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ABSTRACT. We consider a wave equation with point source terms:

—2 ( t)——2 (z,t) + A(t) EN §(z — ) 0<z<1,0<tLT
z,t) = T agd(z —z T
9t2 ) 9 2 ) k d k k) ) )

u(z,0) =0, u'(z,0)=0, 0<z<1

u(0,t) = u(1,t) =0, o<t T

where A € C'[0,7T] is a known function such that A(0) # 0, ay € R, §(- — x) is the
Dirac delta function at zg, 1 < k < N. We discuss the inverse problem of determining
point sources {N,a1,...,an,Z1,....,eN} or {z1,....,zN} from observation data u(n,t),
0 <t < T with given n € (0,1) and T > 0.

We prove uniqueness and stabilty in determining point sources in terms of the norm
in HI(O, T) of observations. The uniqueness result requires that 7 is an irrational number
and T > 1, and our stability result further needs a-priori (but reasonable) informa-
tions of unknown {z1,...,zn}. Moreover, we establish two schemes for reconstructing
{z1,....,zNx} which are stable against errors in L2?(0,T).

§1. Introduction.
In this paper, we discuss the following initial/boundary value problem for the wave
equation :

N
U (z,t) = Uge(z,t) + A(L) Zaké(x — Zk), 0<z<1,0<t<T
k=1

(1.1)

u(z,0) =0, u'(z,0)=0, 0<z<l1
u(0,t) = u(1,t) = 0, 0<t<T.
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Here we set u'(z,t) = 2%(z,t), u”(z,t) = %(m,t). Throughout this paper, A €

C'10,T] is known and we assume that ) satisfies

(1.2 A(0) £0,

ar € R, 1 <k <N, (- — z) is the Dirac delta function at zj, that is,
<6(-—zk),p >= ¢(z) for ¢ € C§°(0,1) = D(0,1).

Here and henceforth < -,- > denotes the duality pairing between D’(0,1) and D(0, 1),
the dual of D(0,1).

We denote the dual of the Sobolev space H}(0,1) by H~!(0,1), identifying the
dual of L?(0,1) with itself: H}(0,1) C L?(0,1) C H-1(0,1) (e.g. Lions and Magenes
[16]). Henceforth < -,- >y 1 g1 denotes the duality paring between H~1(0,1) and
H}(0,1). By the embedding theorem (e.g. Adams [1]) we have H3(0,1) C C[0,1] and
so 6(- — zx) € H=1(0,1). Therefore

(1.3) > ond(- — k) € H (0, 1).

We can define the weak solution to (1.1) by the transposition method (e.g. Komornik
[12], Lasiecka, Lions and Triggiani [13], Lions [15], Lions and Magenes [16]): We call
u = u(z,t) a weak solution to (1.1) if u € C([0,T]; L?(0,1))nC*([0,T]); H~1(0,1)) and
for any (vo,1) € Ha(0,1) x L?(0,1) we have

< = (-5 1), % (o, Y1) (5 1) > gz +(u(5 1), % (%o, 1) (1)) L2(0,1)
(1.4)

t N
+/ Alt) < Zak5(' — zk), ¥ (Yo, ¥1)(t) >g-1, g1 At =0, 0<t<T
0 k=1

where (g, %1) € C([0,T]; H}(0,1)) n C*([0,T]; L?(0, 1)) is the solution to

(2, t) = Yoz (z, ), 0<z<1l,0<t<T

(1.5) ¥ (z,0) = ¥o(z), ¢'(z,0)=11(z), 0<z<l1
¥(0,t) = ¢(1,t) =0, 0<t<T.

For the existence of a unique ¥ (o, 1), we can refer to [12], [16], for example. We set
P={N,ai,...,an,z1,..,znx} € N x (R\ {0}V x (0, 1)V.

Throughout this paper we assume that xi,...,zx in P are mutually distinct. It is
proved (e.g. [12], [13], [15]) that there actually exists a unique weak solution u to (1.1),
denoted by u = u(P)(z,t), and

(1.6) u(P) € C([0,T); L*(0,1)) nC*([0,T]; H~(0,1))
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and there exists a constant Cy = C1(T) > 0 such that

|1u(P)llc(o,11;2(0,1)) + 1w(P) | (qo,m1;2-1(0,1))
N

C1 | 2 ewdl- = )

k=

(1.7)

H=1(0,1)

forany N € N, ay € R, z, € (0,1), 1 < k < N. As is seen from Lemmata 3.1 and 3.2
in Section 3,

(1.8) u(P) € C; ([0, T}; Lz(0,1)) N Cx ([0, 1]; H; (0, T))
and especially,

(1.9) w(P)(n,+) € H'(0,T)

for an arbitrarily fixed n € (0, 1).

The purpose of this paper is to discuss the

Determination of point wave sources by pointwise observations. Let n € (0,1)

and T > 0 be given. Then we are required to determine
P={N,a,....,an,z1,...,zx} € Nx (R\ {0}V x (0, )V
from the pointwise observation
u(P)(n,t) 0<t<T.

More precisely, let us discuss the following three subjects for the inverse problem. Let
P={N,ai,...,an,z1,...,zx} € Nx(R\{0}" x(0,1)N and Q = {M, B4, ..., Bar, Y1, -, Yas}
e Nx (R\ {0p)™ x (0,1)™

(I) (Uniqueness)

Does u(P)(n,t) = u(Q)(n,t), 0 <t < T imply P = @, namely,

M:N, ak:ﬁk, Tl = Yk, ISkSN

after renumbering of {Bk, yx}1<k<n if necessary? We should determine conditions on

an observation point 1 and time length 7' > 0 guaranteeing the uniqueness.
(IT) (Stability)
We estimate

N N
(1.10) > ok = Bl + ) |z — il
k=1 k=1

by an appropriate norm of u(P)(n,-) — u(Q)(n, -) provided that n € (0,1) and 7" > 0
guarantee the uniqueness in (I).
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(ITT) (Regularization)
We establish reconstruction schemes which are stable against L2-errors of observation
data.

As is seen from Theorem 2, for estimating the quantity in (1.10), it is necessary
to take a stronger norm of observation errors than the norm of L?(0,7). For (III)
we discuss reconstruction schemes on the basis of regularization by truncated singular
value decomposition and regularization by discretization.

In the system (1.1), the N-point sources A(¢) Zszl d(z — x) with weights ag, 1 <
k < N, initiate the one dimensional vibration which is in the equilibrium at ¢ = 0.
This system is related, for example, to a model of earthquakes (e.g. Aki and Richards
[2]) although in such a model first of all we should consider a three dimensional Lamé
system.

The system (1.1) can be rewritten in a general form:

(2, t) = g (z,t) + M) f(z), 0<z<1,0<t<T
(1.17) u(z,0) =0, u'(z,0)=0, 0<z<l1
u(0,t) = u(1,t) =0, 0<t<T.

In this paper, f is assumed to be a linear combination of delta functions. On the other
hand, as far as f is an L2-function, similar inverse problems are discussed in Yamamoto
[21], and a detailed structure of the ill-posedness of the inverse problem is studied in
Yamamoto [23]. In Yamamoto [24], an inverse problem similar to [21], is considered in
the case where f is an L2-function and )\ depends also on z. For an inverse problem
for the Lamé equation, we can refer to Grasselli and Yamamoto [10].

