that while here these object have only a transitory 
significance, in the finite temperature case they will acquire the meaning of non-local random 
fields. Notice that here Sc(h) is strictly zero whenever d(C) ~ t. 

Using this notation, we may write that 

(T2T1Hn)(r 1
) - Ld-l-o.(s', V(r')) 

= inf (" €( 1'i) + °" (Eh(Bi(rl, h)) - Eh('Di(h) )) r 1 :nrz =I'' L.J L.J 
i i,h.:1',{h.}nrl :;i:0 

1'\(h.}CY1t.{r1 )\rl 

+ :E (Sx(hx(rz)) - Sx(h.c-ix(r')) + :E Sc(h) (l[ccv,(r)\r_ - :E ~:;~:~h)) 
xEA"' h.EZ,CCA"' yE.C-lC 

ICl>l 
(3.41) 

Notice that the first term in the last line gives a non-vanishing contribution only from x s.t. 
.c-1 x Er_' and the second one only from such C that intersect rl U .er_'. Therefore, the expression 
in the infimum can be unambiguously split into a sum over the connected components of r' and 
moreover, the infimum may be taken separately in all the terms of the sum. Thus, if r' can be 
decomposed in connected components as r' = (Ti, ... , 1'~), we get that 

q 

(T2T1Hn)(r') - Ld-l-a.(s', v:(r')) = :E Ld-l-a.€(7') (3.42) 
i=l 
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where 

i,h.:'Di(h.)nrl ¢0 

'D1(h.)CV1i.(r1 )\~ 

(3.43) 
Notice that the locality condition for€ is obvious from the above remarks, i.e. €( 7') is measurable 
w.r.t. the sigma-algebra :F.C-y'" 

Let us now prove the lower bound on €. Inserting the lower bound on E(rz) into (3.43) and 
noting that trivially Eh(Bi(rl, h)) ~ Eh(1Ji(h)), we get 

Ld-i-a'f(7 1
) ~ inf (Es(rz) + L-(d-2)k1rz\D(rz)I - (N, V(rz) n rz) 

r1:.c-1r1=-y' 

+ L (Sx(hx(rl)) - Sx(h.c-ix(r')) + L Sc(h) (liccv,(r)\r' - L ~i~r:~h)) 
xEA,. hEZ,CCA11: ye.c-10 

(3.44) 
Now the terms in the second line are all small and will be bounded uniformly against some fraction 
of the surface energy and volume energy of the support of the rz, while the remaining surface and 
volume energies together with the N-term will give the effective renormalized bounds. To see this, 
we rearrange the terms in (3.44) in the following form: 

Ld-l-a€(71
) ~ inf (~Es(rl) 

r 1:.c- 1r 1=-y' 4 

+ ~Es(rz) + L-(d-2)k1rz\D(rz)I - L Sc(h) 
hEZ ,ccv,.(r1) :Cn£.1i:0 

- ((N, V(r1) n r 1) - ~E,(r1 )) 

+ ~Es(rl) + L (Sx(hx(rl))-: Sx(h.c-ix(1' 1
)) + L Sc(h)(:IIccv,.(r1) - :licenv,.('Y1 ))) 

xEA,. hEZ ,C CA,. 
(3.45) 

Note that we have split the Sc(h) terms in such a way that the· term appearing in the last line 
vanishes if rz is a flat contour. 

To treat (3.45) further, we need the following geometrical Lemmas, those proof will again be 
given the appendix. 
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LEMMA 3.6: Leth'= Rnd (h) where h = L-d ~xECO hx. Then 

L lhx-hyj ~ ~ L lhx-h'j 
<x,y>:x,yECO xECO 

(3.46) 

From this Lemma and the boundedness of the S!Ilall fields S we see immediately that e.g. 

~Es(rz) + L (Sx(hx(rz)) - Sx(hc-ix(r')) 
xEAn. 

;::: L ( S,,(h,,(P1
)) - (S,,(h£-•xb')) - 8~ lh,,(P1

)) - h£-•,,(-r')1) ;::: o 
xE1?.-y' 

(3.47) 

provided only 8 ~ iiL. In much the same way we can deal with the remaining terms in the last 
line of (3.45). Just notice that only such C in that sum give a non-zero contribution that contain 
at least one site x for which hx(rz) :/:- hc-ix(r') and for each such site only the C that equals the 
Di(h) that contains x gives a contribution, which in turn is bounded by LL-(d-2)ka2 • Therefore, 

provided this quantity is smaller than l~L' the remainder of the last line of (3.45) is also non-
negative. Note that the last condition holds true fork ~ 1 if a 2 ~ A; if k = 0, i.e. in the first RG 
step these terms even do not exist since Vis empty in this case. 

Thus we have shown that the last line in (3.45) is uniformly non-negative. 

Let us now consider the third line in (3.45). We split the N-term as 

(N, v(rz) n rz) = (3.48) 

With the help of Lemma 3.6, the first term from (3.48) together with a piece of the surface energy 
can be bounded by the new large fields: 

L Nx(hx(rl)) - ~Es(rz) 
xEr1: x~1J(h.c-1.,("Y')) 

_ ~ L ( N,,( h,,(r1
)) - 8~ lh,,(P1

) - h£-•,,( -r'll) 
xEr1: x~1J(h,e-1.,("Y')) , (3.49) 

~ L :,u~ ( N,,(h') - 8~ lh' - h£-•x("Y')1) 
xE1?.-y': x~1>( h,e-1.,( -y' )) E 

= Ld-l-a.(N', V(r') n r') 

The second term in (3.48) gives for flat contours rz a small contribution proportional to j'.D(rz)nrzj; 
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taking advantage of the remaining lE.,(rz) we get the same bound for an arbitrary contour 

L Nx(hx(rz)) - ~Es(r) 
xE£.:.: xE1J(h.c-1.,('r')) 

$ L (Nx(hx(f1
))- 1~1 1hx(r)- hi:-1x(-Y')I - 1

1
6E,(f1)) 

xE£.:.: xE1J(h,e-1.,('r')) · (3.50) 

$ L ( LL-(d-2)kcr2 - l~L lhx(r) - he-ix( -y')I) 
xEr1: xE1J(h,e-1.,('r')) 

::; LL-(d-2)ka2l'.D(rz) n rz1 

where the last inequality was obtained by noting that in the previous sum only such sites x for 
which hx(rz) = hc.-ix(r') give a-positive contribution and that for such sites x E '.D(hc.-ix(r')) 
implies x E '.D(rz). The final bound in (3.50) is of com:se just a tiny fraction of the volume term in 
the second line and will be ·absorbed in it. 

The Sc term in the second line is in fact dominated by the same bound, i.e. 

(3.51) 
hEZ,CCV1i.(r 1 ):Cnr1 ~0 

where the volume term arises as a trivial upper bound on the number of connected components of 
'.D(rz) that may intersect rz. Putting theses results together, we have arrived at 

Ld-1-"f(-y') ::::: r/~fr' GE,(r1) + ~E,(r') + 1-<d-2Jk1r1\n(r1)I - 211-<d-2Jkcr2IV(r1) n r11) 

(3.52) 

The first quarter of surface energy here yields the new surface energy by the following Lemma 
(whose proof may again be found in the appendix): 

LEMMA 3. 7: Let r E c-1,.f'. Then 

(3.53) 

Note that in order to use this bound, we must choose a such that La~ 4(d + 1). 

To bound the remaining terms, let us set D' = D(N'). Clearly we want to bound the remaining 
surface and volume energies by a term proportfonal to lr'\D'(r')I. The tricky part here is that 
the original estimate is only in the volume of rt outside the bad region, while the new estimate 
involves the new bad region, which is smaller than the image of the bad region under c-1 since the 
harmless part, '.D, has been excluded in the definition of the N'. In fact, the geometric constraints 
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in the d~finition of '.D were essentially made in order to get the desired estimate nonetheless, as we 
will see from the following two Lemmas, that are again proven in the appendix. 

LEMMA 3.8: Let I be connected and large. Then 

(3.54) 

LEMMA 3.9: Let r E c-1 , 1
• Then there exists a constant Cs > 0 s.t. 

LEs(r) + lf.\(D(r)\'.D(r))I ~ csLIT'\D'(1')I (3.55) 

where D' = D(N'). 

To use these Lemmas, we just have to rearrange terms slightly: Setting q = t, we may write 

~Es(rz) + L-(d-2)k1rz\D(rz)I - 2LL-(d-2)ka2J'.D(rz) n rz1 

~ ~Es(rz) + ~Es(rz) + (1- q)L-(d-2)k1r'\n(rz)I + qL-(d-2)k1rL\(D(rl)\'.D(rz))I 

- qL-(d-2)kl'.D(rz) n rz1- 2LL-(d-2)ka2l'.D(r) n rz1 

~ ~Es(rz) + qL-(d-2)k1rz\(D(rz)\'.D(rz))I 

+ ( L-(d-2)k( ~(1 - q) - q) - 2LL-(d-2)k"2) l'D(rz) n rz I 

~ csqL-<d-2)kh'\D1(1 1)I 

(3.56) 

Here the last inequality was obtained assuming that a2 is sufficiently small, so that the term 
proportional to l'.D(rz) n rzl in the one but last line is positive. We have also assumed that 
~L-(1-a)/2 ~ L-(d-2)k(l _ q). 

Collecting everything, we get the desired lower bound 

€(!')~Es(!')+ Cs~La LL-(d-2)(k+l)IT'\D1(T')I - (N', V(T') n 11
) (3.57) 

which is the desired lower bound if Lis large enough s.t. est La ~ 1. 

To conclude the proof of the Lemma, it remains to prove the upper bound for flat contours 1'. 

Thus let C' C D'(h) be connected and set r' = (C', hx = h). Then w~ bound the infimum over rz 
from above by the term for which r = ((D(h)\'.D(h)) n CC', hx = h). It is easy to check that for 
this contour, only the term e(rz) in (3.43) gives a non-zero contribution. It is then a trivial matter 
to conclude from the upper bound on e(rz) and the definition of N', that 

(3.58) 
xEC.01 yEO' 
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This concludes the proof of Lemma 3.5. O 

III.4 Final shape-up 

The hard part of the RG transformation is now done. However, not all of the properties of 
the original model are yet shared by the renormalized quantities; in particular, the renormalized 
weak field S' is not centered and it may have be~ome too large. Both defaults are, however, easily 
rectified. We define 

(3.59) 

It is important here that due to the stationarity assumptions, the expectation in (3.59) does not 

depend on h, i.e IE ( S~(h)lis~(h)l<o) = IE ( S~(O)lis~(O)l<o). What is left, i.e. the large part of 
the small field is taken account of through the redefined control field, i.e. we set 

(3.60) 

Given N', we may now define D' = D( N') as in Definition 3.1. Then let T3 (given N') be the map 

from On-1 to On-i(D') defined through 

T3(r) = (h(r),r u n'(r)) (3.61) 

Defining as before 

(T3T2T1E)(r1
) = inf (T2T1E)(r) 

r:Tar=r' 
= inf Ld-l-a (€(r) + (S', V(r))) 

r:Tar=r' 

(3.62) 

we have the final 

LEMMA 3.10: For any r' E OA1(N1
) we have 

T3T2T1E(r') = Ld-l-a (E'(r') + (S', V(r')) + L JE(S~(0)1 1 s~(O)l>o' )) 
yEA' 

(3.63) 

where €1 is a N'-bounded contour ~nergy of level k + 1. 

Proof: N,otice that for all r E T3- 1r' (S', V(r)) = (S', V(r')). Thus, for any connected 1', 

(3.64) 

Thus, noting that 1£\D'(i')I ~ l1'\D'(1')I and that for any r E T3- 1
/

1
, 

(ii', V(r) n r) + (IS'll1s'l>o'' V(!') n 1 1
) = (N', V(1 1

) n 1 1
) (3.65) 
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we get immediately from Lemma 3.5 that 

t:'( 1 1
) ~ Es( 1 1

) + L-(d-2)klg'\D'(T')I - (N', V(T') n 1 1
) (3.66) 

The upper bound on t:1 follows also easily from Lemma 3.5. For C C D'(h) connected and 1' = 
(C, hx = h), we bound the infimum in (3.64) by the value for the contour r = (C n fJ'(h), hx := 

h) E T3-
11'. Then from (3.58) it follows that 

t:(T') ~ :E N~(h) + :E IS~(h)j1 15~Ch)l>c' = :E N~(h) (3.67) 
xE-y' xE-y' xEl_ 

The locality condition on E1 being trivially verified, this concludes the proof of Lemma 3.10. O 

This concludes the construction of the entire RG transformation. We may summarize the 
results of the previous three subsections in the following 

PROPOSITION 3.1: Let R(N) := T3T2T1 : O.n(D(N))---+ O.n-1(D(N')) wi_th T1, T2 and T3 defined 
above; let N' and S' and E1 be defined as above and define H~_1 = L-(d-l-a)(R,(N) Hn) through 

H~_1 (r) = t:' (r) + ( s', v(r)) (3.68) 

Then, if Hn is a N-bounded energy function of level k, then H~_1 is a N'-bounded energy function 

of level k + 1. 

This proposition allows us to control the flow of the RG transformation on the energies through 
its action on the random fields S and N. Let us remark here that the stationarity assumptions on 
the fields and contour energies made for the original fields are trivially verified for the renormalized 
quantities, due to the 'translation invariant' way we have constructed these quantities. What is 
now left to do is to study the evolution of the probability distributions of these random fields under 
the RG map. This will be done in the next subsection. 

