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Abstract

The double sum method of evaluation of probabilities of large deviations

for Gaussian processes with non-zero expectations is developed. Asymptotic

behaviors of the tail of non-centered locally stationary Gaussian �elds indexed

on smooth manifold are evaluated. In particular, smooth Gaussian �elds on

smooth manifolds are considered.

1 Introduction

The double-sum method is one of the main tools in studying asymptotic behavior

of maxima distribution of Gaussian processes and �elds, see [1], [7], [3] and refer-

ences therein. Until recently only centered processes have been considered. It can be

seen from [7] and the present paper that the investigation of non-centered Gaussian

�elds can be performed with similar techniques, which, however, are far from triv-

ial. Furthermore, there are examples when the need for the asymptotic behaviour for

non-centered �elds arises. In [8], [9] statistical procedures have been introduced to

test non-parametric hypotheses for multi-dimensional distributions. The asymptotic

decision rules are based on tail distributions of maxima of Gaussian �elds indexed

on spheres or products of spheres. In order to estimate power of the procedures one

might have to have asymptotic behaviour of tail maxima distributions for non-centered

Gaussian �elds.

In this paper we extend the double sum method to study Gaussian processes with

non-zero expectations. We evaluate asymptotic behavior of the tail of non-centered lo-

cally (�t; Dt)-stationary Gaussian �eld indexed on smooth manifold, as de�ned below.

In particular, smooth Gaussian �elds on smooth manifolds are considered.

2 De�nitions, auxiliary results, main results

Let the collection �1; :::; �k of positive numbers be given, as well as the collection

l1; :::; lk of positive integers such that
Pk

i=1 li = n. We set l0 = 0. This two collections

is called a structure, [7]. For any vector t = (t1; :::; tn)
> its structural module is de�ned

by

jtj� =
kX
i=1

0@ E(i)X
j=E(i�1)+1

t
2
j

1A
�i

2

; (1)

where E(i) =
Pi

j=0 lj, j = 1; :::; k. The structure de�nes a decomposition of the space

Rn into the direct sum Rn =
Lk

i=1 R
li , such that the restriction of the structural module

on either of Rli is just Euclidean norm taken to the degree �i, i = 1; :::; k, respectively.

For u > 0 denote by Gi
u the homothety of the subspace Rli with the coe�cient u�2=�i ,

i = 1; :::; k, respectively, and by gu, the superposition of the homotheties, gu =k
i=1G

i
u.

It is clear that for any t 2 Rn,

jgutj� = u
�2jtj�: (2)
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Let �(t), t 2 Rn, be a Gaussian �eld with continuous paths, the expected value and

the covariance function are given by

E�(t) = �jtj�; Cov(�(t); �(s)) = jtj� + jsj� � jt� sj�; (3)

respectively. Thus �(t) can be represented as a sum of independent multi-parameter

drifted fractional Brownian motions (L�evy-Sh�onberg �elds) indexed on Rli, with pa-

rameters �i.

To proceed, we need a generalization of the Pickands' constant. De�ne the function

on measurable subsets of Rn,

H�(B) = exp

(
sup
t2B

�(t)

)
: (4)

Let D be a non-degenerated matrix n� n, throughout we make no notation di�erence

between a matrix and the corresponding linear transformation. Next, for any S > 0,

we denote by

[0; S]k = ft : 0 � ti � S; i = 1; :::; k; ti = 0; i = k + 1; ::; ng;

a cube of dimension k generated by the �rst k coordinates in Rn. In [2] it is proved

that there exists a positive limit

0 < H
DRk

� := lim
S!1

H�(D[0; S]k)

mesk(D[0; S]k)
<1; (5)

where mesk(D[0; S]k) denotes the k-dimensional Lebesgue measure of D[0; S]k. We

write shortly H
(k)
� = H

IRk

� with I is the unit matrix. The constant H� = H
(n)
� is the

Pickands' constant. Denote

	(u) =
1p
2�

Z 1
u

e
�x

2

2 dx; (6)

it is well known that

	(u) =
1p
2�u

e
�u

2

2 (1 + o(1)) as u!1: (7)

Lemma 1 Let X(t), t 2 Rn, be a Gaussian homogeneous centered �eld. Let for a

non-degenerated matrix A and �-structure on Rn, the covariance function r(t) of X(t)

satis�es

r(t) = 1� jAtj� + o(jAtj�) as t! 0: (8)