The remainder of this paper is composed of six sections and an appendix. In Section
2 we state main results for the uniqueness and the stability. In Section 3, we give
preliminaries for the proof and in Sections 4 and 5 we prove the main results. In
Section 6, we treat a simplified determination problem where N = 1 and «; = 1, and
we prove a sharper result for the uniqueness and the stability. Finally in Section 7, we
discuss two kinds of regularization methods under decomposition of the problem into
a well-posed part and an ill-posed part.

Our technical keys in the uniqueness and stability are Duhamel’s principle which
reduces our inverse problem to the determination of initial values, a classical result by
Ingham [11] concerning the non-harmonic Fourier analysis and a result on Diophantine

approximation in number theory.

§2. Main results.

We state our main results on uniqueness and stability. Let us remember that u(P) is the
weak solution to (1.1) with P = {N, ay,...,an, T1,...,znx} € Nx (RV \ {0}V x (0, 1)¥V.
Theorem 1. (Uniqueness) Let P = {N, a1, ...,an,T1,...,zx}+ € N x (RY \ {0}V x
(0,1 and Q = {M, By,... By, 1, yar} € N x (R\ {O})™ x (0,1)M. Let

(2.1) n be an irrational number



DETERMINATION OF POINT SOURCES 5

and

(2.2) T>1.

Then

(2.3) u(P)(n,t) =u(@)(n,t), 0<t<T
implies

(2.4) P=Q,

namely,
M =N, Br=ak Yr=7k 1<k<N

after renumbering (B, yx), 1 < k < N if necessary.

For the uniqueness, the theorem requires that the observation time 7' is greater than
or equal to one, the travelling time for which the wave from one end x = 0 reaches
another end z = 1. In this sense, the condition (2.2) is physically understandable.

For the stability, we pose a strict condition:

(2.5) n is an irrational algebraic number.

Here n € (0, 1) is called an algebraic number if 7 is a root of an algebraic equation with
integer coefficients (e.g. Baker [3], [4]).
Moreover, for the statement of stability, we introduce a-priori informations for point

sources: We assume

In other words, we exclusively discuss the estimation of point source locations. We

number {z1,...,zx} and {y1,...,yn} as
(2.7) 1 < ... <2y, Y1 <...<YN-

As an a-priori assumption, we suppose that there is a small € > 0 such that

(28) Tiy1 — I; > 3e, 1<i1<N-1,
(2.9) |%—m<§, 1<i<N
and

(2.10) 2¢ < z1,zny < 1—2e

It is trivial that € < Wlﬂ and so we must assume that e is smaller if N is greater. The
a-priori assumption (2.9) means that {z1,...,zx} and
{y1, ..., yn} are not very far from each other.

Now we are ready to state our stability result
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Theorem 2. (Conditional stability)
Let us assume (2.2), (2.5), (2.6) - (2.10). Then we have

N

(2.11) lei—yi|<\/IIU( )(n,-) — u(@) (1, )& 0,1y

=1
where C = C(T, N, ay,...,an) > 0 is independent of zp,yx, 1 < k < N and e.

The constant in our estimate (2.11) is bigger if € is smaller. This means that the
estimate (2.11) becomes worse although our a-priori information (2.9) is improved.

This theorem asserts stability under a-priori informations (2.6) - (2.10), and such
stability is called conditional stability. In (2.11), the norm in the right hand side is finite
by (1.9). If we take other a-priori informations, then the resulting stability conclusion
may be changed.

It is well-known that the measure of algebraic numbers in (0, 1) is zero. Therefore the
assumption (2.5) is very restrictive in choosing an observation point. Thus we should
discuss the transcendental n € (0,1). However in the transcendental case, the rate of
stability is very sensitive to the choice, as the Diophantine approximation suggests (e.g.
Baker [3]), and the unified statement for the general transcendental 7 is very difficult
(e.g. Yamamoto [22]). In a special case of M = N = 1, we can obtain sharper results
for the uniqueness and the stabilty. Such a special case is discussed in Section 6.

§3. Preliminaries for the proof.

For the proofs of Theorems 1 and 2, in this section, we introduce operators and estab-
lish a representation formula of solutions by means of eigenfunctions and Duhamel’s
principle. Throughout this paper, all functions are assumed to be real-valued, and
L?(a,b) and H*(a,b), H§(a,b) are the usual L2-space and Sobolev spaces, respectively.
Identifying the dual of L?(a,b) with itself, we denote the dual of H§(a,b) by H*(a,b)
(e.g. Lions and Magenes [16]).

We define an operator A in L%(0,1) by

(3.1) (Au)(z) = —@(x), 0<z<l, D(A) = H*(0,1) N H}(0,1).

Then we can define the fractional power A for any a € R (e.g Pazy [17]). For a > 0,
it follows that A~% is bounded from L2(0, 1) to itself and it is known (e.g. Fujiwara [9],
Lions and Magenes [16]) that the completion of L?(0,1) by the norm [[A=%ul|12(o,1, is
H=22(0,1). Furthermore there exists a constant Cy > 0 such that

(3.2) Cy AT ullz2(0,1) < llullmz(0,1) < CallATullz2o,1),  w € Hg(0,1).

For P ={N,ai,...,an,z1,....,znx} € Nx (R\ {0} x (0,1)V, we set

(3.3) f(z) = Z ard(z — xx)
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for simplicity. Then we note
(3.4) feH10,1)
by (1.3). For the original system (1.1), we consider

w" (z,t) = wee(z, 1), 0<z<l,0<t<T
(3.5) w(z,0) =0, w'(z,0)= f(z), 0<z<l1
w(0,t) = w(1,t) =0, 0<t<T.
Then by the transposition method similar to (1.4), we see that there exists a unique

weak solution w = w(P) € C([0,T]; L3(2)) n C'([0,T]; H~1(0,1)) to (3.5) (e.g. Ko-
mornik [12]). More precisely, w = w(P) satisfies

- < wl('7t)7w('7t) >H—1,H6 +(w('7t)7wl('7t))L2(0,1)
(3.6) + < f,¢0 >u-1,m1=0, 0<t<T

for any solution ¢ = ¥ (¢, 1) to (1.5).
Moreover, for w(P),u(P) € C([0,T]; L*(0,1)) n C*([0,T]; H~'(0,1)) we can apply
Duhamel’s principle (e.g. Rauch [19]) in a weak form.

Lemma 3.1. Let
A e Co,T].

Then
(3.7) u(P)(z,t) = /t At — s)w(P)(z,s)ds, 0<z<1l,0<t<T.

In view of this lemma, it suffices to consider (3.5) in order to establish the represen-
tation formula of the solution u(P).
Henceforth we set

(3.8) dr(z) =+2sinkrz, O<z<1,keN.

Lemma 3.2. We have

(3.9) w(P)(x,t):Z% 3" jules) | () sin bt

where the series is convergent in C([0,T]; L2(0,1)) n C([0,1]; L2(0,T)).

