
Weierstra�{Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Parallel modular dynamic process simulation

J�urgen Borchardt, Klaus Ehrhardt, Friedrich Grund

and Dietmar Horn

Preprint No. 439

Berlin 1998

��������



1991 Mathematics Subject Classi�cation. 65Y05, 65L05, 65H10, 65F50, 80A30.

Keywords and Phrases. Systems of differential�algebraic equations; Block

partitioned systems; Newton�type methods; Sparse�matrix techniques; Par-

allelization; Chemical process simulation; Dynamic simulation of distillation

plants.

This work was supported by the Federal Ministry of Education, Science, Re-

search and Technology, Germany under grant GR7FV1.



Parallel Modular Dynamic Process Simulation ?

Jürgen Borchardt, Klaus Ehrhardt, Friedrich Grund, and Dietmar Horn

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39,

10117 Berlin, Germany, e-mail borchardt@wias-berlin.de

Abstract. To meet the needs of plant wide dynamic process simulation of today's

complex, highly interconnected chemical production plants, parallelizable numeri-

cal methods using divide and conquer strategies are considered. The large systems

of di�erential algebraic equations (DAE's) arising from an unit oriented modular

modeling of chemical and physical processes in a chemical plant are partitioned

into blocks. Using backward di�erentiation formulas (BDF), a partitioned system

of nonlinear equations has to be solved at each discretization point of time. By for-

mally extending these systems, block�structured Newton�type methods are applied

for their solution. These methods enable a coarse grain parallelization and imply

an adaptive relaxation decoupling between blocks. The resulting linear subsystems

with sparse and unsymmetric coe�cient matrices are solved with a Gaussian elimi-

nation method using pseudo code techniques for an e�cient multiple refactorization

and solution. Results from dynamic simulation runs for industrial distillation plants

on parallel computers are given.

1 Introduction

The hierarchical modular structure of large chemical production plants can

be exploited for a plant wide process simulation. Here a plant is considered as

a network of connected process units like reactors, head exchangers or trays

of distillation columns. By a so called �owsheeting the units are connected by

mass and energy streams and a parameter dependent mathematical model is

linked to each unit type. For the dynamic simulation, this leads to an initial

value problem for a large system of DAE's which is structured corresponding

to the units into m coupled subsystems

Fi(t; y(t); _y(t); u(t)) = 0; i = 1(1)m; (1)

Fi : IR� IRn
� IRn

� IRl
! IRni

;

mX
i=1

ni = n; t 2 [t0; tend]

with given piecewise continuous parameter function u(t) and the unknown

function y(t). For the considerations in this paper it is assumed that the

DAE system (1) is index one [5]. In real life applications, it can involve tens

of thousands of equations or more. For solving such large scale problems, a

? This work was supported by the Federal Ministry of Education, Science, Research

and Technology, Germany under grant GR7FV1.



2

two level hierarchical structure of the system is considered. The �rst level of

the structure is built by the subsystems of the DAE system, while the second

level of the hierarchy is obtained by merging subsystems to blocks

~Fj = (Fj
1
; Fj

2
; : : : ; Fjmj

)T ; j = 1(1)p;

pX
j=1

mj = m: (2)

Such a so called block partitioning (2) can be prede�ned by a macro model

description covering functional blocks or can otherwise be generated auto-

matically by di�erent partitioning algorithms [8]. It can be changed during

the numerical simulation if needed.

In Section 2, it is described how the hierarchical structure of the DAE

system can be used to construct e�ectively parallelizable block�structured

Newton�type methods. These methods, based on block Schur�complement

techniques, require a repeated solution of linear systems with the same pat-

tern structure of the sparse and unsymmetric coe�cient matrices but with

di�erent right hand sides. For this, a direct solver [2] is described in Section

3. It uses a pseudo code technique for an e�cient multiple LU-refactorization

and solution. Finally, in Section 4, results for large scale real life applications

of the Bayer AG Leverkusen are given.