Then for any compact set T � Rn and any function �(u) with �(u)! 1 as u!1,

P

(
sup
t2guT

X(t) > u�(u)

)
= H�(AT )	(u�(u))(1 + o(1)) as u!1: (9)
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De�nition 1 Let an �-structure is given on Rn. We say that X(t), t 2 T � Rn

has a local (�;Dt)-stationary structure, or X(t) is locally (�;Dt)-stationary, if for any

" > 0 there exists a positive �(") such that for any s 2 T one can �nd a non-degenerated

matrix Ds such that the covariance function r(t1; t2) of X(t) satis�es

1� (1 + ")jDs(t1 � t2)j� � r(t1; t2) � 1� (1� ")jDs(t1 � t2)j� (10)

provided jjt1 � sjj < �(") and jjt2 � sjj < �(").

It is convenient for the reader to cite here four theorems which are in our use, in

suitable to our purposes forms. Before that we need some notations. Let L be a k-

dimensional subspace of Rn, for �xed orthogonal coordinate systems in R
n and in L,

let (x1; :::; xk)
> be the coordinate presentation of a point x 2 L, and (x01; :::x

0
n)
> be

its coordinate presentation in Rn. Denote by M =M(L) the corresponding transition

matrix,

(x01; :::x
0
n)
> =M(x1; :::; xk)

>
;

that is M = (@x0i=@xj ; ; i = 1; :::; n ; j = 1; :::; k).

Next, for a matrix G of size n � k we denote by V (G), the square root of the

sum of squares of all minors of order k. This invariant transforms the volume when

the dimension of vectors is changed, that is dt = V (G)�1dGt. Note that since both

coordinate systems in L and Rn are orthogonal, V (M) = 1:

Theorem 1 (Theorem 7.1, [7]) Let X(t), t 2 Rn, be a Gaussian homogeneous centered

�eld such that for some �, 0 < � � 2 and a non-degenerated matrix D its covariance

function satis�es

r(t) = 1� jjDtjj� + o(jjDtjj�) as t! 0; (11)

Then for any k, 0 < k � n, every subspace L of Rn with dimL = k, any Jordan set

A � L, and every function w(u) with w(u)=u = o(1) as u!1,

P

(
sup
t2A

X(t) > u+ w(u)

)
= (12)

= H
(k)
� V (DM(L))mesL(A)u

2k

� 	(u+ w(u))(1 + o(1)) (13)

as u!1; provided

r(t� s) < 1 for all t; s 2 �A; t 6= s; (14)

with �A the closure of A.

Theorem 2 ( Theorem 1, [4]). Let X(t), t 2 Rn, be a Gaussian centered locally

(�;Dt)-stationary �eld, with � > 0 and a continuous matrix function Dt. LetM� Rn

be a smooth compact of dimension k, 0 < k � n . Then for any c,

P

(
sup
t2M

X(t) > u� c

)
= (15)

= H
(k)
� u

2k

� 	(u� c)
Z
M

V (DtMt) dt(1 + o(1)) (16)

as u ! 1, where Mt = M(Tt) with Tt the tangent subspace taken to M at the point

t and dt is an element of volume of M.
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Theorem 3 (The Borell-Sudakov-Tsirelson inequality.) Let X(t), t 2 T , be a mea-

surable Gaussian process indexed on an arbitrary set T , and let numbers �, m, a be

de�ned by relations,

�
2 = sup

t2T

VarX(t) <1; m = sup
t2T

EX(t) <1;

and

P

(
sup
t2T

X(t)�EX(t) � a

)
� 1

2
: (17)

Then for any x,

P

(
sup
t2T

X(t) > x

)
� 2	

�
x�m� a

�

�
: (18)

Theorem 4 (Slepian inequality.) Let X(t), Y (t), t 2 T , be separable Gaussian pro-

cesses indexed on an arbitrary set T , and suppose that for all t; s 2 T ,

VarX(t) = VarY (t); EX(t) = EY (t);

and (19)

Cov(X(t); X(s)) � Cov(Y (t); Y (s)):

Then for all x,

P

(
sup
t2T

X(t) < x

)
� P

(
sup
t2T

Y (t) < x

)
: (20)

We turn now to our main results.