111.5 Probabilistic estimates 

Our task is now to control the action of the RG transformation on the random fields S and 
N, i.e. given the probability distribution of these random fields, we would like to compute the 
distribution of the renormalized random fields S' and N' as defined through eqs .. (3.34), (3.35) 
and {3,59), (3.60). Of course, rather than the precise probability distributions themselves we only 
compute certain bounds on these distributions. 

Let us begin with the simpler small fields. In the k-th level of iteration, the distributions of the 
random fields are governed by a parameter a~ (essentially the variance of S x( h)), that decreases 
exponentially fast to zero with k. We will set 

2 _ L-(d-2-11) 2 
(jk = (j (3.69) 
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where "I may be chosen as "I= 3a. We denote' by S(k) the small random field obtained from S after 
k iterations of the RG map n. (Where the action of non Sis defined through (3.59) and (3.34)). 
We then have the following 

PROPOSITION 3.2: Let d ?:: 3. Assume that the initial S satisfies assumptions (i}, (iii) and 

(v)-(vii) with o-2 sufficiently small. Then, for all k E JN and for all E?:: 0, 

IP [sik)(h) <: •] $exp (- 2~1J and 

IP [s~k)(h) $ -•] $exp (- 2~k) 
with O"k defined through {3.69}, and S(k) satisfy assumptions (i}, {iii), (v), and (vi). 

(3. 70) 

Remark: This Lemma is essentially equivalent to Proposition 1 of [BK]. We give a slightly different 
proof for the convenience of the reader. 

Proof: The proof of this proposition relies on a general probabilistic result on convolutions of 
random variables satisfying Gaussian estimates. It reads: 

LEMMA 3.11: Let {Xjh=i, ... ,N be a family of random variables and define X 

Assume that there is a decomposition {1, ... , N} = LJ~1 Vi s.t. 

{i) For each i, {X;JiEVi is a family of independent random variables 

(ii) JEX; = 0 for all j 
2 2 

(iii) For all E?:: 1, lP[X; > c] ~ e--T and lP[Xj < -E] ~ e--T. 

Then there exists a constant C > 1 independent of N and m, s.t. for all€ > 0, IP[X > c] ~ 
.2 .2 

e- 2Cm.N and lP[X < -E] ~ e- 2Cm.N 

Proof: Notice first that the information on 1P in the assumptions of the Lemma are completely 
symmetric, so that it suffices to prove the bound on lP[X > c]. To do this, we will first prove a 
bound on the Laplace transform IEetX fort?:: 0 from which the desired estimate will follow by the 
exponential Markov inequality (see e.g. [CT]). To do this, we need a bound on IEetX; first. This 

will be derived from the assumptions as in [BoK]: We distinguish the cases t ?:: 1 and t < 1. For ' 

t ?:: 1 we have 

IEe'X; =ti: e'x IP[X; <'. x]dx 

$ t j_1

00

e'xdx+t1"" e'xIP[X <'. x]dx (3.71) 
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with some.constant Ci. For t < 1 we use 

t2 
IEetX; ~ 1 + 2 (IE[XJllx; <o) + IE[XJetX; llx; ~o]) 

:::; exp [ t: (lE[XJllx; <ol + lE[XJeX; llx; ::.:ol)] 
(3.72) 

where in the last line we have estimated the second term in the argument of the exponential by its 
value fort= 1. Using the bounds (iii), it is easy to see that the expectations in the second line of 
(3. 72) are bounded by universal numerical constants, so that we see that there exists a universal 
constant C s.t. 

(3.73) 

Using this, we can now bound the Laplace Transform of X 

m ..!.. 

1E [ e'X] = 1E [ eL;:, L;Ev; tX;] :::; g ( 1E [em L;EV; tX;]) m 

N 
= II (IE [emtX;]) ~ ~ e =N2ct2 

(3.74) 

j=l 

where the first inequality is an application of the Holder inequality. The bound on IP[X > e] is 
now an immediate consequence of (3.74) by the exponential Markov inequality. 0 

To prove the proposition, recall that 

(3.75) 

where 

(3.76) 

We will first prove bounds for §(k+l). Note that the second term in (3.76) is uniformly bounded 

by 

L-(d-1-a) ""' eh(~ < Ll+a-dc LL-(d-2)k (L~)d a2 < L-(d-4-2a)/2-k11c u2 
L-1 ·1c-1v·(h)I - . i - i k 

i:1>,(h)n.Cy:;i:0 ' 
(3.77) 

with some constant C1 > 0. Now notice that, fork~ 1, 

(3.78) 
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if d > 3 - 'T/ +a, L112a ~ 1 (which has been assumed before) and 'T/ and L are large enough s.t. 
L-TJ+(3-d)/2 C1 ~ 1. Under these assumptions we have that for all e ~ O"k+i 

IP [s£k+l)(h) ~ e] ~IP [L-(d-l-a) L s1k)(h) ~ ~] 
. xE£y 

(3.79) 

Now, since the Bx are independent for x's that are separated by distances greater than one, one 
may easily group the Ld variables in the sum into 2d sets of mutually independent ones. This allows 
us to apply Lemma 3.11 which yields 

(3.80) 

With this bound for S(k+l), it is now easy to derive the desired bound on S(k+l). Nate first that 

(3.81) 

where the last bound uses (3.80) and assumes 8dCL-(Ti-20:) ~ 1. Using this bound, we see easily 

that for e > 3ak+l 

(3.82) 

Using once more Lemma 3.11, we get from this that for all e > 0, 

(3.83) 

and assuming that Land 'T/ are large enough s.t. 2d36C2 L-(TJ-20:) ~ 1, this gives the desired bound. 
The bound on IP [ s£k+l)(h) < -e] follows in exactly the same way. The centeredness of the Sis 
true by definition, the locality and stationarity properties have already been established in the 
course of the previous sections. Thus Proposition 3.2 is proven. O 

Now we come to the central estimate on the distribution of the control fields. In the same 
spirit as above, we denote by N~k)(h) the fields obtained after k iterations of the RG transformation 
from a starting field N(o), where the iterative steps are defined by equations (3.35) and (3.60). In 
the same spirit we will d~note by D(k) and 7J(k) the bad regions and harmless bad regions in the 
k-th RG step. What we need to prove for these control fields are two types of results: First of 
all, they must be large only with very small probabilities; second, and more important, they must 
be equal to zero with large and larger probability, as k increases. This second fact is crucial for 
the 'bad regions' to become smaller and smaller in each iteration of the RG group (remember 
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that we have good control over the ground states only outside these bad regions!). The proof of 
this second fact must take into account the absorbtion of parts of the bad regions, the 1J, in each 
step. Morally, what is happening is that once a large field has been scaled down .sufficiently, it will 
actually drop to zero, since it finds itself in the region 1J. Actually, due to the complications arising 
from interactions between neighboring blocks, this is not quite true, as the field really drops to zero 
only if the fields at neighboring sites, too, are small. This has been taken into account in [BK) by 
considering an upper bound on the control field that is essentially the sum of the original N over 
small blocks. We follow their procedure for simplicity by defining 

N~0)(h) = N~0)(h) 

N~k+l)(h) = (L-(d-l-a) L L :,~~ ( Nik)(h + h') - ilh'l)) 1IyED(HL)(h) 
z:d(y-z)9 xE.Cz\1)(k)(h) 

(3.84) 
with c as in Definition 3.4. (Note that 1s£k+1l(h)I ~ £Ci+a)5 ~ 1, by the choice of o). Quite 
obviously, 

(3.85) 

The only difference between our definition and that of [BK) is the appearance of the suph, which 
will introduce some slight modifications. In particular, in the case treated by [BK], the N could be 
shown to be either equal to zero or greater than L-(d-3/ 2)ka2 . In our case this is not strictly true, 

but we will still be able to show that they lie in this region only with extremely small probability. 
The reason for this is that the bad regions D are not defined simply through the non-vanishing of 
the N themselves, but through the non-vanishing of the suph1(N1k)(h + h') - f lh'j)! Of course, 
with large probability theses sup's are non-zero because N1k)(h) is non-zero and we will have to 
take advantage of this fact. We will now prove the following 

(3.86) 

and 

[ 
( ) 

] 
-fd(z)S. 

JP N/ (h) ?:. z ~ e .,.,. , if z ?:. L-(d-3/2)ka (3.87) , 

Proof: The proof of this proposition will be by induction over k. Note that it is trivially verified 
for k = 0. Thus we assume (3.86) and (3.87) for k. The first and crucia.J. observation is that then 

the variables 
N£k)(h) = sup (nik)(h + h') - ~ lh'I) 

h'E:Z L 
(3.88) 

satisfy essentially the same bounds as N itself. Namely, we have 
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LEMMA 3.12: Assume that fl satisfies {3.86} and {3.87} and let JV be defined through {3.88}. 
Then, for a large enough, there exists a constant b > 1 (close to 1), such that 

and 

Proof: Consider first (3.89). Obviously, 

IP [ 0 < s~p(N£kl(h + h') - i lh'I) < L-(d-3
/

2lku] ~ IP [ O < N£kl(h) < L-(d-3
/ 2lku] 

+ L JP [ 0 < (fl~k)(h + h') - i lh'I) < L-(d-3/2)k(J'] 
lh'l~l 

< --r,. "°' -Mtlh'I)~ _e +L..Je _,. 
lh'l~l 

(3.89) 

(3.90) 

(3.91) 

N h . h d d . f h d f -!ct( t )-.;;. h' h . h all ow t e sum m t e secon term converges an 1s o t e or er o e 1c w 1c 1s muc sm er 
than the first term, which gives (3.89). To prove (3.90) we proceed in exactly the same way, noting 
that 

IP bp(_N£kl(h + h') - i lh'I) ~ z] ~IP [N£kl(h) ~ z] 
+ L JP [fl~k)(h + h') 2:: z + I lh'I] 

lh'l~l 

-fd(z)5 "" -fd(z+flh'l) 5 ~ 
~ e u,. + L..J e u,. 

lh'l~l 

from which (3.90) follows by the same argument as before. 0 

(3.92) 

Let us now prove (3.86) fork+ 1. Notice first that the event under consideration cannot occur 
if IS1k+l)(h)I > 8. Therefore, unless flik+l)(h) = 0, the site y must lie within fJ(k+l)(h). But this 

implies that 
(3.93) 

and hence there must exist a L Lconnected component Di( h )cD(k)(h) intersecting .Cy that violates 
one of the conditions of 'smallness' from Definition 3.4. Assume first that condition (iii) is violated. 

In this case, Di( h) is so small that it is contained in Cy and ther,efore contributes a term larger 
than L-(d-2)(k+l)+a a 2 to fly( h ), and since a 2 rv 1/ L, this already exceeds L-(d-3 / 2)(k+l) a. Thus, 

either condition (i) or (ii) must be violated. In both cases, this implies that the number of sites 
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in Di(h) exceeds L(l-a)/2 . Thus, there exists of necessity a set E C Cy s.t. for all x E E, 

suph' (Nik)(h + h') - f lh'I) > 0, and 

N~k+i\h) ~ L-(d-l-a) L sup(N~k)(h + h') - :f lh'I) 
xEE h' 

(3.94) 

Now if the sup for all sites in E was larger than L-(d-3 / 2)ka, the sum would be larger than 
L-(d-3/ 2)(k+l)+a/2 a and the event would not take place. As a matter of fact, the event does 

also not hold if the sup is larger than this bound on all of E except some subset E' C E of size 
IE'I ~ L(l-2a)/2. 

In other words, there must exist a subset E" C Cy of size at least IEl-L(1- 2a)/2 ~ L(l-a)/2 (l-
L-af2) on which the sup is larger than zero but strictly smaller than L-k(d-3f 2>a Thus, assuming 
for simplicity L-a/2 ~ 1/2), 

IP [L-(d-3/2)(k+l)a > N~k+l)(h) > o] 
::; IP [ 3 E"C.Cil' IE"ldL(l-•J/2 : 0 < ·~p( iWl(h + h') - i lh'I) < L-(d-3/2)k0" l 

(3.95) 
(3L)di. (( )dk) .,.,.,. 

~ L 3~ (IP[O<N~k)(h)<L-(d-3/2)ka])6iI 
m=£(1-a)/2 /2 . 

where in the last line we used the independence of the N~k) for sites farther apart than a distance 
4 (i.e. that a set of m Nik),s contains at least m/5d independent elements). Using now (3.89) we 

get that 
(3L)d 11 

IP [L-(d-3/2)ka > N~k+1)(h) > o] ~ L ~!(3Lrdke-,,1cm/(bsd) 
m=£(1-a)/2 /2 

< 1 e-(1'i.-dln(3L))£(1-a)/2 /2+e-(71c-dln(3L) 
- (L(l-a)/2 /2)! 

(3.96) 

= e-,,,.Lc1-,,>12 

with T/ chosen e.g. T/ = 3a to absorb the constants. Thus (3.86) is proven for k + 1. 

We now turn to (3.87). Before proving it, let us point out that it is crucial to have the function 
fd(z) rather than simply z2; namely, our goal is to show that Nik)(h) is non-zero ~ith very small 
probability which is true if fd(L-(d- 3/2)ka) 6~ is large and grows with k. Apparently, this is true u,. 
if fd, for small valu,es of its argument, is strictly smaller than linear! The way f d can be chosen is 
governed by the following Lemma, as we will see shortly. 

