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Abstract

We de�ne a metric theory of gravity with preferred Newtonian frame

(Xi(x); T (x)) by

L = LGR + �g���ijX
i
;�X

j
;� ��g��T;�T;�

It allows a condensed matter interpretation which generalizes LET to gravity.

The �-term in�uences the age of the universe. � > 0 allows to avoid big bang sin-

gularity and black hole horizon formation. This solves the horizon problem without

in�ation. An atomic hypothesis solves the ultraviolet problem by explicit regular-

ization. We give a prediction for cuto� length.

1 Introduction

The theory we propose here is a metric theory of gravity with a prede�ned Newtonian

background frame. Variables are the metric tensor �eld g��(x), matter �elds  m(x),
and the Galilean coordinates X i(x); T (x) of the preferred frame. Compared with GR,

the Lagrangian of the theory contains additional terms which depend on these preferred

coordinates:

L = R + �+ Lmatter(g��;  
m) + �g���ijX

i
;�X

j
;� � �g��T;�T;�

� and � are additional �cosmological constants� which have to be de�ned by observation,

�ij is a prede�ned Euclidean metric in the Newtonian background space. For the preferred

coordinates we obtain the harmonic condition:

�X
i = �T = 0

The additional terms in the Lagrangian compared with GR lead to additional terms in the

Einstein equations. This distinguishes the theory from attempts to combine unmodi�ed

Einstein equations with harmonic coordinates, as GR with harmonic gauge (cf. [6],[9]) or

theories where the preferred frame remains hidden (cf. [10], [12]).

The additional terms lead to observable e�ects. The prede�ned Newtonian frame explains

the �atness of the universe. A positive value of � increases the age of the universe. A

positive value of � avoids the big bang singularity and leads to time-symmetric solutions

with a big crash before the big bang. This solves the horizon problem of relativistic

cosmology without in�ation theory.

Similar to �Planck ether� concepts [8],[13] ultraviolet quantization problems are solved by

explicit, physical regularization related based on an �atomic hypothesis� for the condensed

matter interpretation. This hypothesis predicts a cuto� di�erent from Planck length,

which seems to increase together with the universe.
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2 Motivation

To motivate the Lagrange density, it is su�cient to motivate the harmonic equations

for X i
; T . This special requirement about coordinate dependence allows to justify the

Lagrangian of our theory in a similar way as the assumption of independence from X
i
; T

justi�es the Lagrangian of GR.

The theory allows a condensed matter interpretation, which explains these harmonic

equations as conservation laws for condensed matter. But we do not have to rely on

the condensed matter interpretation. We consider here a new axiom for quasi-classical

quantum gravity and EPR-realism as independent motivations for our theory. But there

is also a su�cient number of other problems of GR which disappear in our theory: local

energy and momentum density for the gravitational �eld, de�nition of vacuum state and

Fock space in semi-classical gravity, the problem of time and topological foam in quantum

gravity � all these problems are closely related with the non-existence of a Newtonian

framework in GR which is available in our theory.

2.1 Lagrange formalism

If we require the harmonic condition as the equation for the preferred coordinates, the

general form of the Lagrangian is a simple consequence.

Indeed, once we handle the preferred coordinates as independent �elds, we can require

covariance of the equations without restricting generality. Thus, we have to �nd a La-

grangian

L = L(g�� ;  
m
; X

i
; T )

for a covariant set of equation which contains the harmonic equations �X i = �T = 0.
The simplest way to obtain covariant equations is a covariant Lagrangian. The simplest

way to obtain the harmonic equations is to use standard scalar Lagrangians for X i
; T

and to assume that the remaining part does not depend on X i
; T . But that means that

the requirements for the remaining part are the same as the standard requirements for a

general-relativistic Lagrangian � thus, de-facto we have obtained our Lagrangian

L = LGR(g�� ;  ) + �g���ijX
i
;�X

j
;� � �g��T;�T;�

This is not a strong derivation � we have preferred the simplest possibilities instead of

considering the general case. But this seems justi�ed by Occam's razor, and is su�cient

to explain the Lagrangian. Thus, to explain the equations of our theory completely it is

su�cient to explain the harmonic equation for X i
; T .

2.2 Condensed Matter Interpretation

The theory allows a reformulation in terms of condensed matter theory. Instead of the

gravitational �eld g��, we introduce classical condensed matter variables � density �(x; t),
velocity vi(x; t), and stress tensor �ij(x; t) � by the following formulas:
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ĝ
00 = g

00
p
�g = � (1)

ĝ
i0 = g

i0
p
�g = �v

i (2)

ĝ
ij = g

ij
p
�g = �v

i
v
j � �

ij (3)

These condensed matter variables are Galilean covariant. If �(x; t) > 0 and �ij(x; t) is pos-
itive de�nite they de�ne a Lorentz metric. Moreover, the harmonic equation transforms

into classical conservation laws:

@t� + @i(�v
i) = 0 (4)

@t(�v
j) + @i(�v

i
v
j � �

ij) = 0 (5)

Note also the very natural expression for the additional terms of the Lagrangian:

L
p
�g = LGR

p
�g + �(�v2 � �

ii)� ��

Note that the conservation laws remain unchanged even if there are other �matter �elds�

 
m(x). That means, these �elds do not describe external matter, but inner steps of

freedom of the condensed matter itself. Thus, the condensed matter is described by

�; v
i
; �

ij and �inner steps of freedom�  m. That's why the momentum related with inner

steps of freedom is already taken into account.

