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Abstract

We establish the Hajek - Le Cam asymptotic e�ciency of maximum

likelihood estimators for "polynomially ergodic" Markov regular experi-

ments in the class of loss functions with a polynomial growth.
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1 Introduction

Parameter estimation of random processes is a classical problem which remains to

attract an attention. Various settings of this problem were investigated in details

by many authors for independent experiments, Markov processes, semimartin-

gales, di�usion processes. In particular, the local asymptotical normality (LAN)

property (see Le Cam (1986)) which is crucial for the modern notion of asymp-

totic e�ciency was studied for Markov processes in Roussas (1972), Milhaud, Op-

penheim, Viano (1983), Hoepfner, Jacod, Ladelli (1990), and, in particular, for

certain di�usion processes in Ibragimov, Khas'minskij (1981), Kutoyants (1984),

(1994) et al. In Ibragimov, Khas'minskij (1981) the asymptotic e�ciency with

loss functions of polynomial growth was established under general assumptions.

There are examples how to check those conditions (see Ibragimov, Khas'minskij

(1984)) but in Markov case usual conditions are rather restrictive, they imply,

as a rule, the exponential bounds and hence give much more than needed for

polynomial loss functions.

The aim of this paper is to give weak su�cient condition for the asymptotic

e�ciency of the MLE for loss functions with a polynomial growth for a wide

class of Markov processes which we call \polynomially ergodic". The \technical"

de�nition of this class (see section 3 below) can be checked, however, for rather

natural examples (see Proposition 1 below) using the inequalities for mixing and

convergence rate for Markov processes from Veretennikov (1997), (1998). The

advantage of the use of this class is that it provides the e�ciency indeed for

polynomial loss functions and not more, e.g. not exponential. For the latter one

can, in fact, consider "exponentially ergodic" classes analogously.

1



Here we formulate one example for which our general theorem 2 below works:

� 2 (�1;+1),

Xn+1 = Xn � (2 + �) signXn(1 + jXnj)�1 log(1 + jXnj) +Wn+1;

fWng � N (0; 1); i.i.d.

2 Setting of the problem

One observes a Markov process Xn 2 R1; n � 0 which depends on a parameter

� 2 (a; b) � R1 via its transition density f�(x; y) w.r.t. the Lebesgue measure

(for simplicity).

We assume that the process Xn is ergodic under any � with certain mixing

and convergence bounds uniformly in �. Those bounds will be �xed a bit later.

Assume that f is continuously di�erentiable in � in some neighbourhood of

(a; b) and so that the standard di�erentiation is possible under the integrals while

deriving the Cram�er-Rao inequality.

The goal is to establish the asymptotic e�ciency of the maximum likelihood

estimator (MLE) for loss functions with a polynomial growth.

The class of ergodic Markov processes with "polynomial" ergodicity is exposed

in section 3. A remark 2 in section 4 is devoted to the Cram�er-Rao inequality

for our experiments. Remark 4 in section 5 concerns the uniform asymptotic

normality property. In section 6 we prove the consistency and asymptotic e�-

ciency of the MLE in the H�ajek - Le Cam sense. The method of Ibragimov and

Khas'minskij is used. Also we use some elementary facts from the martingale

theory.

To formulate our main result about the e�ciency of the MLE we need to

introduce our polynomial ergodic classes, make some useful remarks and remind

some facts and de�nitions from Ibragimov, Khas'minskij (1981). Because of this

the rigorous statement of this result is in the last section. A non-rigorous formu-

lation is as follows:

an MLE is asymptotically e�cient in the sense of Hajek - LeCam for loss func-

tions with a polynomial growth in the class of polynomially ergodic Markov process

(see section 3 below) under some additional regularity and growth assumptions on

transition densities and identi�cation type conditions.

3 Polynomial ergodicity

We assume that the initial data X0 = x0 is non-random. The changes in the

general case will be evident. Denote by Sm;m0;k (m;m
0; k > 0) the class of ergodic

Markov processes which satisfy the bounds

(i)

var(�x
n
� �) + �x

n
� C(1 + jxjm)(1 + n)�(k+1);
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(ii)

sup
t

ExjXtjm
0 � C(1 + jxjm);

(iii) Z
jxjm �(dx) <1:

(iv) For any interval Q = (�N;N) with N large enough there exist such con-

stants � = �(Q; k) > 0 and Ck = CQ;k < 1 for which

Px(�
Q

n
� ��1 n) � Ck(1 + jxjm)(1 + n)�k; n = 1; 2; : : : ;

where �Q0 = 0, �Qn+1 = inf(t � �Q
n
+ 1 : Xt 2 Q).