LEMMA 3.13: The function fd defined in proposition 3.3 satisfies 

L fd(flik)(h)) ~ Ld-2-17fd (L-(d-1-a) L flik)(h)) 
xE£y xE£y 

(3.97) 
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Proof: We distinguish the cases L-(d-l-o:) I:xE.Cfi N~k)(h) ~ 1 and L-(d-l-o:) I:xE.Cfi N~k)(h) ~ 

1. In the first case, just notice that 

d-2 

L fd(N£kl(h)) ?_ L ( N£kl(h)) ~=; ?_ ( L ji~k)(h)) d-1 

xE.Cy xE.Cy xE.Cy 

In the second case, use the Schwarz inequality to get 

from which the Lemma follows, for a ~ ~!0£. 0 

Let us now derive (3.87). Obviously, 

IP [.N~k+l)(h) ~ z] ~IP [L-(d-l-o:) :L J:r£k)(h) ~ z] 
xE.Cy\1>( h) , 

+IP [L-<d-l...:a> L JJ~k>(h) ~ z - 1 " 1s~k>(h)I > s] 
xE.Cy\ 1>(h) 

Let us consider the first term in (3.100). By Lemma 3.13, 

(3.98) 

(3.99) 

(3.100) 

p [L-(d-l-o:) L n£k)(h) ~ z] =IP [fd (L-(d-l-o:) L n£k)(h)). ~ fd(z)] 
xE.Cy\1>(h) · xE.Cy\1>(~ 

~IP [ Jt/d (~kl(h)) ?_ Ld-2-~ fd(z)] 
(3.101) 

40 

II 



N~w the variables fd(Nik)(h)) are essentially exponentially distributed in their tails. Moreover, we 
can bound their Laplace transform by 

IE ( etfd(N!,,.>(h))) ~ JP [ Nik)(h) = 0 J + e-'Y,. etfo + t J.oo etf e-fo:"df 
fo 

eCt-o:,.)fo 
~ 1 + etfo-'YTc + t---

Ci.k - t 

(3.102) 

where we have set Jo = f d(L-(d-3 / 2)ka) and ak = ;: . We will now bound the Laplace transform 

uniformly for all t ~ t* = (1- t:)ak, for some small€> 0. Noticing that rk ~ (1- t:)akfo (check!), 
we get in this range 

IE ( etfd(N~11 )(h))) ~ 1 + 1 ~ € e-efoo:,. (3.103) 

Now using the independence of well-separated Nik), We find 

JP [ L_ fd (n~k)(h)) ~ Ld-2-.,, fd(z)] ~ e-L'-'-" 1•<•) :: IE ( e :: L: .. L, l•(NJ»(hl)) 
xE£y 

(3.104) 

The last factor in (3.104} is in fact close to one and may be absorbed in a constant in the exponent, 
since we want a bound only for z ~ L-(d-3 / 2)(k+1)a. This gives a bound of the desired form for 

the first term in (3.100). The second term in (3.100) is simply bounded by the minimum of the 
probabilities of the two events, making use of Proposition 3.2. This leads to a bound of the same 
type. We leave it to the readers to check the details themselves or to consult [BK]. The proof of 
Proposition 3.3 is now finished. () 

111.6 Applications 

With the probabilistic estimates on the random fields obtained in the last subsection, we are 
now ready to make use of the RG transformations to analyse the infinite v9lume ground states. The 
first and quite immediate consequence of proposition 3.3 is that for any given point x E 7ld it is 
quite unlikely to be contained in D(O) in any iteration of the RG. Namely, we get from proposition , 
3.3 the 

COROLLARY 3.4 Let d ~ 3, a 2 small enough. Then, there exists a constant c' (of order unity) 
such that for any x E ytd 

(3.105) 
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Proof: For (3.105), just use (3.89) and (3.90) with z = L-d-3 / 2)ka and notice that the contribu-
tion e-"'f1c is negligibly small compared to exp ( - fd(L-d- 3/ 2)ka) !D, so that 

(3.106) 

and since the last sum converges rapidly, and fl bounds the sup in (3.105) from above, this proves 
the corollary. 0 

Let us denote by D(k)(h) C 7£d the sets 

nCk)(h) = {x E 7£d I sup (NCk.J,, (h + h1
) - ~ lh'i) > o} 

h'E:Z £, x L 
(3.107) 

and set 
k 

/::i(k)(h) = LJ D(k)(h) (3.108) 
i=O 

In this terminology corollary 3.4 states that even jj(oo)(h) is a very sparse set, for any h. But this 
statement has an immediate implication for the ground states, via the following 

PROPOSITION 3.5: Let An:= .cno, and let gi_0J be defined through {3.1). Then for any r• E gi_0J, 
(3.109) 

Proof: Let 'Yi denote the maximal weakly connected components of r•. It is clear that for all 
these components haint "'fi = 0. Let .:Yi denote the 'outer' connected component of ri, i.e. the 
connected component of rt s.t. the supports of all its other connected components are contained in 
the interior of its support (by the definition of weak connectivity, such a component must exist). If 
.:Yi is 'small' (in the sense of definition 3.5), since it occurs in a ground state, by Lemma 3.1, it is 'flat' 
(i.e. hx( .:Yi) = 0) and its support is contained in D(O). Then all the other connected components 
of rt are also small, so that rt is flat and its support is contained in D(O) (in fact, the support 
is contained in '.D(O) c D(O), which in the first step is even empty). Thus r• c r•,Z U nC0)(0). 
On the other hand, r•,z. c .C('Rr*); again the support of the small components of Rr* will be 
contained, by the same argument in the closure of the small parts of the new bad regions, 'and so 
.C('Rr*• 9

) c n<1>, while .C('Rr*•z) c .C2('R2r*•z). This may be iterated as long as the renormalized 
contours still have non-empty supports; in the worst case, after n steps, we are left with nnr•' 
whose support, if not empty, may only consist of the single point 0, and this only if 0 is in then-th 
level bad set. But this proves the proposition. O 
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This proposition, together with corollary 3.4 already gives a very nice information about the 
ground states, namely that for any site x, the value of the height is zero with probability that is 
exponentially close to one. From this it is almost evident that a 'fl.at' ground state in the sense of 
(3.6) will exist, i.e. we will now proof the main theorem of this section: 

THEOREM 3.1: Let d 2:: 3 and a 2 small enough. Then, for any ~nteger h E 7£, the set g~) -:f:. 0, 
IP-a.s. 

Remark: It is clear that the same holds height 0 replaced by any other height h E 7£; from the 
previous observation it is also clear that these ground states for different heights are different. 

Proof: Let A' be any finite box, let D~ 00)(0) denote the connected components of .6_( 00)(0) and 
set 

.6.(A') = u (3.110) 

i.e. the union of all connected components of n< 00)(Q) that intersect A'. Now if this set is finite, 
then, by the preceeding proposition, for all A containing this set, the restriction of any r• E 9lo) 
to A' is independent of A and depends only on the 'local' random fields. Therefore, there exists Ao 
s.t. nA:JAo Qi~~' -:j:. 0, and if indeed this holds for all A', this means that Q~) -:j:. 0. 

Now given the estimates of corollary 3.4, it is almost obvious that .6.( 00)(0) contains non 
infinite connected components attached to A'. For, consider the probability that D(k)(O) contains 
a connected component, C, of size M containing, say, the origin. Using the locality properties of 
the N, we easily see that 

(3.111) 

Here K is a geometrical constant, such that the number of connected sets of size, M containing the 
origin is bounded by KM. Notice that for given M, this probability is largest for the smallest k 
s.t. Ldk > M, and in fact 

(3.112) 

where 1J1 > T/ is chosen such as to absorb the various constants, for large enough M. Since this 
probability is summable over M, from the Borel-Cantelli it follows that the event considered occurs 
only a finite number of times, a.s. which is what we want to prove. Finally, only a finite number 

43 



of connected components can be attached to a finite A', which concludes the proof of the theorem. 

00 

The main result for the T = 0 case is now proven: There exist 'flat' infinite volume ground 
states in dimension d ~ 3 if the disorder is sufficiently weak. It is, by the way, also clear that this 
flat ground state is unique under some weak assumptions on the distribution of the J that excludes 
local degeneracies; continuity, for instance is sufficient (but not necessary). Also, we already know 
how the ground state looks outside a very sparse region,· but so far we have not said anything 
about how it may look like within that region. To get a precise knowledge of about~the ground 
states in the bad regions would require a more careful analysis of the RG map, keeping track on 
more parameters in the renormalized contours within the bad region than we do (for example, if 
in the blocking procedure the height on a block has large :fluctuations about its (maybe) small 
average, we simply forget about them, although they must be accompanied by large excess surface 
energy. One might thus for instance carry through the estimates an extra parameter keeping track 
of maximal and minimal heights that occurred in the history of a block. We will not go into such 
a detailed analysis here). However, even without doing this, the results we already have can give 
rough estimates on the probability distribution of the height, say at 0 of the ground state contour 
and we will present them as a last result of this section. 

PROPOSITION 3.6: Let f* be an element of 9~). Then, 

( 
h'U ) 1P [lho(r*)I ~ h] ~ exp - a 2-µd (3.113) 

where / d, µd are positive, d dependent constants for d ~ 3. 

Proof: Let us denote by r~ an element of Q~0l, and let An be the event that ho(I'*) = ho(f~}. 
The point is that ho(I'~) can be estimated in probability a priori, for n not too large (depending on 
h), while it is quite unlikely that An occurs only for very large n. Thus let Bn = nk~nAn. Then, 
for any n we have that 

1P [lho(I'*)I ~ h] =lP [lho(r*)I ~ h /\ (Bn VB~)] 

~ 1P [lho(r~)I ~ h /\ Bn] + 1P [lho(r*)I ~ h /\ B~] 

~ 1P [lho(r~)I ~ h] + 1P [B~] 

(3.114) 

The desired bound will be obtained by choosing n in dependence on h such as to minimize the 
right-hand side of (3.114). Now B~ occurs only if the site zero is contained in the interior of the 
support of a connected component of r• that depasses An. By proposition 3.5 and the estimates 
used in the proof of the theorem, it is clear that the probability of this to happen is bounded by 

( 
( d-2 ') 52 ) 1P [B~] ~exp -L 2(d-1)-71 n 2-~ 

(j d-l 

(3.115) 
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To bound the other contribution in (3.114), notice that for any possible height-function that vanishes 
outside An, by Lemma 3.3, 

E,(h(r~)) 2: lho~~)I :n L lhx{r~)I 
::r:E.C"'O 

(3.116) 

Therefore, 

(3.117) 

Let us set 

J{n) = inf (_i_lhl + Jx(h) - Jx(O)) x hEZ Ln (3.118) 

Given the bounds on J, it is easy to show that 

IP J(n) < -z < -- exp --[ ] 
7r0' Ln ( z2 ) 

x - - d 4a2 (3.119) 

which in turn is bounded by exp (- 8~2 ), for z 2:'.: zo = aJ8 In(27r~L"' ). From that a simple 

computation shows that 

IP [jin) $ -z] $exp (- 8: 2 ) 

IP [~n) 2: z] = 0 $exp (- 8: 2 ) 

(3.120) 

(3.121) 

for z 2:'.: z0 • Using essentially Lemma 3.11, some rescaling and some rather rough overestimation, 

we get from this that 

and so 

if Zo :::; 1 

ifzo2:'.:1 

{ 

( 
(h/2-L4

"' z0 )
2

) • 

[ 
h] < exp - Bu2L,,.11. , 1f zo :::; 1 

. IP L J~n) :::; -2 - ( (h/2-L"' 4 zo) 2 ) • 
::r:E.C"'O exp - Bu2L"'a.z~ ' 1f zo 2:'.: 1 

(3.122) 

(3.123) 

We see that to make u~e of this, we must choose n small enough, s.t. h/2 2:'.: Ldnz0 . The optimal 

choice of n is now in principal found by equating the bound from (3.123) with the probability of 

B~; a rough estimate of the yields the solution 

IP [lho(r*)I 2:'.: h] :::; exp (----h_P_fd-
02
----:--) 

al+P/d--y (ln( 27r~L"- )) p/d 
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with p = 2td-=..21) - 'T]1 and;= ~=~ which proves the proposition. O 

With this bound on the height we conclude our analysis of the ground state. It should be 
clear that further and more detailed information can in principle be extracted from the RG and our 
estimates. The task of the next section will be to carry over these results to the finite temperature 

case and the Gibbs measures. 
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IV. The Gibbs states at finite temperature 

In this section we repeat the construction and analysis of the renormalization maps from 
Section 3 for the finite temperature Gibbs measures. The steps will follow closely those of the 
previous section and we will be able to make use of many of the results obtained there. In fact, no 
new 'serious' problems will have to be dealt with here, and in particular the probabilistic analysis 
of Section 3.5 will mostly carry over. The difficulties here lie mostly in the technicalities of the 

various expansions that we will have to use. 

IV.1 Set-up and inductive assumptions 

Just as in Section 3 an object of crucial importance will be the control field Nx(h); given such 
a field, the corresponding bad regions D = D(N) are defined just as there, with one exception: 

rather than co~sidering the suph'EZ (Nx(h + h') - f lh'I), we introduce 

N (h) = { suph'EZ (Nx(h + h') - 2~ lh'I), if suph'EZ (Nx(h + h') - 2~ lh'I) ~ 2~ ( 4.l) 
x - Nx(h), otherwise 

The point here is that Nx(h) ~ suph'EZ (Nx(h + h') - f lh'I), so that we may substitute it for 
the original sup without harm (and we may be generous regarding the constant c), while with 
this definition, the recursively defined N~k) (see Section 3.4) will strictly (and not only with large 
probability) have the property to be either zero or large than L-(d-3/ 2)ka. This will turn out to be, 

if not strictly necessary, at least convenient in the case of finite temperatures. The specific reasons 
for this will be detailed at the end of Subsection 4.3. 

