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Abstract

The double sum method of evaluation of probabilities of large deviations
for Gaussian processes with non-zero expectations is developed. Asymptotic
behaviors of the tail of non-centered locally stationary Gaussian fields indexed
on smooth manifold are evaluated. In particular, smooth Gaussian fields on
smooth manifolds are considered.

1 Introduction

The double-sum method is one of the main tools in studying asymptotic behavior
of maxima distribution of Gaussian processes and fields, see [1], [7], [3] and refer-
ences therein. Until recently only centered processes have been considered. It can be
seen from [7] and the present paper that the investigation of non-centered Gaussian
fields can be performed with similar techniques, which, however, are far from triv-
ial. Furthermore, there are examples when the need for the asymptotic behaviour for
non-centered fields arises. In [8], [9] statistical procedures have been introduced to
test non-parametric hypotheses for multi-dimensional distributions. The asymptotic
decision rules are based on tail distributions of maxima of Gaussian fields indexed
on spheres or products of spheres. In order to estimate power of the procedures one
might have to have asymptotic behaviour of tail maxima distributions for non-centered
Gaussian fields.

In this paper we extend the double sum method to study Gaussian processes with
non-zero expectations. We evaluate asymptotic behavior of the tail of non-centered lo-
cally (a4, Dy)-stationary Gaussian field indexed on smooth manifold, as defined below.
In particular, smooth Gaussian fields on smooth manifolds are considered.

2 Definitions, auxiliary results, main results

Let the collection aq, ..., of positive numbers be given, as well as the collection
ly, ..., I of positive integers such that Zle l; =n. We set [p = 0. This two collections
is called a structure, [7]. For any vector t = (ti,...,t,)" its structural module is defined
by
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k E(3) 2
[tlo = ( > t?) ) (1)
i=1 \j=E(i—1)+1

where E(i) = Z;ZO l;, 3 =1,...,k. The structure defines a decomposition of the space
R™ into the direct sum R™ = @¥_, R¥, such that the restriction of the structural module
on either of R% is just Euclidean norm taken to the degree s, i = 1, ..., k, respectively.
For u > 0 denote by G¢ the homothety of the subspace R with the coefficient w2
i =1,..., k, respectively, and by g,, the superposition of the homotheties, g, = OF_, Gi.
It is clear that for any t € R",

gutla = u™?[t]o. (2)



Let x(t), t € R™, be a Gaussian field with continuous paths, the expected value and
the covariance function are given by

Ex(t) = —ltlo,  Cov(x(t),x(s)) = lt|a + [sla — |t = sla, (3)

respectively. Thus x(t) can be represented as a sum of independent multi-parameter
drifted fractional Brownian motions (Lévy-Shonberg fields) indexed on R, with pa-
rameters ¢;.

To proceed, we need a generalization of the Pickands’ constant. Define the function
on measurable subsets of R,

Ho(B) = exp {sup x(t>} | ()

teB

Let D be a non-degenerated matrix n x n, throughout we make no notation difference
between a matrix and the corresponding linear transformation. Next, for any S > 0,
we denote by

0,8F={t: 0<t; <S,i=1,.,k t;=0,i=k+1,.,n},

a cube of dimension k generated by the first k coordinates in R™. In [2] it is proved
that there exists a positive limit

_ H.(D[0,S]*)
0< HPF =] idlss
< Mo = G mesy (D0, STF)

< 0, (5)

where mes;(D[0, S]¥) denotes the k-dimensional Lebesgue measure of D[0,S]*. We
write shortly H(*) = HéRk with I is the unit matrix. The constant H, = H{ is the
Pickands’ constant. Denote

U(u) = \/% [Cea, (6)

it is well known that

1

— 5 (1+0(1)) as u— oo. (7)

U(u) =

Lemma 1 Let X(t), t € R™, be a Gaussian homogeneous centered field. Let for a
non-degenerated matriz A and a-structure on R™, the covariance function r(t) of X (t)
satisfies

r(t) =1— |At|, + o(|At|,) as t — 0. (8)

Then for any compact set T C R™ and any function 0(u) with (u) — 1 as u — oo,

P { sup X(t) > u9(u)} = Hy(AT)U(ub(u))(1 +0(1)) as u— oo. (9)

tcg,T



Definition 1 Let an a-structure is given on R"™. We say that X(t), t € T C R"
has a local (o, Dy)-stationary structure, or X (t) is locally («, Dy)-stationary, if for any
e > 0 there exists a positive 0(g) such that for any s € T one can find a non-degenerated
matriz Ds such that the covariance function r(tq,ts) of X (t) satisfies

1— (14¢€)|Ds(t; — t2)]a < 7r(t1,t2) <1 — (1 —¢)|Ds(t1 — t2)]a (10)
provided ||t1 — s|| < d(g) and ||t2 — s|| < d(e).