2 Parallel Newton�type methods

Because (1) is usually a sti� problem, BDF methods [5] are used for its

solution. For these methods a system of nonlinear equations has to be solved

at each discretization point of time. Based on a block partitioning (2), this

system is formally extended to use block�structured Newton�type methods

for its solution on parallel computers. The extension is done by determining

the internal variables x = (x1; : : : ; xp)
T of the blocks, duplicating of external

couple variables z = (z1; : : : ; zp)
T , and appending identi�cation equations

G(z) = 0, yielding the extended block partitioned system

Fj(xj ; zj) = 0; j = 1(1)p; (3a)

G(z) = 0; (3b)

where the nonlinear functions Fj : IRrj � IRsj �! IRqj
; rj + sj � qj ;

corresponding to the blocks ~Fj have disjunctive arguments and the function

G : IRs
�! IRr+s�n with

Pp

j=1 rj = r;
Pp

j=1 sj = s, and
Pp

j=1 qj = n is

linear.

Using the abbreviations �xj := x
k+1
j � x

k
j , Fj := Fj(x

k
j ; z

k
j ), G := G(zk),

@xj
Fj :=

@Fj

@xj
(xkj ; z

k
j ) and corresponding terms for �zj , @zjFj and @zjG, one

formally gets for the kth iteration step of a Newton�type approach

0 = Fj + @xj
Fj�xj + @zjFj�zj ; j = 1(1)p; (4a)



3

0 = G +

pX
j=1

@zjG�zj : (4b)

In [2,3] we have proposed block�structured Newton�type methods based on

a splitting of the block functions Fj into Fj = (F1

j ;F
2

j )
T . The splitting is

obtained by determining rj pivot elements in the qj � rj dimensional matrix

@xj
Fj , so that the rj pivot rows determine F1

j , and the regularity of @xj
F1

j

is ensured. In this case one gets

�xj = ��x̂j �Bj�zj ; j = 1(1)p; (5a)

0 = F̂j + Cj�zj ; j = 1(1)p; (5b)

0 = G + @zG�z (5c)

with �x̂j := (@xj
F1

j )
�1F1

j ; F̂j := F2

j � @xj
F2

j�x̂j ; Bj := (@xj
F1

j )
�1
@zjF

1

j ;

and Cj := @zjF
2

j � @xj
F2

jBj .

Thus, after computing the approximations �x̂j and the right hand sides

F̂j for each block system, the correction of the external variables �z can be

computed from the so called main system or coupling equations (5b),(5c) and

the correction of the internal variables �x can then be computed from the

block system equations (5a).

So, using the notations C :=diag(Cj) and F̂ := (F̂1; F̂2; : : : ; F̂p)
T , one

gets from (5a)�(5c) that the evaluation of the corrections �x and �z in the

kth iteration step of a modi�ed Newton method with scalar constant c can

be e�ciently realized in the following basic steps:�
@xj

F1

j ;

@xj
F2

j I

��
�x̂j

F̂j

�
= c

�
F1

j

F2

j

�
; j = 1(1)p; (6a)

�
@xj

F1

j ;

@xj
F2

j I

� �
Bj

Cj

�
=

�
@zjF

1

j

@zjF
2

j

�
; j = 1(1)p; (6b)

�
C

@zG

�
�z = �

�
F̂

c G

�
; (6c)

�xj = ��x̂j �Bj�zj ; j = 1(1)p: (6d)

In this paper Newton-type methods based on (6a)�(6d) are called type 1

methods. For these methods, the steps (6a),(6b), and (6d) can be done con-

currently for all block systems. Implementing them on parallel computers

with shared memory, both main parts of the computational amount, namely

all the calculation of functions and Jacobians as well as most of the amount

for the solution of the linear systems, can be covered together in one parallel

loop built up from (6a) and (6b). This results into a coarse grain parallelism.

The bottleneck is the sequential part (6c), which is dominated by the LU�

factorization of the main system matrix. To reduce this sequential amount of

the algorithm and to increase the e�ciency of the implementation on paral-

lel computers, various modi�cations of the method as e.g. multilevel Newton

iteration techniques can be considered [4].