Now to define the bad set, Eq. (3.10) in Definition 3.1 is simply replaced by 

D := D( N) := { ( X, h) E An X ~ INx ( h) > 0} ( 4.2) 

Now analogously to Definition 3.2 we will now define an N-bounded contour measure: 

DEFINITION 4.1: AN-bounded contour measure is a probability measure on fin(D) of the form 

where 

µ(r) = ~e-tics,vcr>> L p(r, G) 
A.,,, :JG:J[ 

(4.3) 

(i) S is a non-local small random field, that is a map that assign to each connected (non-empty) 
set CC An and each height h a real number Sc(h) that satisfy 

ISc(h)I ~ e-~1°1, if ICI > 1 ( 4.4) 
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and for Sets made Of a Single point XI 

(4.5) 

The notion (S, V(f)) is shorthand for 

(S, V(f)) = :E :E Sc(h) ( 4.6) 
hEZ ccvh(r) 

{ii} p(f,G) are positive activities factorizing over connected components of G, i.e. if (G1 , ... ,Gz) 
are the connected components of G and if r i denotes the contour made from those connected 
components of r those supports are contained in Gi, then 

l 

p(r, G) =IT p(ri, Gi) ( 4.7) 
i=l 

They satisfy the upper bound 

o ~ p(r, G) ~ e-,aE,(r)-t31G\D(r)l+.B(N,v(r)nD ( 4.8) 

Let CC D(h) be connected and/= (C,hx(r) = h) be a connected component of a contour 
r C fln(D). Then 

p(T, C) ~ e-,8(N,V('Y)nc) ( 4.9) 

Z is of course the partition function that turnsµ into a probability measure. 

Here {3 and ~ are parameters ('temperatures') that will be renormalized in the course of the 

iterations. Note that we have not adorned the µ and p's with them as indices, nor with the finite 

volumes An, although of course they depend on these parameters as well as on others, in order to 

keep notations as streamlined as possible. 

We must remark on some differences between our assumptions and those used in [BK]. Loosely 

speaking, the sets Gare what [BK] call the 'outer supports'; however, in their method, a renorma-

lization of the normal supports is not maintained. They are, in fact, forgotten after each RG step 

and the outer supports become the new inner supports, while a new outer support is created. This 

allows to perform the RG really only on spin configurations but not on contours. We felt that a 

formulation that allows to renormalize contour models more appealing, particularly in view of the 

analysis of the ground states. Also, [BK] keep track of an extra non~local interaction, called W(r). 
It turns out this is unnecessary and disturbing. 

The probabilistic assumptions on stationarity and locality of the quantities appearing here are 

completely analogous to those in Section III and we will not restate them; all quantities depending 

on sets C are of course supposed to be measurable w.r.t. B0 ., etc. 
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The definition of a proper RG transformation will now be adopted to this set-up. 

DEFINITION 4.2: For a given control field N, a proper renormalization group transformation, 
n ( N), is a map from nn ( D ( N)) into nn-1 ( D (NI) I such that if µ is a N -bounded contour measure 
on On(D(N)) with 'temperatures' {3 and~ and small field S (of level k), then µ~ .. -i = 'R,(N)µA.,. 

is a N'-bounded contour measure on f2n-1(D(N 1
) for some control field N', with temperatures {3 1 

and ~1 ·and small field S' (of level k + 1). 

Remark: We will see (and anticipate) that {3 1 = Ld-l-a{3, ~1 = L1 -a~; N' will be defined as in 
Section 3. 

IV.2 Absorption of small contours 

The construction of the map T1 on the level of contours proceeds now exactly as before, i.e. 
Definition 3.4 still defines the harmless large field region, Definition 3.5 the 'small' contours and 
Definition 3.6 the map T1 . What we have to do is to control the induced action of T1 on the 
contour measures. Let us for convenience denote by fl = Z µ the non-normalized measures; this 
only simplifies notations since T1 leave the partition functions invariant (i.e. T1µ = ~T1 fl). 

Of course we have for any rz E n~(D) 

L µ(r) 
r:T1(r)=r1 

L e-t'(s,v(r)) L p(r, G) 
( 4.10) 

r:T1(r)=r1 G:J[ 

Now we write 

(S, V(r)) = (S, V(rz)) + [(S, V(r)) - (S, V(rz))] (4.11) 

Here the first term is of course what we would like to have; the second reads explicitly 

[(S, V(r)) - (S, V(r1
))] = L [ L Sx(h) - L Sx(h)] 

hEZ xEV11.(r)n int r• xEV11.(r1 )n int r• 

+ ~ [ cMcrJ Sa(h) - cc;:~r'J Sa(h)l 
cnmt~~0 cnmtr•~0 

(4.12) , 

= 8S1oc(r, rz) + 8Snz(r, rz) 

where we used the suggestive notation r" = r_\rz. Note also that all sets C are assumed to have 
volume at least 2 and are assumed to be connected. The conditions on C (resp. x) to intersect 
r" just make manifest that otherwise the two contributions cancel. Thus all these unwanted terms 
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are attached to the supports of the 'small' components of r. The local piece, 6 Szoc thus poses no 
particular problem. The non-local piece, however, may join up 'small' and 'large' components, which 

spoils the factorization properties of p. To overcome this difficulty, we apply a cluster-expansion, a 
trick that will be used again later. It is useful to introduce the notation 

so that 

5"r,r1(C) = L Sc(h) (1Iocv,i(r) -1Iacv,i(r')) 
hEZ 

0-r,r' ( C) 
onint~:F0 

(4.13) 

(4.14) 

Unfortunately the 5'r,r1(C) have arbitrary signs. Therefore expanding exp(-{36Snz) directly would 

produce a polymer systems with possibly negative activities (see below). However, by assumption, 

lar,r' ( C)I ~ sup ISc(h)I ~ e-t31a1 = f( C) ( 4.15) 
hEZ 

Therefore, 0-r ,r' ( C) - f ( C) ~ 0 and setting 

F( int rs)= f(C) ( 4.16) 
onint~:;C0 

we get 

( 4.17) 

where the second exponential could be expanded in a sum over positive activities. The first expo-
nential is not yet quite what we would like, since it does not factor over connected components. 
However, it is dominated by such a term, and the remainder may be added to the a-terms. This 

will follow from the next Lemma. 

LEMMA 4.1: Let A C ~d and let (Ai, ... , Az) be its connected components. Let F(A) be as 
defined in (4.11} and set 

l 

6F(A) = F(A) - L F(Ai) ( 4.18) 
i=l 

Then 
6F(A) = - L k(A, C)J(C) (4.19) 

OnA:F0 

where 
0 ~ k(A, C)J( C) ~ e-t3(t-~)IOI ( 4.20) 

for"'== ~-1 

Proof: The proof of this lemma is very simple. Obviously, 'l:~=l F(Ai) counts all C that intersect 
k connected components of A exactly k times, whereas in F(A) such a C appears only once. Thus 
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( 4.19) holds with k(A, C) = #{Ai : Ai n C -:f. 0} - 1. Furthermore, if C intersects k components, 
then certainly ICI ~ k, from which the upper bound in ( 4.20) follows. 0 

Now we can bring the non-local terms in their final form: 

LEMMA 4.2: Let 8Sni(r, rz) be defined in (4.12). Then 

where ¢r ,rz ( C) satisfies 

l 
00 1 e-f30S"'1(r,r) =r(rs) L TI 

l=O 

= r(rs) 

l 

L IT ¢r,r1 (Ci) 
Ci , ••. ,Cz i=l 

c,n int r• ~0 
C;,~C; 

¢r,r' (C) 
C:Cnint~,t0 

( 4.21) 

( 4.22) 

r(rs) is a non-random positive activity factoring over connected components of int rs; for a weakly 
connected component rs, 

Proof: Define for ICI ~ 2 

ar,r1(C) = D"r,r1(C)- f(C)(k(intrs,c) + 1) 

Then we may write 

-/3l:cnintr•~0 ur,ri(O) _ e - - IT ( e-/3ur,r1(C) - 1+1) 
Onint~,t0 

00 

l=O 

l IT ( e-/3ur,rl (Ci) - 1) 
C1, ... ,Cz i=l 

C;,n int~~0 
C;,~C; 

( 4.23) 

( 4.24) 

( 4.25) 

which gives (4.21). But since lar,rz(C)I ~ 2e-,6(l-1t)IOI by (4.20) and the assumption on So(h), ' 
( 4.22) follows if only 2{3 ~ e.6(i-21t)/2 • Let us remark that given the behaviour of {3 and {3 as given 
in the remark after Definition 4.2, this relation holds if it holds initially. The initial choice will be 
{3 = {3 / L, and with this relation we must only choose {3 large enough, e.g. {3 ~ L(ln L )2 will do. 

The properties of r(rs) follow from Lemma 4.1. Note that these ·activities depend only on the 
geometry of the support of rs and are otherwise non-random. 0 
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We can now write 

(T1{L)(rz) = e-,e(s,v(r')) L r(rs) L p(r,G)e-,l30S1oc(r,r') L ¢r,r1(C) 

r:T1(r)=r' G:J£. c:cnint ~#0 

= e-,e(s,v(r')) L L L L 
r:T1(r)=r' K:J£.£.CGCK .ccK 

cnmt~;ii!:0 
CUG=K 

( 4.26) 

Now we may decompose the set K into its connected components and call K 1 the union of those 
components that contain components of r 1• Naturally we call K 2 = K\K1 • Note that everything 
factorizes over these two sets, including the sum over r (the possible small contours that can be 
inserted into r 1 being independent from each other in these sets). We can make this explicit by 
writing 

(T1{L)(r1) = e-,e(s,v(r')) L L L L 
K1:Jr1 ri:T1(ri)=r1 ricG1CK1 c1cx1 

c1n int r~ ;ii!:0 

r(rnp(r2, G2)e-,eos1oc(r2,r\t>r2,r' (C2) 

= e-,e(s,v(r')) L ,O(rz, K1) L 

C1UG1;;K1 

( 4.27) 

Here, of course, the contours r 1 and r 2 are understood to have small components with supports 
only within the sets K 1 and K2, respectively. Also, of course, the set K 2 must contain D(rz) n Kf.. 
Now the final form of ( 4.27) is almost the original one, except for the sum over K 2 • This latter will 
give rise to an additional (non-local) field term, as we will explain now.5 

Notice that the sum over K 2 can be factored over the connected components of Kf.. In these 
components, p depends on r 1 only through the (constant) height h(r1) in this component. Let Y 

denote such a connected component and let h be the corresponding height. We have 

LEMMA 4.3: Let p be defined in (4.27). Then 

p(h, K) = e,e l:cCY 1/lc(h) ( 4.28) 
'D(h)nYcKCY 

5 The fact that a. non-local field is produced here even then initially no such field is present is of course the reason 

to include such fields in the inductive assumptions 
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where the sum is over connected sets C and 

{ 

e-g,i§IO\'.D(h)I 
11/Jo(h)I ~ 2 ,B L(1-a);2 -,B 

a 73 + f3 e ' 

if C\D(h) :/= 0 
if Cc D(h) 

( 4.29) 

where 0 < g < 1 is some constant. Note that 1/Jc ( h) are random and depend in particular on the 
geometry of D(h). 

Proof: Naturally, the form ( 4.28) will be obtained through a Mayer-expansion, provided we get 
the necessary estimates on the activities p. Let K be connected and recall that 

p(h,K) = 
r:T1(r)=(0,h[CGCK .ecK 

en mt r•;i!:0 
euG=K 

Note that by assumption, 

:E [Sx(hx(f)) - Sx(h)] ~ 26III 
xE[ 

and 
lp(r, G)I ~ e-f3E,(r)-.BIG\('.D(h)l+f3(N,v(r)n[) 

Let us now estimate the contribution from the sum over the C. We will prove the following 

LEMMA 4.4: For~ large enough, there exists a finite constant 0-< g < 1, 

ecK ,eUG=K 
en int .£#0 

( 4.30) 

(4.31) 

( 4.32) 

( 4.33) 

Proof: Let us first consider the case where G = K. The the condition CU G = K is void, and we 
may therefore just reverse the process used to get Lemma 4.2, getting 

Now 

:E </>r,h(C) = e -f3'Eccx,cninty0 o-r,ri(O) 

ecK 
en int~;i!:0 

ocK ,on int £#0 

IKI 

ar,ri(C) ~ :E :E :E 
v=2 xEr C:J 11 

-1c1=11 

-,Bv e 

00 N b2e-2.B 
< I int r1 ~ bve-f3v = I int r1 N - - Li - 1 - be -f3 

v=2 

(4.34) 

( 4.35) 

Here bis some dimension-dependent constant such that bv bounds the number of connected subsets 
of volume v that contain a specified point. For ~ somewhat large, this yields the upper and lower 

bounds 
( 4.36) 

CCK 
en int~# 
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We now turn to the case where K\G = M # 0. In this case, C must have volume at least !Ml. We 
may estimate 

00 1 L <Pr,h(C) ::; L Tf 
CCK ,CUG=K l=l 
c n int r• ¥-0 

l L IT e-t31c.i;2 
C1•···•CI i=l 

cin int ,!:;e0 ,c,cK 

u~=l c,nG=K ( 4.37) 

where we have overestimated by ignoring the constraint that Ci # Ci and have bounded the sum 
over connected sets Ci of fixed volume just like before. Now the sum over the vi can easily be 
computed, 

( 4.38) 

So we have to estimate the sum 

~ lintill ~ (v- l- l)cv = ~ lintill ~ (v - l - l)cv 
L..J l! L..J l - 1 L..J l! L..J l - 1 
l=l v=m l=l v=m 

+ ~ lintill ~ (v-l-1) v 
L.J l! L.J l - 1 c 

l=m/2+1 v=m 

( 4.39) 

where m = IMI and c = be-t3!2, and m/2 is understood to be the largest integer less than or equal 
m/2. Now for 2l ::; m, (v~~~1 ) ::; (v-;:f {:~ 1 ), so that in the first sum we may use 

~ (v - l- 1) CV::; cm/2 ~ ( v -1 ) CV 
L..J l - 1 L.J m/2 - 1 
v=m v=m/2 

oo m/2 v cm/2 
< cm/2 L v c < ---
- v=m/2 ( m/2)! I ln clm/2 

( 4.40) 

where the last estimate involves bounding the sum by an integral and recalling the definition of the 
Gamma-function. In the second sum we use similarly that 

oo (v - l - 1) oo vl-lcv cl 

;
1 

I - 1 c" = cl ~ (I - 1 )! ::; lln cjl ( 4.41) 

Inserting these bounds into ( 4.39), we arrive at 

~ I int Ill ~ (v - l - 1) cv =~I intrll cm/2 

~ l! v~ l-1 ~ l! llnclm/2 

~ lintill cl 
L.J -l-! -1 ln ell 

l=m/2+1 
+ ( 4.42) 

2 ~lintrl cm/4 
< ellni:l 112 - ---

1 - c1/2 I ln clm/4 I ln cil/2 
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h t bt ' h 1 li h d h S h ' li li ' c' c' 12 c' 12 
w ere o o am t e a.st ne we ave use t e c warz-mequa ty, sp ttmg "jTriCjf = !In cl'/2 lln cl'/2. 