It is convenient for the reader to cite here four theorems which are in our use, in
suitable to our purposes forms. Before that we need some notations. Let L be a k-
dimensional subspace of R", for fixed orthogonal coordinate systems in R™ and in L,
let (z1,...,2x)" be the coordinate presentation of a point x € L, and (z},...z),)" be
its coordinate presentation in R™. Denote by M = M (L) the corresponding transition
matrix,

(2}, ..z = M(zy,...,z1) ",

that is M = (0z}/0z;,, i=1,..,n,j=1,..,k).

Next, for a matrix G of size n x k we denote by V(G), the square root of the
sum of squares of all minors of order k. This invariant transforms the volume when
the dimension of vectors is changed, that is dt = V(G)"'dGt. Note that since both
coordinate systems in L and R™ are orthogonal, V(M) = 1.

Theorem 1 (Theorem 7.1, [7]) Let X (t), t € R", be a Gaussian homogeneous centered
field such that for some o, 0 < a < 2 and a non-degenerated matriz D its covariance
function satisfies

r(t) =1 — ||Dt||* 4+ o||Dt||*) as t — 0, (11)

Then for any k, 0 < k < n, every subspace L of R"™ with dimL = k, any Jordan set
A C L, and every function w(u) with w(u)/u = o(1) as u — oo,

P{EEEX(JG) > u—l—w(u)} = (12)
= HOV(DM(L))mes, (A)u= U(u + w(w))(1+ o(1)) (13)

as u — 0o, provided
r(t—s) <1 forall t,s€ A, t+#s, (14)
with A the closure of A.

Theorem 2 ( Theorem 1, [4]). Let X(t), t € R", be a Gaussian centered locally
(e, Dy)-stationary field, with « > 0 and a continuous matriz function Dy. Let M C R"
be a smooth compact of dimension k, 0 < k <n . Then for any c,

P{sup X(t) > u—c} - (15)

teM

— HOu® W(u - ¢) /M V(DeM,) db(1 + o(1)) (16)

o

as u — 0o, where My = M(Ty) with Ty the tangent subspace taken to M at the point
t and dt is an element of volume of M.



Theorem 3 (The Borell-Sudakov-Tsirelson inequality.) Let X(t), t € T, be a mea-
surable Gaussian process indexed on an arbitrary set T', and let numbers o, m, a be
defined by relations,

o = sup VarX (t) < oo, m=supEX(t) < oo,

teT teT
and
1
P {sup X(t) - EX(t) > a} < -. (17)
teT 2
Then for any x,
P {supX(t) > x} < 2v (w) . (18)
teT g

Theorem 4 (Slepian inequality.) Let X (t), Y(t), t € T, be separable Gaussian pro-
cesses indexed on an arbitrary set T, and suppose that for allt,s € T,

VarX (t) = VarY (), EX(t) = EY (t),
and (19)
Cov(X(t),X(s)) < Cov(Y(t),Y(s)).

Then for all z,
P {sup X(t) < :L'} <P {sup Y(t) < x} . (20)

teT

We turn now to our main results.

Theorem 5 Let X(t), t € R", be a Gaussian locally (o, Dy)-stationary field, with
some o > 0 and continuous matriz function Dy;. Let M C R"™ be a smooth k-
dimensional compact, 0 < k < n. Let the ezpectation m(t) = EX(t) is continuous
on M and attains its maximum on M at the only point ty, with

m(t) = m(to) — (t — to) B(t — to)T + O(|[t — to|[>#) as t = to,  (21)

for some B > 0 and positive matriz B. Then

P {53}2 X(t) > u} - (22)

/2 K
= —— V(D M) HPu'= 20 (u — m(to))(1 + o(1
V(D M) (u = m(ta))(1 + o(1)
as u — oo, where M = M(Ti,) and Ty, is the tangent subspace to M taken at the point
to.

