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Abstract

In this paper, we study strongly nonlinear degenerate elliptic and parabolic

equations of the form F (x; u;Du; : : : ;D(2m� 1)u;Lu) = 0 and ut = F (x; t;

u;Du; : : : ;D(2m� 1)u;Lu) , respectively, where L is a linear operator of the

derivatives of highest (i.e., of 2m{th) order. Under very weak restrictions

on the growth of F with respect to the derivatives of u , existence results

for weak solutions are proved. These existence results are based on general

solvability results for nonlinear operator equations in Banach spaces which

will be proved in this paper.

0 Introduction

In this paper, we study problems of the form

F (x; u;Du; : : : ; D(2m� 1)u; Lu) =: F (x;Dku; Lu) = 0 in G ; (0.1)

D�u = 0 on @G ; for j�j � m � 1 ; (0.2)

and, respectively,
@u

@t
+ F (x; t; u;Dku; Lu) = 0 in Q ; (0.3)

D�u = 0 on � ; for j�j � m � 1 ; (0.4)

u(0; x) = 0 ; x 2 G : (0.5)

Here, G � IRn ; n � 1 , denotes a bounded domain with su�ciently smooth bound-

ary @G , and Q := G � [0; T ] ; � := @G � [0; T ] . In addition, L denotes a linear

di�erential operator of 2m -th order (m 2 IN) , and Dku stands for the set of partial

derivatives of the form D�u , j�j � 2m , where � = (�1 ; : : : ; �n) is a multiindex,

�i 2 IN0 and j�j = �1 + : : :+ �n ; in this connection, D0u := u .

The solvability of problems of the form (0.1{2) and (0.3{5), respectively, has been

studied before (see [6], [7], [9], [14], [16] and the references therein) under di�erent

conditions on F , namely under strong restrictions on the order of growth of the

nonlinearity. In this paper we study cases when F depends in a linear way on the

highest order derivatives of the unknown function u , which allows to investigate

the problems under more general conditions for F (see also [16]).

The existence results for the problems under study are based on general solvabil-

ity results for nonlinear operator equations and di�erential operator equations in

Banach spaces which will be proved in this paper (see also [18], [19], [21]). More

precisely, in Section 2 we will consider the equation

f(x) = y ; y 2 Y ; (0.6)

where f : D(f) � X ! Y is some (nonlinear) operator acting between two Banach

spaces X and Y , while in Section 3 we consider the Cauchy problem

dx

dt
+ f(t; x(t)) := x0(t) + f(t; x(t)) = y(t) ; x(0) = 0 ; (0.7)
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where f(t; �) denotes some (nonlinear) operator acting from L�0
(0; T ;X) into

L�1
(0; T ;Y ) . Here, �0 ; �1 are certain N - functions, and L�0

; L�1
denote the cor-

responding vector-valued Orlicz spaces. Recall (see [8]) that, given any N - function

� , we have

L�(0; T ;X) =
n
u : (0; T )! X

���  ku(�)kX 
�
< +1

o
; (0.8)

W 1
�(0; T ;X) =

(
u 2 L�(0; T ;X)

��� du
dt

2 L�(0; T ;X)

)
; (0.9)

where, for arbitrary v in the Orlicz space L�(G) (for any domain G � IRk , k 2 IN )

the Orlicz-norm kvk� is de�ned by

kvk� := sup

���� Z
G

v(x) q(x) dx
��� : q 2 E	(G) ;

Z
G

	(q(x)) dx � 1

�
< +1 :

(0.10)

Here, 	 denotes the complementary N - function of � , and E�(G) is the closure

of the space of bounded functions in G with respect to the norm of L�(G) . Note

that (E�(G))
� = L	(G) , if � and 	 are complementary N - functions. Likewise,

we denote by E�(0; T ;X) the closure of L1(0; T ;X) with respect to the norm of

L�(0; T ;X) , and W 1E�(0; T ;X) is the closure of W 1;1(0; T ;X) with respect to

the norm of W 1
�(0; T ;X) .

Since the domains of de�nition of the nonlinear operators are, in general, nonlinear

sets, and since the solvability of (0.6) and (0.7) will be established via compactness

methods (cf. [11]), we �rst study in Section 1 some nonlinear spaces and derive

results concerning the (compact) imbedding between them. In Sections 4 and 5,

we establish existence results for the problems (0.1{2) and (0.3{5), respectively,

applying the general results of Sections 3 and 4. The �nal Section 6 brings examples;

in particular, we study the equation

�
nX

k=0

ak e
jDk uj

1+�

�u � a ej�uj
2

�u = h(x) : (0.11)

1 Some pn - spaces and imbedding theorems

Let two locally convex topological vector spaces X and Y and some, in general,

nonlinear mapping g : D(g) � X ! Y be given. We introduce the notation

SgB := fx 2 X j g(x) 2 Bg ; (1.1)

if (B ; k � kB) is a Banach space such that B � Y . Clearly, to any Banach space

B � Y there exists a corresponding SgB , characterized by B and g , and we have

SgB 6= ; if and only if R(g) \ B 6= ; , where R(g) denotes the range of g in Y .

De�nition 1.1 (see [18] or [15], [21])

A set S � X is called quasi-pseudonormed space (or qn - space), if S is a topological

space and if there exists a function [ � ]S : S ! IR satisfying

(qn) [x]S � 0 8 x 2 S ; x = 0 ) [x]S = 0 :

2



If, in addition,

(pn) [x1]S 6= [x2]S ) x1 6= x2 ; x1 ; x2 2 S ;

[x]S = 0 ) x = 0 ;

holds, then S is called pseudonormed space (or pn - space). The function [ � ]S will

be called q - norm (or p - norm, respectively).

Next, let us denote

[x]SgB := kg(x)kB 8 x 2 SgB : (1.2)

Obviously, if R(g) \ B 6= ; and g(0) = 0 , then SgB is a qn - space in which the

topology is de�ned by [ � ]SgB , that is, it is de�ned by the topology of B by means

of the mapping g , similarly as in Souslin topological spaces (cf. [3]).

Some properties of these spaces have been studied in [15], [17], [21], and the ref-

erences therein; in this note, we will only consider some examples for these spaces

which will be needed later.

Example 1.2 Let � � 0 and � � 1 . We consider the spaces

�S1; �; �(
) :=
n
u j [u]�+�

�S
:=

nX
i=1

Z


juj� jDi uj

� dx < +1
o

=
n
u j Di(juj

�=� u) 2 L�(
) ; 1 � i � n
o
: (1.3)

Putting g := (g1; : : : ; gn) , where gi(u) := Di(juj
�=� u) , 1 � i � n , as well as

B := (L�(
))
n , we easily see that

[u] �S =
nX

i=1

kgi(u)k
�=(�+�)
L�

; for all � � 0 and � � 1 : (1.4)

Obviously, �S1; �; �(
) , � � 0 , � � 1 , is a quasi-pseudonormed space, and it holds

[� u] �S = j�j [u] �S 8� 2 IR ; 8 u 2 �S1; �; �(
) : (1.5)

In addition to the spaces �S1; �; �(
) , we consider the spaces

S1; �; �(
) := �S1; �; �(
) \ L�+�(
) : (1.6)

Apparently,

S1; �; �(
) =
n
u j juj�=� u 2 W 1

�
(
)

o
; (1.7)

where W 1
�
(
) denotes the standard Sobolev space.

For functions u 2 S1; �; �(
) we de�ne

[u]S := k juj�=� u k
�=(�+�)
W 1
�

: (1.8)

Clearly, S1; �; �(
) is a pseudonormed space, and

[� u]S = j�j [u]S 8� 2 IR ; 8 u 2 S1; �; �(
) : (1.9)
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We now turn our attention to the general properties of the spaces SgB . Since SgB
is at least a semi-metric space (cf. [18]), topological concepts like convergence with

respect to the semi-distance (or distance), continuity, the imbedding of one qn -

space into another, the compactness of such imbeddings, and so on, are de�ned.

Moreover, concepts like separability, \reexivity", completeness, * - completeness, of

qn - spaces have been studied (cf. [15], [17]); these notions are analogously de�ned

as the topology corresponding to the space B and the mapping g . In particular,

the following results have been proved.

Proposition 1.3 For the spaces SgB de�ned in (1:1) the following holds true:

(a) If B is a separable Banach space and SgB is a pn - space, then SgB is separa-

ble. If SgB is only a qn - space, and if, in addition, the inverse image g�1(y)

of every y 2 R(g) \ B is an at most countable set, then SgB is separable.

(b) If B is a reexive Banach space and the set R(g)\B is weakly closed in B ,

then any bounded subset of SgB is weakly compact in SgB (this property of

SgB will be called \reexivity" of SgB ).

(c) If R(g) \ B is closed (weakly closed) in B , then SgB is a complete (weakly

complete) qn - space.

In the spaces SgB often the following condition is satis�ed.

(N ) There are C 2 (0;+1] and � : IR! IR+ such that

[� x]SgB � �(�) [x]SgB ; 8 j�j < C ; 8 x 2 SgB :

Hence, in many cases there exists a function � , depending on g , such that the

p - norm ( q - norm) can be de�ned in the form

[x]SgB := � (kg(x)kB) ; (1.10)

in which case inequality in (N ) may be replaced by

[� x]SgB � j�j [x]SgB ; 8 j�j < +1 ; 8 x 2 SgB : (1.11)

For instance, in the spaces �S1; �; �(
) and S1; �; �(
) de�ned in Example 1.2, (1.11)

holds even with equality. Note also, in particular, that in the case when g is a linear

operator the set SgB and the corresponding q - norm may coincide with the domain

of de�nition of g and the graph-norm, respectively.

De�nition 1.4 Let g0 : D(g0) � X ! Y and g1 : D(g1) � X ! Y denote two

mappings.
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(a) We write g0 � g1 if and only if for any Banach space B with B � Y the

corresponding quasi-pseudonormed spaces Sg0B and Sg1B satisfy

Sg1B � Sg0B ; where R(gi) \ B 6= ; for i = 0; 1 : (1.12)

(b) We say that Sg1B1
is continuously imbedded in Sg0B0

(for short: Sg1B1
,!

Sg0B0
), if and only if there exists a continuous homogeneity function �01 :

IR+ ! IR+ such that

kg0(x1) � g0(x2)kB0
� �01 (kg1(x1) � g1(x2)kB1

) 8 x1; x2 2 Sg1B1
: (1.13)

The following results are easily established.

Proposition 1.5 Let SgiBi ; i = 0; 1 , denote qn - spaces de�ned as in (1:1) such

that the corresponding mappings g0 ; g1 satisfy g0 � g1 . Then it holds:

(a) If B1 � B0 then Sg1B1
� Sg0B0

.