The bounds in the two cases may now be unified to give the estimate claimed in the lemma. O 

We are now ready to estimate the sum over all the non-local terms in the definition of p. 
Remembering the assumption ( 4.8), we get that 

£.CGCK CCK 
c n int r•-t0 

CUG=K 

r(r.)p(r, G)¢r,h(C) 

< L r(r.)e-,BE.(r)+,B(N,V(r)n[)-.BIG\'.D(r)lel int r.ie-gtJ e-g,8IK\GI 

[CGCK 

~ r(I)elint£.le-ui1 e-.BE.(r)+,B(N,V(r)n[)-g,BIK\£1-.61£.\'.D(r)I L e-(,6-g,8)1G\£.I 

[CGCK 

~ r(I)e I int £.le-ui1 e-,BE.(r)+,B(N, V(r)n[)-.Blr\'.D(r) 1-Y.BIK\£.le IK\£.le-Ci1-u~> 

~ r(I)e I int £.le-ui1 e-,BE.(r)+,B(N, V(r)n!:.)-.81£.\'.D(r) I+ gJ3" 1£\'.D(h) le-gJ3" IK\ '.D(h) I 

= u(r)e-g/9" IK\'.D(h) I 

( 4.43) 

where~" = g~ - e-<f3- 9.B). Notice that the function u(r) factorizes over connected components of 
r. Next we have to estimate the sum over the small contours within G. Here we may make use of 
the estimates used in the proof of Lemmas 3.1 and 3.2 of Section III. Let us consider the sum over r 
within a connected G. Of course, the interior of the support of r must contain all of V(h) n G. Let 
{Vj(h)}j=l, ... ,q be the L 112-connected components of V(h) in G. From the analysis of the ground 
state we know that flat contours with supports contained in the Vi(h) will give the dominant 
contribution. We would like to group all small components of r into clusters attached to the Vi(h) 
and 'free' ones. Unfortunately, since connected components of r may join several components of 
V(h), this is not immediately possible. However, for any r, we may break its support into the set 
f =: £\V(h) and f = £ n V(h). Note that the two sets may or may not be connected. Let us now 
introduce the notion of D-connectedness: 

DEFINITION 4.3: For any BC ~d, we will denote by Bv the union of the connected components 
of BU V{ h) that intersect B. A set B is then said to be D-connected, if and only if B D is connected. 
A collections of sets Bi, ... , Bz is said to be D-disjoint, if B1 U V(h), ... , Bz U V(h) is a collection 
of disjoint connected sets. 

This allows us to write 
00 1 

p(h, K) ~ L Tf L L 
l=O .!J:.•··· ·.!!_CK\ 'D(h) '.D(h)C[CD(h) 

11 D-disjoint 

X ij ( ~ u("Y;)e-/3 ~•E int,,(S.(h.('Y;))-S.(h))) e-.B" IK\'.D(h)I 

1 h., 1 xemt"Y1 
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where the product is over the connected components off. U t, which are denoted by 'Yi· Given a 
configuration of heights hx, we denote the by 'Yi the resulting connected components of the entire 
contour. We may now perform the sum over the heights in each connected components. The 
estimates used here are similar to those used in the proofs of Lemmas 3.1 and 3.2. Let 'Y be a 
weakly connected component of r. Then 

(
-) -{3 'E.,e int ./S.,(h.,("'f))-S., (h)) 

u 'Y e -
::; e I int 1le-~ -{3E,( -y)-/311\D( -y)l+/3" l.:r\D(h)l+f'(N, V( -y)U_:r)-f3 'E .. e int.! (S.,(h.,( -y))-S., (h)) 

~ el int -yle-~ -f E,( -y)- ~-r 11\D(h)I ( 4.45) 

X e- ~+(,8-,8")( 11\D( -y)l-11\D(h)I) 

X 
-~E.( -y)-~-r 11\D(h)l+f'(N, vc -y)u1)+2f30 :E.,e int., 1,..,c.,># 

e -

Recalling Lemma 3.3, we see that the first exponential can be used to control the summation over hx 
(yielding a term el int -Yle-M<2L) ), while the second and third exponential will be bounded uniformly. 

For, by the same arguments as used in section III, under just slightly altered conditions on the 

parameters o, L and c, the exponents in the last two factors are negative whenever hx('Y) "¢ h; 
they may in fact even be bounded from above by -const.{3 in this case. Moreover, they are also 

negative whenever 1 r/.. 1J(h), which in particular requires j = 0. On the other hand, if 'Y is flat 
and 'Y C 1J(h), by definition of the set 7J, the exponent is still bounded from above by ~La2 for 

each connected component of r. 

The resulting bounds can now be factored over the i' j and the components off that make up 

ii· Inserting it into ( 4.44) we get therefore 

00 . l 
p(h,K) ~ e-i3"1K\1>(h)I L ~ L TI elinti';l(e-~+e-t1/(2L>)-(/3-i3"Wr;I 

l=O !!.•· ... !!_CK\'D(k) j=l 

11 v-disjoint 

TI ( 
'°' lint -y,;l(e-~+e-tl/C2L>)+f3 'E -N".,(h)) 

X L...J e - aE'D1(k) 

i: 'Di(h)CK 1>,(h)C-yi CDi(h) 

::; e-,8" IK\'D(h)l+a e-~" IK\'D(h)I TI zh(1Ji(h)) 
i: 1>i(h)CK 

( 4.46) 

To obtain the last inequality we have ignored the constraint on the i'i to be 1J-disjoint and written 

the resulting expression as anexponential. We have also used the trivial fact that for small 'Yi, the 

I inti'il::; Lli'il, and that thus, e.g. I inti'il(e-,8 + e-f3/(2L)) - (~ - ~")li'il::; -~"li'il, if~,, had 
been chosen not too large. The constant a in the bound is again just sum geometrical constant 
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taking into account the entropy in the sum over i in the exponent. Also we have set 

zh(1Ji( h)) = L e' int -r.:l(e-.S +e-,9/(2L})+.B 'E .. e'D,(h) .Af.,(h) ~ c(L )ef3u2+e-,S L(l-a)/2 ( 4.4 7) 
'D( h) ct c 'D( h) 

These are in fact the desired bounds on the activities p to exponentiate the sum over Kin Y by a 
Mayer expansion. However, as in the sum over the small r above, we must take into account the 

constraint that K must contain the set 'D(h) n Y. This will be dealt with similarly as before. First, 
put 

( 4.48) 

Here Ki stands for the connected subset of Ki U 'D( h) that contains Ki and is of course uniquely 
computable from Kj for given 'D(h). Then 

p(h, K) = II zh(V,(h)) f TI L IT p(k;) 
Yn1>(h)CKCY i:1>,(h)CY l=O it1 , ... ,k1 CY\ 'D(h) i=l 

k; 'D-disjoint 
( 4.49) 

where 
00 l 

..pc(Y\'D(h)) = ~ L TI L wc(k1, ... , kz) II p(k;) 
l=l K1 , ... ,Ki CY\'D(h) j=l 

( 4.50) 

and Ki stands for the connected subset of Ki U'D(h) that contains Ki. The function we( Ki, ... , Kl) 
forces the sets of k i occurring in the sum to form a 'D-connected cluster. For a detailed description 
of the Mayer expansion and explicit formulas for we we refer to the literature (see e.g. [GJ,Br]). 
For us it is important that with p satisfying the bounds given through ( 4.46), ( 4.50) represents an 
absolutely convergent sum; thus, grouping terms by the total volume of the union of the sets and 
proceeding just like in the proof of Lemma 4.4, we see that the terms arising from 7/Jc satisfy the 
bounds claimed in Lemma 4.3 (But note that the constant g in Lemma 4.3 is not the same as that 
in Lemma 4.4, but a slightly smaller one). The same holds true for those arising from the zh. O 

Remark: Note that the quantities zh are defined from bounds; this differs from the procedure of , 
[BK] where the exact contributions from the potential 'ground state contours' are factored out (see 
also our treatment of the eh in Section III). This does not bring, however, particular advantages. 

Next we need to control the activities p(rl, K). Our aim here is to show that it satisfies 
essentially the same bounds as the original p. With the work to prove Lemma 4.3 already. done, 
this will not be too difficult. 
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LEMMA 4.5: The activities p defined through (4.27) satisfy the following relations: 

o ~ p(rz, K)I ~ e-J3E,(r')-.t3'1K\D(r')l+J3(N,v(r 1 )n~) II ( 4.51) 
i,h: 1J,(h)cv,.(r1 ) 

and for fiat contours rz = ( C, hx = h), Cc D(h), 

( 4.52) 

Proof: Notice first that p(rz, rz) = p(rz, rz) so that ( 4.52) is trivial from the assumptions on p. 

The upper bound ( 4.51) is proven in exactly the same way as the upper bound on p, since small 
contours can be summed over in each connected component of the complement of rz in K. We do 
not repeat the the details of the estimations. O 

Our expression for T1{L can be brought into a slightly more convenient form, namely 

where 

II 
h,i: 1>1(h)CV,.(r1) 

L p'(rz' K)e-f3(1/J,V(r')\K) 

K:Jr1 

fJ'(rz' K) = p(rz' K) h 
Ih,i: 1J1(h)cv,.(r') Z (1Ji(h )) 

( 4.53) 

( 4.54) 

The point here is that the zh(1Ji(h)) are independent of the contours and K' and thus can be 
exponentiated to give random non-local field, and p' satisfies the more pleasant estimates 

LEMMA 4.5': The activities p'(rz,K) satisfy the bounds 

( 4.55) 

and for rz = (C, Hx = h), with Cc D(h), 

( 4:55) 

Proof: ( 4.55) are evident from Lemma 4.4. To get ( 4.57), just notice that a connected subset of 
D(h) cannot contain a component of1J(h), so that in this case p'(rz,rz) = p(rz,rz) = p(rz,rz). O 

This concludes the summation over small contours. 
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IV.3 The blocking 

We now turn to the main step of the RG transformation, the blocking. As before, nothing 
changes as far as the action of n on contours is concerned and all we have to do is to study the 
effect on the contour measures. 

First we exponentiate all terms in ( 4.52) that give rise to the new random fields. We set 

Setting now 

and noticing that 

We have that 

zc(h) = I: lI0 =I>;(h) (-~In ( zh(1J;(h)))) 
i 

So(h) = So(h) + zo(h) + 'l/Jo(h) 

('l/J, v(rz) n K) = ('l/J, V(rz)) - I: I: 'l/Jo(h) 
hE:Z ccv,..cr1 > 

CnK;C0 

( 4.56) 

( 4.57) 

( 4.58) 

( 4.59) 

where now the random field and the activity-like contributions are almost well separated. We first 
prepare the field term for blocking. For given r' c f2n_ 1(£-1 D), we can split the term into three 
parts 

where for single points y 

and for IC'I > 1, 

C:.c-l(C)=C 1 

d.(C)?:_L/4 

( 4.60) 

( 4.61) 

So(h) ( 4.62) 

Eqs. ( 4.61) and ( 4.62) are the analogues of (3.34) and almost the final definitions of the renormalized , 
'small random fields'. Furthermore 

oSZoc(rz,r') = I: [I: (sx(hx(rz))- Bx(hc-ix(T'))) 
yEA,.-1 :r:ECy 

+ ~ c,I.# Sa(h) [ liacv,(r') - ~::~:6t]] 
( 4.63) 

d.(C)<L/4VCC.C11 
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and 

6Snz(rz,r') = L L Sc(h) [1Iccv,.(r') -1I.c-1ccv,.(r')] ( 4.64) 
hEZ C: CCJ\11.-l 

d(C)2'.L /4Al.c-l C 12:2 

The point here is that the contributions from oSloc will factor over the connected components of 
the blocked K, while the non-local 6Snl can be expanded and gives only very small contributions, 
due to the minimal size condition on the C occurring in it. We split the remaining 'lj;-term in ( 4.59) 
in the same way in a loccil and a non-local part, 

L L .Pa(h) = L L L ~~~~ 
hEZ ccv,.cr1 ) hEZ yEA11.-1 ccv,.cr' ): cn.cv;t0 I I 

CnK;t0 CnK;t0 
d(C)<L/4VCC.C11 

'lf;c(h) ( 4.65) 
hE:Z ccv,.cr1) 