Here X0 = x, var(�x � �) is a distance in variance, � is a (unique) invariant

measure of the process X, �x is a complete regularity coe�cient

�x
t
= sup

s�0
E supB2F�t+s(P (BjF�s)� P (B));

and FD = �fXs : s 2 D � R1g.
Proposition 1 (Veretennikov (1998)) Let process X satisfy the recurrent

equation

Xn+1 = f(Xn) +Wn+1; (Wn) i.i.d.;

under conditions

EW0 = 0; EjW0jm0 <1; m0 > 4;

f is locally bounded,

(jf(x)j=jxj � 1)jxj2 ! �1; jxj ! 1;

and the "process on Q" (i.e. the process in the successive times of hitting the

set Q) satis�es the Doeblin type condition for any N large enough, namely, there

exists such n0 > 0 that

(D`) inf
x;x02Q

Z
min

(
PQ(n0; x; dy)

PQ(n0; x0; dy)
; 1

)
PQ(n0; x

0; dy) > 0;

where P (dy)=P 0(dy) means the derivative of the absolute continuous part of one

measure w.r.t. another and PQ denotes the transition probability of the "process

on Q" for n0 steps. Then X 2 Sm;m0;k for any

2 < m0 < m� 2 � m0 � 2; 0 < k < (m0 � 2)=2: (1)

Moreover, one can choose � which does not depend on k and C which does not

depend on Q!!?

If additionally m0 = 1 then X 2 S :=
TfSm;m0;k : (m;m0; k) satisfy

condition (1) with m0 =1g.
In particular, the example in the introduction satis�es all conditions of propo-

sition 1 uniformly in � 2 (�1; 1). It is su�cient (but not necessary) for condition
(D`) that the density of Wn is positive everywhere.

In the sequel we will use the assumption X 2 S rather than X 2 Sm0;m;k with

some m0; m; k for simplicity.
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4 Remarks

Denote

L�;n =
nX
i=1

log
f�(Xi�1; Xi)

f�0(Xi�1; Xi)
�

nX
i=1

h�(Xi�1; Xi):

Let gn(�) = E��n for any estimator �n.

Remark 1 (Cram�er-Rao inequality)

D��n �
(g0

n
(�))2

E�(L
0
�;n
)2
:

The proof is standard and we omit it. The denominator in the r.h.s. is a Fisher

information. It may be important to know its asymptotics.

Remark 2 (Fisher information asymptotics) Let (Xn) 2 S and let there

exist such m � 0 that

jh0
�
(x; x0)j � C(1 + jxjm=2 + jx0jm=2): (2)

Then

n�1E�(L
0
�;n
)2 ! �2

�
:= Einv

�
(h0

�
(X0; X1))

2 (3)

uniformly in � 2 �.

Indeed, we have

n�1E�(L
0
�;n
)2 = (1=n)

P
n

i=1E�(h
0
�
(Xi�1; Xi))

2

+(2=n)
P

1�i<j�nE�h
0
�
(Xi�1; Xi)h

0
�
(Xj�1; Xj):

Let us omit the parameter � for the moment. All bounds will be uniform. We

estimate

jE(h0(Xi�1; Xi))
2 � Einv(h0(Xi�1; Xi))

2j

= j R (h0
�
(x; x0))2(�x0i�1 � �)(dx)f(x; x0)dxj

� C
R
(1 + jxjm + jx0jm)j�x0i�1 � �j(dx)f(x; x0)dx

� C
R
(1 + jxjm)j�x0i�1 � �j(dx) � C(1 + jx0jm)(1 + i)�(k+1):

So,

j(1=n)Pn

i=1E�(h
0
�
(Xi�1; Xi))

2 � Einv

�
(h0

�
(X0; X1))

2j

� C(1 + jx0jm=2)n�1
P

i�0(1 + i)�(k+1) ! 0:
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>From our assumptions the equalities follow for any i 6= 0:

E�h
0
�
(X0; X1)h

0
�
(Xi; Xi+1) = 0: (4)

This shows remark 2.