(b) If B1 is compactly imbedded in B0 then the imbedding of Sg1B1
in Sg0B0

is

compact.

Next, we study classes of abstract mappings with values in qn - spaces, i.e. we

consider sets of functions x : [0; T ]! X satisfying x(t) 2 SgB for a. e. t 2 (0; T )

and investigate under which conditions such sets are compact.

To this end, let �0 ; �1 ; � denote N - functions, and let X0 denote some Banach

space such that SgB � X0 � X . We then de�ne the classes of functions,

L�(0; T ;SgB) :=

�
x : [0; T ]! X

��� [x]L�(SgB) :=
 [x(�)]SgB


L�

< +1
�
;

(1.14)

P�0�1
(0; T ;SgB; X0) :=

n
x : [0; T ]! X

��� [x]P�0�1 (SgB ;X0) := [x]L�0 (SgB)

+ k xt kL�1 (X0) < +1
o
: (1.15)

Here, the subscript t stands for the derivative with respect to time, and k � kL�
denotes for N - functions � the norm in the corresponding Orlicz space L�(0; T ) .

In addition, we denote by E�(0; T ;SgB) the closure of L1(0; T ;SgB) with respect

to the metric of the space L�(0; T ;SgB) , and W 1E�(0; T ;SgB) denotes the closure

of W 1;1(0; T ;SgB) with respect to the metric of the space W 1
�(0; T ;SgB) .

It follows directly from the de�nition that P�0�1
(0; T ;SgB; X0) � L�(0; T ;SgB)

provided that � � �0 . Moreover, the following assertions are easily veri�ed.

Proposition 1.6 Suppose that Sg0B0
and Sg1B1

are qn - spaces (or pn - spaces,

respectively). Then also L�(0; T ;SgiBi) and P�0�1
(0; T ;SgiBi ; X) (i = 0; 1) are

qn - spaces (or pn - spaces, respectively). If, in addition,

g0 � g1 ; B1 � B0 ; �0

0 � �0 ; �0

1 � �1 ; and X0 � X 0

0 ; (1.16)
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then

L�0
(0; T ;Sg1B1

) � L�0

0
(0; T ;Sg0B0

) ; as well as (1.17)

P�0�1
(0; T ;Sg1B1

; X0) � P�0

0
�0

1
(0; T ;Sg0B0

; X 0

0) : (1.18)

If any of the inclusions in (1.16) is strict, then (1.17) and (1.18) are strict inclusions.

In what follows, we always assume that the spaces Sgi Bi , i = 0; 1 , are complete

with respect to the corresponding topologies. We consider the following conditions.

(A1) g1 is continuously di�erentiable as mapping from X into B0 , and there exist

some constant C > 0 and some N - function 	2 with 	2 � �1 such that for

the complementary N - function �2 associated with 	2 it holds

�2

�
kg01(x)kL(X;B0)

�
� C [x]Sg1B1 8 x 2 Sg1B1

; (1.19)

where Sg1B1
,! Sg0B0

.

(A2) g1 is locally Lipschitz continuous in the following sense: to any pair x1; x2 2
Sg1B0

there exists some k = k(x1; x2) > 0 such that

kg1(x1)� g1(x2)kB0
� k(x1; x2) kx1 � x2kX (1.20)

holds, where

�2(k(x1; x2)) � C
�
[x1]Sg1B1 + [x2]Sg1B1

�
; C > 0 ; (1.21)

with the function �2 de�ned in (A1), and where Sg1B1
,! Sg0B0

.

(A3) It holds B1 � B0 � B2 � Y , and there exist functions 	3 ; 	4 : IR+ ! IR+

satisfying 	�1
3 (�) � c0 j� j and 	4(�) � c1 j� j for any � 2 IR+ with suitable

positive constants c0 ; c1 , such that for g = g1 and g = g0 it holds

kg(x1)� g(x2)kB2
� C

�
	3

�
[x1]SgB1

�
+ 	3

�
[x2]SgB1

��
	4

�
kx1 � x2kX0

�
:

(1.22)

We have the following result.

Theorem 1.7 Let the assumptions of Proposition 1.6 be satis�ed, let g0 � g1 ,

and assume that the imbedding B1 ,! B0 is compact. If any of the assump-

tions (A1), (A2), (A3) is ful�lled then the imbedding P�0�1
(0; T ;Sg1B1

; X0) ,!
L�(0; T ;Sg0B0

) is compact for any � satisfying � � �0 . In particular, the imbed-

ding P�0�1
(0; T ;Sg1B1

; X0) ,! C0(0; T ;X0) is compact.

Remark 1.8 If g0 satis�es (A1) or (A2) then the assertion of Theorem 1.7 remains

true even if the imbedding of Sg1B1
in Sg0B0

is not continuous, as follows from the

proof given below.
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The proof of Theorem 1.7 is based on the following lemmas.

Lemma 1.9 Let g0 � g1 , and let M be a bounded subset of L�(0; T ;Sg1B1
) . In

addition, suppose that M is equicontinuous in the sense that to every � > 0 there

exists some � = �(�) > 0 such that for all j� j < � and t > 0 with t+ � 2 [0; T ] it

holds

kg1(x(�))� g1(x(�+ �))kL�(0;t;B0) < � 8 x 2M : (1.23)

If the imbedding B1 ,! B0 is compact, then M is compact in L�(0; T ;Sg1B1
) .

Proof: Let � > 0 be arbitrary. The compactness of the imbedding Sg1B1
,! Sg0B0

and the boundedness of M in L�(0; T ;Sg1B1
) imply that for almost all t 2 [0; T ]

there exists a �nite � - net (which depends on t ) of the set fx(t) j x 2Mg in Sg1B0
.

Therefore, using the compactness [0; T ] , applying the standard diagonalization pro-

cedure, and invoking (1.23), we can conclude the existence of a �nite � - net for M

with respect to the topology of L�(0; T ;Sg1B0
) . Consequently, M is compact in

L�(0; T ;Sg1B0
) . The assertion then follows from the continuity of the imbedding of

L�(0; T ;Sg1B0
) in L�(0; T ;Sg0B0

) . 2

Lemma 1.10 Let the assumptions of Theorem 1.7 be satis�ed with (A1). Then it

holds for any x 2 P�0�1
(0; T ;Sg1B1

; X0)

kg1(x(t + �)) � g1(x(t))kB0
� C

Z
t+ �

t

kg01(x(�))kL(X0;Y ) kx
0(�)kX0

d� ;

for all t 2 [0; T ] n E and all � > 0 such that t + � 2 [0; T ] n E ; (1.24)

with a suitable constant C > 0 and some set E � [0; T ] of zero measure.

Proof: The assertion follows directly from the usual Lipschitz inequality. 2

Lemma 1.11

(a) Let B1 � B0 � B2 , where B2 � Y is some Banach space, and where the

imbedding B1 ,! B0 is compact. Moreover, let g0 � g1 . Then to any � > 0 there

is some K(�) > 0 such that for all x1; x2 2 Sg1B1
it holds

kg0(x1)� g0(x2)kB0
� �

�
�01

�
[x1]Sg1B1

�
+ �01

�
[x2]Sg1B1

��
+K(�) kg0(x1)� g0(x2)kB2

; (1.25)

where �01 : IR+ ! IR+ is the homogeinity function introduced in De�nition 1.4, (b)

that corresponds to the mappings g0 ; g1 and the spaces B0 ; B1 .

(b) Let B1 � B0 � B2 , where the imbedding B1 ,! B2 is compact, and where B1

is a reexive Banach space. In addition, let (1.25) hold for any pair x1 ; x2 2 Sg1B1
.

Then the imbedding Sg1B1
,! Sg0B0

is compact. In particular, if SgiBi = Bi and

g0 = g1 = id: , then B1 ,! B0 compactly.
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Remark 1.12 Lemma 1.11, (b) shows that under the assumptions of the lemma

the ful�llment of (1.25) is both necessary and su�cient for the compactness of the

imbedding B1 ,! B0 .

Proof of Lemma 1.11: The assertion of part (a) follows from a well-known com-

pactness theorem (see [11]) and from the relation Sg1B1
,! Sg0B0

� Sg0B2
.

To verify the assertion of part (b), we show that if M is a bounded subset of Sg1B1

then M is relatively compact in Sg0B0
. To this end, let M � Sg1B1

� Sg0B0
be

bounded. Owing to the \reexivity" of the space Sg1B1
, and since Sg1B1

,! Sg1B2
,

we may select a weakly convergent sequence fxmg � M . By the compactness

assumptions, we may assume fxmg converges strongly in Sg0B2
.

It follows from inequality (1.25) that for any � > 0 there exist m(�) > 0 , k(�) > 0

and m1 ; m2 > m(�) , such that

kg0(xm1
)� g0(xm2

)kB0
� �

�
�01

�
[xm1

]Sg1B1

�
+ �01

�
[xm2

]Sg1B1

��
+K(�) kg0(xm1

)� g0(xm2
)kB2

: (1.26)

Consequently, the sequence fxmg is a Cauchy sequence, and hence strongly conver-

gent in Sg0B0
. This concludes the proof of part (b) of the Lemma. 2

Proof of Theorem 1.7: As a consequence of Lemma 1.9, it su�ces to show that any

bounded subset M of P�0�1
(0; T ;Sg1B1

; X0) is equicontinuous in L�0
(0; T ;Sg0B0

) .

Suppose now that (A1) holds (the proof is analogous if either (A2) or (A3) are

assumed to hold). It then follows from Lemma 1.10 that

kg1(x(t + �)) � g1(x(t))kB0

� C

Z
t+ �

t

kg01 (x(�)) kL(X;B0)
kx0(�)kX0

d�

� C
h Z t+ �

t

�2

�
kg01(x(�))kL(X;B0)

�
d� +

Z
t+ �

t

	2

�
kx0(�)k

X0

�
d�
i

= C
h Z T

0
�(� ; [t; t + �]) �2

�
kg01(x(�))kL(X;B0)

�
d�

+

Z
T

0
� (� ; [t; t + �]) 	2

�
kx0(�)k

X0

�
d�
i
; (1.27)

where �( � ;E) denotes the characteristic function of a set E � [0; T ] .