4

Another possibility to reduce the computational amount for the solution

of the coupling system is based on identifying input and output streams of

the units in the �owsheet. Due to this, the external variables zj of a block

system can be divided into input and output variables uj and vj with

zj = (uj ; vj)
T
; uj 2 IRrj+sj�qj

; vj 2 IRqj�rj
; (7)

and G can be chosen so that @vG = �I and �v = @uG�u. Here, s = 2(q� r)
is assumed for notational simplicity, that means, that @uG is a permutation

matrix and there is only one input per output. But the following can be

extended to the multiple input case as well.

If the output variables can be computed from the block system equations

together with the internal variables, then an inverse
�
@xj

Fj @vjFj

�
�1

exists

and it is not necessary to split the block system equations. Using the ab-

breviation Bv = diag(Bvi), this results into a type 2 method, if (6a)�6d) is

replaced by

�
@xj

Fj @vjFj

���x̂j

�v̂j

�
= cFj ; j = 1(1)p; (8a)

�
@xj

Fj @vjFj

� � Bxj

Bvj

�
= @uj

Fj ; j = 1(1)p; (8b)

[@uG +Bv]�u = ��v̂ ; (8c)

�v = @uG�u; (8d)

�xj = ��x̂j �Bxj
�uj ; j = 1(1)p: (8e)

Compared to type 1 methods the size of the main system (8c) of a type 2

method is reduced to the half. Apart from the fact that type 1 methods can

be applied to more general problems, type 2 methods enable a better paral-

lelization and applicability of relaxation decoupling between blocks.

To introduce a relaxation decoupling in the case of weakly coupled blocks,

previous values of �u are used to approximate Bv�u in (8c). This formally

gives

�
@xj

Fj @vjFj

���x̂j

�v̂j

�
= cFj ; j = 1(1)p; (9a)

�
@xj

Fj @vjFj

��Bxj
�uj

Bvj�uj

�
= @uj

Fj�uj ; j = 1(1)p; (9b)

�vj = ��v̂j �Bvi�uj ; j = 1(1)p; (9c)

�u = [@uG]
T
�v; (9d)

�xj = ��x̂j �Bxj
�uj ; j = 1(1)p: (9e)

Here the explicit evaluation of the sensitivity matrices Bxj
and Bvj of internal

and of output variables with respect to input variables can be avoided by



5

computing only the vectors (Bxj
�uj) and (Bvj�uj). Usually the steps (9b)�

(9d) are iterated starting with a �rst approximate�u � � [@uG]
T
�v̂. Except

of the permutation (9d) all other steps can be done in parallel.

3 Repeated solution of sparse linear systems

The block�structured Newton�type methods described in the previous section

imply a repeated solution of linear systems. For solving these systems

Ax = b; A 2 IRn�n
; x; b 2 IRn (10)

with unsymmetric and sparse matrices A the Gaussian elimination method

PAQ = LU; (11)

Ly = Pb; UQ
�1
x = y (12)

is used. The nonzero elements of the matrix A are stored in compressed sparse

row format. L is a lower triangular matrix and U an upper triangular matrix.

The row permutation matrix P is used to provide numerical stability and the

column permutation matrix Q is used to control sparsity.

The determination of the pivots is essential for solving linear systems using

the Gaussian elimination method. The numerical stability can be saved for

linear systems with dense matrices using partial or complete pivoting. The

numerical complexity is O(n3) in these case. In contrast to linear systems

with dense matrices the numerical complexity can be reduced dramatically

for linear systems with sparse matrices. The fundamental problem is the

identi�cation of the pivot columns, what corresponds to the determination

of the permutation matrix Q. In [10] two cases for the determination of the

permutation matrix Q are considered.

In the �rst case the pivot column is determined in each elimination step

and the columns are dynamically reordered. The pivot columns are found

with a heuristic criterion. For this, the �rst column with a minimal number

of nonzero elements is searched in the matrix to be factorized. In the previous

version the numerical complexity of this method was O(n2). Now a new

method has been developed having only a complexity of O(n). For keeping
the method numerically stable partial pivoting is applied in the pivot column.

In the second case the permutation matrix Q is determined by a minimum

degree ordering of AT
A or of AT + A. The columns are statically reordered

in this case. Partial pivoting is used in the pivot columns as well.