Theorem 5 Let X(t), t 2 Rn, be a Gaussian locally (�;Dt)-stationary �eld, with

some � > 0 and continuous matrix function Dt. Let M � Rn be a smooth k-

dimensional compact, 0 < k � n. Let the expectation m(t) = EX(t) is continuous

on M and attains its maximum on M at the only point t0, with

m(t) = m(t0)� (t� t0)B(t� t0)
> +O(jjt� t0jj2+�) as t! t0; (21)

for some � > 0 and positive matrix B. Then

P

(
sup
t2M

X(t) > u

)
= (22)

=
�
k=2

p
detM>BM

V (Dt0M)H(k)
� u

2k

�
� k

2	(u�m(t0))(1 + o(1))

as u!1, where M = M(Tt0) and Tt0 is the tangent subspace toM taken at the point

t0.

Theorem 6 Let M� Rn be a smooth k-dimensional compact, 0 < k � n. Let X(t),

t 2 Rn, be a di�erentiable in square mean sense Gaussian �eld with VarX(t) = 1 for
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all t 2 M and r(t; s) < 1 for all t; s 2 M, t 6= s. Let the expectation m(t) = EX(t)

is same as in Theorem 5. Then

P

(
sup
t2M

X(t) > u

)
= (23)

=

q
V (1

2
At0M)p

detM>BM
u

k

2	(u�m(t0))(1 + o(1))

as u ! 1; with M as in Theorem 5 and At0 the covariance matrix of the orthogonal

projection of the gradient vector of the �eld X(t) in point t0 onto the tangent subspace

to the M taken at the point t0.

3 Proofs.

Proof of Lemma 1. First, observe that if one changes gu on gu�(u), the lemma

immediately follows from Lemma 6.1, [7]. Second, observe that we can write guT =

gu�(u)(IuT ), where Iu is a linear transformation of Rn, which also is a superposition of

homotheties of Rki with coe�cients tending to 1 as u!1. Thus Iu tends to identity,

and IuT tends to T in Euclidean distance. Third, note that H�(T ) is continuous in

T in the topology of the space of measurable subsets of a compact, say K, generated

by Euclidean distance. To prove that, observe that � is a.s. continuous and H�(T ) �
H�(K) < 1, for all T � K, and use the dominated convergence theorem. These

observations imply the Lemma assertion. 2

Proof of Theorem 5. Let Tt0 be the tangent plane to M taken at the point t0. Let

M0 be a neighbourhood of t0 in M, so small that it can be one-to-one projected on

Tt0 . We denote by P the corresponding one-to-one projector so that PM0 is the image

of M0. The �eld X(t), t 2 M, generates on PM0 a �eld ~X(~t) = X(t), ~t = P t. It is

clear, that E ~X(~t) = m(t) = m(P�1~t): We denote by ~r(~t;~s) = r(t; s); the covariance

function of ~X(~t). Choose an arbitrary " 2 (0; 1
2
). Due to the local stationary structure,

one can �nd �0 = �(") > 0 such that for all ~t1;~t2 2 Tt0 \ S(�0; t0), where S(�0; t0) is

centered at t0 ball with radius �0, we have

exp
n
�(1 + ")jjDt0(~t1 � ~t2)jj�

o
� ~r(~t1;~t2) � exp

n
�(1� ")jjDt0(~t1 � ~t2)jj�

o
: (24)

We also can assume �0 to be so small that we could letM0 = P
�1 [Tt0 \ S(�0; t0)] and

think of PM0 as of a ball in Tt0 centered at ~t0 = t0, with the same radius. Denote

M1 =MnM0. Since m(t) is continuous,

sup
t2M1

m(t) = m(t0)� c0;

with c0 > 0. By Theorem 2, for X0(t) = X(t)�m(t) we have,

P

(
sup
t2M1

X(t) > u

)
= P

(
sup
t2M1

X0(t) +m(t) > u

)
�
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� P

(
sup
t2M1

X0(t) > u�m(t0) + c0

)
=

= H
(k)
� u

2k

� 	(u�m(t0) + c0)(1 + o(1))
Z
M1

V (DtMt) dt =

= o(	(u�m(t0) + c1)); (25)

for any c1 with 0 < c1 < c0.