In some sense, this interpretation of �matter �elds� in this condensed matter interpretation

uni�es gravity with usual matter �elds. More important is that it explains the harmonic

equations for X i
; T in the presence of matter �elds, and therefore the whole theory.

The non-gravity limit of the condensed matter interpretation is Lorentz ether theory.

Thus, this interpretation may be considered as a generalization of Lorentz ether theory

to gravity. This suggests to name this interpretation general ether theory.

2.3 Quantum gravity motivation

It is straightforward that the introduction of a Newtonian framework solves the most

serious conceptual problems of GR quantization: the problem of time [7], topological

foam, the information loss problem. The problems with local energy and momentum

density of the gravitational �eld and the uncertainty of the de�nition of Fock space and

vacuum state in semi-classical QFT, which are also connected with the absence of a

preferred frame in GR, may be mentioned too. But to introduce a Newtonian framework

to solve these problems is often criticized as an ad-hoc simpli�cation. That's why I prefer

to present a quantum gravity motivation of di�erent type, related with quasi-classical

quantum gravity (superpositions of semi-classical solutions).

If we consider superpositions of gravitational �elds g��(x), the classical notion of covari-

ance may be generalized in two ways: c-covariance denotes covariance if we use the same

di�eomorphism for all �elds, q-covariance allows di�erent di�eomorphisms for di�erent
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�elds [1]. The Einstein equations are q-covariant. Canonical GR quantization also de�nes

a q-covariant theory. Instead, our theory is c-covariant. To motivate our theory it would

be su�cient to motivate the existence of c-covariant objects.

For this purpose, let's consider the probability that a super-positional state jg1i + jg2i
of gravitational �elds switches into jg1i � jg2i because of gravitational interaction with a

test particle '. Let's consider non-relativistic quantum gravity � two-particle Schrödinger

theory with Newtonian potential, with particles g and '. Here gravitational interaction

transforms the initial state into the state jg1; '1i + jg2; '2i. We ignore the test particle

and compute the resulting one-particle state for g, which is in general a mixed state. The

transition probability jg1i + jg2i ! jg1i � jg2i is 1

2
(1 � h'1j'2i), thus, depends on the

scalar product h'1j'2i.

The natural generalization to semi-classical theory for '1=2(x) is the solution for the

test particle on the background g
1=2
�� (x) created by the particle g1=2. The scalar product

between these functions is only c-covariant, not q-covariant.

As a new axiom for quantum gravity we propose that this scalar product is well-de�ned

and observable. This axiom does not have the fault of being an ad-hoc simpli�cation

to avoid topological problems, but is a natural generalization of an observable of pre-

relativistic quantum gravity. Thus, it is su�ciently motivated. Moreover, it has some

beauty: it is a typical quantum observable with global character, it does not depend on

questionable assumptions about local measurements.

Once we accept scalar products, a preferred system of coordinates is a very natural object.

It is natural to assume that the scalar products de�ne an isomorphism between the related

L
2-spaces. Such an isomorphism allows to transfer the projective measure related with

position measurement on a simple �xed state (the �vacuum�) to other gravitational �elds,

thus, to de�ne common coordinates on all gravitational �elds, with a common topology

as a consequence.

Independent of the last argument, the axiom requires to reject canonical GR quantization

because of its q-covariance, while canonical quantization of our theory allows to make

c-covariant predictions for such scalar products.

2.4 Realistic motivation

As shown by the proof of Bell's inequality [3] and their experimental falsi�cation by Aspect

[2] there is a contradiction between Einstein causality and the EPR criterion of reality [5].

This is usually interpreted as an experimental falsi�cation of EPR-realism. But this is

incorrect � only if we accept Einstein causality as an axiom, Aspect's experiment falsi�es

EPR-realism.

We can as well turn the argument against Einstein causality. We simply use EPR-realism

and causality as axioms. With these axioms, Aspect's experiment falsi�es Einstein causal-

ity and allows to prove the existence of a preferred foliation. Moreover, the existence of

a preferred foliation allows to use Bohmian mechanics [4] instead of quantum theory.

The condensed matter interpretation of our theory de�nes such a preferred foliation.
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3 Predictions

For a metric theory of gravity with Einstein equations in the limit �;� ! 0 it is not

problematic to �t existing observation as well as GR �ts observation. Instead, it is a non-

trivial problem to distinguish the theory from GR by observation. Nonetheless, especially

if � > 0, this seems possible.