To perform several factorizations for matrices with the same pattern struc-

ture using the same pivot sequence as well as to solve the linear system for

several right hand sides, a pseudo code is generated [10]. This code describes

the operations that are necessary for factorization (11) and solution (12) of

the linear system. Using the pseudo code enables a fast refactorization and

multiple solution as well.



6

4 Applications

The methods described in Section 2 and 3 are used in the block oriented

process simulation package BOP. This dynamic simulation package uses a hi-

erarchically structured data interface [11], which is currently generated from

the data supplied by the commercial process simulator SPEEDUP [1]. The in-

terface describes the system of DAE's structured into subsystems correspond-

ing to the units of the plant and is usable for an independent evaluation of

subsystem functions and Jacobian matrices. If no block decomposition is pre-

de�ned a topological block partitioning algorithm is used. To apply numerical

integration with BDF methods, the DASSL code [5] has been modi�ed with

respect to the nonlinear and linear solver, consistent initialization [13] and

handling of discontinuities. The simulation package BOP is currently imple-

mented on moderate parallel computers Cray J90, SGI Origin 2000 and DEC

AlphaServer using multiprocessing compiler directives for parallelization.

Used for the dynamic process simulation of various large distillation plants

of the Bayer AG Leverkusen, BOP has shown a good parallel performance.

All times given in Table 1 and 2 are measured for whole simulation runs on

non dedicated machines Cray J90 and include the times for sequential pre�

and post�processing.

Table 1. Dynamic simulation of plant bayer12 (19 558 equations) with BOP

Processors 1 1 7 21

Blocks 1 21 21 21

CPU time (sec.) 1 250 1 124 1 161 1 142

Wall clock time (sec.) 1 285 1 148 245 142

Speedup factor 1 1.12 5.24 9.05

Table 2. Dynamic simulation of plant bayer01 (57 735 equations) with BOP

Processors 1 1 8

Blocks 1 16 16

CPU time (sec.) 1 833 1 071 1 538

Wall clock time (sec.) 1 866 1 084 372

Speedup factor 1 1.72 5.02

In Table 3 the performance of BOP using di�erent implemented block

structured Newton-type methods is compared to that of SPEEDUP [1] at

a Cray J90. The example is a reactor model built up modularly by a multi

phase cell model which might be associated to a simpli�ed reactive separation

volume element.



7

Table 3. Dynamic simulation of reactor600 (45 600 equations)

Simulation with Processors Blocks CPU time Wall clock time

(sec.) (sec.)

SPEEDUP 1 1 7 008 7 516

BOP 1 1 5 089 5 120

BOP with type 1 1 18 5 814 5 870

BOP with type 2 1 18 4 932 4 967

BOP with type 1 6 18 6 208 1 904

BOP with type 2 6 18 5 140 1 371

The linear solver described in Section 3 is realized in the package GSPAR,

which is integrated in the simulation package BOP. In Table 4 the perfor-

mance of GSPAR is compared to that of SuperLU [7] regarding to the �rst

factorization (pivoting and factorization) of coe�cient matrices of linear sys-

tems resulting from real life dynamic process simulation of chemical plants.

Table 4. CPU times for �rst factorization with GSPAR and SuperLU

GSPAR SuperLU

name n jAj previous new mmd mmd

bayer01

bayer02

bayer03

bayer04

bayer05

bayer06

bayer09

bayer10

57 735

13 935

6 747

20 545

3 268

3 008

3 083

13 436

277 774

63 679

56 196

159 082

27 836

27 576

21 216

94 926

34.92

2.20

0.67

5.18

0.13

0.82

0.20

3.07

2.35

0.55

0.30

1.82

0.07

0.83

0.10

1.27

7.53

1.41

0.63

3.03

0.45

1.62

0.25

2.17

4.48

0.85

0.66

2.17

0.60

0.65

0.23

1.35

For the n � n matrices1 with jAj nonzero elements the CPU times in

seconds on a DEC AlphaServer (processor 21164A with 400 MHz) are given

for GSPAR using the previous dynamic ordering, the new dynamic order-

ing, and a minimum degree ordering (mmd) of AT
A respectively as well

as for SuperLU using a minimum degree ordering of AT
A. With the new

dynamic ordering GSPAR now achieves a fast �rst factorization. The cor-

responding CPU times needed for refactorization (factorization with given

pivot sequence) are listed in [3,10].