Now turn to M0. Note that

P

(
sup
t2M0

X(t) > u

)
= P

(
sup

~t2PM0

~X(~t) > u

)
: (26)

Introduce a Gaussian stationary centered �eld XH(t), t 2 Rn, with covariance function

rH(t) = expf�(1 + 2")jjDt0tjj�g:

Since (24) by Slepian inequality,

P

(
sup

~t2PM0

~X(~t) > u

)
� P

(
sup

t2PM0

XH(~t) + ~m(~t) > u

)
: (27)

Clear that without loss of generality we can put the origin of Rn at the point t0, so

that the tangent plane Tt0 is now a tangent subspace and t0 = ~t0 = 0. From this

point on we restrict ourselves by the k-dimensional subspace Tt0 and will drop the

\tilde". Let now S = S(0; �) be a ball in Tt0 centered at zero with radius � with

� = �(u) = u
�1=2 log1=2 u, this choice will be clear later on. For all su�ciently large u

we have S � PM0, and there exists a positive c1, such that

P

(
sup

v2Sc\PM0

XH(v) + ~m(v) > u

)
�

� P

(
sup

v2Sc\PM0

XH(v) > u� ~m(t0) + c1�
2(u)

)
�

� P

(
sup

v2PM0

XH(v) > u� ~m(t0) + c1�
2(u)

)
: (28)

Applying Theorem 1 to the latter probability and making elementary calculations we

get

P

(
sup

v2Sc\PM0

XH(v) + ~m(v) > u

)
= o (	(u�m(t0))) as u!1: (29)

Turn now to the ball S. Let v1 = (v11; :::; vn1), ...,vk = (v1k; :::; vnk) be an orthonormal

basis in Tt0 given in the coordinates of Rn. In the coordinate system, consider the

cubes

�0 = u
�2=�[0; T ]k; �l = u

�2=� �k
�=1 [l�T; (l� + 1)T ];

l = (l1; :::; lk) 2 Zk; T > 0
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We have,X
i2L

P fAig �
X

i;j2L0;i6=j

P fAiAjg � P

(
sup
v2S

XH(v) + ~m(v) > u

)
� X

i2L0

P fAig ; (30)

where Ai =
n
supv2�i

XH(v) + ~m(v) > u

o
, L0 is the set of multi-indexes i with �i\S 6=

; and L is the set of multi-indexes i with �i � S. Using (21), we have

P

(
sup
v2�i

XH(v) + ~m(v) > u

)
� (31)

� P

(
sup
v2�l

XH(v) +m(t0)� min
v2�i

jj
p
Bvjj2 + w1(u) > u

)
:

Here uw1(u) ! 0 as u ! 1 because of the choice of �(u) and the remainder in (21).

By Lemma 1 and the equivalence

t = ~t+O(jj~tjj2) as t! 0

(recall that we have assumed t0 = ~t0 = 0), there exists a function 1(u), with 1(u)! 0

as u!1, such that for all su�ciently large u and every i 2 L
0,

P

(
sup
v2�l

XH(v) + ~m(v) > u

)
� (1 + 1(u))H�

�
(1 + ")1=�Dt0 [0; T ]

k
�
�

�	
�
u�m(t0) + min

v2�l

jj
p
Bvjj2 + w1(u)

�
: (32)

Using similar arguments, we get, that there exists 2(u) with 2(u) ! 0 as u ! 1,

such that for all su�ciently large u and every i 2 L,

P

(
sup
v2�l

XH(v) + ~m(v)u

)
� (1� 2(u))H�

�
(1 + ")1=�Dt0 [0; T ]

k
�
�

�	
�
u�m(t0) + min

v2�l

jj
p
Bvjj2 + w2(u)

�
; (33)

where uw2(u)! 0 as u!1.