CnK;t0 
d(C )2'.L / 4A 1.c-l C 12:2 

= 61f;zoc(rz, K) + 61f;nz(rz, K) 

In all of the non-local terms only sets c give a contribution for which c nc(c-1 K) # 0, d( C) ~ LI 4 
and 1£-1CI ~ 2. In analogy to Lemma 4.2 we can therefore expand these contributions to get 

e -tl( 5 S.i(r' ,r')+o.p., er' ,K) = R( K) f ~ 

where the activities <I> satisfy 

l=O c 1 , ... ,c1: c 1;tc; 
C,; n .C( .C -1 K );t0 

d(C )2'.L / 4A 1.c-l C 12: 2 

L q?r, ,r' ,K(C) 
C :C n .C(.C -1 K );t0 

d(C )~L / 4A 1.c-l C 12:2 

( 4.66) 

( 4.67) 

And R(K) are non-random activities factoring over connected components of £(£-1 K), satisfying, 
for a connected component, 

1 ~ R(K) =exp (- L f(C)) ~ e-l.C(.C-
1
K)le--fi1" 

C n.C(.c- 1 K );i!:0 
d(C)~L/4Al .C-l Cl~2 

With these preparations we can now write dow the blocked contour measures in the form 

(RT1{L)(r') = e-f3Ld-1-a(s' ,v(r') L p'(r'' G') 
G':Jr' 

where 
p'(r',G')= L 
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Notice t4at by construction the C occurring in the local fields 8S and 8'1/J cannot connect disconnec-
ted components of G', and therefore p' (r', G') factorizes over connected components of G'. The 
main task that is left is to prove that p' yields a N' bounded contour measure for~ suitably defined 
N'. In analogy to (3.35) of section III, we define the preliminary new control field by 

N~(h) =: L-(d-1-a) ( 4. 71) 
xE.Cy\ 'D(h) 

where N was defined already in ( 4.1). We will now proof the following 

LEMMA 4.6: Let N' be defined in (4. 11} and set fy = D(N'). Then the activities p' defined in 
(4. 70) factor over connected components of G' and for any connected G' 

o:::; p'(r,' G'):::; e-,a' E,(r')-.t3'IG'\b 1(r')l+.a'(N' ,v(r')nG') ( 4.72) 

and for r' = ( C, hy = h), with C C fy connected, 

p'(r',r') ~ e-.B'(N',V(r')) ( 4.73) 

with {3 1 = Ld-l-af3 and~' L1 -a~, for some a > 0 that can be chosen as small as desired, 
provided L and {3 are large enough. 

Proof: Let us first proof the upper bound. The sum over the C can first be estimated just as in 
Lemma 4.4, but taking into account the restrictions on the minimal size of the sets C; that is, we 
get that 

p , 
1 

(C) < el.C(.c- 1 Kle-~"(L/ 4 ) e-,B' min(IVl:.C- 1 V=G'\K' Ad(V)~L/4) r ,r ,K _ 
C':C'UK'=G' c:.c-lc=c' 

d(C )~L / 4A 1.c- 1 c I ~2 
IK' ILde-L/ 4 -IG'\K'l.B' L/4 :::; e e 

(4.74) 

The two local field terms, 8S1oc and 8'1/Jzoc will be dealt with differently: 8Sioc is only present for 
locally non-fiat rz and will thus be estimated against some fraction of the surface energy (just like 

in Section III), while for the 8'1/Jzoc we get 

c,,1. (rz K) '"°" '"°" '"°" '1/Jc(h) < IK'ILde-.B" 
u 'f'loc ' = L.J L.J L.J 1.c-1c1 -

hEZ yEK' ccv,.cr' ): cn.c11;t0 

( 4.75) 

cnK;t0 
d(C)<L/4VCC.C11 

(in both formulas~" stands for~ times some geometric constant (less than one)). Using this, we 
get that 

p'(r', G') :::; 
G 1 -:;)K 1 -:;)r 1 r': n(r')=r' K'.)ri 

.c-lK=K 1 ( 4.76) 
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Now we may use the estimates of Section III.3. (in particular (3.57)) to estimate 

fJ L L ( Bx(Hx(rl) - Bx(hy(r')) + f3Es(rl) + ~'IK\D(fl)I - {J(N, V(rl) n rZ) 
yEK' xE£y 

<>: /3 16f :: l) E,(r') + S" L;6 IK'\b1(r1)I - /3Ld- 1-"'(il', V(r') n r') (4.77) 

+ %E,(r1) + s;1 

IK\D(r1)1 

The idea here is that the first three terms in the lower bound provide essentially the bound for the 
new activities, while remaining terms suffice to control the convergence of the sums over K', K and 
rz. To see this, let us introduce, for given r', the set 

(4.78) 

It is clear that for rz such that £,-1 rz = r', Y{rz) c £r'. Let us also write D(r') for the bad 
region of the contour those height hx is given by hx = ht:,-ix(f'). One sees then that rz n Y(rz)c :J 

D(r') n Y(rzy:. Using this notation and Lemma 3.7, we get that 

:E :E e-~E,(r 1 )-ti~' IK\D(r')I 

r 1: 'R.(r1 )=r' K ::>r' 

< 
.c-lK=K' 

r 1:'R.(r')=r' K::>r' 
.c-1K=K 1 

fJ """' I I I I ti" I I I e -u; L.J.,cycr' > h.,(h(r )-h.c-1.,(r ) - 2 IKnY(r )\D(r )nY(r )I 

~ :E :E :E :E IJ ( :E e-fLlh.,-h,e-1.,(r')I) 
Yc£r1 K: t:,- 1 K=K' r1nyc:JD(r 1)nYc £.:nYcKnY xEY h.,#h.c-1.,(r') 

Jlll x e-T jKnY(r1 r \D(r1 )nY(r1 r I 
< :E :E e-frlYl-t1~' 1KnY(r1nvcr1)nY(r1t1 21KnY(r1)c\D(r1)nY(r1r1 

K: L,- 1 K=K' Yc£r 1 

~ ee-/313L j£r' l+e-<tl" -1n2) ID(r' )I 

Inserting this bound together with ( 4.77) into ( 4.76), we arrive at 

p'(r', G') ~ :E e-1~<~~~> E,(r')-,8" ~IK'\b1 (r')l-L.8"1a'\K'I 

X eLctjK' le-ti" +Lctjr' le-/3/3L +Lctlb'(r')le-Ctl" -1n2)+J3Ld-1-a(N' 'V(r')nE) 

~ e - 1 ~c~~~) E,(r')-{3" Lc1IG'\b1(r')l+J3Lct- 1-a(N' ,V(r')nr')+c8 Ldlb'(r' )je-<tl" -In 2) 

( 4.79) 

( 4.80) 

where c7 and c8 are numerical constants of order unity. This is almost the desired form, except for 
the term proportional to ID'(r')I. Of course, the part of this area where r' is non-fl.at can easily 
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be absorbed by a tiny fraction of the surface energy; in flat regions, on the contrary, we are able to 
absorb this term into the N'-term. In fact we have the following 

LEMMA 4. 7: Assume that N is a control field of level k. Then for any contour r, 

( 4.81) 

The proof of this Lemma will be postponed to section IV.5. 

Assuming this Lemma and the fact that in level k {3 = £(d-l-a)kf3(o), we see that 

( 4.82) 

Inserting this bound into (4.80) and setting '{3 1 = Ld-l-af3 and~,= L1- 0 S, for suitable a> 0, we 
get the upper bound ( 4. 72). (Strictly speaking, due to ( 4.82) there is a factor of order 1 - o( e-Lf3') 
in front of the N'-term. To get strictly the form claimed in the lemma, we should slightly modify 
the definition of N', e.g. by choosing the a in (4.71) slightly different from the one in the definition 
of {3; this has no influence on the probabilistic estimates, and the effect is so ridiculously small 
(even after iteration over the hierarchies) that we will ignore it). 

Remark: Note that a appears in the denominator in ( 4.82), so that the bounds appear not to be 
uniform in a, for small a. But note that this appear only for a ~ e-f3, and no real harm is done 
by replacing such a minimal value for a in our bounds, whenever a might be smaller, since thermal 
fluctuations of the interface will in any case appear on such a scale. 

Finally let us prove the lower bound ( 4. 73). By just picking particular contributions and using 

the positivity of all activities, it is trivial to get that for r' = ( c, hy = h ), 

( 4.83) 

Now just as before, and since C C fY(h), the second term is just a t!ny .correction to the first one , 
and can be absorbed by a redefinition of {3 1 to give ( 4.73). Given Lemma 4.7, this concludes the 

proof of Lemma 4.6. O 

63 



IV .4 Final shape up 

Just as in section III we must make some final changes in the definition of the small and control 
fields and in the definition of the contours to recover the exact form of N'-bounded contour models. 
In fact the definitions (3.59), (3.60) and (3.61) remain unchanged. Of course, we also will center 
the non-local fields, i.e. we put 

( 4.84) 

The centering has of course no effect on the contour measures, as the effect cancels with the partition 
functions (which are not invariant under this last part of the RG map. 

The final RG map will then be given by R,(N) =: T3T2T1. By Lemma 4.6, this map transforms 
contour activities in the desired way; the last point we have to check is that also the non-local 
field Sb ( h) satisfies the required uniform bound ( 4.4) with the renormalized /3'. But by definition 
of Sb,(h) only C with d(C) ~ L/4 contribute, and since the Sc(h) satisfy uniform bounds of the 
form ISc(h)I::; e-.8"1°1, the sum in (4.62) gives, for instance a bound 

( 4.85) 

after a possible redefinition of a. 

Collecting the results of the preceeding subsections we have the 

PROPOSITION 4.1: Let R,(N) =: T3T2T1: D.n(D(N))---+ D.n-1(D(N')) with T1, T2 and T3 defined 

above; let N' and S' and p' be defined as above and let µ be a N-bounded contour measure at 

temperatures {J and f3 of level k. Define 

µ'r' = (nµ)(r') = _!,e-.a'cs' ,vcr'n L p'(r', G) 
Z G':Jr' 

( 4.86) 

Thenµ' is a N'-bounded contour measure with temperatures {3 1 = Ld-l-a{3 and /3' = L1-af3 of 

level k + 1, for suitably chosen a > 0. 

Remark: Note that the condition on a is of the form La ~ const. for some geometrical constant 
independent of L, while L must satisfy a condition like L ::; 1/ a 2. Thus, a may be chosen of the 

d ,...., ln(const.) or er a ,...., lln u2 I 

This concludes the construction of the RG map. 
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IV.5 Probabilistic estimates 

Fortunately, for the probabilistic estimates of the .flow of the small fields and the control fields, 
almost nothing has to be changed in the finite temperature case compared to section III. The only 
pertinent remark is that we should not try to insist on bounds on the fields with o-2 < e-/3. This is 
partly due to our sometimes poor estimates, but it should be clear that thermal fluctuations alone 
lead to local height fluctuations of this order, and there is no point in getting better control over 
the disorder induced fluctuations. With this in mind, the control of the flow of the fields S~k)(h) is 
controlled as in Sect. III.5; the only difference is that the bound (3. 77) is replaced by a bound on 
the fields Sc( h) contributing in ( 4.61) which introduces an extra term of the order e-fP·> compared 
to (3.77). This clearly does not alter anything in the proof, and we recover Proposition 3.2. The 
second point is that due to the modification of the recursive definition of the control fields, we get 
a slightly sharper control on the absence of 'very small' non-zero N and this will allow us to prove 
Lemma 4.7. Thus with definition (4.1) for the Nin mind, we define here, in analogy to (3.84) 

where 

N~0)(h) = L N~0)(h) 
x:jy-xj9 

f{~k+l)(h) = (L-(d-l-a) L L N~k)(h)) 1IyED(Hl)(h) 

x: iy-xj9 xE.Cy\1>(h) 

+ 11 1s~1c+ 1 >(h)l>8u.+1> 

N (h) = { s~ph'EZ (Nx(h + h') - 2~lh'I), if suph'EZ (Nx(h + h') - 2~ lh'I) ~ 2~ 
x - Nx(h), otherwise 

( 4.87) 

( 4.88) 

These fields satisfy equally the estimates of Proposition 3.3, but instead of (3.86) we have the 
sharper 

LEMMA 4.8: For all k E JN, we have that if ir£k) > 0, then ir£k) ~ L-(d-3 f 2)ko-. 

Proof: Note that XJ}k)(h) is defined in such a way that if ir£k\h) satisfies the claim of the lemma 
for some k, then so does XJ}k)(h), in contrast to the situation in Lemma 3.12 where even then we 
would only get the probabilistic bound (3.89). But given that XJ}k)(h) cannot take values in the 
interval (0, L-(d-3 / 2)k), the arguments used to prove (3.86) of Proposition 3.3 immediately imply 

that the claim of Lemma 4.8 is true fork+ 1, and since fork = 0 it is trivially true, the Lemma is , 
proven by induction. 0 

Let us now prove Lemma 4.7. 

Proof: (of Lemma 4. 7) For any contour r let us define the set . 