Proof of Lemma 3.2. It is sufficient to prove the lemma in the case of f(z) =
d(x — z1). Let us denote the right-hand side of (3.9) by v = v(z,t). We can easily
see that v is convergent in C([0,T]; L?(0,1)) and that > v, ¢r(z1)¢Pr(z) cosknt is
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convergent in C([0,T]; H~1(0,1)). Therefore we have to verify that v satisfies (3.6) for
any v € H}(0,1) and v, € L?(0,1). In terms of an eigenfunction expansion, we have

¥(z,t) = (Yo, ¥1)(2,1)

- (Y1, ¢
Z %o, Pk) L2 (0,1) €08 kTt (z) + Z 1 erL O sin krter(z).
k=1

By means of (3.1), we have
1 1 1, k=
< Gk, 1t >p-1,m= (A7 20k, A2P1)12(0,1) = (P, P1)12(0,1) = { 0, k1

so that by direct substitution we obtain
< _vl(') t)) @b(, t) >H—1,H6 +(U(') t)) %b,(', t))Lz(O,l)

= — Z ok (1) (Yo, ¢k)L2(0,1)'

k=1
On the other hand, since

Z Yo, k) L20,)Pk (), 0<z <1
k=1

converges in H}(0,1), we obtain

oo

Yo(z1) = Z(l/)o, ®r)12(0,1)Pk(T1)

k=1
by the Sobolev embedding. Therefore we have

< _vl('7 t)7 ¢(7 t) >H—1,H6 +(U('7 t)7 ¢I('7 t))L2(0,1)
=—1to(z1) = — < f, %0 >g-1 m1,
which implies (3.6).
Finally we have to prove that the series in (3.9) is convergent in C([0, 1]; L2(0,T)). To
this end, we show Lemma 3.3 which is a direct consequence of a classical result by

Ingham [11].

Lemma 3.3.

(1) For any T > 0, there exists a constant Cs = C5(T) > 0 such that
2

T | o oo
(3.10) / Z agsinknt| dt < Cs Zai, ar € R
0 Jr=1 k=1
(2) Let
(3.11) T>1.

Then there ezists a constant Cy = C4(T) > 0 such that

00 T
(3.12) Y ap < 04/
0




DETERMINATION OF POINT SOURCES 9

Proof of Lemma 3.3. Setting

and
ag
V=T 2 1
by — a s .
S 2y/—1? =
we see o o
Z ar sin kmt = Z by exp (v —1Agt)
k=1 k=—o00,k#0
and
2 2

oo

/T i brexp(vV—1Agt)| dt = 2/T Z brexp(vV—1Agt)| dt.

T | k=—o0,k50 k=—00,k#0

Thus direct application of Theorems 1 and 2 in Ingham [11] leads to Lemma 3.3.

Henceforth we denote a generic constant depending on A and T by C5 = C5(T).
Now we return to the proof of Lemma 3.2. By (1) of Lemma 3.3, we see that for any
0<z<1

2

021;21 Z E¢k($1)¢k(x) sin kmt < Cs 0221 (Z k27r2¢k(371) or () )
== k= L2(0,T) =777 \k=n
<Cs Z k272 —0
k=n

as m,n — 0o. Thus the proof of Lemma 3.2 is complete.
By applying Lemma 3.2 in Lemma 3.1, we see that for any n € (0,1),

(3.13) u(f)(n,t) = /0 At —s)w(f)(n,s)ds, 0<t<T.

Therefore by taking ¢-derivatives of both the sides of (3.13), we obtain

u(f)'(n,t) = A(0)w(f)(n,1) +/0 XN(t—s)w(f)(n,s)ds, 0<t<T.

Since A(0) # 0, this is a Volterra integral equation of the second kind, and we can

uniquely solve it. Moreover,

Cs Hw(f)(, Mzzo,ry < llulf) () o,m)
(3.14) <Csllw(f)(n,)llz>0,1)

holds for any f = Zjvzl a;0(- — ;). Thus for our inverse problem, it is sufficient to
consider the following
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Reduced Inverse Problem.
Let w(P) = w(P)(z,t) be the weak solution to

w" (z,t) = wee(z, 1), 0<z<l,0<t<T
N
(3.15) w(z,0) =0, w'(z,0)=) oxd(z—z), 0<z<l
k=1

w(0,t) = w(1,t) =0, 0<t<T
where P = {N, ay,...,an, z1,...,zn}. Let n € (0,1) be given, and let
P={N,a, ., an,T1,-zn} € Nx (R\ {0})V x (0,1)" and

Q={M,B1,....00m Y1, ym} € Nx (R\ {0})M x (0,1)M.
(I) (Uniqueness)

Does

(3.16) w(P)(n,t) =w(Q)(n,t), 0<t<T
imply

(3.17) P=qQ,

namely,

(3.18) M=N, ar=0k Te=yYr, 1<k<N?

(IT) (Stability)

Can we estimate

N N
(3.19) > o — Bl + > Iz — vl

k=1 k=1
by an appropriate norm of w(P)(n, ) — w(Q)(n,-)?

§4. Proof of Theorem 1.
Let n € (0,1) be irrational and let 7' > 1. We assume

(4.1) w(P)(n,t) = w(Q)(n,t), 0<t<T.

Then by Lemma 3.2, we obtain

=1
— < J, > -1 fl in knt = 0,
; o <0k >p-1 g d(n) sinkm

where f = Zjvzl a;0(-—xj) — Zj\il Bjé(- — z;). By T > 1, Lemma 3.3 (2) implies
< fiok >g-1m dk(m) =0, keN
Since 7 is irrational, ¢(n) = v/2sinknn # 0, k € N, so that
(4.2) < f 0k >g-1,m=0, k e N.
Since Span {¢x }x>1 is dense in H{ (0, 1), the equation (4.2) yields
< f,v >p-1,m1=0
for any v € H}(0,1), namely, f =0 in H1(0,1). Therefore (4.1) implies P = Q.
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§5. Proof of Theorem 2.
In this section, for the proof, setting

N N
(5.1) f:Zaké(-—xk)—Zaké(-—yk) c H(0,1),
k=1 k=1
we consider
w"(z,t) = wee(z,t), 0<zr<1,0<t<T
(5.2) w(z,0) =0, w'(z,0)= f(x), 0<z<l1

w(0,t) = w(1,t) =0, 0<t<T

for f € H71(0,1). Then

Lemma 5.1. Let us assume (2.1) and (2.2). Then there exists a constant Cg =
Cs(T) > 0 such that

(5.3) 1f1lE-2(0,1) < Cellw(f) ()l z2(0,1)-

Proof of Lemma 5.1. Since f € H~1(0,1), there exists a unique F € H}(0,1) such
that

(5.4) AF = .