Now observe that �3 �	2 � �1 and 	2 � �1 . Hence

kg1(x(t))� g1(x(t + �))kB0

� C

"Z
T

0
�(� ; [t; t + �]) [x(�)]Sg1B1 d� +

Z
T

0
�(� ; [t; t + �]) 	2

�
kx0(�)kX0

�
d�

#

� C
h
k�( � ; [t; t+ �])kL	0 [x(�)]L	0(Sg1B1 )

+ k�( � ; [t; t+ �])kL	3

	2

�
kx0(�)kX0

�
L�3

i
; (1.28)

where 	3 is the N - function 	3 := ��

3 .
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As M is bounded in P�0�1
(0; T ;Sg1B1

; X0) , there exists to every � > 0 some

�(�) > 0 such that, with ~	 := supf	0 ; 	3g ,

Z
T

0
kg1(x(t))� g1(x(t+ �))kB0

dt � C

�
~	�1

�
1

�

���1
� [x]P�0�1 (Sg1B1 ;X0) : (1.29)

From this the equicontinuity of M immediately follows. Lemma 1.9 then implies the

compactness of the imbedding P�0�1
(0; T ;Sg1B1

; X0) ,! L�0
(0; T ;Sg1B0

) ; whence

also the compactness of P�0�1
(0; T ;Sg1B1

; X0) ,! L�(0; T ;Sg0B0
) follows if � � �0 :

The �rst part of the assertion is proved.

The second assertion can be veri�ed as follows: proceeding as in the �rst part of

the proof, we obtain an inequality of the form (1.28); then, we use a diagonalization

procedure and the boundedness of the set M in the space P�0�1
(0; T ;Sg1B1

; X0) to

establish the validity of the second assertion. The details of the proof are analogous

to the proof of an assertion of similar type which can be found in [3]. 2

Remark 1.13 The spaces Sg1B1
or Sg0B0

, but also L�(0; T ;Sg0B0
) and, in par-

ticular, P�0�1
(0; T ;Sg1B1

; X0) , may be linear spaces (see [5]); the N - functions

�0 ; �1 ; � ; �2 may be increasing functions of power type (see, e.g., [5], [15], [16],

[21]).

2 Nonlinear equations in Banach spaces

Let X ; Y be Banach spaces, SgB a qn - space de�ned as in the previous section,

and f : SgB � X ! Y a nonlinear mapping.

We will now study the solvability of functional equations of the form

hf(x); y�i = hy; y�i 8 y� 2M� � Y � ; (2.1)

where h� ; �i denotes the duality pairing for the pair (Y; Y �) . Here, Y � is the dual

space of Y (or, vice versa, Y is the dual of Y � ).

De�nition 2.1 Let M� be a subset of the dual space of Y , (of Y � , respectively),

and let y 2 M � Y be given. Then any x 2 SgB satisfying (2.1) is called an

M� - solution to (2.1).

We consider the following conditions.

(B1) The mapping f : SgB � X ! Y is a weakly compact (continuous) mapping,

i.e., whenever xm ! x0 weakly in SgB , then there exists a subsequence fxmk
g

of fxmg such that f(xmk
)! f(x0) weakly in Y as mk %1 .

(B2) It holds B = B�� , and there exist some separable topological vector space X1

and a linear continuous operator ' : X1 � SgB ! Y � such that '(X1) �M� .

9



(B3) There exist some reexive separable Banach space Y �

0 � Y � such that M� �
Y �

0 , a subspace Sg1B1
of the qn - space SgB , and some nonlinear mapping

' : Sg1B1
! Y � such that the following conditions hold:

(i) '(Sg1B1
) �M� .

(ii) '(Sg1B1
) contains a linear manifold which is dense in Y �

0 .

(iii) The inverse mapping '�1 of ' is a weakly compact (continuous) map-

ping from Y �

0 into SgB such that for every y 2 Y �

0 the image '�1(y)

is a closed and convex set (note that '�1 is possibly set-valued so that

the notion "weakly continuous" has to be understood in the appropriate

sense, see, e.g. [2], [3]).

Theorem 2.2 Suppose that SgB is a weakly complete space, and let either the

conditions (B1), (B2) or (B1), (B3) be satis�ed. Furthermore, assume that a set

M � Y is given such that for each y 2 M there exists some r = r(y) > 0 such

that

hf(x); '(x)i � hy; '(x)i

8><
>:
8 x 2 X1 ; [x]SgB � r (if (B1) , (B2) hold),

8 x 2 Sg1B1
; [x]SgB � r (if (B1) , (B3) hold).

(2.2)

Then Eq. (2.1) has an M� - solution for any y 2 M .

Proof: Let (B1) , (B2) and the corresponding condition in (2.2) be satis�ed. We

argue by Galerkin approximation. To this end, let fxkgk2IN be a complete sys-

tem in the (separable) space X1 . We then look for approximate solutions of the

form xm =
mX
k=1

ck
m
xk , where the unknown coe�cient vector cm = (ck

m
) has to be

determined from the system of algebraic equations

�k(cm) := hf(xm); '(x
k)i � hy; '(xk)i = 0 ; k = 1; : : : ; m : (2.3)

Now observe that by (B1) the mapping �(cm) := (�1(cm); : : : ;�m(cm)) is con-

tinuous. From (2.2) it follows that for some r > 0 for all xm with [xm]SgB � r

the "acute angle" - condition is satis�ed, i.e., on any sphere Sr1(0) � IRm , where

r1 � r , it holds

mX
k=1

h�k(cm); c
k

m
i � 0 8 cm 2 IRm ; kcmk = r1 : (2.4)

The solvability of (2.3) then follows from the well-known lemma "on the acute angle"

which is equivalent to Brouwer's �xed-point theorem (see, e.g., [5], [11], [12]).

Hence, we obtain a sequence fxmg � SgB of solutions to (2.3) which by construction

is bounded in SgB , i.e., we have [xm]SgB � r , for all m 2 IN . Invoking the

"reexivity" and the weak completeness of the space SgB , we conclude the existence

of a subsequence, again denoted fxmg , and of some x0 2 SgB such that xm ! x0
weakly in SgB .
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We now show that x0 solves (2.1). In view of (B2), it su�ces to pass to the limit as

m%1 in (2.3) for every �xed k 2 IN . By (B1), we may without loss of generality

assume that f(xm)! f(x0) weakly in Y ; hence passage to the limit yields that

hf(x0); '(x
k)i = hy; '(xk)i 8 k 2 IN : (2.5)

Since fxkgk2IN is complete in X1 , we therefore have

hf(x0); '(x)i = hy; '(x)i 8 x 2 X1 : (2.6)

The assertion then follows from the fact that '(X1) �M� .

Let us now assume that the conditions (B1) , (B3) and the corresponding condition

in (2.2) are ful�lled. We pick a complete system fykgk2IN in Y �

0 and look for

approximate solutions xm 2 '�1(y�
m
) to Eq. (2.1), where y�

m
:=

mX
k=1

ck
m
yk 2 Y �

0 .

The unknown coe�cients ck
m
, k = 1; : : : ; m , have to be determined from the system

of algebraic equations

~�k(cm) := hf('�1(y�
m
)); yki � hy; yki = 0 ; k = 1; : : : ; m : (2.7)

The solvability of the system (2.7) again follows from the lemma of type "on the

acute angle" that is based on Kakutani's �xed point theorem (see [2], [22], [23]), just

in the same way as using Brouwer's �xed point theorem. Indeed, from (B1) and

(B3) it follows that ~�k is continuous (recall that f and '�1 are weakly continuous

mappings), while the "acute angle" - condition follows from (B3) and (2.2) just as

in the previous case. Hence, arguing along the lines of the previous case, we obtain

the existence of an M� - solution also in this case. We may omit the details to the

reader. Theorem 2.2 is proved. 2

Remark 2.3 From the proof of Theorem 2.2 it follows that in the conditions (B2)

and (B3), respectively, the assumption M� � R(') can be replaced by the following

assumption:

There exists a space Y �

1 � Y � such that R(') � Y �

1 , M
� � Y �

1 , and R(') � Y �

1

(or R(') contains a linear manifold which is everywhere dense in Y �

1 , respectively).

Next, we consider Eq. (2.1) under the assumption that f satis�es the following

condition.

(B1') The mapping f : SgB � X ! Y � is weakly-star continuous, that is, it

satis�es condition (B1) with weak convergence replaced by weak-star con-

vergence.

Theorem 2.4 Let (B1') hold, let SgB be weakly-star complete and let bounded

subsets of SgB be weakly-star compact in SgB . Besides, suppose that either (B2)

11



and the corresponding condition in (2.2) or (B3) and the corresponding condition

in (2.2) are satis�ed with the corresponding modi�cations (i.e., after exchanging the

roles of the spaces Y and Y � , as well as replacing weak continuity by weak-star

continuity). Then the problem

hf(x); yi = hy�; yi 8 y 2 M � Y (2.8)

has for any y� 2M� a solution x 2 SgB .

Proof: The proof is analogous to that of Theorem 2.2 and is therefore omitted

here. 2

From the above theorems we immediately get the following result (a similar result

has been proved earlier in [5]).

Corollary 2.5 Let (B1) and (B2) hold, and let M � Y be such that (2.2) holds.

Then to any y 2M there exist x 2 SgB and y0 2 ker('�)\Y with f(x) = y + y0 ,

where '� denotes the adjoint of the linear continuous operator ' .

We also conclude the following result which also applies when the nonlinear equations

are considered in non-reexive Banach spaces X and Y .

Corollary 2.6 (Solvability theorem) Let the assumptions of Theorem 2.2 (or

of Theorem 2.4, respectively) be satis�ed, and let M (or M� , respectively) denote

the sets introduced there. In addition, suppose that R(') contains a subset which

is everywhere dense in Y � (or in Y , respectively). Then the equation f(x) = y

( f(x) = y� , respectively) is for any y 2 M ( y� 2 M� , respectively) solvable in

SgB .

Moreover, we can conclude from the Theorems 2.2 and 2.4 a further result.

Theorem 2.7 Let the assumptions of Theorem 2.2 (or of Theorem 2.4, respec-

tively) be ful�lled, and let the spaces X ; Y ; Y � ; SgB ; X0 ; Sg1B1
, as well as the

mappings f ; ' , be de�ned as in Theorem 2.2. Besides, assume that the following

condition is satis�ed:

(B4) The operators f and ' induce a coercive pairing on Sg1B1
� SgB in a gen-

eralized sense ( f is coercive in a generalized sense), that is, there exists a

continuous function 	 : IR+ ! IR+ , satisfying 	(�) � c j� j on IR+ for some

c > 0 , such that for x 2 Sg1B1
it holds

hf(x); '(x)i

	
�
[x]SgB

� % +1 ; as [x]SgB %1 : (2.9)
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Then the equation f(x) = y is solvable in SgB for every y 2 Y satisfying

sup

8<
: hy; '(x)i

	
�
[x]SgB

� ��� x 2 SgB

9=
; < +1 : (2.10)

Proof: The proof of Theorem 2.7 follows from Theorem 2.2 (or from Theorem 2.4,

respectively), where the only di�erence to Theorem 2.2 or Theorem 2.4 is given by

the de�nition of the set M . 2

From Theorem 2.7 we can easily conclude the following result.