Of course, �2
�
� 0. But we can and will assume that

0 < C�1 < �2
�
< C <1; for some C > 0 (5)

for any �. It is reasonable because of the formula (3) and because �2
�
is continuous

in �. Indeed, it is easy to show that the invariant density is continuous in � and

so is �2
�
.

Further, following Borovkov (1988), xx16, 20, one can consider the class of

asymptotically unbiased estimators ~K0, i.e. such estimators �n that for any �

gn(�)� � = o(1=
p
n) and g0

n
(�)� 1 = o(1); n!1:

Remarks 1 and 2 imply the following fact.

Remark 3 (limiting Cram�er-Rao inequality) In the class ~K0 under condi-

tions of remark 2

lim inf
n!1

nD��n � �2
�
: (6)

In the other words, �2
�
is a limiting normalized Fisher information for our marko-

vian experiment with a normalizing coe�cient 1=n. In particular, it follows from

theorem 2 below that the MLE belongs to this class and is asymptotically e�ec-

tive there. However, our main interest is, as we told, the e�ciency in the sense

of Hajek - LeCam.

5 Asymptotic normality

LAN was established in Roussas (1972), Ogata, Inagaki (1977), Milhaud, Op-

penheim, Viano (1983), Hoepfner, Jacod, Ladelli (1990) et al. under various

ergodocity and stationarity assumptions. Notice that a uniform positive recur-

rence condition is satis�ed for our class S. We will show a uniform asymptotic

normality (see Ibragimov, Khas'minskij (1981)) which is needed in the next sec-

tion.

Consider the likelihood function

Z�;n(u) =
nY

k=1

f�+u=
p
n

f�
(Xk�1; Xk):

Let us also de�ne

Z�;`;n(u) =
nY
k=`

f�+u=
p
n

f�
(Xk�1; Xk):
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For the sake of simplicity we suppose that all denominators in this expression

are positive. It is well-known how one can relax this assumption (cf. Ibragimov,

Khas'minskij (1981)).

The experiment satis�es the uniform asymptotic normality property if (cf.

Ibragimov, Khas'minskij (1981), de�nition 2.2.2, we gives an equivalent form

using the continuity of �2
�
in �) the log of the likelihood function can be represented

in the form

logZ�;n(u) = u��;n � u2�2
�
=2 +  n(u; �);

where

��;n

P�
=) N(0; �2

�
);  n(u; �)

P�! 0; n!1;

and, moreover, for any compact K � �, any u, any � 2 K and any sequences

�m 2 K, um ! u, �m ! �, nm !1, �m + um=
p
nm 2 K also

logZ�m;nm(um) = u�nm;�m � u2�2
�
=2 +  nm(um; �m);

where

��m;nm

P�m=) N(0; �2
�
);  nm(um; �m)

P�m! 0; m!1; (7)

Remark 4 Let assumptions of remark 2 be satis�ed. Then

n�1=2L0
�;n

=) N(0; �2
�
)

uniformly in � 2 �, i.e.

��m;nm

P�m
=) N(0; �2

�
); m!1

with notations as in the de�nition above.

Indeed, �rst of all, because of the convergence in variation it su�ces to es-

tablish the desired property in the stationary regime of X. For this one can use

theorem 18.5.3 from [5]. Remind that theorem (an equivalent form):

Let a stationary sequence �n satisfy the strong mixing property with a coe�cient

�(n), there exists � > 0

Ej�nj2+� <1; and
X
n

(�(n))�=(2+�) <1: (8)

Then �2
�
= E�20 + 2

P
j�1 cov(�0; �j) <1 and

n1=2
nX
j=1

�j =) N(0; �2
�
):

It is a straightforward consequence of the proof of this theorem (see Ibragimov,

Linnik (1971), ch. 18) that the uniform convergence (cf. (7)) holds if one assumes

the uniform convergence in both parts of (8).
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Let us check these assumptions. We use the inequality (cf. [5])

�(t) � �(t);

where �(t) = Einv�X0(t). Notice that conditions (i), (iii) in the description of the

ergodic classes imply the bound

�(t) � Ck(1 + t)�(k+1) (8k):

Then the existence of � > 0 follows from the condition m < m0 (= 1) while

�(n) decreases faster than any polynomial. So all assumptions of theorem 18.5.3

are satis�ed. Therefore, we get the desired uniform weak convergence since all

bounds are uniform w.r.t. �. The remark follows.