Theorem 6 Let M C R"™ be a smooth k-dimensional compact, 0 < k < n. Let X(t),
t € R", be a differentiable in square mean sense Gaussian field with VarX (t) = 1 for



allt € M and r(t,s) <1 for all t,s € M, t #s. Let the expectation m(t) = EX(t)
is same as itn Theorem 5. Then

P {sup X(t) > u} = (23)
teM
V(%AtoM) k
= ——=————u2V(u —m(ty))(1+ o1

b (u — m(t))(1+ o(1)
as u — 00, with M as in Theorem 5 and A, the covariance matriz of the orthogonal
projection of the gradient vector of the field X (t) in point t, onto the tangent subspace
to the M taken at the point t,.

3 Proofs.

Proof of Lemma 1. First, observe that if one changes g, on gug(.), the lemma
immediately follows from Lemma 6.1, [7]. Second, observe that we can write g,7 =
Guo(w)(LT"), where I, is a linear transformation of R™, which also is a superposition of
homotheties of R* with coefficients tending to 1 as u — oo. Thus I, tends to identity,
and I,T tends to T in Euclidean distance. Third, note that H,(7) is continuous in
T in the topology of the space of measurable subsets of a compact, say K, generated
by Euclidean distance. To prove that, observe that x is a.s. continuous and H,(T') <
H,(K) < oo, for all T C K, and use the dominated convergence theorem. These
observations imply the Lemma assertion. O
Proof of Theorem 5. Let T;, be the tangent plane to M taken at the point ty. Let
M, be a neighbourhood of t; in M, so small that it can be one-to-one projected on
Ti,- We denote by P the corresponding one-to-one projector so that PM, is the image
of M. The field X(t), t € M, generates on PM, a field X (t) = X(t), t = Pt. It is
clear, that EX(t) = m(t) = m(P't). We denote by 7(t,8) = r(t,s), the covariance
function of X (t). Choose an arbitrary € (0, 1) Due to the local stationary structure,
one can find 6, = §(¢) > 0 such that for all t;,ts € Ty, N S(do, to), where S(do, to) is
centered at ty ball with radius dg, we have

exp {—(1 +¢)[| Dy (b1 — £)[|7} < #(81,F2) < exp {—(1 = &)|| Dy (b1 — )|} (24)

We also can assume d to be so small that we could let Mo = P~" [Ty, N S(do, to)] and
think of PM, as of a ball in T}, centered at ty = ty, with the same radius. Denote
M = M\ M,. Since m(t) is continuous,

sup m(t) = mito) — co,
teM;

with ¢y > 0. By Theorem 2, for X(t) = X(t) — m(t) we have,

P {tSEl./l\ElX(t) > u} =P {tseljl\gl Xo(t) +m(t) > u} <



IN

P { sup Xo(t) > u — m(to) +c0} =

teM;
2k

H®O w0 (u — m(to) + co)(1+ o(1)) /Ml V(D M,) dt =

o(¥(u — m(ty) + 1)), (25)

for any ¢; with 0 < ¢; < ¢.
Now turn to M,. Note that

P{sup X(t)>u}:P{ sup X(E)>u}. (26)

teMp tePM,

Introduce a Gaussian stationary centered field Xg(t), t € R™, with covariance function
ri(t) = exp{—(1 + 2¢)|| Dy, t||*}.

Since (24) by Slepian inequality,

P { sup X(t) > u} <P { sup Xpg(t) +m(t) > u} : (27)

tePMy teP My

Clear that without loss of generality we can put the origin of R™ at the point tg, so
that the tangent plane T;, is now a tangent subspace and t, = t, = 0. From this
point on we restrict ourselves by the k-dimensional subspace 7i, and will drop the
“tilde”. Let now S = S(0,d) be a ball in T}, centered at zero with radius é with
§ = 6(u) = u'/?log"? u, this choice will be clear later on. For all sufficiently large u
we have S C PM,, and there exists a positive ¢, such that

P { sup  Xg(v)+m(v) > u} <
veSenPMo

<P { sup  Xg(v) >u—m(ty) + cléz(u)} <
veSenPMo

<P {vesgﬁ)/lo Xu(v) >u—m(ty) + 01(52(u)} : (28)