Corollary 2.8 Let the assumptions of Theorem 2.7 hold, and suppose that

k'(x)kY �

0

	
�
[x]SgB

� < +1 ; whenever [x]SgB % +1 : (2.11)

Then the equation f(x) = y is solvable for any y 2 Y0 , where Y0 � Y (or Y0 � Y � ,

respectively).

3 The Cauchy initial-value problem for operator

di�erential equations in Banach spaces

Let X ; Y ; Y � ; B0 ; B1 denote Banach spaces, and let SgB � X be a weakly com-

plete \reexive" (weakly-star complete bounded weakly-star compact) qn -space.

We assume that either (Y ; Y �) is a complementary pair of spaces (i.e. Y � con-

tains a bounded subspace for which Y is the dual space and vice versa, as, for

example, in the case of Orlicz spaces or Orlicz-Sobolev spaces, see [8], [4], [7], [10]),

or Y is the dual space of some Banach space Y1 .

We consider the evolution equation

dx(t)

dt
+ f(t ; x(t)) = y(t) ; x(0) = 0 ; (3.1)

where f(t ; �) : SgB ! Y is for all t 2 [0; T ] a nonlinear operator.

We make the following assumptions:

(C1) f : P�0�1
(0; T ;SgB; Y ) ! L�1

(0; T ;Y ) is a weakly-star continuous operator.

Here, �0 ; �1 are N - functions such that for some q > 1 we have

	0(�) � �1(�) � Cj� jq ; �1 � �0 : (3.2)

(C2) There exists a mapping ' : Sg1B1
� SgB ! Y1 such that

' : W 1E�0
(0; T ;Sg1B1

) ! W 1E	1
(0; T ;Y1) (3.3)
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and such that one of the following conditions is satis�ed:

(a) ' : Sg1B1
! Y1 is a linear bounded operator that commutes with the

derivative d=dt , such that R(') contains a linear set that is everywhere dense

in Y1 , and Sg1B1
is a separable locally convex topological vector space satis-

fying Sg1B1
� Y \ SgB .

(b) ' : Sg1B1
! Y1 is a nonlinear mapping of class C1 having an in-

verse '�1 which is weakly continuous from Y1 in SgB (from W 1E	1
(0; T ;Y1)

to W 1E�0
(0; T ;SgB) ). Furthermore, R(') contains some everywhere in Y1

dense linear set, and '(0) = 0 .

(C3) f(t ; �) and ' form a pair that is coercive in a generalized sense on the space

E�0
(0; T ;Sg1B1

) , i.e. there exist constants C ; ~C > 0 and a continuous func-

tion � : IR+ ! IR+ such that � � �0 for j� j > 1 and

Z
T

0
hf(t ; x(t)) ; '(x(t))i dt � C � ([x]L�0 (SgB)) �

~C : (3.4)

(C4) There exist constants 0 � � < 1 ; ~C1 � 0 ; ~C2 � 0 ; C2 � 0 ; C1 > 0 such that

for any x 2 W 1E�0
(0; T ;Sg1B1

) with x(0) = 0 and � 2 E�0
(0; T ;Sg1B1

) the

following inequalities hold:

Z
T

0
h� ; '0(x)�i(t) dt � C1

�q
L�1

(Y1)
(1 + [x]

�

L�0
(SgB)

) � ~C1 ;Z
T

0
hx0(t) ; '(x(t))i dt � C2

xq
L�1

(Y )
� ~C2 : (3.5)

Theorem 3.1 Let the conditions (C1) to (C4) be ful�lled, and let the spaces

Y ; Y1 ; SgB satisfy the above conditions. Suppose that y 2 L�1
(0; T ;Y ) satis�es

for some r � 0 the inequality

Z
T

0
hy ; '(x)i(t) dt � ~C0 �([x]L�0 (SgB)) +

~C1 ;

8 x 2 E�0
(0; T ;Sg1B1

) with [x]L�0SgB � r ; (3.6)

where ~C0 ; ~C1 are nonnegative constants satisfying C � ~C0 + " for some " > 0 .

Then (3.1) has a solution x 2 P�0�1
(0; T ;SgB; Y ) with x(0) = 0 in the sense of

L�1
(0; T ;Y ) , that is, for any y� 2 E	1

(0; T ;Y1) there holds

Z
T

0
hf(t; x(t)) ; y�(t)i dt +

Z
T

0
hx0(t) ; y�(t)i dt =

Z
T

0
hy(t) ; y�(t)i dt : (3.7)

Proof: We apply the method of elliptic regularization and the results of the previous

section. At �rst, we prove for � > 0 the solvability of the problem8><
>:
� �

d2x�(t)

dt2
+

dx�(t)

dt
+ f(t; x�(t)) = y(t) ; t 2 (0; T ) ;

x�(0) = 0 ; x0
�
(T ) = 0 :

(3.8)
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To this end, we show that the conditions (C1) to (C4) imply that Theorem 2.4 can

be applied to prove the solvability of the functional equality

�

Z
T

0

*
dx�

dt
;
dy�

dt

+
(t) dt +

Z
T

0

*
dx�

dt
; y�

+
(t) dt +

Z
T

0
hf(t; x�(t)) ; y

�(t)i dt

=

Z
T

0
hy(t) ; y�(t)i dt ;

8 y� 2 W 1E	1
(0; T ;Y1) ; y�(0) = y�(T ) = 0 : (3.9)

Indeed, by (C1), and since the operator de�ned by this equation depends linearly

on x0
�
, we obtain that the latter is weakly-star continuous as a mapping from

fx 2 W 1L�0
(0; T ;SgB) j x(0) = x(T ) = 0g into W�1L�1

(0; T ;Y ) . This yields

that the �rst condition of Theorem 2.4 is ful�lled for equation (3.9).

From (C2) it follows that also the second condition of Theorem 2.4 is ful�lled, and

the conditions (C3) and (C4) imply the generalized coercivity of the operator on

the space fx 2 W 1E�0
(0; T ;Sg1B1

) j x(0) = 0g .

Thus, applying Theorem 2.4, we obtain the solvability of (3.9), which in this case also

means that (3.8) is solvable in the sense of the dual space of fy� 2 W 1E	1
(0; T ;Y1) j

y�(T ) = y�(0) = 0 g , since R(') is everywhere dense in the space fx 2 W 1E	1
(0; T ;

Y1) j x(0) = 0g .

It remains to show that this entails the weak-star solvability of the equation (3.8),

i.e., we have to prove that if x� 2 P�0�1
(0; T ;SgB; Y ) with x�(0) = 0 is a solution

to (3.9), it is under the assumptions of Theorem 3.1 also an E	1
(0; T ;Y1) - solution

to (3.8).

To this end, let x� 2 P�0�1
(0; T ;SgB; Y ) , x�(0) = 0 , be an E	1

(0; T ;Y1) -solution

for a given y 2 L�1
(0; T ;Y ) . Using the general form of linear continuous functionals

on the space E�1
(0; T ;Y1) , we get under the assumptions of Theorem 3.1 that

�
d2x�

dt2
2 L�1

(0; T ;Y ) for all � > 0 ; indeed, we have

� �

Z
T

0

*
d2x�

dt2
; y�

+
(t) dt =

Z
T

0

 
hy ; y�i �

*
dx�

dt
+ f(t; x�) ; y

�

+!
(t) dt ; (3.10)

with y ; x0
�
; f(�; x�(�))2L�1

(0; T ;Y ), so that also �
d2x�

dt2
2L�1

(0; T ;Y ).

Consequently, x0
�
(T ) is de�ned for every � > 0 , and it follows immediately from

the functional equation that x0
�
(T ) = 0 . Thus, the solvability of (3.8) is proved.

Now, if we were able to show that we can pass to the limit as �& 0 in (3.9), then

it would be proved that (3.1) is solvable in a weak-star sense. For this purpose, the

uniform boundedness of the set fx�(t)g in fx 2 P�0�1
(0; T ;SgB; Y ) j x(0) = 0g

for �& 0 has to be shown.

The functional equation yields

� �

Z
T

0

*
d2x�

dt2
; �

+
�(t) dt +

Z
T

0

*
dx�

dt
; �

+
�(t) dt =

Z
T

0
hy � f(t; x�) ; �i �(t) dt :

(3.11)
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The function x� : [0; T ]! Y is a solution to the boundary value problem

� �
d2x�(t)

dt2
+

dx�(t)

dt
= y�(t) := y(t) � f(t; x�(t)) ; x�(0) = 0 ; x0

�
(T ) = 0 :

(3.12)

From the assumptions on f , and the boundedness of fx�g�>0 in L�0
(0; T ;SgB) , we

obtain that fy�g�>0 is bounded in L�1
(0; T ;Y ) .

Now, solving (3.12) we get that

dx�

dt
(T � t) =

Z
T�t

0
y�(T � �) e�

T�t��
� d� ; (3.13)

and since 1
�

R
1

0 exp (� �=�)d� = 1 , we get from Minkowski's inequality ([24]) or

from Young's generalized inequality for convolution integrals ([13]) that fx0
�
g�>0 is

bounded in the space L�1
(0; T ;Y ) . Thus, fx�g�>0 is a bounded subset of the space

fx 2 P�0�1
(0; T ;SgB; Y ) j x(0) = 0g .

Since, for every y� 2 W 1E	1
(0; T ;Y1) the inequality������

Z
T

0

*
dx�

dt
;
dy�

dt

+
(t) dt

����� � �

dx�dt

L�1

(Y )

ky�k
W 1

	1
(0;T ;Y1)

� C �1�
1
q ky�kW 1

	1
(0;T ;Y1) (3.14)

holds for all � > 0 , we may pass to the limit in (3.9) for �& 0 . It follows that the

limit x of fx�g belongs to P�0�1
(0; T ;SgB; Y ) \ fx j x(0) = 0g and satis�es the

identityZ
T

0

*
dx

dt
; y�

+
(t) dt +

Z
T

0
hf(t; x(t)) ; y�(t)i dt =

Z
T

0
hy ; y�i(t) dt ; (3.15)

for every y� 2 W 1E	1
(0; T ;Y1) .