1 The matrices can be found in Tim Davis, University of Florida Sparse Matrix

Collection, http://www.cise.u�.edu/�davis/sparse/



8

Acknowledgements. We wish to thank the Bayer AG Leverkusen for

the valuable support and Aspen Technology, Inc. for providing us a free

SPEEDUP licence for academic use.

References

1. Aspen Technology Inc. (1995) SPEEDUP, User Manual, Library Manual.

Cambridge, Massachusetts
2. Borchardt, J., Grund, F., Horn, D., Michael, T. (1997) Parallelized Numer-

ical Methods for Large�Scale Dynamic Process Simulation. In: Sydow, A.

(ed.): Proceedings of the 15th IMACS World Congress on Scienti�c Compu-

tation, Wissenschaft & Technik Verlag, Berlin, vol. I, 547�552
3. Borchardt, J., Grund, F., Horn, D. (to appear) Parallelized Methods for

Large Nonlinear and Linear Systems in the Dynamic Simulation of Industrial

Applications. Surveys on Mathematics for Industry
4. Borchardt, J., (to appear) Parallelized Block�Structured Newton�Type

Methods in Dynamic Process Simulation. In: Proceedings of PARA98,

Springer, Berlin Heidelberg
5. Brenan, K.E., Campbell, S.L., Petzold, L.R. (1989) Numerical Solution of

Initial�Value Problems in Di�erential�Algebraic Equations. North�Holland,

New York
6. Gräb, R., Günther, M., Wever, U., Zheng, Q. (1996) Optimization of Parallel

Multilevel�Newton Algorithms on Workstation Clusters. In: Bouge, L. et al.

(Eds.): Euro�Par96 Parallel Processing, Berlin, Lecture Notes in Computer

Science 1124, Springer, Berlin Heidelberg, 91�96
7. Demmel, J. W., Gilbert, J. R., Li, X. S. (1997) SuperLU Users' Guide, Uni-

versity of California, Berkeley; Xerox Palo Alto Research Center; NERSC,

Lawrence Berkeley National Lab
8. Grund, F., Borchardt, J., Horn, D., Michael, T., Sandmann, H. (1996) Dif-

ferential�algebraic systems in the chemical process simulation. In: Keil, F.,

Mackens, W., Voss, H., Werther, J. (eds.): Scienti�c Computing in Chemical

Engineering, Springer�Verlag, Berlin, 68�74
9. Grund, F., Michael, T., Brüll, L., Hubbuch, F., Zeller, R., Borchardt, J.,

Horn, D., Sandmann, H. (1997) Numerische Lösung groÿer strukturierter

DAE�Systeme in der chemischen Prozeÿsimulation. In: Ho�mann, K.H.,

Jäger, W., Lohmann, Th., Schunk, H. (Hrsg.): Mathematik�Schlüsseltech-

nologie für die Zukunft, Springer�Verlag, Berlin Heidelberg, 91�103
10. Grund, F. (1998) Direct linear solvers for vector and parallel computers.

Preprint No. 415, WIAS Berlin
11. Horn, D. (1996) Entwicklung einer Schnittstelle für einen DAE�Solver in der

chemischen Verfahrenstechnik. In: Mackens, W., Rump, S.M. (Hrsg.),: Soft-

ware Engineering im Scienti�c Computing, Vieweg & Sohn, Braunschweig,

249�255
12. Hoyer, W., Schmidt, J.W. (1984) Newton�Type Decomposition Methods for

Equations Arising in Network Analysis. ZAMM 64, 397�405
13. Kröner, A., Marquardt, W., Gilles, E.D. (1992) Computing Consistend Ini-

tial Conditions for Di�erential Algebraic Equations. Computers & Chemical

Engineering 16, 131�138