Proposition 2 (uniform asymptotic normality) Let assumptions of remark

2 be satis�ed. Then the experiment fX;P�g satis�es a uniform asymptotic nor-

mality property.

Proof follows from uniform bounds analogous to those in the proof of theorem

3.4.1 from Ibragimov, Khas'minskij (1981) or in other papers on the subject

without large changes. So we prefer to propose slightly di�erent way, which use,

essentially, also very close approximation idea.

It follows from Harris' representation formula for invariant measures (see be-

low, for the reference cf. Meyn and Tweedie (1993)) and the description of the

class S that we can smooth all distributions of our processes in the following way.

At each moment n we add to the value Xn an independent normal value �n with a

zero mean and a small variance, say, �. The observation is that such a perturbed

process will be still in the call S (in fact, it even does not depend on the value

of the variance of the perturbation). Hence, our new perturbed process will have

in�nitely smooth distributions. Now, if we prove any estimate which only con-

cerns �rst derivatives, it is very likely that then we can pass to a limit when the

variance of our perturbation tends to zero. Indeed, denote a perturbed process

by X� and perturbed likelihood function by Z�. Suppose we have an assertion

logZ�

�m;nm
(um) = u�nm;�m;� � u2�2

�;�
=2 +  nm(um; �m; �);

with

��m;nm;�

P�m;�

=) N(0; �2
�;�
);  nm(um; �m; �)

P�m;�! 0; m!1:

Then the desired result will follow if we show that �2
�;�
! �2

�
; � ! 0. But both

values are expectations w.r.t. invariant measures, so we should pass to the limit

under the integral. And this is exactly what Harris' representation allows to do.

Indeed, due to the properties of the class S we have (using evident new notations)

�2
�;�

=
R
(h0

�
(x; x0))2 ��;�

Q
(dx)f�(x; x

0) dx0

=
�
Einv;�

Q
�
��1

Einv;�

Q

P
�

i=1(h
0
�
(Xi; Xi+1))

2
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(Harris' representation where Q is some compact, � = inf k � 1 : Xk 2 Q and

Einv;�

Q
means the expectation w.r.t. the invariant measure ��;�

Q
of the process on

Q). For Q �xed, the invariant measures on Q depend weakly continuously on

� � 0 due to the (geometrical) convergence.

Now, choosing Q a bit larger or a bit smaller, we get the convergence of both

terms in the above formula to their limits as � ! 0 by virtue of the conditions

(H1) � (H4). Namely, if � > 0, Q = [�N;N ] and Q�

� = [�N � �;N � �] then

for � small enough one obtains

lim sup
�!0

E
inv;�

Q
�
+
� � lim inf

�!0
E
inv;�

Q
� � lim sup

�!0

E
inv;�

Q
� � lim sup

�!0

E
inv;�

Q
�
�
�

and analogous inequalities hold also for the numerators. The assertion �2
�;�
!

�2
�
; �! 0 follows from these inequalities after passing to the limit as � ! 0.

We demonstrate the use of this remark now. So, we assume for a while that

h has three derivatives in � which are polynomially bounded. We have,

logZ�;n(u) = log
Q
n

k=1[1 + h0
�
(Xk�1; Xk)u=

p
n

+h00
�
(Xk�1; Xk)u

2=(2n) + h000~�n;k
(Xk�1; Xk)u

3=(6n3=2)]

� P
1�k�n log[1 + �

(1)

k;n
+ �

(2)

k:n
+ �

(3)

k;n
]

with some ~�n;k = � + anu=
p
n, janj � 1.

Denote An = f! 2 
 : max1�k�n j�(i)k;nj � 1=4 i = 1; 2; 3g. Then P�(An) !
1; n!1. Indeed (cf. Ibragimov, Khas'minskij (1981), proof of theorem 2.1.1),

P�(max
k�n

n�1=2jh0
�
(Xk�1; Xk)j > 1=4) �

nP
k=0

P�(n
�1=2jh0

�
(Xk�1; Xk)j > 1=4)

�
nP

k=0

n�(1+�=2)4(2+�)E�jh0�(Xk�1; Xk)j2+� � C(X0)n
��=2 ! 0; n!1:

Other parts with �(2) and �(3) are estimated even simpler.