Now, in accordance with (30), we sum right-hand parts of (32) and (33) over L0

and L, respectively. Using (7), we get for all su�ciently large u,X
i2L0

	

�
u�m(t0) + min

v2�i

jj
p
Bvjj2 + w1(u)

�
�

� (1 + 
0
1(u))	(u�m(t0))T

�k
u
2k=� �

�X
i2L0

exp

�
�umin

v2�i

jj
p
Bvjj2 + o (1=u)

�
T
k
u
�2k=�

; (34)

where 01(u) ! 0 as u ! 1. Changing variables w =
p
ut and using the dominated

convergence, we getX
i2L0

exp

�
�umin

v2�i

jj
p
Bvjj2 + o (1=u)

�
=

= T
�k
Z
Tt0

expf�Bw;wgdwu2k=��k=2(1 + o(1)); (35)
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as u!1. Note that dw means here k-dimensional volume unite in Tt0 . Similarly,X
i2L

exp

�
�umin

v2�i

jj
p
Bvjj2 + o (1=u)

�
=

= T
�k
Z
Tt0

expf�Bw;wgdwu2k=��k=2(1 + o(1)) (36)

as u ! 1. In order to compute the integral
R
Tt0

expf�Bw;wgdw we note that

w =Mt, where t denotes the vector w presented in the orthogonal coordinate system

of Tt0 , recall that in this case V (M) = 1. HenceZ
Tt0

expf�Bw;wgdw =
Z
Tt0

expf�BMt;Mtg dt =

=
�
k=2q

det(M>BM)
=: e�: (37)

Thus for all su�ciently large u,X
i2L0

PfAig � (1 + 
00
1 (u))H�

�
(1 + ")1=�Dt0[0; t]

k
�
e
�
T
�k
u
2k=��k=2	(u�m(t0)) (38)

andX
i2L

PfAig � (1� 
00
1 (u))H�

�
(1 + ")1=�Dt0 [0; t]

k
�
e
�
T
�k
u
2k=��k=2	(u�m(t0)); (39)

where 001 (u)! 0 as u!1.

Now we are in a position to analyze the double sum in the left-hand part of (30).

We begin with the estimation of the probability

P

(
sup
t2�1

XH(t) + ~m(t) > u; sup
t2�2

XH(t) + ~m(t) > u

)
;

with

�1 = u
�2=� �k

�=1 [S1
� ; T

1
� ]; S� < T�; � = 1; :::; k;

�2 = u
�2=�

�
w +�k

�=1 [S
1
� ; T

1
� ]
�
; S

1
� < T

1
� ; � = 1; :::; k;

where w, T�, S� are such that �(�1;�2) > 0, with �(�; �) is the Euclidean distance in

Rk. Recall that �i \S(0; �(u)) 6= ;, i = 1; 2. Estimations of this probability follow the

proof of Lemma 6.3, [7], but since the expectation of the �eld variates, more details

have to be discussed, therefore we give complete computations. Denote

K1 = �k
�=1 [S� ; T�]; K2 = w +K1; c(u) = max

t2�1[�2

~m(t); �(u) = 1� c(u)

u
:

We have

P

(
sup
t2�1

XH(t) + ~m(t) > u; sup
t2�2

XH(t) + ~m(t) > u

)
�

� P

(
sup
t2�1

XH(t) > u�(u); sup
t2�2

XH(t) > u�(u)

)
: (40)

8



Introduce a scaled Gaussian homogeneous �eld �(t) = XH((1 + 2")�1=�D�1
t0
t). Note

that

P

(
sup
t2�1

XH(t) > u�(u); sup
t2�2

XH(t) > u�(u)

)
=

= P

8<: sup
t2(1+")1=�Dt0

K1

�(t) > u�(u); sup
t2(1+")1=�Dt0

K2

�(t) > u�(u)

9=; : (41)

We have for the covariance function of �,

r�(t) = 1� jjtjj� + o(jjtjj�) as t! 0:

Hence there exists "0, "0 > 0, such that for all t 2 B("0=5) = ft : jjtjj� < "0=5g;

1� 2jjtjj� � r�(t) � 1� 1

2
jjtjj�: (42)

Let u be as large as

K
0
1 = (1 + 2")1=�Dt0K1 � B("0=5) and K

0
2 = (1 + 2")1=�Dt0K2 � B("0=5):

We have for the �eld Y (t; s) = �(t) + �(s),

P

8<: sup
t2K0

1

�(t) > u�(u); sup
t2K0

2

�(t) > u�(u)

9=; � P

8<: sup
(t;s)2K0

1
�K0

2

Y (t; s) > 2u�(u)

9=; : (43)