We recall that A is defined by (3.1). We set
t
W(F)(z,t) = / w(f)(z,8)ds + F(z), 0<z<1,0<t<T.
0

Since A : L%(0,1) — H~2%(0,1) is an isomorphism, we can take a constant C7 > 0
independent of f such that

1f1lz-2(0,1) < CrllA™" fllL2(0,1) = C7l|Fll L2 (0,1)-

Therefore it is sufficient to prove that

(5.5) 1 £2(0,1) < Col[W (£) () £2(0,7)-

On the other hand, by the definition (3.6) of the weak solution, we can directly see that
W (F) is the weak solution to

W (x,t) = Wae(z,t), 0<zr<1,0<t<T
(5.6) W(z,0) = F(z), W'(z,0) =0, 0<z<1
wW(0,t) =W(1,t) =0, 0<t<T.
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Moreover by the eigenfunction expansion, we obtain
(5.7) W(F) (n,t) = —kn(F, ¢x)r2(0,1) 0k (n) sin krt
k=1

where the series is convergent in L2(0,7). In fact, since F € H}(0,1), we have
km(F, ¢x)r2(0,1) = (F',v/2cos kTx)r2(0,1), ¥ € N, by integration by parts. Since
{V/2cos kmz}ren is an orthonormal system and F’ € L?(0, 1), we obtain

Zkz (F, ¢k L2(0,1) < ||FI||L2(0 1)

By applying Lemma 3.3 (1) and using this inequality and |¢x(n)| < V2 for k € N, we
see that the series in (5.7) is convergent in L?(0,1).
Let us complete the proof of Lemma 5.1. By Lemma 3.3 (2) and (5.7), we obtain

(5.8) Y (F 6520, (ki (n)® < CollW (F) (n,)II32 0,7
k=1

On the other hand, by (2.5), Roth’s theorem of Diophantine approximation (e.g. Baker
[3], [4]) applies to obtain

Cs
k’

with a constant Cg independent of ¥ € N. Here and henceforth ||kn|| denotes the

(5.9) lknl > =2, keN

distance between kn and the nearest integer. Furthermore, for any k£ € N, there exists
m € N such that kn = m + ||kn|| or kn = m — ||kn||, so that

|sin krn| = |sinw(m + [[knl])| = | sinx|[kn]]].

Since 0 < 7||kn|| < % by the definition of ||kn]|, we obtain

namely,
| sin kmn| > 2||kn||.

Combining this with (5.9), we obtain a constant Cy > 0 independent of k, such that
: Co
(5.10) V2 sin k| > = ke
T

Substituting (5.10) into (5.8), we obtain

Z (F, ¢x)7 I2(0,1) < C7C, 2||VV( )’ (na')H%Z(O,T)a
k=1

implying the assertion of Lemma 5.1 by using the Parseval equality. Thus the proof of
Lemma 5.1 is complete.
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Proof of Theorem 2. By (3.14), it is sufficient to prove

|z — yal < (P)(n,-) —w(@)(™,)lL20,7)

\[Hw

(5.11) (£, )z (0,1)-

\[Hw

We use the notation (5.1). By the definition of || - [ z-2(0,1), we have

| < fu > H-2,H2 | < ||f||H—2(0,1)||M||Hg(0,1),

for u € H2(0,1), where < -, - >p -2 g2 denotes the duality pairing between H=2%(0,1)
and HZ2(0,1). Therefore, applying Lemma 5.1, we obtain

N

> an(p(er) — ulyw))

k=1

(5.12) < Cellull 2 0,1)llw () (05 )2 0,1, 1 € HG(0,1).

Thus for the proof of (5.11), we have to choose suitable y € H2(0, 1) such that % () >0
for z € (z; — §,2; + £). To this end, for 1 <7 < N, we choose p; € Hj(0,1) such that

(x— (z; — €)% (xz — (z; +2€))? ifz; —e<z<z;+26
pi(z) = .
0 otherwise.

Then by direct computations, we can obtain : there exists a constant C1g > 0 indepen-
dent of € > 0 such that

. dpsi 3
. >
(5.13) %%Imlgm v: |z (z)| > Choe
and
5
(5.14) kil 20,1y < Crie2.

Let us fix 1 < i < N and let us substitute u = p; into (5.12). By (2.8) - (2.10), we see
that p;(z;) = pi(y;) =0, ¢ # 7, so that

i (i (@) = pi ()| < Cellill 3 0,0) 10 (F) (0, )l L2(0,1) -

Therefore by (2.9) and the mean value theorem, it follows from (5.13) and (5.14) that

—1
dpsi _
(z )D Q; 1||Mi||H§(0,1)||7~U(f)(77,')||L2(0,T)

|zi —yi| < C6< inf I

zi—g<z<z;+3

<CsCry'Criay e 3ed [w(f) (1, )lz2(0,1ys

which is (5.11). Thus the proof of Theorem 2 is complete.
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§6. Determination of a single point source.

In this section, we consider a simple case of N = 1 and «y = 1, that is,

u" (2, t) = uge(z,t) + A()d(z — z1), 0<z<1,0<t<T
(6.1) u(z,0) =0, u'(z,0)=0, 0<z<l1
u(0,t) = u(1,t) =0, 0<t<T

where z1 € (0,1) be an unknown source point. Let us denote the weak solution to (6.1)
by u(z1) = u(z1)(z,t). Then by Lemmata 3.2 and 3.3, we see

(6'2) U(%l)(', ) S Cl([o, T]; L2(07 1)) n C([O, 1]; Hl(o, T))

Our simplified inverse problem consists in the determination of z; € (0,1) from
u(z1)(n,t), 0 <t < T at a fixed observation point n € (0,1).

Theorem 3. (Uniqueness)

Let

(6.3) A(0) # 0

and

(6.4) T>1.

(1) If

(6.5) n# 50,1

then

(6.6) w(z)(mt) =u(y)(nt), 0<t<T

implies x1 = y1.
(2) Let n= 3. Then

u(a:l)(%,t) _ u(yl)(%,t), 0<t<T

if and only if

yp=x1 or yi=1—x.

Theorem 4. (Conditional stability)
Let us a-priori assume that

(6.7) lz1 +y1 — 1] > €
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for some € > 0 and let
1
-,0,1
n# 5

Then

C
(6.8) lz1 — 91| < m“u(xl)(n, ) —u(y1) (0, )z 0,1)
2

where C = C(T') > 0 is independent of €, n and x1, Y.

In Theorem 3, the choice of an observation point n = % cannot distinguish x;

from 1 — y;, but u(z1)(3,t) can be transformed to u(l — z1)(3,t) by a change of
independent variables x — 1 — z. Thus by taking the symmetry with respect to n = %
into consideration, the system with a point source at ; and the one with a point source
at 1 — x; naturally give the same observation data at the mid point n = %
In Theorem 4, the condition (6.7) is an a-priori information for the unknown z; and
y1. In particular, if we know that both z; and y; are in a half interval (0, 1) or (3,1),
then (6.7) is satisfied. If € — 0, then the estimate (6.8) becomes worse and is nonsense
when € = 0. In this sense Theorem 4 shows conditional stability. On the other hand,
the norm for data, the H'(0,T)-norm, is consistent with the regularity (6.2).

For the proof, we consider
w" (z,t) = wez(z, 1), 0<zr<1,0<t<T

(6.9) w(z,0) =0, w'(z,0)=4d(z—z1), 0<z<l1
w(0,t) = w(l,t) =0, 0<t<T

and we denote the weak solution to (6.9) by w(z1) = w(z1)(z, ).