Applying Theorem 1 to the latter probability and making elementary calculations we
get
P { sup  Xg(v)+m(v) > u} =0 (¥(u—m(ty))) as u— oo. (29)
veS NP My
Turn now to the ball S. Let vi = (v11, ..., Un1), ---,V&k = (V1k, ..., Unk) be an orthonormal
basis in Tt, given in the coordinates of R™. In the coordinate system, consider the

cubes
Ao = w20, T)%, Ay =uw=2> xk_ (1T, (1, +1)T],

1=(ly,...,,) €ZF, T >0



We have,
Z P {Al} — Z P {AIAJ} < P {SlleH(V) + ’ﬁ’L(V) > u} < Z P {Ai}, (30)
icL iLjEL! ii ves icL
where A; = {supveAi Xu(v)+m(v) > u}, L' is the set of multi-indexes i with A;NS #
() and L is the set of multi-indexes i with A; C S. Using (21), we have
P {sup Xg(v)+m(v) > u} < (31)

vEA;
<P {sup Xu(v) +m(ty) — HélAn |[VBV||? + wy (u) > u} :
VEA] VEAi
Here uw;(u) — 0 as u — oo because of the choice of d(u) and the remainder in (21).
By Lemma 1 and the equivalence
t=t+O(t|]*) ast—0

(recall that we have assumed t, = t, = 0), there exists a function v, (u), with v, (u) — 0
as u — 0o, such that for all sufficiently large u and every i € L/,

P { sup Xg(v) +m(v) > u} < (1+m(uw)Hq ((1 + &)Y Dy, [0, T]’“) X

N (u—m(to)+géiAnl||\/Ev||2+w1(u)). (32)

Using similar arguments, we get, that there exists vo(u) with y2(u) — 0 as v — oo,
such that for all sufficiently large u and every i € L,

P {vsélf Xu(v)+ m(v)u} > (1 — v (u))Hy, ((1 +¢)VeDy, [0, T]’“) X

< (u—m(to) —I—‘l}éiAnl||\/§v||2+w2(u)>, (33)

where uwy(u) — 0 as u — oo.
Now, in accordance with (30), we sum right-hand parts of (32) and (33) over L’
and L, respectively. Using (7), we get for all sufficiently large u,

PR (u —m(ty) + HélAn |[VBv||? + wl(u)> <
icL! vES
< (149 (w) T (u — m(to))T *u?*/* x
Xy exp{—unéiAn||\/§v||2—|—0(1/u)}T’“u2’“/"‘, (34)
ier veSi
where 7] (u) — 0 as u — oo. Changing variables w = y/ut and using the dominated
convergence, we get

> exp { ~umin [IVBVIE +o0(1/u)] =

iel!

=T* / exp{—Bw, w}dwu*/**2(1 + (1)), (35)
TtO

7



as u — 0o. Note that dw means here k-dimensional volume unite in 7%,. Similarly,

> exp {—umin VBV +0(1/u)} =

ieL

=T77* / exp{—Bw, w}dwu/2*/2(1 4 (1)) (36)
T,

as u — oo. In order to compute the integral thO exp{—Bw,w}dw we note that
w = Mt, where t denotes the vector w presented in the orthogonal coordinate system
of Tt,, recall that in this case V(M) = 1. Hence

/ exp{—Bw, w}dw :/ exp{—BMt, Mt} dt =
Tt Tt

0 0

k/2
= z . (37)

\/det(MTBM)

Thus for all sufficiently large wu,
> P{A} < (149 () Ho (14 €)"/* Dy, [0, %) e T *u™* 20 (u — m(to)) (38)

el
and

> P{A} > (1— 4 () Ha ((1+ €)Y Dy, [0,4]*) e T Fu?/742 (u — m(to)), (39)
icL
where ;' (u) — 0 as u — oo.
Now we are in a position to analyze the double sum in the left-hand part of (30).
We begin with the estimation of the probability

P {sup Xu(t) + m(t) > u, sup Xg(t) + m(t) > u} :
teA; teAz
with
Ay =uexk [SLTY, S, <T, v=1,..k,

Ay =u(wt xb_ [S),T)]), SL<T), v=1,.,k,
where w, T,,, S, are such that p(A;, Ag) > 0, with p(-,-) is the Euclidean distance in
R*. Recall that A;NS(0,6(u)) # 0, i = 1,2. Estimations of this probability follow the

proof of Lemma 6.3, [7], but since the expectation of the field variates, more details
have to be discussed, therefore we give complete computations. Denote