Finally, since W 1E	1
(0; T ;Y1) is dense in E	1

(0; T ;Y1) , we may conclude that x

is a solution to problem (3.1). This concludes the proof of the assertion. 2

Remark 3.2 It should be clear that if we change the assumptions correspondingly

as in Section 2, then we obtain the solvability of (3.1) for weakly continuous operators

f(t ; � ) ; for this case special results similar to Theorem 3.1 have already been proved

in the earlier papers [5], [10], [17], [18], [19]. We would like to state as well that the

proof given here is analogous to that of a similar theorem in [5].

From Theorem 3.1 it follows immediately

Corollary 3.3 Let the assumptions of Theorem 3.1 be ful�lled, where

�
�
[x]L�0 (SgB)

�
k'(x)kL	1 (Y1)

!1 ; for [x]SgB !1 :

Then the problem (3.1) is E	1
(0; T ;Y1) - solvable in P�0�1

(0; T ;SgB; Y )\fx j x(0) =

0g for any y 2 L�1
(0; T ;Y ) .
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4 Completely nonlinear di�erential equations of

elliptic type

Let G � IRn (n � 1) denote a bounded domain with a su�ciently smooth boundary

@G . We consider the boundary value problem

A(u) :=

8><
>:

F (x; u;Du;D2u; : : : ; D(2m� 1)u; Lu) = h(x) ; x 2 G ;

D�uj@G = 0 ; j�j � m � 1 :

(4.1)

Here, denoting W 2m
� (G) := W 2mL�(G) ; we have u 2 W 2m

� (G)\
o

W
m

� (G) , and

h 2 W 2
	(G)\

o

W
1

	 (G) and F � F0 + F1 are given continuous functions, � =

(�1 : : : ; �n) 2 INn

0 is a multiindex, j�j :=
nX
i=1

�i , m � 1 , L a linear di�erential

expression of order 2m that maps continuously from W 2m
p0

(G)\
o

W
m

p0
(G) into

Lp(G) for some p0 � p > 1 , and Dku := fD�u j j�j = kg .

We consider the following conditions:

(D1) The di�erential expression L generates a linear di�erential operator L :

W 2m
p0

(G)\
o

W
m

p0
(G) ! Lp(G) with coe�cients in C2(G) , and there is some

C > 0 such that

kuk
W 2
p0
(G)\

o

W

m

p0
(G)

� C kLukLp(G) : (4.2)

(In other words, L is a uniformly elliptic operator of order 2m , see [24]).

(D2) F0(x; �; �) := F0(x; �0; : : : ; ��; : : : ; �) and F1(x; �; �) are continuously di�er-

entiable functions, i.e., F0; F1 2 C1 . Furthermore, it holds F0(x; �; 0) = 0

and F1(x; �; �) = 0 whenever � = 0 or �� = 0 for at least one � with

j�j � m� 1 .

(This assumption and the fact that the equation is examined for h 2
o

W
1

	 (G)

will imply that if the solution has additional smoothness, in a suitable sense,

then it will follow from the equation that Luj
@G

= 0 holds.)

(D3) There exist functions ' ; '0� ; '1� � 0 for j�j � 2m�1 that are N - functions

or main parts of N - functions, and constants C > 0 ; ~C > 0 such that '(�) �
'0�(�)'1�(�) for all � 2 IR+ and

C

2
4'(�) + X

j�j�2m�1

'0�(�)'1�(��)

3
5 � F0�(x; �; �)

� ~C

2
4'(�) + X

j�j�2m�1

'0�(�)�1�(��) + 1

3
5; (4.3)

for any ��; � 2 IR and x 2 G .
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By � (resp. �1�) , we denote the N - function induced by ' (resp. by '1� ):

�(�) :=

Z
j�j

0
~'(�1) d�1 =

Z
j�j

0

"Z
j�1j

0
'(�) d�

#
d�1 : (�)

	 (resp. 	1� ) denotes the N - function which is conjugate to � (resp. �1� ).

(D4) There exists a p � 2 such that �(�) � c j� jp , and W 1
p
(G) � LM (G) for an

N - function M satisfying M � � .

(We remark that if � satis�es a �3 - or a �2 - condition, then the existence

of some p � 2 satisfying (D4) becomes obvious, because in this case there is

a p such that p > n and � � c j� jp ([8]). Consequently, W 1
p
(G) � LM(G)

holds for all M (see [4]).)

(D5) There exist convex functions '0; '1; '2; 'j� � 0 , j = 0; 1; : : : ; 7 , j�j � 2m�
1 , and constants Cj � 0 , j = 1; : : : ; 5 , such that the following inequalities

hold.

(I)
nX
i=1

2
4���F0 xi(x; �; �)

��� + X
j�j�2m�2

���F0 ��(x; �; �)
��� ������i

���
3
5

� C1

8<
:j ~'(�)j+

X
j�j�2m�1

j ~'0�(�)j '1�(��)

9=
; ;

where ��i := (�1; : : : ; �i�1; �i + 1; �i+1; : : : ; �n) .

(II)
���F0 ��(x; �; �)

��� � C2

8<
:'0(�) +

X
j�j�2m�1

'2�(�)'3�(��)

9=
; ; j�j = 2m� 1 :

(III)
���F1�(x; �; �)

��� � C3

8<
:'(�) +

X
j�j�2m�1

'0�(�)'1�(��)

9=
; ; with C3 <

C

3
:

(IV)
���F1��(x; �; �)

��� � C4

8<
:'2(�) +

X
j�j�2m�1

'6�(�)'7�(��)

9=
; ; j�j = 2m�1 :

(V)
nX
i=1

8<
:
���F1xi(x; �; �)

��� + X
j�j�2m�2

���F1��(x; �; �)
��� ������i ���

9=
;

� C5

8<
:'1(�) +

X
j�j�2m�1

'4�(�)'5�(��)

9=
;;

where ��i = (�1; : : : ; �i�1; �i + 1; �i+1; : : : ; �n) .

In addition,

'0(�) � �
1
q (�)j�j�1 ; '1(�) < j~�(�)j ; '2(�) < �

1
q (�)j�j�1 ;

'2�(�) � �
1
q

0�(�)j�j
�1 ; '3�(��) � '

1
q

1�(��) ; '4�(�) � j~�0�(�)j ;

'5�(��) � '1�(��) ; '6�(�) < �
1
q

0�(�)j�j
�1 ; '7�(��) < '

1
q

1�(��) ;

8 �� ; � 2 IR ; j�j � 2m � 1 ; q = p0 : (4.4)

18



We introduce the following space of measurable functions

HL(G) :=
n
u
��� nX
i=1

Z
G

h
'(Lu) +

X
j�j�2m�1

'0�(Lu) '1�(D
�u)

i
jDiLuj

2 dx

+

Z
G

�(Lu) dx < +1
o
: (4.5)

Theorem 4.1 Let (D1) to (D5) be ful�lled. Then (4:1) is solvable almost every-

where in G for any h 2 W 2
	(G)\

o

W
1

	 (G) and the solution u belongs to the space

HL(G) \ fu j D�uj@G = 0 ; j�j � m� 1g :=
o

H
L

(G) .

In the case when F0 ; F1 have additional smoothness, condition (D5) concerning

the growth of the nonlinearities can be relaxed somewhat. We consider the following

assumption:

(D6) There exist convex functions '3 ; '11� ; 'j � � 0 ; j = 8; 9; 10 ; j�j � 2m� 1 ,

and constants Cj ; ~Cj � 0 ; j = 6; : : : ; 10 , such that with ��i := (�1; : : : ; �i�1;

�i + 1; �i+1;: : : ; �n) , ��i := (�1; : : : ; �i�1; �i + 1; �i+1; : : : ; �n) the following

inequalities are ful�lled:

X
j�j�2m�2

nX
i=1

8<
:
���F0xi��(x; �; �)

��� ������i
��� + X

j�j�2m�2

���F0����(x; �; �)
��� ������i

��� ������i
���
9=
;

� C6

8<
:
��� ~'(�)��� + X

j�j�2m�1

"��� ~'0�(�)
��� '1�(��) + '8�(��)

#9=
; + ~C6 ;

nX
i=1

8<
:
���F0 x2

i
(x; �; �)

��� + X
j�j�2m�2

���F0 ��(x; �; �)
��� j�j

9=
;

� C7

8<
:'3(�) +

X
j�j�2m�1

'9�(�) '10�(��)

9=
; + ~C7 ;

nX
i=1

X
j�j=2m�1

8<
:
���F0 xi��(x; �; �)

��� + X
j�j�2m�2

���F0 ����(x; �; �)
��� ������i

���
9=
; j�j

� C8

8<
:'0(�) +

X
j�j�2m�1

h
'2�(�) '3�(��) + '11�(��)

i9=
; + ~C8 ;

nX
i=1

8<
:
���F0xi�(x; �; �)

��� + X
j�j�2m�2

���F0 ���(x; �; �)
��� ������i

���
9=
; j�j

� C9

8<
:j ~'(�)j +

X
j�j�2m�1

'4�(�) '5�(��)

9=
; ;
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���F0 ��(x; �; �)
��� � C10

8<
:'0(�) +

X
j�j�2m�1

'2�(�) '3�(��)

9=
; ; j�j = 2m � 1 :

Moreover, the functions '0 ; '2� ; '3� ; '4� ; '5� satisfy the conditions stated

in (4.4), and it holds

'8�(��) < j ~'(��)j ; '3(�) < '0(�) ; '3�(�) < '2�(�) ;

'10�(��) < '3�(��) ; '11�(��) < �
1
q (��) ; j�j � 2m� 1 : (4.6)

In addition, the corresponding derivatives of the function F1 satisfy inequali-

ties of the same kind, and F1� ; F1�2m�1
satisfy the inequalities from condition

(D5), where the convex functions occurring on the right-hand sides of these

inequalities are estimated from above by strict inequalities as in (4.4).

Theorem 4.2 Let F = F (x; �; �) and L satisfy (D1) to (D4). Besides, let the

partial derivatives Fxi ; F�� ; j�j � 2m� 2 , be of class C1 and satisfy (D6). Then

(4:1) is solvable almost everywhere in G for every h 2 W 2
	(G)\

o

W
1

	 (G) , and the

solution u belongs to HL(G) .

Remark 4.3 If F does not enjoy the smoothness necessary for the application of

Theorem 4.2 but one of the functions F0 or F1 does, then we use for one of the

functions (D5) and for the other one (D6), and the assertion of the theorem still

remains valid.

Proof of Theorems 4.1 and 4.2: We apply Theorem 2.7. To this end, we have to

examine the properties of the spaces from (4.5) �rst.