For all t 2 K
0
1, s 2 K

0
2, we have jjt � sjj� � 2jjtjj� + 2jjsjj� < "0. Since Dt0 is non-

degenerated, for some � > 0 and all t, jjDt0tjj � �jjtjj. The variance of Y equals

�
2
Y (t; s) = 2 + 2r�(t� s), hence for all t 2 K

0
1, s 2 K

0
2 we have,

4� 4jjt� sjj� � �
2(t; s) � 4� jjt� sjj�: (44)

This follows that

inf
(t;s)2K0

1
�K0

2

�
2(t; s) � 4� 4"0 > 2; (45)

provided "0 is su�ciently small, and

sup
(t;s)2K0

1
�K0

2

�
2(t; s) � 4� u

�2(1 + 2")����(K1; K2) =: h(u;K1; K2) (46)

For the standardised �eld Y
�(t; s) = Y (t; s)=�(t; s) we have,

P

8<: sup
(t;s)2K0

1
�K0

2

Y (t; s) > 2u�(u)

9=; �
� P

8<: sup
(t;s)2K0

1
�K0

2

Y
�(t; s) > 2u�(u)h�1=2(u;K1; K2)

9=; : (47)
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Algebraic calculations give

E(Y �(t; s)� Y
�(t1; s1))

2 � 16(jjt� t1jj� + jjs� s1jj�): (48)

Let �1(t), �2(t), t 2 Rn be two independent identically distributed homogeneous Gaus-

sian �elds with expectations equal zero and covariance functions equal

r
�(t) = exp(�32jjtjja):

Gaussian �eld

�(t; s) =
1p
2
(�1(t) + �2(s)) ; (t; s) 2 Rn � Rn

:

is homogeneous, its covariance function is

r
��(t; s) =

1

2
(exp(�32jjtjja + exp(�32jjsjja) : (49)

As far as for the covariance function r
���(t; s; t1; s1) of the �eld Y

� we have

r
���(t; s; t1; s1) � 1� 8(jjt� t1jja + jjs� s1jja); (50)

for all (t; s); (t1; s1) 2 K
0
1 �K

0
2, for these (t; s); (t1; s1) we also have that

r
���(t; s; t1; s1) � r

��(t� t1; s� s1):

Thus by Slepian inequality,

P

8<: sup
(t;s)2K0

1
�K0

2

Y
�(t; s) > 2u�(u)h�1=2(u;K1; K2)

9=; �
� P

8<: sup
(t;s)2K0

1
�K0

2

�(t; s) > 2u�(u)h�1=2(u;K1; K2)

9=; : (51)

Further, for su�ciently large u,

4u2�2(u)h�1(u;K1; K2) � u
2
�
2(u) +

�
�

5
�
�(K1; K2): (52)

Using the last two relations, Lemma 1 and (7) we get,

P

(
sup
t2�1

XH(t) + ~m(t0 + t)u; sup
t2�2

XH(t) + ~m(t0 + t)u

)
�

� C	(u�(u))H�(16(Dt0K1 �Dt0K2)) exp

�
��

�

10
�
�(K1; K2)

�
�

� C1

kY
�=1

(T 1
� � S

1
�)

kY
�=1

(T 2
� � S

2
�) exp

�
��

�

10
�
�(K1; K2)

�
	(u�(u)); (53)

which holds for all su�ciently large u and a constant C1, independent of u, K1, K2. In

order to estimate H�(16(Dt0K1 �Dt0K2)) we use here Lemmas 6.4 and 6.2 from [6].
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Now turn to the double sum
P

i;j2L0 P(AiAj). We brake it into two sums. The �rst

one, denote it by �1, is the sum over all non-neighbouring cubes (that is, the distance

between any two of them is are positive), and the second one, denote it by �2, is the

sum over all neighbouring cubes. Denote

xi = min
t2�i

jj
p
Btjj; i 2 L

0
:

Using (53) we get,

P(AiAj) � C
�
T
2k exp

�
��

�

10
T
�( max

1���k
ji� � j�j � 1)�

�
	(u�(u)) =: �i;j; (54)

where �(u) = 1 � c(u), c(u) = maxfmaxt2�i
~m(t0 + t);maxt2�j

~m(t0 + t)g. This

estimation holds for all members of the �rst sum and all su�ciently large u. Using it

and approximating the sum by an integral, we get

�1 � 2
X
i2L0

X
j2L0; i6=j; xi<xj

�i;j � c
�
e
�
T
k exp

�
��

�

10
T
�

�
u
2k

�
� k

2	(u�m(t0)): (55)