( 4.89) 
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This is clearly the set within the support where r is 'flat'. Now 

Now 

while 

L Nx(hx(f)) ~Cd L (Nx(hx(f)) + L Ny(hx(r))) 
:z:E£. :z:EF(r) y: l:z:-yl=l 

~Cd L Nx(hx(r)) ~ cdL-(d-3/ 2)kalY n D(f)I 
:z:EF(r) 

( 4.90) 

( 4.91) 

(4.92) 

where cd ~ 2
1d is some geometrical constant. Putting these two estimates together gives the estimate 

claimed in Lemma 4.7. 0 
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IV .6 Proof of the main Theorem 

In this last subsection we can finally give the proof of our main theorem. This will show just 
one major application of estimates on the sequence of renormalized measures we have established 
above. The main technical estimate needed to prove Theorem 1 is contained in the following 

PROPOSITION 4. 2: Let ek denote the event 

( 4.93) 

where lo denotes th~ largest connected component of r for which 0 E int10. Then, for f3 large 
enough, a small enough and the parameters L, a and 'f/ chosen such that the preceeding results are 
all valid, there exist positive constants a and b such that 

( 4.94) 

where µA denotes the finite volume Gibbs measure with zero boundary conditions of the level zero 
model (the dependence on the parameters temperature, random fields, etc. is again suppressed) 

Proof: Let us denote by µSk2k the measures on n~-k obtained by k-fold iteration of the RG map 
(generically denoted by 'R; we also write nk fork iterations, even though the maps n in each step 
are not the same). Now, by definition of the event ek, for all r E ek int ('Rk(r) :J 0 (since the 
component 'Yo, by its shear size, cannot have become 'small' in only k - 1 iterations and thus the 

support of its k-th image still encloses zero. Therefore 

( 4.95) 

Now for each level and for each r it is uniquely defined what rl and rs means. Thus we may insert 

in the right hand side of (4.95) the identity liint£::::>o + liint£::zio to get 

( 4.96) 

We will see later that the second term in ( 4.96) is fairly easy to handle. To deal with the first one, 
observe that if int rl :J 0, then the component of r whose interior surrounds 0 cannot disappear 
in the summation over small contours, and thus the image contour, Tr, will still have a support 
those interior contains 0. Thus " 

( 4.97) 

This argument can thus be iterated to give 

N-1 

µn ( lieJi) :::; L µ~~l ( liint r• :::>O liint r' :zio) + µ~ n) ( lir.:::>o) ( 4.98) 
l=k 
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The last term will again be easy to treat, since at this stage we have a measure on a single site 
system. In order to deal with the terms in the sum, let us introduce the following objects, called 
'restricted contour meas~res' We set 

zi(r) = e-,l3(S,V(r)) :E p(r' G)lla:JO 
G:Jr. 

(4.99) _ 

For all G contributing to ( 4.99), we denote by Go the connected component of G that contains the 

origin. Inserting in the summation the identity 1Ia0 n£.:=0 + 1Ia0 n£.::f0' we can write 

where 

zi(r) = zii(r) + zi 8 (r) 

zis(r) = e-,a(s,v(r)) :E p(r, G)lla:Jo 1I00 nr1 =0 and 
G:Jf. 

zii(r) = e-,a(s,v(r)) :E p(T,G)Ila:Jo1Ia0nr1,c0 
G:Jf. 

With Z the usual partition function (i.e. the one normalizing µ!),we also set 

The following Lemma will be important: 

( 4.100) 

( 4.101) 

( 4.102) 

LEMMA 4. 9: Let v' be defined like v, but with the renormalized p1
, S' and the corresponding 

partition function Z'. Let T denote the corresponding RG map. Then 

:E vi(r) ~ v'(r') ( 4.103) 
r :T(r)=r' 

Proof: Clearly we have that 

:E zii(r) ~ e-,a'(S' ,V(r')) :E p'(r'' G')lIG:JO ( 4.104) 
r :T2 Ti (r)=f' G' :Jf' 

due to the fact that the sets Go contributing to ziz, since they contain large connected components 
of r cannot be exponentiated in the summation over the small contours; moreover, in the blocking 
procedure, they contribute only to terms associated with sets G' such that CG' :J G :J 0, which in 
turn implies G' :J 0. Applying the third RG step only produces a constant (from the centering) 
which cancels against the same constant in partition function. This yields the lemma. 0 

We will see later that V 8 is very small with large probability. The Lemma states that vi can 

be pushed to the next level. We have to show now how the quantities µ~~l (1Iint ~:JO Ilint ri :2)0) are 
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related to v(Z). We write (we drop the superscripts l indicating the level for the moment) 

µ (JI int ~:JO JI int r1 J)O) 

- _1_"""" -.acs,vcrn """" (r G)JI· lI· (JI + JI ) - z(l) L.-J e L.-J P ' mt r• :::>O . mt£.:J)O Gonr1=0 Gonri~.0 
r G:::>£ 

= µs (1Iintr•:::>oJiintr'J)o) + µz (Jiint~:::>oJiint£.:J)o) 

( 4.105) 

where Go stands for the connected component of G that contains support of the small component 
of r those interior contains the origin (this makes sense, since only such r contribute in the sum). 
Now again the term with the subscript s will cause no problem, while for the other we have 

( 4.106) 

(where 1I here means the function one. This fact follows almost by the same argument as Lemma 
4. 7. One should note that the component Go does not disappear, since it is constraint to contain 
large support; on the other hand, it contains the support of a small component, 'Yo, those interior 
contains the origin, and by the condition on the maximal size of a small component, c-1 , 0 = 0, 
and so c-1 G :J 0. ( 4.106) is then obtained by just forgetting about any other possible constraints. 

Adding now the level-indicating superscripts and iterating Lemma 4.9 we get that 
n-1 

vCZ+l)(JI) ~ L v~i)(JI) + vCn)(JI) ( 4.107) 
j=Z+l 

and finally 

µn (&k) ~ ~ [µ~'.~-I (1Iintr•::ioliintr'1)o) + ~ viil(JI) + v<nl(JI)] + µ~n) (Jir_:::>o) 
l=k j=l+l 

( 4.108) 

Finally we must estimate the s-subscripted terms in ( 4.108). 

LEMMA 4.10: There exists a constants a> 0 and b > 0 such that 

IP [µ~~~-l (Jiintr•:::>oJiintr'J)o) ~ e-b,8<')] ~ Ldexp (-L( 2 cdd:_2i_5-T1)l 2~~) au d-1 
( 4.109) 

Proof: The proof of this Lemma is reminiscent of the classical Peierl's argument [P] and makes 
(finally!!) use of the lower bounds on certain of the activities that were proven in the RG procedure. 
Making explicit the constraints we write 

µ~~~-l (1Iint~:::>oJiintr 1 J)o) = ~ L L L p(r~,Go) 
70 , small Go =>"Yo ro:roCGo 
int 7o:Jo 7oCr0 ( 4.110) 

x L L p(r, G)e-,a(s,v(ruron 
GnGo=0 r:£CG 
· int £2> Go 
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(we have again suppressed the level indicating ·superscripts l at the obvious places to keep the 
notation readable). Note that the second line almost reconstitutes a partition function outside the 
region Go, except for the (topological) constraint on the support of r and the fact that the field 
term is not the correct one. This latter problem can be repaired by noting that 

where 

(S, V(r u rg)) = (S, V(r)\Go) + (S,.V(r u rg))a 0 

hEZ CCV11.(I'uI'0) 
cnG 0 :;t0 

So(h) 

(4.111) 

( 4.112) 

This last term consists of a local term (i.e. involving only C consisting of a single site x) which 
depends only on rg, and the non-local one, which as in the previous instances is very small; namely 

( 4.113) 

Thus 

µ~~~-l (1Iintr·~o1Iintr 1 J)o) ~ :E p(rg, Go )e-f3(S1oc, V(r~)nGo )econst.!Go le-.S 

1 x Z :E :E p(r, G)e-f3(S,V(r)\Go) 
GnGo=0 I':£CG 

int£2lGo 
(4.114) 

Now the last line has the desired form. A slight problem here is that the contours contributing to 
the denominator. are not (in general) allowed to have empty support in Go, as the support of any r 
must contain D(r). Note however that Go is necessarily such that D(O) n G0 C 'D(O), as otherwise 
Go would have to contain support from large contours. Thus for. given Go, we may bound the 
partition function from below by summing only over such contours that within G0 have hx(r) = 0 
and those have supp.art in Go is exactly given by 'D(O) n G0 . Treating the small-field term as above 
this gives the bound 

Thus 

z ~ II p('Di(O), 'Di(O))e-f3(S1oc1Go)e-cont.IG0 le-.S 

i:D,(O)CGo 

x :E :E p(r, G)e-f3(S,V(r)\Go) 

GnGo=0 I':£CG 
int !:2l Go 

µ~z.~-z (1Iint~~o1Iint£:7)o) ~ :E 

70 

( 4.115) 

( 4.116) 



Here the p's appearing in the denominator are exactly those for which we have lower bounds. Note 
that for this reason we could not deal directly we expressions in which Go is allowed to contain 
also large components of r. The estimation of the sums in ( 4.116) is now perform~d just like in the 
absorbtion of small contours RG step. r0 with non-constant heights give essentially no contribution, 
and due to the separatedness of the components 'Di(O), and the smallness of the total control field 
on one such component, the main contribution comes from the term where r 0 has support in only 

one component 'Di(O). If there is such a component which surrounds 0, this could of course give a 
contribution of order one. However, if we assume that the origin is surrounded by a ball of radius 
L/4 such that for all points x within this ball Nx(O) = 0, then Go cannot be contained in 'D(O) and 
therefore 

( 4.117) 

On the other hand, the probability of this event is clearly greater than 

( 
( d-2 ) 52 ) 1 - (L/4)d.IP[Ndz)(O) # O) ~ 1- (L/4) exp -L 2<d- 1>- 11 z 

2
_!!=2 

aa d-1 

( 4.118) 

from which the Lemma follows. O 

In almost exactly the same way one proves also the analogous bound on the vii) ( lI): 

LEMMA 4.11: There exists a constants a > 0 and b > 0 such that 

( 4.119) 

(Note that the factor Ld is missing here, since the event whose probability is considered occurs 

this time only if the origin is in D(O)). 

Finally, the estimates for the µ(N) of the same form are trivial, since only the single site 0 has 
survived the blocking at this stage. Putting these estimates together into ( 4.108), Proposition 4.2 

follows immediately. 00 

Now Proposition 4.2 implies Theorem 1 almost immediately. For, considerµ~(· lek), the local 
specifications conditioned on the event that ek does not occur. It is clear that the marginals on 

n.c,.(o) of such sequences converge weakly; moreover, if we introduce the event 

00 

( 4.120) 

then 
(4.121) 
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weakly, since convergence can only depend on the tail of the algebra generated by the Ek· But from 
the estimates on the probabilities for ek to occur, it is plain that 

lim µ~ ( £) = 0, IP - almost surely 
nToo 

( 4.122) 

Therefore, in the limit, the conditioned and unconditioned probabilities coincide, almost surely, 
and hence the sequence of measures µ~.converges JP-almost surely to some limiting measure µ0 

which is a Gibbs measure corresponding to height zero. Of course, the same construction can be 
carried through for any height h E .?t, giving rise to a family of Gibbs measures labelled by the 
external height. It is evident from our construction that all these measures are disjoint; the reader 
will, for instance, easily verify that with large probability, 

( 4.123) 

This concludes the proof of Theorem 1. 00 

Remark: It is of course possible to obtain a more detailed characterization of the properties of 
the infinite volume Gibbs states (see e.g. our results in the T = 0 case). We will not go into this 
here. Some further estimates may be found in [K]. 
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V. Concluding remarks 

We have presented a renormalization group method suitable to prove the existence of low-
temperature Gibbs states describing 'fiat' interfaces in a SOS-model for surfaces in weakly random 
media in dimension D ~ 4. This consisted on realizing the SOS-model as a certain example of a 
class of contour models in dimension d = D - l with non-compact state spaces. We have shown that 
we can construct, in an algorithmic way, RG maps that leave this class of models invariant. We have 
controlled the flow of the iterative application: of these maps and have shown that under certain 
conditions on the initial model, this flow tends to a 'trivial' limit. This situation corresponds, in 
the language of classical probability theory, to a 'strong law of large numbers' type result. We 
have then shown how the control on this sequence of image systems can be used to obtain relevant 
information on the initial system. 

It should be stressed that in a certain sense the situation we were dealing with is 'trivial' - in 
spite of the rather heavy machinery we needed to employ. What we mean by trivial here is that 
a single iteration of the RG brings the system much closer to the trivial one: temperatures are 
being reduced, variances of random fields are reduced, etc., so that, provided we can carry out one 
RG transformation, the subsequent iterations become more and more easy. For this reason, we 
could be rather generous in many of our estimates and even in the way we defined the RG maps 
themselves. It should be clear that there is a lot of room to improve things, if this is necessary 
for other applications or different models. One point, for instance, that may have annoyed some 
readers, is the appearance of the two inverse 'temperatures' f3 and~ that scale with different speeds 
to infinity. This is essentially due the way the 'coarse graining' step, or the absorption of small 
contours is performed, which still leaves untouched 'long and thin' contours as well as thin spikes 
emerging from fat contours, although such configurations cannot be provoked by 'small' random 
fields. A more extensive coarse graining could thus remove this artefact, if necessary or desired. 

There are a number of direction to further generalize and develop this method. For one thing, 
one would like to prove the existence of Dobrushin states [Do] in the full-fledged disordered Ising 
model. We believe that such a proof is now actually within range. Another type of questions con-
cerns systems with less 'symmetry', a simple example being already this SOS-model restricted to a 
half space, or other 'wetting-type' problems in disordered media. As mentioned in the introduction, 
this may be possible by merging in ideas from Pirogov-Sinai theory [Zal,Za2]. 