We consider the spaces

S1;';2(G) :=

(
u
��� [u]S := �� 1

 Z
G

'(u)
nX
i=1

���Diu
���2 dx

!
+ kukL� < 1

)
; (4.7)

S1;'0�; '1�;2(G) :=

8<
:u

��� [u]S := ~�� 1

0
@Z

G

nX
j=1

'0�(u)'1�j(Dju)
nX
i=1

���Diu
���2 dx

1
A <1

9=
;;
(4.8)

where ' ; '0� ; '1� � 0 ; j�j = k , are convex functions satisfying certain conditions

which are, for example, of the type of condition (D3).

We remark that these spaces have been considered before under di�erent assump-

tions for the functions ' ; '0� ; '1� (e.g., for the case ~'(u) := juj�u ; '1 := Id: in

the papers [5], [7], [18], and for more general cases in [19] and others). Moreover, the

spaces (4.7) and (4.8) are qn -spaces (see [18]); consequently all results of Section 1

are valid for these spaces.

Furthermore, we apply the de�nition of the Sobolev spaces of the form Lm

p
(G)

and choose the spaces SgB as basic spaces instead of Lp(G) . Thus, we obtain the
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following classes of spaces

Sk

1;';2(G) :=
n
u
��� D�u 2 S1;';2(G) ; j�j = k

o
;

ML

� (G) :=
n
u
��� Lu 2 L�(G)

o
;

Sk

1;'0�;'1�;2
(G) :=

n
u
��� D�u 2 S1;'0�;'1�;2(G) ; j�j = k

o
: (4.9)

These spaces could, by analogy, be called nonlinear Sobolev spaces or Orlicz-Sobolev

spaces depending on which spaces are chosen as basis, S1;';2(G) ; S1;'0�;'1�;2(G) or

S1;p;2(G) .

In what follows, we will consider spaces of the form

SL

1;';2(G) :=
n
u
��� Lu 2 S1;';2(G) ; D

�u
���
@G

= 0 ; j�j � m � 1
o
; (4.10)

o

S
(L)
1;'0�;'1�;2(G) :=

8<
:u

��� X
j�j�2m�1

Z
G

'1�(D
�u)'0�(Lu)

nX
i=1

���DiLu
���2 dx < +1

9=
; ;

(4.11)

which are directly connected to the equations examined by us. For these spaces, we

have to prove imbedding results that are based on the following inequalities.

Proposition 4.4 Let m 2 IN and let ' ; '0� ; '1� ; j�j � 2m� 1 , be nonnegative

convex functions with '0�(�)'1�(�) � '(�) , for � 2 IR . In addition, let ' = �00 ,

'0� = �00

0� , where � ; �0� ; '1� are N - functions de�ned as in (*) in (D3). Then

the following inequalities are valid for any �� ; � ; �i 2 IR :

j ~'(�)j j�ij � � '(�) �2
i
+ C(�) �(�) ; where ~� := �0 ; (4.12)

'1�(��) j ~'0�(�)j j�ij � �1 '0�(�)'1�(��) �
2
i
+ C(�1) �0�(�)'1�(��) ;

for � = (�1; : : : ; �n) 2 INn

0 ; j�j � 2m � 1 : (4.13)

(Here, and in the sequel, � and �i ; i 2 IN , denote positive constants, and C(�) ,

C(�i) denote positive constants depending on � ; �i .)

Proposition 4.5 Let '0 ; '2� ; '3� � 0 ; j�j � 2m� 1 , be convex functions with

'0(�) � �
1
q (�) j�j�1 ; '2�(�) � �

1
q

0�(�) j�j
�1 ; '3�(�) � '

1
q

1�(�) ;

where � ; '1� ; '0� are N -functions just like in Proposition 4.4. Then, the follow-

ing inequalities hold for any � ; �� ; ��� ; �i 2 IR with p � 2 ; q = p0 :

'0(�)
��������� ����i��� � �1 '(�) �

2
i
+ �2 j���j

p
+ �3 �(�) + C(�1; �2; �3) : (4.14)

'2�(�)'3�(��) j���j j�ij � �1 '0�(�)'1�(��) �
2
i
+ ��� �2 j���j

p + �3 �0�(�)'1�(��)

+ �4�(��) + C(�1; �2; �3 �4) ; where ��� =

(
1 ; j��j = 2m ;

0 j��j � 2m� 1 :
(4.15)
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Proposition 4.6 Let '1 ; '4� ; '5� , j�j � 2m�1 , be nonnegative convex functions
with

'1(�) � j ~'(�)j ; '4�(�) � j ~'0�(�)j ; '5�(�) � '1�(�) ;

where j ~'j ; j ~'0�j ; '1� are N - functions as in Proposition 4.4. Then the following

inequalities hold for any �� ; � ; �i 2 IR : ,

'1(�)j�ij � �1 '(�) �
2
i
+ �2�(�) + C(�1; �2) ; (4.16)

'4�(�)'5�(��) j�ij � �1 '0�(�)'1�(��) �
2
i
+ �2�0�(�)'1�(��) + C(�1; �2) : (4.17)

Proposition 4.7 Let '2 ; '6� ; '7� , j�j � 2m�1 , be nonnegative convex functions
with

'2(�) < �
1
q (�) j�j�1 ; '6�(�) < �

1
q

0�(�) j�j
�1 ; '7�(��) � '

1
q

1�(��) ;

where � ; �0� ; '1� are N - functions as in the preceding propositions. Then, with

��� =

(
1 j��j = 2m ;

0 j��j � 2m � 1 ; j�j � 2m� 1 ;
(4.18)

the following inequalities hold for any �� ; � ; ��� ; �i 2 IR :

'2(�) j���j j�ij � �1 '(�) j�ij
2
+ �2 ��� j���j

p
+ �3 �(�) + �4 �(��) + C(�1; �2; �3; �4) ;

(4.19)

'6�(�)'7�(��) j���j j�ij � �1 '0�(�)'1�(��) j�ij
2
+ �2 ��� j���j

p
+ �3 �(��)

+ �4�0�(�)'1�(��) + C(�) : (4.20)

Proposition 4.8 Let � ; �0� ; '1� , j�j � 2m � 2 , be N -functions de�ned as in

(*) in (D3) by nonnegative functions ' ; '0� that are at least main parts of certain

N - functions. Then the following inequalities hold for any �� ; � ; �i 2 IR1 :

'(�) � '0�(�)'1�(�) ; 8 � 2 IR ; (4.21)

'(�) j�ij j�j � C1 '(�) j�ij
2
+ C2�(�) + C3�(�) ; (4.22)

'0�(�)'1�(��) j�ij j�j � C1 '0�(�)'1�(��) �
2
i
+ C2�0�(�)'1�(��)

+C3�(�) + C4�(��) + C5 ; (4.23)

j ~'0�(�)j j'
0

1�(��)j j���j j�j � C1 '0�(�)'1�(��) �
2 + C2�(�) + C3 �(��)

+C4�(���) + C5�(�) + C6 ; (4.24)

j ~'1�(�)j '1�(��) j�j � C1 '0�(�)'1�(��) �
2 + C2�0�(�)'1�(��)

+C3�(�) + C4�(��) + C5 : (4.25)

Proofs of Propositions 4.4 to 4.8: The proofs of these propositions are derived from

Young's inequality (Fenchel-Moreau) with a small parameter, applying the proper-

ties of N - functions and results from [19]. It constitutes no major di�culty, therefore
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we will not demonstrate the details, here. We con�ne ourselves to demonstrate just

one of the inequalities in Proposition 4.5 and in Proposition 4.8.

In the case of inequality (4.14) in Proposition 4.5, we have, using Theorem 1 in [19],

j��j = 2m , and

'0(�) j���j j�ij � �
1
q (�) j�ij j�j

�1 j���j

� (�(�))
2�q

2q '1=2(�) j���j j�ij

� �1 '(�)�
2
i
+ C(�1) �

2�q

q (�)j���j
2

� �1 '(�) �
2
i
+ �2 j���j

p + �3 �(�) + C(�1; �2; �3) ; (4.26)

and inequality (4.23) in Proposition 4.8 follows from

'0�(�)'1�(��) j�ij j�j

� C1 '0�(�)'1�(��) �
2
i
+ C2 '0�(�)'1�(��) �

2

� C1 '0�(�)'1�(��) �
2
i
+ C2 [j ~'0�(�)j j�j + ~'0�(�) �]'1�(��)

� C1 '0�(�)'1�(��) �
2
i
+ C2 �0�(�)'1� (��) + C3�(�) + C4�(��) + C5 :

(4.27)

2

Proposition 4.8 leads to

Corollary 4.9 Let ' ; '0� ; '1� ; � ; �0� ; j�j � 2m � 1 , be functions satisfying

the assumptions of Proposition 4:8, and let 	 be the conjugate Young function to

� . Then the following implications hold.

u 2 SL

1;';2(G) =) ~'(Lu) 2 W 1
	(G) ; (4.28)

o

u 2
o

M
L

� (G) \ S
(L)
1;'0�;'1�;2(G) =) '0�(Lu)'1�(D

�u) 2 W 1
	(G) ; j�j � 2m � 1 ;

(4.29)

where
o

M
L

� (G) := ML

� (G) \
n
u
��� D�u

���
@G

= 0 ; j�j � m � 1
o
: (4.30)

We introduce two further denotations. We put

SL

1;';2(G) := S ~'�L;W 1
	
(G) ; S

(L)
1;'0;'1;2(G) := S �'0;S �'1;W

1
	0

(G)
;

whenever �'0 = �'0('0�; '1�) ; �'1 = �'1('0; '1) are given functions: (4.31)

We then have the following result.

Lemma 4.10 Let the functions ' ; '0� ; '1� ; � ; �0� ; 	 ; j�j � 2m � 1 , satisfy

the assumptions of Proposition 4.8 and suppose that

'0�(�) '1�(�) � '(�) ; �(�) � j� jp ; 8 � :
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Then the following imbeddings are compact:

HL(G) := SL

1;';2(G) \

 \
�

S
(L)
1;'0�;'1�;2(G)

!
� S ~'�L;W 1

	
(G) ,!

o

M
L

� (G) ; (4.32)
o o o o

HL(G) � S ~'�L;W 1
	
(G) ,! W 2m

p
(G)\

o

W
m

p
(G) ,! W 2m�1

� (G) : (4.33)
o o

Proof. It follows from the imbedding theorems for Orlicz{Sobolev spaces (see [4])

that the imbedding W 1
	(G) ,! L	(G) is compact. Using the results of Section 1,

and invoking the conditions (D1) and (D4), we �nd that the imbeddings

S ~'�L;W 1
	
(G) ,!

o

M
L

� (G) �
o

M
L

p
(G) ;

o

M
L

p
(G) �= W 2m

p0
(G)\

o

W
m

p0
(G) (4.34)

o

are compact. Consequently, the imbedding HL(G) ,! W 2m
p0

(G) is compact, too,
o

because under the assumptions of the lemma we have that kuk
W 2m
p0

(G)\
o

W

m

p0
(G)

is

equivalent to kLukLp(G) . 2

5 Proof of the existence theorem for (4.1)

Since the proof of Theorem 4.2 is similar to that of Theorem 4.1, only a little

lengthier, we only prove the latter here. To this end, we show that the operator

A generated by (4.1) is E� -weakly continuous, and coercive in a generalized sense.