Proof of Theorem 3. By (3.14) and Lemma 3.2, it is sufficient to prove that
w(z1)(n,t) = w(y)(n,t), 0 <t < T, namely,

(6.10) 3 ki V(@) — d(yr))sinkrt =0, 0<t<T
k=1

implies 1 = y;.
Since T' > 1, we can apply Lemma 3.3 (2) and so the equality (6.10) is equivalent to
sin k7n(sin kwxy — sin kwy;) = 0, namely,

km(z1 4+ y1) sin km(z1 —y1)
2 2

(6.11) sin k7n cos
By 0 < 7 < 1, the equality (6.11) with & = 1, implies

(6.12) cos W(J;l; v) sin 7r(ac12— v =0.
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First, let 1 +y; # 1. Then sinw = 0. By -1 < z; —y; < 1, this implies
L1 = Y1
Second, let 1 + y; = 1. Then equality (6.11) with &k = 2 is

sin 27 cos w(zy + y1) sinmw(zy — y1) = —sin 27y sinw(zy — y1) = 0.

Ifn # 3 10,1, then sinm(z; — y1) = 0, namely, £; — y; € Z. Since 0 < z1,y; < 1 and
z1+y1 = 1, we see that 1 — y; = 0. Thus the proof of (1) of the theorem is complete.

Now let us complete the proof of (2). Let n = % If 21 + y1 # 1, then from
w(z1)(3,t) = w(y1)(3,t), 0 < t < T, we easily obtain z; = y; by (6.12). Therefore
we see that w(z1)(3,t) = w(y1)(5,t), 0 <t < T implies y; = 1 — z; or y; = z1. The
converse in (2) is straightforward. Thus the proof of (2) is complete.

Proof of Theorem 4. By Lemma 3.2 and T' > 1 we can apply Lemma 3.3 (2) to

w(z:)(n,t) - )= - (én(er) — dep)onlm) sinkat, 0<t<T,
k=1
so that
%(%(9[51) $1(y1))?d1(n)* < Z kzlﬂz (dn (1) — Bk (y1)) P (n)?
k=1

<Cqyllw(z1)(n, ) — w(y1)(n, ')||L2(0,T)-

Therefore by n # %, 0,1, we have

|sin7z, — siny;| = 2 |cos 7“371; v) sin 7““2_ v)
<L ) ,) — w(o1) ) oy
By (6.7) we obtain ‘cos % > sin % and by 0 < z; —y; < 1, we have
sinM > gf|x1 .
2 T 2

Therefore in terms of (3.14), our conclusion is straightforward.

Remark. As is seen from the proof, we do not use (6.11) for all £ € N. This sug-
gests that our observation w(z1)(7,-) can further determine more point sources like in
Theorem 1.
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§7. Reconstruction of point sources from pointwise observations.
In this section, we mainly discuss reconstruction of zq, ...., xn, the locations of the
point sources provided that N is given and a; = ... = ay = 1. Henceforth we set

A={{z,..,en};0<z <..<zy<1}CRN, P={z,..,zn}€A.
Moreover we assume that
(7.1) T > 1 and 7 is irrational.

Now we develop methods how P can be reconstructed from observations u(P)(n,t),
n fixed with 0 < n < 1, of the considered system (1.1) in a stable way. The idea is to
decompose the mapping P — u(P)(n,t) into a nonlinear well-posed part and a linear
ill-posed part. We use the methods of Bruckner [5], [6] for the regularization of the
ill-posed part and then give reconstruction formulas for the nonlinear part. Moreover,
in the cases of N =1 and N = 2, we can more explicitly give schemes.

As to given noisy data u® where € > 0 is a given noise level, let us consider two cases:
(i) u¢ € L*(0,T), |lu — u||p20,7) < € u = u(n,t).
(i) u® € R*, u® = (ug, ..., uy,), [u(n,t;) —uf| <€ j=1,..,n, {t;}7_, is an equidistant
mesh on [0, T].

We set

(7.2) oH'(0,T) = {u € H*(0,T);u(0) = 0}.
From the remark following (3.13) in Section 3, it is clear that the mapping
S:L*0,T) — oH'Y(0,7T)
(7.3) (Sw)(t) = /Ot A(t — s)w(s)ds,

where A € C![0, T satisfies A(0) # 0, is an isomorphism from L2(0,T) onto oH*(0,T),
i.e., it is in both directions continuous and one-to-one. The inverse mapping S~! is
obtained as the solution of a Volterra integral equation of the second kind. Moreover,
if w = w(P)(n,-) is the observation of the system (3.5), then u = Sw is the observation
of (1.1) and vice versa.

The embedding E : ¢H'(0,T) — L?(0,T) is a compact operator. Let us define a
map © : A — L2(0,T) by

(7.4) O({z1, - zn}) = w(P)(n,)
where w(zy,...,zN)(z,t) = w(P)(z,t) is the solution to (3.5) with P = {z1,...,zN}
and oy = ... = any = 1. More explicitly, from Lemma 3.2, we see
© o [N
(7.5) w(P)(n,t) = kZ:l = Jz_:lsin krx; | sinkmnsinknt, 0<t<T.
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Then a decomposition scheme of the mappings is the following:

RY 25 12(0,T) - oHY0,T) -2 L%(0,T)

(7.6) P& w & u B e
Here the upper diagram describes the mappings and spaces of the direct problem. The
diagram below describes the inverse problem: Starting from noisy data u€, over an
approximation of the exact data u, evaluating an approximation of w = S~'u, one
finally has to reconstruct an approximation of P = ©~ lw. By (7.1), taking (7.6) and
Lemma 3.3 (2) into consideration, we can prove that the operator © : RY — L2(0,T)
is one to one and © is continuous. Therefore, since A is a relatively compact set in
RV, a theorem in the general topology tells that the inverse © ! : L2(0,T) — RV
is continuous. Moreover S~!: (H'(0,T) — L?(0,T) is also continuous. The inverse
E~!is not continuous from L2(0,T) to ¢H'(0,T), so that the whole problem EoSo®
is ill-posed, and is decomposed into a well-posed part S o ® and an ill-posed part E.
As a first step of our reconstruction we will start from noisy data u® according to
(i) or (ii) and construct new data w€® as disturbed observations concerning the system
(3.5). To this end we have to consider a regularization of the embedding

oH(0,T) C L?(0,T).

We begin with the case (i) and apply the method in Bruckner [5]. Let us compute
the singular values of the embedding o H'(0,T) C L?(0,T). Let us define a space

(7.7) H={ue H}0,2T);ut) =u(2T —t), 0<t<T}.

We equip ¢H*(0,T) and H with the scalar products and the norms of H*(0,T) and
H}(0,2T), respectively:

du dv
dt’ dt
dU dV)

dt’ dt ) o ary’

(u,v>0H1=(u,v>L2(o,T)+( ) L we oHY(0,T),
£2(0,T)

(7.8)

U, V)g = (U, V)r200,21) + ( UV e H.

Furthermore let us define an extension operator v from (H*(0,T) — H by

u(t), 0<t<T

(7.9) (vu)(t) = { w(T — 1), T <t < 9T.

By direct calculations, we see that

d(yu) (t) { du (4), 0<t<T
dt —du(aT —¢), T<t<2T

(7.10)
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in the sense of D’(0,2T): the distributions in (0, 2T). Therefore yu € H and
(7.11) (vu, v0) g = 2(u,v), 1, u,v € oH'(0,T).