3.1 � as a dark matter candidate

Let's consider at �rst the homogeneous universe solutions of the theory. Because of the

Newtonian background frame, only a �at universe may be homogeneous. Thus, we make

the ansatz:

ds
2 = d�

2 � a
2(�)(dx2 + dy

2 + dz
2)

Note that in this ansatz the universe does not really expand, the observable expansion

is an e�ect of shrinking rulers. Below we nonetheless use standard relativistic language.

Using some matter with p = k" we obtain the equations (8�G = c = 1):

3( _a=a)2 = ��=a6 + 3�=a2 + �+ "

2(�a=a) + ( _a=a)2 = +�=a6 + �=a2 + �� k"

The in�uence of the �-term on the age of the universe is easy to understand. For � > 0
it behaves like homogeneously distributed dark matter with p = �(1=3)". It in�uences

the age of the universe. A similar in�uence on the age of the universe has a non-zero

curvature in GR cosmology. It seems not unreasonable to hope that a non-zero value for

� may be part of the solution of the dark matter problem.

3.2 � > 0 solves the horizon problem without in�ation

Instead, � in�uences the early universe, its in�uence on later universe may be ignored.

But, if we assume � > 0, the qualitative behaviour of the early universe changes in a

remarkable way. We obtain a lower bound a0 for a(�) de�ned by

�=a6
0
= 3�=a2

0
+ �+ "

The solution becomes symmetric in time, with a big crash followed by a big bang. For

example, if " = � = 0;� > 0;� > 0 we have the solution

a(�) = a0 cosh
1=3(

p
3��)
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Now, in such a time-symmetric universe the horizon is, if not in�nite, at least big enough

to solve the cosmological horizon problem (cf. [11]) without in�ation. Because the �atness

of the universe does not need explanation too, there is no necessity for in�ation theory.

This qualitative property remains valid for arbitrary small values � > 0. The evidence

for a hot state of the universe gives upper bounds for �.

3.3 � > 0 stops gravitational collapse before horizon formation

Now, cosmological observation gives upper limits for �;�. For computations in the solar

system, it is possible to use the �GR approximation� �;� ! 0. But for strong gravita-

tional �elds they may become important again. Let's describe how to detect the domain

of application of this GR approximation.

Let's assume we have a GR solution. First, we have to �nd the correct Galilean coordi-

nates. For this purpose we have to de�ne appropriate initial and boundary conditions for

these coordinates. They may be obtained from gluing with the global universe solution,

or from symmetry considerations. For example, for a spherically symmetric stable star

we use harmonic coordinates which make the solution spherically symmetric and stable:

ds
2 = (1�

mm
0

r
)(
r �m

r +m
dt

2 �
r +m

r �m
dr

2)� (r +m)2d
2

(the function m(r) with 0 < m < r;m
0
> 0 de�nes the mass inside the sphere in appro-

priate units). For a collapsing star, these coordinates may be used as initial values. Once

we have found the preferred Galilean coordinates, we have to prove if g�� remains small

enough. Else, the GR approximation becomes invalid.

For example, for the Schwarzschild solution this happens near the horizon. The ansatz

m(r) = (1��)r de�nes a stable solution for p = ":

ds
2 = �2

dt
2 � (2��)2(dr2 + r

2
d
2)

0 = ����2 + 3�(2��)�2 + �+ "

0 = +���2 + �(2��)�2 + �� "

Even if �;�;� � 0, for � � 1 we can ignore only the terms with �;�, but not the

�-term. We obtain a time-independent solution " = ���2
> 0 for the inner part of a

star, with time dilation ��1 =
p
"=�. Once no horizon exists, the old notion �frozen

star� seems more appropriate than �black hole�. Frozen stars remain visible, but highly

redshifted for small �.

If we interpret for example quasars as frozen stars, this leads to a relation between redshift

and mass: � �M .

3.4 The cuto� length in quantum gravity

Quantization of a condensed matter theory in a classical Newtonian framework is es-

sentially simpler compared with GR quantization. The preferred Newtonian framework
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avoids most conceptual problems (problem of time [7], topological foam, information loss

problem), allows to de�ne uniquely local energy and momentum density for the gravita-

tional �eld as well as the Fock space and vacuum state in semi-classical theory.

What remains are the ultraviolet problems. But they may be cured by explicit, physical

regularization if we accept an �atomic hypothesis� in our condensed matter interpretation.

Unlike in renormalized QFT, the relationship between bare and renormalized parameters

obtains a physical meaning.

Similar ideas are quite old and in some aspects commonly accepted among particle physi-

cists [8]. Usually it is expected that the critical cuto� length is of order of the Planck

length aP � 10�33
cm [8],[13]. But an atomic hypothesis for our condensed matter inter-

pretation predicts a di�erent cuto�: Once we interpret � as the number of �atoms� per

volume, we obtain the prediction

�(x)Vcutoff = cons:

Considering this prediction for the homogeneous universe, we �nd that the cuto� length

seems to expand together with the universe. More accurate, our rulers shrink compared

with the cuto� length.
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