The result will then be a consequence of Theorem 2.7. The following lemmas yield

its applicability.

Lemma 5.1 Suppose the assumptions of Theorem 4:1 are satis�ed, and let the

operator K : X0 := W 2m+2
p0

(G)\
o

W
m

p0
(G) \ fujLuj@G = 0g ! Lp(G) be de�ned

as K u := ��Lu + k Lu . Then the pair (A;K) is a coercive pair in a generalized

sense, that is, for any u 2 X0 it holds

hA(u) ; K(u)i :=
Z
G

h
F0(x;D

�u; Lu) + F1(x;D
�u; Lu)

i
(��Lu + k Lu) dx

� C

8<
:
Z
G

'(Lu)
nX
i=1

���DiLu
���2 dx +

Z
G

X
j�j�2m�1

'0�(Lu)'1�(D
�u)

nX
i=1

���DiLu
���2 dx

+

Z
G

h
'(Lu) +

X
j�j�2m�1

'0�(Lu)'1�(D
�u)

i
(Lu)2 dx

9=
; � ~C ; (5.1)

where C > 0 ; ~C � 0 are some constants.

Proof: In view of (D2), we have

hA(u) ; K ui = k

Z
G

h
F0(x;D

�u; Lu) + F1(x;D
�u; Lu)

i
Lu dx
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+
nX
i=1

Z
G

h
F0�(x;D

�u; Lu) + F1�(x;D
�u; Lu)

i���DiLu
���2 dx

+
nX
i=1

Z
G

2
4F0xi(x;D

�u; Lu) +
X

j�j�2m�1

F0�� (x;D
�u; Lu)D

��iu

3
5DiLu dx

+
nX
i=1

Z
G

2
4F1xi(x;D

�u; Lu) +
X

j�j�2m�1

F1��(x;D
�u; Lu)DiD

�u

3
5DiLu dx: (5.2)

Applying now the conditions (D3) and (D5) of Theorem 4.1, we obtain

hA(u) ; K ui � C 0

Z
G

2
4'(Lu) + X

j�j�2m�1

'0�(Lu)'1�(D
�u)

3
5 nX
i=1

���DiLu
���2 dx

+ k1

Z
G

2
4��� ~'(Lu)Lu +

X
j�j�2m�1

~'0�(Lu)Lu'1�(D
�u)

3
5 dx

�C1

Z
G

8<
:
��� ~'(Lu)��� + X

j�j�2m�1

��� ~'0�(Lu)
���'1�(D

�u)

9=
;

nX
i=1

jDiLuj dx

�C2

Z
G

2
4'0(Lu) +

X
j�j�2m�1

'2�(Lu)'3�(D
�u)

3
5 nX
i=1

jDiD
�ujjDiLuj dx

�C4

Z
G

2
4'2(Lu) +

X
j�j�2m�1

'6�(Lu)'7�(D
�u)

3
5 nX

i=1

���DiD
�u
������DiLu

��� dx

�C5

Z
G

2
4���'1(Lu)

��� + X
j�j�2m�1

'4�(Lu)'5�(D
�u)

3
5 nX
i=1

���DiLu
��� dx � C1 : (5.3)

Here, we take into consideration that the following inequality holds under the con-

ditions (D2), (D3), and (D5).

hA(u) ; k Lui � ~C1

Z
G

2
4 ~'(Lu)Lu +

X
j�j�2m�1

~'0�(Lu)Lu'1�(D
�u)

3
5 dx � ~C2 :

(5.4)

Furthermore, applying Propositions 4.4 to 4.7 to those summands in (5.3) that have

no well-de�ned sign, we obtain

hA(u) ; K ui � ~k

Z
G

2
4 ~'(Lu)Lu +

X
j�j�2m�1

~'0�(Lu)Lu'1�(D
�u)

3
5 dx

+ �C

Z
G

2
4'(Lu) + X

j�j�2m�1

'0�(Lu)'1�(D
�u)

3
5 nX
i=1

���DiLu
���2 dx

� �1
X

j�j�2m�1

Z
G

�(D�u) dx � �2

Z
G

�(Lu) dx � �3
X

j�j=2m

Z
G

���D�u
���p0 dx

� �4
X

j�j�2m�1

Z
G

�0�(Lu)'1�(D
�u) dx � �C2 : (5.5)
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From this, using the inequality (4.2) in condition (D1) and Proposition 4.4, and

choosing k su�ciently large, we derive that (5.1) holds. Thus, the generalized

coercivity is proved. 2

Next, we will prove that A is E� -weakly continuous from HL(G) into L	(G) . In
o

fact, we show a stronger result.

Lemma 5.2 Under the assumptions of Theorem 4:1, the operator A : HL(G)!
o

L	(G) is E� - weakly continuous, and it is even fully continuous.

Proof: Let furg � HL(G) be an E� -weakly convergent sequence in HL(G) ,
o o

i.e. ur ! u0 2 SL

1;';2(G) , E� -weakly in HL(G) , but then also in SL

1;';2(G) .o o o

Lemma 4.1 yields then that a subsequence can be chosen, again denoted furg , that
converges strongly in ML

�(G) , i.e. Lur ! Lu0 in L�(G) , and also Lur ! Lu0
o

in Lp(G) .

Hence, by (D4) and Lemma 4.1,

D�ur ! D�u0 ; j�j � 2m � 1 ; Lur ! Lu0 in L�(G) : (5.6)

On the other hand, we get from the assumptions on the functions F0 ; F1 that

F0 ; F1 map continuously from HL(G) into L	(G) . Besides, it follows from the
o

assumptions of the theorem that F :
o

M
L

� (G) ! L	(G) is continuous. We also get

that

F ( � ; D�ur; Lur) ! � 2 L	(G) ; E�-weakly in L	(G) ; (5.7)

possibly after choosing a subsequence, and by virtue of (5.6) it follows that

D�ur ! D�u0 ; j�j � 2m � 1 ; Lur ! Lu0 ; almost everywhere in G :

(5.8)

Hence, �(x) = F (x;D�u0; Lu0) , and

F ( � ; ur; D
�ur; Lur) ! F ( � ; u0; D

�u0; Lu0) almost everywhere in G : (5.9)

Thus, we �nally have shown that

F ( � ; D�ur; Lur) ! F ( � ; D�u0; Lu0) in L	(G) : (5.10)

This proves the full continuity of A from HL(G) into L	(G) and thus, Lemma 5.2
o

is proved. 2

Proof of Theorem 4.1: We have R(K) = K(W 2m+2
p0

(G)\
o

W
m

p0
(G) \ fu j Luj@G =

0g ), and thus R(K) contains a linear subset which is everywhere dense in E�(G) .

Moreover, we have, for all h 2 W 2
	(G)\

o

W
1

	 (G) ,

���hh ; K ui
��� =

����
Z
G

h(��Lu + k Lu) dx

���� =
����
Z
G

(��h + k h)Lu dx

����
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�
h
k�hk

L	(G)
+ k khk

L	(G)

i
kLukL�(G)

� C(�)	
�
khkW 2

	
(G)

�
+ �

Z
G

�(Lu) dx + C : (5.11)

Therefore, all assumptions of Theorem 2.7 are satis�ed, and consequently, (4.1) is

solvable in the sense of De�nition 2.1 for any h 2 W 2
	(G)\

o

W
1

	 (G) . In addition, we

can infer from Lemma 5.2 that the solvability is in the sense of almost everywhere

in G , and that u 2 HL(G) . This concludes the proof of Theorem 4.1. 2
o

6 Parabolic equations

We consider the initial-boundary value problem

8>><
>>:

@u

@t
+ F0(x; t;D

�u; Lu) + F1(x; t;D
�u; Lu) = h(x; t) ; (x; t) 2 Q ;

u(x; 0) = 0 ; D�u
���
@G�[0;T ]

= 0 ; j�j � m � 1 ; � = @G � [0; T ] ;

(6.1)

for u 2 W 1
	(0; T ;L	(G)) \ L�(0; T ;W

2m
� (G)\

o

W
m

� (G)) ; h 2 L	(0; T ;W
2
	(G))

\
o

W
1

	 (G)) , where Q = G�[0; T ] ; D�u = (u;D u; : : : ; D(2m�1)u) , and L is a linear

di�erential expression of 2m -th order just like in Section 4 (Dku = fD�u
��� j�j = kg ).

We assume the following conditions to be ful�lled.

(D7) The operator L generated by the di�erential expression L satis�es (D1)

and is a positive, selfadjoint operator commuting with @=@t . In addition,

it holds with L = L2
0 ; L0 = L�0 , for any u ; v 2 Lp0

(0; T ;W 2m+2
p0

(G)\
o

W
m

p0

(G)) \ fu j Luj� = 0g ;

�
Z
Q

(�Lu)v dx dt =

Z
Q

nX
i=1

Di v di Lu dx dt =

Z
Q

nX
i=1

(DiL0u)(DiL0v) dx dt :

(6.2)

(Note that from this condition it follows that L is a di�erential expression

with constant coe�cients.)

(D8) The functions F0 = F0(x; t; �; �) ; F1 = F1(x; t; �; �) satisfy a Carath�eodory

condition with respect to the variables (x; t) 2 Q ; � 2 IRm (where m =

n2m�1 + 1) and � 2 IR .

We introduce the spaces

P1;';2;	(Q) := W 1
	(0; T ;L	(G)) \ L�(0; T ;

o

S
L

1;';2 (G)) \ fu j u(x; 0) = 0g ;
o

PL(Q) := P1;';2;	(Q) \ L	(0; T ;H
L(G)) ; (6.3)

o o o
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where HL(G) ;
o

S
L

1;';2 (G) are the spaces introduced in Section 4. Consequently,
o

these spaces are also qn -spaces and have the corresponding properties.