A particularly challenging problem is of course the analysis of the situation in lower dimension. 
Here one would no longer expect to have an infinite volume Gibbs or even ground state for the 
interface, but there should be some kind of scaling law for the interface :fluctuation in finite volumes 
(a celebrated result of this type is the supposedly exact L213 law in dimension D = 2 [FHH,KN]). 
One should say that the non-existence of a Gibbs state is likely to follow from arguments of Aizen-
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man and Wehr [AW], but no formal proof has been given. An analysis of this regime through the 
RG method appears technically very hard, in that much sharper estimates would be required, but 
not entirely hopeless. 

In the same spirit, the analysis of systems with genuinely 'strong' disorder remains a deside-
ratum; here we have in mind in particular spin glass models. Although we are very far yet from 
treating such cases, the RG approach may prove a useful tool also there. 

In conclusion, we hope that the present exposition of the RG method for disordered systems is 
convincing evidence for the power and flexibility of this technique and will help to make it a useful 
tool with numerous applications in this domain. 
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Appendix 

This appendix contains the proofs of the four main geometrical lemmas used in Sections III 
and IV. 

LEMMA 3. 3: Let 1 be a weakly connected contour s. t. d( int1) ~ L. Let h-y denote the height of 

1 on 8int1· Then 

(A.l) 

Proof: Without loss of generality we may assume that h-y = 0 and that int 1 is contained in 
the cube CL = [1, L]d. To prove the lemma, we then have to prove a lower bound on :ExECL lhxl 
for any function h that vanishes outside this cube in terms of the surface energy. Let us write 

x = ( x1, ... , xd), let ei denote the positive unit vectors in JRd and let Xi = x - Xiei (i.e. the vector 
x with the i-th component set to zero. With this notation we have 

l d L+l 

= L 2d L L lhxi+ziei - ha;i+(z,-l)e, I 
xECL i=l z,=1 

L 
2d 

<x,y>ECL 
(A.2) 

where we have used the fact that the i-th term in the one-but-last line is independent of Xii thus 
the summation over Xi gives a factor L, while the remaining sums together with the sum over Zi 

gives the part of the surface energy corning from the steps in the i-th direction. All terms together 
then yield the entire surface energy. This obviously proves the lernrna.O 

LEMMA 3.6: Let h be any integer-valued height-function, and set h' _ Rnd Ch) where h = 
L-d :ExE1W hx. Then 

L lhx - hyl ~ ~ L lhx - h'I 
<x,y>:x,yE1W xE.CO 

(A.3) 

Proof: To prove this lemma, we will first proof that 

(A.4) 
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for any function h (not necessarily integer-valued. Note that (A.3} follows immediately from (A.4) 
for integer valued h: By definition, h' is the integer closest to h, so in particular for any integer hx, 
lhx - h'I :::; lh- h'I· Thus lhx - h'I :::; lhx - hi+ lh- h'I :::; 2llh- h'I, which inserted into (A.4) gives 
(A.3). 

We are thus left with proving (A.4). This will be done by induction over the dimension. Let 
first d = 1. Without loss of generality, we may assume h = 0. Let n± denote the number of 

· - 1 L -sites where hx is positive or negative, respectively; set h+ = n+ l:x=l hxlih., >O and define h_ 
analogously. Then 

~ lhxl = n+h+ - n_h_ = n+ ( h+ - n+;+ - n-;-) -n_ ( h_ - n+;+ - n-;-) 
(A.5) 

2 - - L 
= J;n+n-(h+ - h_):::; 2(hmax - hmin) 

where we have used that n+h+ + n_h_ = Lh = O, that n+n- = n+(L - n_) < ~4 

and that 
h+ - h_ :::; hmax - hmin· Now, obviously, 

L 

hmax - hmin :::; L lhx - hx-1 I (A.6) 
x=2 

which gives (A.4) for d = 1. 

Assume now that (A.4) holds for d - 1. We will show that it holds for d. Let us write for 

x E .7Zd, x = (i:, t) with i: E .7Zd-l, t E LZ. Define ht= L1-d l:a:e{l, ... ,L}d-1 ha:,t· Then clearly 

t=l :i:E{l, ... ,L}<i-1 
(A.7) 

Now in the first term, for each fixed t we may apply (A.4) ford - 1, so that 

L ( ) L L L L lha:,t - xt1 :::; 2 L L lha:,t - hy,t' 
t=l :i:E{l, ... ,L}<i-1 t=l <x,y> 

(A.8) 

while for the second term the one-dimensional version of (A.4) can be applied, giving 

d 1 ~ 1- -1 d 1 L ~ 1- - I L - L.J ht - h :::; L - 2 L.J ht - ht-1 
t=l t=2 

L L 
< 2 L L lha:,t - ha:,t-11 

:i:E{l, ... ,L}<i-1 t=2 

(A.9) 
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Obviously, the sum of the terms in (A.8) and (A.9) is bounded by t 'E<:z:,y> lh:z: - hyl, which gives 
( A.4) for d and concludes the proof of the lemma. O 

Note that the bounds given by the previous 'two lemmas are optimal since it is not difficult to 
construct configurations for which equality holds. 

LEMMA 3. 7: Let r E n-1-y'. Then 

(A.10) 

-I -d -I -I -I . 
Proof: Set hy = L 'ExE.Cy hx and Es( 'Y) = 'E<z,w>:z,wE.C-y' lhz - hw I· We will first show that 

(A.11) 

In fact, this is quite easy. Just write 

(A.12) 

By an argument quite similar to the one used in the previous proof, we have that 

Lyi 
L 1x~i.Yi - x~ •. Yi-11 ~ L L ITiYi,Xi - Tigi,:Z:i-11 
Yi Yi :z:i=L(yi)-1 

(A.13) 

where hg, ,:z:, = L-d+l 'Ex, E.Cy, hxi ,:z:, with the obvious meaning of the notation for the summation 
range. From (A.13) (A.11) follows now simply by inserting this definition and using the triangle 
inequality. 

We now have to cope with the fact that in Es( 'Y) enter the rounded means of the heights 
rather than the block means themselves. The basic idea here is that this may cause a problem only 
if these means are far from integers, in which case the height within such a block has been very 
non-constant. Indeed, using lemma 3.6, we may get another lower bound on Es(r), namely 

(A.14) 
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where we have again used that h~ is the closest integer to h~. Now 

1 d d 
Es(r) = d + 1 d + 1 Es(r) + d + 1 Es(r) 

Ld-1 
> - ~ lh' h' h' -,;,' h' _h, I -d+l L-J - y- z- y+ y+ z- z 

<y,z>:y,zE£-y' 

+Ld-1_1_ ~ I I -II I I _, d + 1 L-J hy - hy + hz - hz I 
(A.15) 

<y,z>E-y' 

using again the triangle inequality for the last inequality. This proves the lemma. O 

LEMMA 3. 8: Let 'Y be connected and large. Then 

L(l-a)/2 Es("/)+ 11\D('Y )I ~ ~ 11 n '.D('Y )I (A.16) 

-Proof: The following two properties of the sets '.D( h) are the essential ingredients in the proof of 
this lemma: 

- 1-a/2 - e 

(i) (sparsity of '.D(h)): If C C A is connected and d(C) ~ L 2 then IC\'.D(h)I ~ ICl/2 for L 
large enough. 

This follows from the definition of '.D(h) as a union of LLcomponents each of which has a 
maximum volume of L 1-;a. 

(ii) (separation of '.D(h) and D(h)\'.D(h)): If C C A is connected s.t. C n '.D(h) =fa 0 and IC n 
= - 1-a/2 (D(h)\'.D(h))I =fa 0 then d(C) ~ L 2 and hence the conclusion of (i) holds for C. 

This follows from the definition of '.D( h) as a union of L Lcomponents which implies that 

d(D(h)\'.D(h), '.D(h)) ~ L~ (A.17) 

We must now distinguish the cases where 'Y is flat or not. In the first case, the proof is in fact 
identical to the one given in [BK] and we repeat it here only for the convenience of the reader. 

In this case we write 'Y = (1, h:c = h). Assume first that the set 1\(D(h)\'.D(h)) is nonempty 
and denote its connected components by Ci. Then 

(A.18) 
> 
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where property (ii) was used. 

Assume next that 11\(D(h)\'.D(h))I = 0. Now if 1n1J(h) = 0, then there (A.16) is trivial. Thus 
we may assume the contrary. Now since 'Y is large, either d(1) ~ L- 2 or (D(1)\1J('Y))n Vi(1) f. 0. 
In the :first case, (A.16) follows by property (i) while in the second it follows from property (ii). 
Thus, (A.16) is proven for fl.at contours. 

Now consider the case that 'Y is not fl.at. We cannot say anything a priori about the sets D (T) 
and 1J( 'Y) for general 'Y since the defining geometrical properties of 1J only refer to the slices D ( h) at 
:fixed height. However, all :fluctuations in the heights introduce surface energy terms which ensure 

the validity of (A.16). Define Vh,i('Y) to be the connected components of Vh('Y) n 1· Notice that 
Es(T) is clearly bounded from below by one-half times the number of such connected components 
Then, 

> ~ L(1-a)/2 + 
2 h,i:d(Vh.,i( "f))~L1/ 2 h,i:d(Vh.,i( "())>£1/2 

1 '""" - 1 ~ 2 L..J IVh,i(T) n '.D(h)I + 2 h,i:d(Vh.,i( "f ))~£1 / 2 h,i:d(Vh.,i( "f))>L1 /2 

1 -
=2l1nv(1)I 

(A.19) 

Here, the estimation in the second last line follows since, for d(Vh,i(T)) ~ L112 , !Vh,i(T) n 1J(h)I 
contains at most L(l-a)/2 sites, due to the definition of'.D (definition 3.4), while for d(Vh,i(T)) > L112 

we can apply the arguments of the fl.at case to obtain IVh,i('Y)\D(h)I ~ ~IVh,i('Y) n 1J(h)I. This in 
fact concludes the proof of the lemma. 0 

LEMMA.3.9: Let r E T2 - 11'. Then there exists a constant c6 > 0 s.t. 

(A.20) 

where iY = D(N'). Remark: Lemma 3.9 also holds if 1J = 0, iY = c-1 D and the respective 
definition of largeness, given in chapter 3. 

Proof: Let us define 
v'(h) = c-1 (D(h)\'.D(h)) 

fJ' = u ( i>'(h) x {h}) 
hEZ 

(A.21) 

We will in fact show that (A.20) holds with fJ' replaced by for fy, which implies the lemma since 

iY~b'. 
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We consider the partition into connected components 

r\(D(r)\V(r)) = LJxi 
j 

(A.22) 

The idea of the proof is to write the l.h.s. of (A.20) as a sum over the X/s and use for those parts 
of them which are 'well inside' the flat regions of r the same arguments as [BK], while for those 
parts which are 'near' to a region of the contour which is not entirely flat the surface energy will 
provide a sufficiently large contribution. Denote the set of blocks in which r has no constant height 
by T(r), i.e. 

T(r) = {y E -y', /Jh E 7Z : £y c Vh(r)} (A.23) 

Now, for Xj such that Xj n £T(r) = 0 with d(Xj) ~ f, we can apply the same arguments as [BK] 
to show that they are contained in £D'( -y') and thus do not contribute to the right-hand side of 
(A.20). Namely, let 'Y be a large connected component of r s.t. Xic1. Then if Xi n £T(r) = 0, 
then there is some h E 7Z such that hx('Y') = h for x E £(£-1 Xj)· We claim that this implies 
Xj n (D(h)\V(h)) i-= 0. For, if this was not true, since Xj is a component of f.\(D(I')\V(r)), we 
would have 'Y = (1, hx = h) s.t. 1CXj. But since d(Xj) ~ f this would be in contradiction to the 
assumed largeness of 'Y· Now from the fact that Xj n CJ5(h)\V(h)) /.: 0 it follows obviously that 
Xj C £D'('Y'). We remark here that we have written T(r) to ensure that the parts of D'('Y') which 
absorb such Xj are in fact at the same uniform height as r is on Xj. 

Next, consider the components Xj s.t. Xi n £T(r) i-= 0. If Xj c .CT(r), 1 we will forget its 
contribution to the second term on the l.h.s. of (A.20), but only use the surface energy term to 
estimate is contribution to the r.h.s. of (A.20) from above. If Xj r/. £T(I'), we decompose 

(A.24) 
k 

Note that for those Zj,k with Zj,k \£T(r) i-= 0, we have d(Zj,k) ;::: L. Thus we obtain 

lf.\(D(r)\V(r))I ;::: 
X;:X; n.CT(r)=0,d(X; )?:.L/4 Z;,1c:Z;,1c \.CT(r)#0 

;::: cL ( :E 1£-1 Xii+ :E 1£-1 Zi,kl) 
X;:X; n.CT(r)=0,d(X; )?:_L/4 Z;,1c:Z;,1c \.CT(r)#0 

(A.25) 

;::: cl( -y'\D'( -y')) \T(r)I 
with some constant c, where the second inequality follows since the diameter of all sets i:p.volved is 
or the order Land the third inequality follows .from the previous arguments. To get rid of T(r) we 
now use the surface energy. 0 bviously 

(A.26) 
1 The double bar on a set really means the set of all points those distance to the set is less than or equal to two. 
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with cd = #{yezci2~y,o)< 2 } = ~:. Hence we can finish the proof by 

(A.27) 

with c6 = min{c, cd"1 }.O 

Remark: We would like to give an example rwhich shows that the L in front of Es(r) is really 

necessary. Let r be defined by hx(r) = lx=xo and .r. = {x0 } and assume that {x0 } = D(r) and 
xo ¢ V(r). Then 1£.\(D(r)\V(r))I = 0 but b'\D'(!')I = 1. Hence we really need a factor of the 
order L to ensure the validity of (A.20). 
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