One has on An,

logZ�;n(u) =
nP

k=0

(
[h0

�
(Xk�1; Xk)u=

p
n

+h00
�
(Xk�1; Xk)u

2=(2n) + h000~�n;k
(Xk�1; Xk)u

3=(6n3=2)]

�(1=2)
�
h0
�
(Xk�1; Xk)u=

p
n
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+h00
�
(Xk�1; Xk)u

2=(2n) + h000~�n;k
(Xk�1; Xk)u

3=(6n3=2)

�2

+(1=3)a

�
h0
�
(Xk�1; Xk)u=

p
n

+h00
�
(Xk�1; Xk)u

2=(2n) + h000~�n;k
(Xk�1; Xk)u

3=(6n3=2)

�3)

Now, we get

n�1=2u
nX

k=0

h0
�
(Xk�1; Xk) =) uN(0; �2

�
); (9)

n�1
nX

k=0

h00
�
(Xk�1; Xk)

P�! Einvh00
�
(X0; x1) = 0;

E�n
�3=2

nX
k=0

jh000~�n(Xk�1;Xk
)j � n�1=2C(1 + jX0jm)! 0; n!1;

�(1=2)n�1
nX

k=0

jh0
�
(Xk�1; Xk)j2 P�! ��2

�
=2:

Other terms tend to zero at least with the rate n�1=2. Moreover, we already

know (see remark 4) that the weak convergence in (9) is uniform and it is easy

to see that all other limits are also uniform in �. Thus, the uniform asymptotic

normality holds under additional assumption about three derivatives. Due to the

remark above, this assumption is not a restriction, hence, proposition 2 is proved.

Fix some �0 2 �. We call a one step Fisher information the function

I1(�; x) = E�0

 
f 0
�
(x;X1)

f 0
�0
(x;X1)

!2

:

We assume that I1(�; x) is continuous in �.

Theorem 1 (on polynomial bounds) Let conditions of Proposition 2 be sat-

is�ed as well as additional identi�cability assumptions

(�1) 8Q = (�N;N), K � �, K compact,

0 < inf
�2K;x2Q

I1(�; x) � sup
�2K;x2Q

I1(�; x) <1;

(�2) 8Q = (�N;N), 8K � �, K compact and for any � > 0,

inf
x12Q

inf
�2K

inf
h: �+h2�; jhj��

Z
(f

1=2

�+h(x1; x2)� f
1=2

�
(x1; x2))

2 dx2 > 0:

Then for any k = 1; 2; : : : and n = 1; 2; : : :

E�Z
1=2

�;n
(u) � exp(�cu2) + Ck(1 + n)�k:

9



Comment. Because of our example in the introduction, it is not natural, in fact,

to require uniform inequalities in conditions (�1;2) w.r.t. x 2 R1. This is the

reason why there is no exponential inequalities similar to those in the i.i.d. case

(cf. Ibragimov, Khas'minskij (1981), proof of theorem 3.3.2). Roughly speaking,

the idea is the following. Due to polynomial ergodicity, our process X visits any

compact Q often enough (occupation time � �n as n ! 1) with a probability

close to 1 (namely, this probability � 1 � Ck(1 + n)�k for any k). When X

belongs to Q, we get exponential inequalities. But the probability (X 62 Q) has

no exponential bound, in general, only polynomial ones.

Proof. First of all notice that assumptions (�1) and (�2) imply the inequality

inf
�2K

inf
x2Q

inf
h: �+h2�; jhj��

Z
jf 1=2
�+h(x; x

0)� f
1=2

�
(x; x0)j2 dx0 � c�2(1 + �2)�1

(see Ibragimov, Khas'minskij (1981), proof of theorem 3.3.2) which in turn implies

sup
�

E�Z
1=2

�;1 (u=
p
n) � exp(�cu2n�1) (10)

on the set fx 2 Qg (see Ibragimov, Khas'minskij (1981), lemma 1.5.3).