. c(u)
K, =x*_[S,,T,), Ko=w+Ki, c(u) = tergﬁJXMm(t), O(u) =1— "

We have

P {sup Xy (t) +m(t) > u, sup Xg(t) + m(t) > u} <
teA; tEA,

<P {sup Xy (t) > ub(u), sup Xg(t) > u9(u)} : (40)

tcAy tcAs



Introduce a scaled Gaussian homogeneous field £(t) = Xg((1 + 2¢)7/*Dg't). Note
that

P {sup Xg(t) > ub(u), sup Xg(t) > u9(u)} =

teAy teAs

=P {t ( sup E(t) > ub(u), sup £(t) > u9(u)} : (41)

1+€)t/* Dy Ky te(1+e)/ Dy Ko
We have for the covariance function of &,
re(t) =1 — |[t]|* + o(||t]|*) as t — 0.
Hence there exists €¢, g9 > 0, such that for all t € B(eo/5) = {t : ||t]|* < eo/5},
L2t < ree) < 1 Sl (42)
Let u be as large as
K = (1+2)Y*Dy, Ky C B(eo/5) and Kb = (1+2¢)*Dy, Ko C B(eo/5).

We have for the field Y (t,s) = £(t) + £(s),

teK] teK) €K x K}

P { sup £(t) > uf(u), sup £(t) > u9(u)} <P {(t )sup Y(t,s) > 2u9(u)} . (43)

For all t € Ki, s € K}, we have ||t — s||* < 2||t||* + 2]||s||* < €p. Since Dy, is non-
degenerated, for some k > 0 and all t, ||Dg,t|| > &l||t||. The variance of Y equals
02 (t,s) =2+ 2r¢(t — s), hence for all t € K], s € K} we have,

4—4jt —s||* < (t,5) < 4 — ||t —s]|". (44)
This follows that

inf 2(¢.8)>4—4 2 45
(t,s)el?(;xxga(’s)— €0 > % (45)

provided ¢ is sufficiently small, and

sup  0°(t,s) <4 —u"?(1+ 2)k%p* (K1, K2) =: h(u, K1, K>) (46)
(t,5) € K x K

For the standardised field Y*(t,s) = Y (t,s)/o(t,s) we have,
€K xK)

P{ sup Y (t,s) > 2u9(u)} <
(t.s)

<P { sup  Y*(t,s) > 2uf(u)h 3 (u, K, Kz)} . (47)
(t:5)

€KX K],



Algebraic calculations give
E(Y*(t,s) = Y*(t1,51))" < 16(|[t — t1]|* + [|s — s1]|%). (48)

Let n1(t), m2(t), t € R™ be two independent identically distributed homogeneous Gaus-
sian fields with expectations equal zero and covariance functions equal

r*(t) = exp(—32[t[|").
Gaussian field
1
t,s) = — t) + m(s)), t,s) € R" x R™.
n(t,s) ﬂ(m( ) +12(s)) (t,s)
is homogeneous, its covariance function is
kk 1 a a

r(t,s) = 5 (exp(=32][t[|* + exp(-32]|s[[*) . (49)
As far as for the covariance function r***(t, s; tq,s1) of the field Y* we have

rr(t, sty 81) 2 1= 8([[t — taf|* + [|s — s1]]), (50)
for all (t,s), (t1,s1) € K; x K}, for these (t,s), (t1,s1) we also have that

7 (t, 8561, 81) > 7 (t —t;s — s1).

Thus by Slepian inequality,

P{ sup  Y*(t,s) > 2uf(u)h V2 (u, K, K2)} <
(t;s)

€K XK}

€K XK}

<P { sup  7n(t,s) > 2u9(u)h_1/2(u,K1,K2)} : (51)
(ts)

Further, for sufficiently large u,

K:a

4u*0* (w)h t(u, K1, Ko) > u®0%(u) + gp"‘(Kl, Ky). (52)

Using the last two relations, Lemma 1 and (7) we get,

P {sup Xu(t) +m(ty + t)u, sup Xg(t) + m(ty + t)u} <
teA; tEA,

K/a
< CW(u(u)) Ha(16(De, K1 x Doy ) exp (=5 07 (K1, K0) ) <

k k «a

<e I - s TL2 - shewp (50" (K o)) Wb, (59)

which holds for all sufficiently large u and a constant C;, independent of u, K;, Ks. In
order to estimate H,(16(Dy, K7 X Dy, K>)) we use here Lemmas 6.4 and 6.2 from [6].