Consequently by v, the Hilbert spaces ¢H'(0,T) and H are isomorphic.
Let us set

(7.12) L=~7"1,

that is, L is the restriction operator of functions on (0,27) to (0,7"). Then we have
LH = (H(0,T). Moreover

T
(7.13) gr(t) = cos , 0<t<T, ke,

is an orthonormal basis in L2(0,T). In fact, the orthonormality is straightforward.
2
To prove the completeness, let us consider the eigenvalue problem —%(t) = (1),

0 <t<T with ¢(0) = %(T) = 0. Then, as is easily checked,

keN,

is the set of eigenvalues and g, k£ € N, is an eigenfunction for A\;x. Therefore by a result
on the Sturm—Liouville problem (e.g. Levitan and Sargsjan [14]), we see that {gx }ren
is complete in L?(0,T).

Let us set
1
k— 12,2\ " 2
(7.14) = <1 + #) , kel
We can easily verify that
1 ok (k— )7t —T)
(7.15) Tk(t) = %ak(fygk)(t) =77 cos T , 0<t<2T, keN

is an orthonormal basis in H. In fact, the orthonormality in His straightforward. For
the completeness, we can proceed as follows. Let v € H satisfy (v,I'x)5 =0, k € N\.
Then since v is symmetric with respect to ¢t = T, we have by partial integration

0= (U, Pk)ﬁ = 20’,:2([/1), LPk)L2(O,T)7 ke N,

namely, (Lv, gx)r2(0,7y = 0, k € N. By the completeness of {gx}ren, in L?(0,T), we
can conclude that v = 0. Thus, {I'y }xen is an orthonormal basis in H.
Thus

(7.16) Gr(t) = V2LTy = opgr(t), 0<t<T, k&N
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is an orthonormal basis in ¢ H(0,T).
Therefore the singular value decomposition of the compact embedding

E: (H*(0,T) — L*(0,T)
is
(7.17) {Gr, gk, or }ren,

since EGy = orgr and
(G, E*gr)omr = (EGj, 9r)12(0,1) = 0505k = 0kbjx = 0k(Gj,Gr)omr = (G, 06Gr)om1,

that is, E*gx = 0xG4 holds by the completeness of {Gg}xen in oH(0,T).
We set

(7.18) [ull2 =" o *|(u, Gr)omr 1>, x>0,
k=1

provided that the right-hand side is finite. We note that ||ul|o = ||u||,z:.
Then from [5], the following is known:

Proposition 1. Let data u® and a real number R satisfy

[|w ||L2(0,T) SR>1
€
and let Ru® € oH(0,T) be defined by
(7.19) ]‘zeu6 = Z U]c_l(ue,gk)LZ(O,T)Gk + 7 Z O'k_I(’u,e,gk)Lz((),T)Gk,
k:op>b k:op=b

where the singular value b has the property

Z |(U€,gk)L2(o,T)|2 < (Re)® < Z |(U6agk)L2(0,T)|2
k:op<b k:op<b

and

1
(R6)2 - Zk:ak<b |(u6’gk)L2(0’T)|2> 2
Zk:o’k:b |(U’E7 gk)L2(0,T)|2

(7.20) r=1- (

Then
Rauf —u inoHY(0,T) as e — 0.
If additionally for some x > 0, we have

(7.21) ||u||§ < 00,

then we obtain

1

(7.22) |1Reu® = ullymr < Crex |lull ¥,

where Cg is a constant which is independent of € and ||ully .
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Remark. Proposition 1 is a slight modification of the well-known truncated singular
value decomposition method combined with an a-posteriori parameter selection proce-
dure.

For applying (7.22) in Proposition 1, we have to verify (7.21) with some x > 0. In

our inverse problem we actually prove

Lemma 7.1. Let P = {N,a,....,an,Z1,...,en} and n € (0,1). Then u(P)(n,-) €
HY"(0,T) and
[u(P)(n,-)]l, < o0

ifl/<%.

The proof is technical and will be given in Appendix.
In view of Lemma 7.1, we apply Proposition 1 to our problem. Let us now define

(7.23) w® = ST Ruf.

Then for noisy data u€, under the assumptions of Proposition 1, we see that
w® — w in L?(0,T)

as € = 0 and

lw® — wllg20,7) = [|S™ ' Reu® — S™ | p2(0,1)

(7.24) <C||Reuf — ul|, 1 = o(elﬁ)

foro<v< %

Next let us continue with the case (ii). Here we describe the solution of an approxi-
mation problem according to Bruckner [6]. Depending on the noise level € and the time
difference d of consecutive observations uf, j = 1,...,n, where d-n = T, we wish to
construct functions P(d,€) € ¢H'(0,T) with the property P(d(e),e) — u in o H'(0,T)
as € — 0.

Let us consider the Sobolev scale {H*(0,T)}x>o with norms || - ||z7» (o, and finite
dimensional spaces Y,, of trial functions

(7.25) Y, C oHY(0,T), Y, CVYni1,n€N, UpenY, = oH'(0,T),

and interpolation operators K, : R* — Y,,, n € N, such that there is a unique

interpolation function

(7.26) Knf €Y,

for every vector f = (f1,..., fn) € R" with the property

(7.27) (Knf)(t;) = f5, 7=1,..,n.
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For f € C[0,T], we set f = (f(t1),..., f(tn)) and we define J, : C[0,T] — Y,, by
(7.28) Inf =Knf
and we assume
Joy =1y for each y € Y,,.

Then J, is a projector of H(0,T) onto Y,,. For the spaces Y,, and the operators J,, we
suppose the following three properties.
Approximation property:

—0 (n— o) if f € H'(0,T)

( ) ||f f||H1(0aT){ S Cn_AHf“Hl"‘)‘(O,T) lf f S H1+>\(07T)7 )\ > 0

Inverse property:

(730) ||¢||H1(0,T) S C- ’I?/H’LPHLZ(O,T) for all ’l,b S Yn.
Finite property:

(7.31) I¥lz20) < €+ max [9(t5)| for all y € Yo

Here and henceforth the letter C > 0 denotes some generic constant.

Example for Y,, and J,, with (7.29) - (7.31).
Y,.: the spaces of linear splines,

Jn: the linear interpolation operators.

More precisely, let ¢; = id, d = £

Y, =Span{B;; j=1,..,n}
where B; are the linear B-splines satisfying
B;j(0) =0, B;(id)=0 ifi#j, B;(id)=1, ih,j=1,...,n

and

Jof =Y f(id)B;,

i=1
the piecewise linear interpolation polynomials. Then

Yom C Yom+1, m € N,

and
UmENY2m — OI{1 (Oa T)
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where the closure is understood in the sense of H'(0,T). As for details of the example,
we can refer to Profidorf and Silbermann [18].

The finite property (7.31) is immediate since
1%l 20,1y < Cll¥llcro,r), 1¥llcro,m < 1I£lja<xn|¢(jd)|

hold for ¢y € Y,,. The estimate (7.30) can be seen by straightforward calculations.
Finally, the approximation property (7.29) is more involved. In the periodic case (i.e.,
if we consider functions on the torus R/Z), (7.29) can be looked up in Elschner and
Schmidt [8] or Préfidorf and Silbermann [18]. Let T = 3. Then, prolongating a
function f € oH (0,1) to f € oH'(R/Z) (ie. f(t) = f(t)if0 <t < 1)ina
suitable way and applying the periodical theory for f, the property (7.29) can be
proven straightforwardly. Another way to prove (7.29) is developed in Schumaker [20].