Consider the stopping times f�t; t = 1; 2; : : :g:

�1 = inf(s = 0; 1; : : : : Xs 2 Q); �t+1 = inf(s = �t + 1; �t + 2; : : : : Xs 2 Q):

Choose k and Q = Q(k) s.t. �Einv�1 < 1. It follows from assumption (iv) that

P (�[�n] � n) � Ck

(1 + n)k
; 8n

because we can include the (�xed) initial data X0 in Ck. Now let us estimate

E�Z
1=2

�;n
(u) = E�Z

1=2

�;n
(u)1(�[�n] � n) + E�Z

1=2

�;n
(u)1(�[�n] < n):

We have,

E�Z
1=2

�;n
(u)1(�[�n] � n) � (EZ�;n(u))

1=2(P (�[�n] � n))1=2 �
 

Ck

(1 + n)k

!1=2

:

Further, since Z
1=2

�;n
is a P�-supermartingale with Z�;0 = 1 then

1(�[�n] < n)E�

�
Z

1=2

�;�[�n]+1;n j F�[�n]
�
� 1(�[�n] < n);

due to the optional theorem for supermartingales. Hence, the second term can

be estimated as

E�Z
1=2

�;n
(u)1(�[�n] < n) � E�Z

1=2

�;�[�n]
(u):

Let us show that

E�

�
Z

1=2

�;�k�1+1;�k
(u) j F�k�1

�
� exp(�cu2n�1); 1 � k � n:

10



We get,

E�

�
Z

1=2

�;�k�1+1;�k�1+2(u) j F�k�1

�
� exp(�cu2n�1)

because of (10). Also (assume Z�;k;m = 1 if k > m),

E�

�
Z

1=2

�;�k�1+2;�k
(u)
�
(1(�k�1 + 1 = �k) + 1(�k�1 + 1 < �k))

= 1(�k�1 + 1 = �k) + (1(�k�1 + 1 < �k)E�

�
Z

1=2

�;�k�1+2;�k
j F�k�1+1

�
� 1:

So,

E
�
Z

1=2

�;�k�1+1;�k
j F�k�1

�
� exp(�cu2n�1):

By induction we obtain

E
�
Z

1=2

�;0;�[�n]
j F�k�1

�
� exp(�cu2[�n]=n) � exp(�cu2); n > 1

(with another c). This proves the theorem.

6 MLE e�ciency

The MLE �̂n is de�ned by the formula

L�;n ! max
[a;b]

:

Notice that if there is more than one point in the set argmax[a;b] then still it is

possible to choose �̂n as a random value, due to the measurable choice theorem.

The statements below concern any such a choice.

Theorem 2 (MLE asymptotic e�ciency) Under conditions of theorem 1 we

have,

(1) the MLE is consistent a.s. uniformly in � 2 K;

(2) the MLE is asymptotically normal:

p
n(�̂n � �)

P�
=) N(0; �2

�
);

(3) all moments of n1=2(�̂n � �) tend to the ones of N(0; �2
�
);

(4) the MLE asymptotically e�cient in the Hajek - Le Cam sense, i.e.

lim
n!1

[inf
�n

sup
u2U

Euw(
p
n(�n � �))� sup

u

Euw(
p
n(�̂n � �))] = 0:

for any loss function from the classWp (see Ibragimov, Khas'minskij (1981),

section 1.2).

11



Remark 5 (MLE consistency) X 2 S and (�). Then

�̂n ! � P� � a.s.

This is a statement from the previous theorem. However, its proof may be derived

also by standard scheme (cf. Ibragimov, Khas'minskij (1981), theorem 1.4.3

and remark 1.4.1) with the series of polynomially decreasing members instead of

exponents, due to theorem 1.

Comment. Under the assumptions of the theorem 2 we have P�-a.s. for large n

n�1L0
�;n

= 0 (11)

(see Ibragimov, Khas'minskij (1981)). Indeed, the MLE is consistent a.s.

Remark 6 (MLE asymptotic e�ciency \in Cram�er-Rao sense") Under

assumptions of theorem 2, �̂n 2 ~K0 and the asymptotic covariance of the MLE is

equivalent to n�1�2
�
.

Indeed, the standard Dugues scheme works well (cf. [2]).