10



Now turn to the double sum ;501 P(A;4;). We brake it into two sums. The first
one, denote it by Y1, is the sum over all non-neighbouring cubes (that is, the distance
between any two of them is are positive), and the second one, denote it by X, is the
sum over all neighbouring cubes. Denote

r; =min||[VBt||, i€ L
teA;
Using (53) we get,

P(Aid) < C°T?exp (—’;—OTG( max [iy — ju| — 1)&) V(o(w) = 0y,  (54)

1<v<k

where 0(u) = 1 — c(u), c(u) = max{maxeca; Mm(to + t), maxeea, m(to + t)}. This
estimation holds for all members of the first sum and all sufficiently large u. Using it
and approximating the sum by an integral, we get

2<2Y Y 6y < e Trexp (—%T“) WE U —m(ty)). (55

€L JEL!, i), o <u;
Now consider ¥5. We can assume that max¢ca, m(to+t) > maxeea; m(to+t). Denote

Ay =ue ([T, T +VT) x x5, [i,T, (lau+1)T])  and A = A\ A
Clear,

P{A4} <P {Skip Xu(t) > ue(u)}

NG A

+P {sup Xg(t) > ul(u), sup Xp(t) > u9(u)} . (56)

Using now Lemma 1, (56), (53) and approximating the sum by an integral, we get for
all sufficiently large wu,

”iga} T(u—m(ty)). (57)

Taking into account (38), (39), (55) and (57), we get for all positive T

Y, < C;Tk_lﬁe*ui—k_%\ll(u—m(to))—I—C’g‘Tke*uz?k_% exp {—

H, ((1+ 26)Dy,[0,4]) B

Tk
* meTe e " 2%k meTe
_ClTk exp{— 0 } — T /2 C3Tkua : exp{— - }
< lim inf P {Suptesi{Hk(t) + m(to+t) > u}
o eru® EU(u — m(to))
< lim sup P {SUPtes fk(Hk(t) +m(ty+t) > u}
o erua 2 (u — mfto))
H, ((1+2e)Dy,[0,t)*
EA(ErTNY) N

11



Now, letting T" go to infinity and using (29), we obtain, that

P {iggXH(E) + m(t) > u}

= (14 2¢)*e*V (D, M)H®Bu= 2T (1w — m(to))(1 + o(1)), (59)
as U — 0.

Let now Xj(t),t € R", be a homogeneous centered Gaussian field with the covari-
ance function r%(t) = exp (—(1 — 2¢)|| Dy, t||*). From Theorem 4 we have,

P {sup X(t) > u} > P {Sup X5 (t) +m(t) > u} : (60)

tesS teS

Proceeding the above estimations for the latter probability, we get,

P { sup X5 (t) + m(t > u}
teXn

2k

2

=(1- 25)ke*V(DtOM)H(gk)u?* U(u —m(to))(1+ o(1)), (61)

as u — oo.
Now we collect (25), (27), (59), (60) and (61), and get

P X(t
(1—2¢)f < liminf {SUPEE)M% (k) > u}
w0 e/ (D MYHP U =50 (u — m(ty))
P X(t
< oy P BUPics X0 > )
uoo ¥V (Dg, M)Huw =30 (u — m(ty))

< (1+2)F.  (62)

It follows from this the assertion of Theorem. O
Proof of Theorem 6. Let X(t) be the field as it is defined in the proof of
Theorem 5. Using Tailor expansion, we get

X(t) = X(t) = X(to) + (grad X (to)) " (t — to) +o(|[t — tol[), t—to.  (63)

From here it follows that

X () — X (t) = (gradX (o)) "(E — o) + o[t —&ol), T %o, (64)

where gfr;d is the orthogonal projection of the gradient of the field X onto the tangent
subspace T;, to the M at the point t,. From (64) by algebraic calculations it follows
that

FE—t0) = 1= 5t —t0) " Ae(E — o) +o(l[t —Roll), E— 1o, (65)

where Ay, is the covariance matrix of the vector gradX (to). Note that the matrix

\/At, /2 is just the matrix Dy, from Theorem 5. Now the proof repeats up to all details
the proof of Theorem 5. O
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