From Bruckner [6] we obtain

Proposition 2. In the case (ii), under the assumptions (7.29) - (7.31), we have

—0 (n—o00) ifn=o(e?)

u— K,ut —1
| - ||H1(O’T){ =0 (eﬁrl if n ~ e and u € H'T*(0,T).

Remark. Proposition 2 represents a special kind of regularization by discretization.
The discretization parameter n is the regularization parameter. See also Bruckner,
Profdorf and Vainikko [7].

In this case (ii) the new data are defined by

(7.32) w® = S_lKn(E)ge

where we set
n(e) = eTTv

where 0 < v < % Then by Proposition 2 and Lemma 7.1, we have
(7.33) ||’LU6 — w||L2(0,T) = O (GVLH)

as e — 0.

Based on these considerations we propose the following steps of stable reconstruction.
Here we exclusively discuss the case (i) because we can similarly implement in the case
(ii). Let noisy data u¢, € > 0 be given with the property :

(i) u¢ € L*(0,T) and |lu — u®||r2(0,7) < €, u = u(t) is the unknown exact data.
Step 1.

Construction of R.u® € ¢H'(0,T) by the evaluation (7.19).

Step 2.
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Construction of w® = S™'R.u¢ € L2(0,T) by solving the second kind Volterra integral

equation

GRaNO =20 ) + [ Gt = shw(5)ds

We know from Proposition 1 that
(7.34) lw® = w(P)(n,)|| 20,y < C - €757,

where 0 < v < 7 and w = S~ 'u.
Step 3.
We reconstruct a quasi-inverse to © from w® € L?(0, T) satisfying (7.34) as follows. For

simplicity, we further a-priori assume

1

(7.35) 0<a:j<§, 1<j<N.
We solve

N 1

2m — 1

Zsin(Zm — 7z = — (2m = 1)m / we(t) sin(2m — 1)7tdt,

= sin(2m — )7 J,
(7.36) m=1,..,N
with respect to z§,....,z% € (0, %) Henceforth we number zf5, ...., 2% as

1

0<x§§---§x§v<§.

Here we note that (7.1) implies that sin(2m — 1)an # 0 for 1 <m < N.

The system (7.36) of trigonometric equations is uniquely solvable for given w¢.

In fact, we can prove that sin(2m — 1)7z$ = P, (sinmz§) where P, is a polynomial
of order 2m — 1 and the coefficients of even orders vanish, so that the system (7.36) is

equivalent to

N

: € € €
E sinTz; = q1(ag, ....,ay)
j=1

(7.37) { s ,

where we set

(2m — 1)m
sin(2m — 1)7n

[
A, =

1
/ we(t)sin(2m — 1)wtdt, 1<m< N
0
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and qi, ..., gy are polynomials of af,....,a%. Setting
(7.38) sin Tz = af, 1<j <N,
we can reduce the roots of (7.37) to zeros o, ...., a$ of N symmetric polynomials. Then

it is sufficient to solve (7.38) with respect to 0 < z§ < 3,1 < j < N. Then {z5, ...., 2}
is our desired approximation for locations of point sources.

In fact, by (7.5) we take scalar products in L?(0,1) of w(P)(n,-) with

sin(2m — 1)7wt, 1 < m < N, so that

(2m — 1)m
sin(2m — 1)

N 1

Zsin(2m — )rz; = / w(P)(n,t) sin(2m — 1)wtdt
j=1 0

(7.39) =am, m=1,...,N.

Then, noting that 7' > 1 from (7.1), by (7.34) we see that

Therefore in a way similar to the reduction of (7.37) to zeros of N symmetric polyno-
mials, we see that

WE

N
(sinmz; —sinmz;)|, Z {(sinwz$)® — (sin7z;)}, ...,
j=1

<.
I
—

e

(7.40) {(sinma5)®V ! — (sinma;)*N T} < Ceriv,

<
I
—

so that

2§ —z;| < CeTrv,  1<j<N

will follow under the extra assumtption (7.35).

Test case in Step 3. We take the case of N = 2 and clarify the effectiveness of the
above process. By a formula: sin 36 = 3sinf — 4sin®#, we can rewrite (7.37) as

. . . . 3a§ — a5
sin7z$ +sinmzs = a$ and (sin7z$)® + (sinwzf)?® = #
Therefore
. € + . € __ €
sinz{ + sinwzy = aj
and
€\3 € €
4(af)” — 3ai + a3
€ ’
12af

sinmz] X sin 7wz =
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that is, we obtain sin 7z{ and sin 7z§ as the roots of the quadratic equation

4(a%)3 — 3a$ + a$
12a§

(7.41) y? —aSy + = 0.

Similarly we see that sin 7z, and sin mxy are the roots of

4a:f —3a1 + as
12&1

(7.42) y? — a1y + = 0.

The estimate (7.34) in Step 2 guarantees
lay — af|, |ag —a§| < Cemv.
From (7.41) and (7.42), noting that 0 < 1,z < 3, we can conclude that
|sinmzS —sinmzy|, |sinwz§ —sinmry| < Cetrv
for small € > 0. Again by 0 < z§, x5, z1, 22 < %, we see that
|25 — 21|, |25 — 3| < Cew

where C > 0 depends on z; and z.

Appendix. Proof of Lemma 7.1.
It is sufficient to prove the lemma in the case of N = 1 and «; = 1. Henceforth C > 0
denotes a generic constant depending on 7" and v.

First we show

Lemma A.l. Let 0 <v < ; and let {ak}ren satisfy supyey |ax| < M. Then

C % oo %
< <§M27T2y> Z k2u—2 < 0.

k.
E — sin k7t
k

H¥(0,T)

Proof of Lemma A.1. Without loss of generality, we may assume that 7' = 2. In
fact, T < 2 is straightforward from the case of T'= 2 and if T' > 2, then we can choose
ng € N such that T' < 2ng. Then

2 2 2

N ay .
E— krt

ksmﬂ'
k=1

N ay .
E— krt

ksmﬂ
k=1

N ay .
E— krt

ksmﬂ'
k=1

< < ng

Hv(0,T) HY (0,2n0) Hv(0,2)

by the periodicity of sin knt. Here we also recall the definition of the norm in H¥(0, ng)
(e.g. Adams [1]).
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Let us define an operator A in L2?(0,2) by

(— Agu)(t) = %(t), 0<t<?2

with D(Ap) = H?(0,2)NH(0,2). Then the spectrum o (Ag) consists only of eigenvalues

2 2 . . . . 2 2 . . .
{E}ren and sin #2% is an eigenfunction for £7—, and it is known that {sin #2t},cn

is an orthonormal basis in L?(0,2). Then Ag is well-defined and

oo

¥ T\ 2V 5 . kmt
lAullfs o = (5) Dok I(uysin =) e < o0
k=1

for u € D(AZ). On the other hand, D(AZ) = H¥(0,2) and
2 5 2 1
||u||HV(0,2) < C|l4g u“L?(o,z)a 0<v< 5

(e.g. Fujiwara [9]). Therefore

o 2
Z a—kk sin kmt
k=1 H*(0,2)
2
2 & N U . kmt
< (g) Zk2” <Z %smmwt,sm %)
= m=1 L2(0,2)
:C’/TZVZZQV_2|04|2 S CMZTI'ZVZZQV_Z < 00
=1 =1

by 0 <v < % Thus the proof of Lemma A.1 is complete.
Henceforth we mainly consider

oo

2
w(z1)(n,t) = Z = sin k7, sin kzn sin krt.
k=1

Then

(1) u=u(z1)(n,") = S(w(z1)(n,-)).
By Lemma A.1 we see

(2) w(z1)(n,-) € H*(0,T)

for0§1/<%.