Proof of theorem 2. All assertions follow from theorems 3.1.1. and 3.1.3 from

Ibragimov, Khas'minskij (1981). To show this, we should check basic assumptions

of those theorems which consist of four conditions, (H1) - (H4). We remind them

for the reader's convenience, in a slightly simpli�ed form adjusted to our case.

Namely, we omit (H2) which is trivial for our normalizing coe�cient n1=2 which

does not depend on �.

(H1) For any compact K � �, the experiment satis�es the uniform asymptotic

normality property.

(H3) For any compact K � � there exist such � > 0; m > 0; B > 0; a > 0 that

sup
�2K

sup
u;v2(���)

p
n

ju� vj��E�jZ1=m

�;n
(u)� Z

1=m

�;n
(v)jm < B(1 +Ra):

(H4) For any compact K � � and any N > 0 there exists such n0 that

sup
�2K

sup
n>n0

sup
u2(���)

p
n

jujNE�Z
1=2

�;n
(u) <1:

Now, proposition 2 gives us (H1). Condition (H4) it follows from theorem 1.

Indeed, juj � C
p
n with some C > 0. Hence, we get from the assertion of this

theorem that

E�Z
1=2

�;n
(u) � exp(�cu2) + C 0

k
(1 + u2)�n; 8k = 1; 2; : : :

So it remains to check (H3). For this aim we will use lemma 3.3.1 from Ibragimov,

Khas'minskij (1981) which says that a su�cient condition for (H3) with � = m =

2 is (in one-dimensional case)

sup
�2K

sup
juj<R; �+u2�

In(� + u)I�1
n
(�) � B(1 +Ra):

12



We get due to inequality (3) and condition (5) that

lim
n!1

In(� + u)=In(�) � C

(In(�) := E�(L
0
�;n
)2). Hence, assumption of lemma 3.1.1 from Ibragimov,

Khas'minskij (1981) is satis�ed which gives one (H3) with � = m = 2. The-

orem 2 now follows from theorems 3.1.1 and 3.1.3 from Ibragimov, Khas'minskij

(1981).

Acknowledgements.

The author is grateful to V.E.Bening, D.M.Chibisov, A.A.Gushchin,

Yu.Kutoyants for very useful discussions.

References

[1] A.A.Borovkov (1988) Mathematical statistics. Parameter Estimation. Sup-

plementary chapters. Moscow, Mir.

[2] D.Dugu�e (1958) Statistique th�eorique et appliqu�ee, Paris, Masson et C-ie.

[3] R.Hoepfner, J.Jacod, L.Ladelli (1990) Local asymptotic normality and mixed

normality for Markov statistical models, PTRF, 86, 105-129.

[4] I.A.Ibragimov, R.Z.Khas'minskij (1981) Statistical estimation, asymptotic

theory. Berlin et al., Springer.

[5] I.A.Ibragimov, Yu.V.Linnik (1971) Independent and stationary sequences of

random variables. Groningen, The Netherlands, Wolters-Noordho�.

[6] Yu.A.Kutoyants (1984) Parameter estimation for stochastic processes.

Berlin, Heldermenn.

[7] Yu.Kutoyants (1994) Identi�cation of dynamical systems with small noise,

Dordrecht, Kluwer.

[8] L.LeCam (1986) Asymptotic methods in statistical decision theory. Berlin

et al., Springer.

[9] S.P.Meyn, R.Tweedie (1993) Markov chains and stochastic stability,

Springer, Berlin et al.

[10] X.Milhaud, G.Oppenheim, M.C.Viano (1983) Sur

la convergence du processus de vraisemblance en variables markoviennes,

Z.Wahrscheinlichkeitstheorie verw. Gebiete, 64, 49-65.

[11] Y.Ogata, N.Inagaki (1977) The weak-convergence of the likelihood ratio ran-

dom �elds for Markov observations, Ann. Inst. Statist. Math. 29 A, 165-187.

13



[12] G.Roussas (1972) Contiguity of probability measures, London, Cambridge

Univ. Press.

[13] A.Yu.Veretennikov (1997) On polynomial mixing bounds for stochastic dif-

ferential equations, Stoch. Processes Appl. 70, 115-127.

[14] A.Yu.Veretennikov (1998) On polynomial mixing and convergence rate for

stochastic di�erence and di�erential equations, preprint No. 393, WIAS

Berlin.

14