Now consider �2. We can assume that maxt2�i
~m(t0+t) > maxt2�j

~m(t0+t). Denote

�0
i = u

2

�

�
[i1T; i1T +

p
T ]��k

�=2 [i�T; (inu+ 1)T ]
�

and �00
i = �i n�0

i:

Clear,

PfAiAjg � P

(
sup
�i

XH(t) > u�(u)

)

+P

8<:sup
�00

i

XH(t) > u�(u); sup
�j

XH(t) > u�(u)

9=; : (56)

Using now Lemma 1, (56), (53) and approximating the sum by an integral, we get for

all su�ciently large u,

�2 � C
�
2T

k�1=2
e
�
u
2k

�
� k

2	(u�m(t0))+C
�
3T

k
e
�
u
2k

�
� k

2 exp

�
��

�
T
�

10

�
	(u�m(t0)): (57)

Taking into account (38), (39), (55) and (57), we get for all positive T ,

H�

�
(1 + 2")Dt0[0; t]

k
�

T k
�

�C�1T k exp

�
�m

�
T
�

10

�
� C

�
2T

�1=2 � C
�
3T

k
u
2k

�
� k

2 exp

�
�m

�
T
�

10

�
� lim inf

u!1

P fsupt2SXH(t) + ~m(t0 + t) > ug
e�u

2k

�
� k

2	(u�m(t0))

� lim sup
u!1

P fsupt2SXH(t) + ~m(t0 + t) > ug
e�u

2k

�
� k

2	(u�m(t0))

�
H�

�
(1 + 2")Dt0[0; t]

k
�

T k
: (58)
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Now, letting T go to in�nity and using (29), we obtain, that

P

(
sup
t2S

XH(~t) + ~m(~t) > u

)
= (1 + 2")ke�V (Dt0M)H(k)

� u
2k

�
� k

2	(u�m(t0))(1 + o(1)); (59)

as u!1.

Let now X
�
H(t),t 2 Rn, be a homogeneous centered Gaussian �eld with the covari-

ance function r
�
H(t) = exp (�(1� 2")jjDt0tjj�). From Theorem 4 we have,

P

(
sup
t2S

~X(~t) > u

)
� P

(
sup
t2S

X
�
H(~t) + ~m(~t) > u

)
: (60)

Proceeding the above estimations for the latter probability, we get,

P

(
sup
t2��

X
�
H(~t) + ~m(~t > u

)
= (1� 2")ke�V (Dt0M)H(k)

� u
2k

�
� k

2	(u�m(t0))(1 + o(1)); (61)

as u!1.

Now we collect (25), (27), (59), (60) and (61), and get

(1� 2")k � lim inf
u!1

P fsupt2MX(t) > ug
e�V (Dt0M)H

(k)
� u

2k

�
� k

2	(u�m(t0))

� lim sup
u!1

P fsupt2MX(t) > ug
e�V (Dt0M)H

(k)
� u

2k

�
� k

2	(u�m(t0))
� (1 + 2")k: (62)

It follows from this the assertion of Theorem. 2

Proof of Theorem 6. Let ~X(~t) be the �eld as it is de�ned in the proof of

Theorem 5. Using Tailor expansion, we get

~X(~t) = X(t) = X(t0) + (gradX(t0))
>(t� t0) + o(jjt� t0jj); t! t0: (63)

From here it follows that

~X(~t)� ~X(~t0) = ( ggradX(t0))
>(~t� ~t0) + o(jj~t� ~t0jj); ~t! ~t0; (64)

where ggrad is the orthogonal projection of the gradient of the �eld X onto the tangent

subspace Tt0 to the M at the point t0. From (64) by algebraic calculations it follows

that

~r(~t� ~t0) = 1� 1

2
(~t� ~t0)

>
At0(~t� ~t0) + o(jj~t� ~t0jj); ~t! ~t0; (65)

where At0 is the covariance matrix of the vector ggradX(t0). Note that the matrixq
At0=2 is just the matrix Dt0 from Theorem 5. Now the proof repeats up to all details

the proof of Theorem 5. 2
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