Next we can easily prove

S € B(L?(0,T), H'(0,T)) N B(H*(0,T), H*(0,T)).
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Here B(X,Y) denotes the Banach space of all bounded linear operators from a Banach
space X to another Banach space Y. By the interpolation theorem (e.g. Lions and
Magenes [16]), we see that

(3) S € B(H*(0,T), H"*(0,T))

with 0 < v < . Consequently (1) - (3) yield

(4) u € H*T1(0,T), u(0) = 0.
We set
(5) hk(t)Z\\//_;sin(k_%);(t_T), 0<t<T, kel
Define an operator A; in L2(0,T) by
d%u
(At = 250),  0<t<T
(6) D(4)) = {u € H(0,7); 2 (0) = u(T) = 0}.

Then we can prove

Lemma A.2. D(AI%) = HY(0,T) for 0 < v < 3 and there ezists a constant C > 0
such that

. 0 (k _ 1)27T2 2
(7) (—Al)E’u, = Z <T722> (U, hk)LQ(O,T)hk
k=1
and
= (k= H)m\
® > (CF25) lwmdsom P < Clulfe
k=1
for allu € H”(0,T).
Proof of Lemma A.2. Henceforth we set
1.7 km
and
(10) (8) = — cos pet,  ye(t) = —— sin Ayt T<t<T keN
T = = HEl, Yr = ——=SIN Agl, —4L >l >4, .
VT VT

In Span{hg }ren, we define a scalar product and a norm by

oo

(w,v)x, = Z pr” (u, Bae) 20,1 (v, Bie) L2 (0, 1)
k=1
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and

lull%, = (v, u)x,
for u,v € Span {hg}ren. The completion of Span{h }ren in the norm ||-||x, is denoted
by X,. Moreover we define an operator —A, in L?(—T,T) by

(—A )(t)—dz—u(t) -T<t<T
2“ - dt2 ’
(11) D(A) = H*(-T,T) N Hy(—T,T).
Then we can define fractional powers and
(12) AZu =" pk(u,ze) L2 (-1, Tk + Y Mo (U, Yk) L2 (— 7,7 V-
k=1 k=1

Moreover we can easily see that {xg,yr}ren is the set of the eigenfunctions of the
operator Ay, and {zx, yx }ren is an orthonormal basis in L?(—T,T). Now we denote

1

13 K = (—1)*—=hy, keN.
(13) k= (-1) ik
Therefore by (12), we see that
(14) IAZ ull3e _rry = > (e [(w, zk) 2oy | + AR | (w, yk) 2 (-1 ).

k=1
On the other hand, by Fujiwara [9], we have

v 1

(15) D(A})=H"(-T,T), 0<v< 2
and
(16) CHullav (—r,ry < 145 ullr2 ) < Cllullge(—ryr), v € D(A3).

Therefore we obtain

C™HY (i |(wy @r) o2 (-1 P + ANy yw) L2 -y P) < MullFe oy
k=1
(17)

<C (13”|(uy zr) 2 (-1 | + AN () 2y |?),  w € HY(=T,T).
k=1
Finally we define an isomorphism K from H”(0,T') onto a closed subspace of H”(—T,T)

u(t), 0<t<T
(u)(0) - {
u(—t), -T <t<O.
That is, Ku is an even extension of the function in (0,7") to one in (—7,T). Then we
see : u € X, if and only if Ku € HY(—T,T) and
(18) CHlullx, < IKullg 17y < Cllullx,, — weH(-T,T).

In fact, since Ku is an even function, we have (u,yx)r2(—7,7) = 0, k € N, so that

1K ullf (—rmy < CZM%(KU, zk) 2 (-, |° < CZM%(U, he) 20,1 |” = Cllull%,
k=1 k=1

by (13) and (17). Similarly the reverse inequality can be proved. Thus we see (18).

Further we need
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Lemma A.3.

[l o,y < 1K ulle -1,y < 2l[ullev©r), we HY(0,T).

Proof of Lemma A.3. The case v = 0 is readily verified. Let 0 < v < % Then we

have
||Ku||%IV(—T,T) = ||Ku||%2(—T,T) + |KU’|%IV(—T,T)
and
||u||%IV(O,T) = ||U||%2(0,T) + |u|%IV(0,T)’
with
()2
|U’|HV( T,T) — / / |t— S|1+2u T oita, dtds
and

s)[?
[ul3r 0,y = // |t—s|1+2 L dtds

(e.g. Adams [1]). Therefore ||ul|gv 0,7y < ||[Ku||gv(—7,1) is straightforward. For the
second inequality, since ||Kul||z2—71) = \/§||U||L2(0,T), it is sufficient to prove

| Ku|gv—r,ry < 2|ulgv(0,1)

Noting the definition of Ku, we have

|Ku|§{V(—T T)

(WL L L L) (R

T |u |2
_2|u’|H”(0 T) + 2 |t T 3|1+2V — " dtds.

Here we obtain
/ /T ult) |2dtds = /T /T uit) _U(S)|2 - 8|1+2udt ds
It + s|1+2u o o |t — s[I+2v |t + s[T+2v
T T _ 2
s/ / [ut) —u(s)" 1)) 4
0 o |t—s|tt

so that

| Kl _rry < 4lulfo,my:
Thus the proof of Lemma A.3 is complete.
Now we proceed to completing the proof of Lemma A.2. By (18) and Lemma A.3,
we obtain

lullx, < Cllullay o),
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namely,
oo

Z e’ (u, he) 20,11 < CllullF 0,1y,
k=1

which completes the proof of Lemma A.2.
We are ready to completing the proof of Lemma 7.1. We recall (4). By (7.7), (7.13),
(7.16) and (5) we have

2

o % |(u, G |2 < Ck* o}

du (k—3)m
(w, gk)L2(0,7) — <—, —2 hk)
RN 12(0,T)

d 2
)
dt L2(0,T)

Since u € L?(0,T) and {gi }ren is an orthonormal basis in L?(0,T), noting that
2v — 2 < 0, we see

<CE*k~% | [(uw, gk)r2(0,1)|° + K

> CEE?|(w, g98) 20,1y < C Y |(w, gk) 1200,y < CllullFzo.1)-
k=1 k=1

Finally, since (4) implies % € H(0,T), so that the inequality (8) yields

2 2

i d > d

> CEE?K (d—;‘ hk> => Ck* <d—1t‘ hk> < .

k=1 L2(0,T) k=1 L2(0,T)

Thus we obtain
lullZ =" 01 (u, Gr)om |
k=1
2
SCZ k2 k72| (u, gk) 22 0,1y 1” + CZ K (g, hk) . < oo
L2(0,T)

for0§1/<%.
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