Theorem 6.1 Let (D7) and (D8) hold, and assume that the conditions (D2) to

(D5) on the functions F0 = F0(x; t; �; �) ; F1 = F1(x; t; �; �) are satis�ed uniformly

in t . Then (6.1)is for any h 2 L	(0; T ;W
2
	(G)\

o

W
1

	 (G)) solvable (more precisely:

E� -solvable) in PL(Q) (and a.e. in Q ), and @u=@t belongs to L	(0; T ;W
1
	(G)) .

Remark 6.2 The assertion of Theorem 6.1 remains valid when the assumptions

needed for the validity of Theorem 4.1 are replaced by those needed for Theorem

4.2.

Proof of Theorem 6.1: We apply Theorem 3.1. At �rst, it is not di�cult to verify

that the operator A( � ; t) generated by the elliptic part of problem (6.1) and the

operator K de�ned in Section 5 satisfy the conditions (C2), (C3) of Theorem 3.1,

by Lemma 5.1. Moreover, using (D7), we obtain the validity of (C4) from the

inequalities

Z
Q

@u

@t

 
��L

@u

@t
+ k L

@u

@t

!
dx dt

=

Z
Q

nX
i=1

 
Di L0

@u

@t

!2

dx dt+

Z
Q

k

 
L0

@u

@t

!2

dx dt � ~C

@L0u

@t


2

L2(0;T ;W 1
2
(G))

;(6.4)

Z
t

0

Z
G

@u

@t
(��Lu + k Lu) dx dt � ~C1kL0u( � ; t)k

2
W 1

2 (G)
; t 2 [0; T ] : (6.5)

The E� -weak continuity of the operator A is proved as in Lemma 5.2 with the

help of a compactness theorem following from Theorem 1.7 in Section 1. It is not

di�cult to see that the space PL

1;';2;	(Q) satis�es the assumptions of Theorem 1.7.
o

From Theorem 1.7. follows therefore the compactness of the imbedding

PL

1;';2;	(Q) ,! L�(0; T ;M
L

�(G)) ; (6.6)
o o

and, consequently, the compactness of the imbedding

PL(Q) ,! L�(0; T ;M
L

�(G)) : (6.7)
o o

But this means that, if ur ! u0 E� -weakly in PL(Q) ; r %1 , then we have for
o

some subsequence, again denoted furg , that

D�ur ! D�u0 ; j�j � 2m � 1 ; Lur ! Lu0 ; in L�(Q) : (6.8)

To continue, we now use the same argumentation as in the proof of Lemma 5.2 to

obtain the E� -weak continuity of the operator A : PL(Q)! L	(Q) .
o

Thus, all assumptions of Theorem 3.1 are ful�lled for (6.1), whence the existence

result follows.
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In order to complete the proof of Theorem 6.1, it remains to remark that (6.1) can

be written in the form

@u

@t
= h(x; t) � F (x; t;D�u; Lu) ; (6.9)

and that, under the assumptions of the theorem, the right-hand side belongs to

L	(0; T ;W
1
	(G)) . Then, also @u=@t 2 L	(0; T ;W

1
	(G)) , and Theorem 6.1 is com-

pletely proved. 2

Remark 6.3 If F1(x; t; �; �) � F1(x; t) , then also F1 2 L	(0; T ;W
2
	(G)\

o

W
1

	

(G)) .

7 Examples

Let G � IRn(n � 1) be a bounded domain with a su�ciently smooth boundary

@G .

1. We consider the boundary value problem:8>>>>><
>>>>>:

�

"
nX

k=0

ak
���Dku

����k + a
�
j�uj� ln (1 + j�uj2) + j�uj~�0

�#
�u

+
X

j�j+����+1

b�(x)(�u)
��

nY
k=0

(Dku)
�k = h(x) ; u

���
@G

= 0

: (7.1)

Theorem 4.1 yields for this equation the following existence result.

Theorem 7.1 Let � � �k � �0 � 2 ; j�j + �� � � + 1 ; � > ~�0 � 0 ; �k = 0

or �k � 1 ; ak � 0 ; k = 0; : : : ; n ; a > 0 ; b� 2 C1 ; (�0; : : : ; �n) := � ; �� � 0 .

Additionally, let one of the following conditions be ful�lled.

(i) �� = 0 ; 9k0 : 0 � k0 � n ; �k0 �
�k0
2

+ 1 ; ak0 > 0 ; j�j < � + 1 :

(ii) �� = 0 ; if �k = 0 ; 1 � k � n ; �0 < � + 1 ; then �0 = 0 or � � 2 and

b� 2 W 2
q1
(G)\

o

W
1

q1
(G) ; q1 >

q + 2

�+ 1� �0
:

(iii) �� � 1 ; then
nX

k=0

(sign ak)
�k

�k
+

�� � 1
��

= 1 ; ~�0 � �� � � ;

X
j�j+����+1

3jb�j�� � a �� ;
X

j�j+����+1

2jb�j�k � ak �k ; 0 � k � n :

Then, problem (7.1) is solvable for any h 2 W 2
	(G)\

o

W
1

	 (G) almost everywhere in

G , and the solution u belongs to S�
1;';2(G) \ S�

1;~�0;2(G) \ S
(�)
3;�0;2(G) \ S

1(�)
2;��;2 (G) .

o o o

Due to [1], the Laplacian � satis�es all conditions imposed on L . If one of the

conditions of the theorem is satis�ed, then the last summand in (7.1) is a term of
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low order that satis�es the assumptions of Theorem 4.1 under the conditions (i)

and (iii), or the assumptions of Theorem 4.2 under the condition (ii) made for

F1(x;D
�u; Lu) .

Here, HL(G) is speci�ed by the following spaces (see [17], [19]):
o

S�
1;';2(G) :=

(
u
��� [u]S := ��1

 Z
G

j�uj� ln
�
1 + j�uj2

� nX
i=1

jDi�uj
2
dx

!
o

+��1
�Z

G

ln (1 + j�uj2) � j�uj�+2 dx
�
< +1

�
; (7.2)

S�
1;~�0;2

(G) :=

(
u
��� [u]~�0+2

S
:=

Z
G

j�uj~�0
nX
i=1

jDi�uj
2
dx

o

+

Z
G

j�uj~�0+2 dx < +1 ; u
���
@G

= 0

�
; (7.3)

S
(�)
3;�0;2(G) :=

(
u
��� [u]�0+2

S
:=

Z
G

juj�0
nX
i=1

jDi�uj
2
dx < +1

)
; (7.4)

S
1(�)
2;��;2 (G) :=

8><
>:u

��� [u]S :=

2
4 nX
k=1

 Z
G

jDk uj
�k

nX
i=1

jDi�uj
2
dx

! 2
(�k+2)

3
5
1
2

< +1

9>=
>; :

(7.5)

2. We consider the boundary value problem

�

 
a0 e

juj1+� +
nX
i=1

ai e
jDiuj

1+�

+ a e(�u)
2

� b

!
�u = h(x) ; x 2 G ;

u
���
@G

= 0 ; 0 < � � � < 1 : (7.6)

The following existence result for problem (7.6) is a consequence of Theorem 4.1.

Theorem 7.2 Let 0 � b � a +
nX

k=0

ak � 1 , and a > 1 ; ak � 0 ; 0 < � � � < 1 .

Then, problem (7:6) is solvable for any h 2 W 2
	(G)\

o

W
1

	 (G) almost everywhere in

G , and the solution is contained in S�
1;';2(G) \ S

(�)
3;'0;2(G) \ S

1(�)
2; �';2(G) := H�(G) ,

o o

with '(�) := e�
2

; �(�) :=

Z
j�j

0
d�1

Z
j�1j

0
'(�) d� ; '0(�) = e�

1+�

� 1 ; 'k(�) := e�
1+�

� 1 ; 	 = 	� .

We now state the fundamental inequalities necessary for proving the generalized

coercivity of the operator A .

Proposition 7.3 Let 0 < � � � < 1 ; � � � � 1 ; � � � � 1 . Then, the following

inequalities hold for any u 2 C3(G) \ C1
0(G) .Z

G

ejuj
1+�

juj�jDjuj j�uj jDj�uj dx
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� �

Z
G

ejuj
1+�

jDj�uj
2 dx + �1

Z
G

h
ejDjuj

1+�

+ ej�uj
2
i
(�u)2 dx

+ C0(�; �1)

Z
G

ejuj
(1+�)

dx + C(�; �1) ; (7.7)

Z
G

ejDjuj
1+�

jDjuj
�jDiDjuj j�uj jDi�uj dx

� �

Z
G

ejDjuj
1+�

jDj�uj
2 dx + �1

Z
G

h
ejDjuj

1+�

+ ej�uj
2

j�uj2
i
dx

+ �2

Z
G

jDiDjuj
p dx + C(�; �1; �2) : (7.8)

Proof: We have, with suitable p1; p2 > 1 ,

Z
G

ejuj
1+�

juj�jDiuj jDi�uj j�uj dx

� �

Z
G

ejuj
1+�

jDi�uj
2 dx + C(�)

Z
G

ejuj
1+�

juj2�jDiuj
2j�uj2 dx

� �

Z
G

ejuj
1+�

jDi�uj
2 dx + �1

Z
G

�
ejDiuj

1+�

� 1
�
j�uj2 dx

+C(�; �1)

Z
G

ep1juj
1+�

juj2�p2j�uj2 dx

� �

Z
G

ejuj
1+�

jDi�uj
2 dx + �1

Z
G

h
ejDiuj

1+�

+ ej�uj
2
i
(�u)2 dx

+C1(�; �1)

Z
G

ejuj
1+�

dx + C2(�; �1) ; (7.9)

and, for the other inequality,

Z
G

ejDjuj
1+�

jDjuj
�jDiDjuj j�uj jDi�uj dx

� �

Z
G

ejDjuj
1+�

jDi�uj
2 dx + C(�)

Z
G

ejDjuj
1+�

jDjuj
2�jDiDjuj

2j�uj2 dx

� �

Z
G

ejDjuj
1+�

jDi�uj
2 dx+ �1

Z
G

jDiDjuj
p dx

+C1(�; �1)

Z
G

eqjDjuj
1+�

jDjuj
2q�j�uj2q dx

� �1

Z
G

jDiDjuj
p dx+ �

Z
G

ejDjuj
1+�

jDi�uj
2 dx + �2

Z
G

ej�uj
2

(�u)2 dx

+C1(�; �1; �2)

Z
G

ejDjuj
1+�

dx + C2(�; �1; �2) : (7.10)

2

Remark 7.3 Parabolic equations having an elliptic part as in Examples 1 and 2

can be treated in exactly the same way.
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