
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Initial and Boundary Value Problems of

Hyperbolic Heat Conduction

Wolfgang Dreyer, Matthias Kunik

submitted: 25. September 1998

Weierstrass Institute

for Applied Analysis

and Stochastics

Mohrenstrasse 39

D�10117 Berlin

Germany

E-Mail: dreyer@wias-berlin.de

E-Mail: kunik@wias-berlin.de

Preprint No. 438

Berlin 2000

WIAS
1991 Mathematics Subject Classi�cation. 80-99, 35L15, 35L20, 35L65, 35L67.

Key words and phrases. Heat transfer, initial and boundary value problems for a hyperbolic

system, shock waves, kinetic theory.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

This is a study on the initial and boundary value problem of a symmetric

hyperbolic system which is related to the conduction of heat in solids at low

temperatures. The nonlinear system consists of a conservation equation for

the energy density e and a balance equation for the heat �ux Qi, where e

and Qi are the four basic �elds of the theory. The initial and boundary value

problem that uses exclusively prescribed boundary data for the energy density

e is solved by a new kinetic approach that was introduced and evaluated by

Dreyer and Kunik in [1], [2] and Pertame [3]. This method includes the forma-

tion of shock fronts and the broadening of heat pulses. These e�ects cannot

be observed in the linearized theory, as it is described in [4].

The kinetic representations of the initial and boundary value problem reveal a

peculiar phenomenon. To the solution there contribute integrals containing the

initial �elds e0(x); Q0(x) as well as integrals that need knowledge on energy

and heat �ux at a boundary. However, only one of these quantities can be

controlled in an experiment. When this ambiguity is removed by continuity

conditions, it turns out that after some very short time the energy density and

heat �ux are related to the initial data according to the Rankine Hugoniot

relation.

1 Introduction

Heat conduction processes are usually described by a parabolic system. It results

from a di�usion law, where the heat �ux is proportional to the temperature gradient.

That constitutive law implies the paradox of heat conduction whereupon heat may

transverse a body with in�nite speed. This fact is not acceptable from a physical

point of view. In most technical processes, in particular at room temperature, those

modes that propagate with in�nite speed su�er a considerable damping and are

thus not observable. However, there are cases where either the damping of a heat

pulse is quite low or where its travel distance is so small that the transit time is

an observable quantity. In those cases the parabolic system has to be replaced

by the physically justi�ed hyperbolic system of heat conduction. A comprehensive

study of many phenomena which appear in the temperature range between 5ÆK and

20ÆK is described by Dreyer and Struchtrup in the review article [4], see also

the textbook on Rational Extended Thermodynamics by Müller and Ruggeri

[5]. In that range heat conduction of crystalline solids must be considered as the

motion of phonons which may interact with lattice impurities and with each other.
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Dreyer and Struchtrup report on special circumstances that are met in quite

pure crystals at not too low temperature, where the state of a crystal is su�ciently

described by only four thermodynamic �elds as the basic variables. These are the

energy density e, or the temperature T , and the heat �ux Q = (Qi)i=1;2;3. Dreyer

and Struchtrup give the necessary restrictions that must be met in the experiment

for the physical applicability of this assumption. Independent from these problems

we consider in this paper the resulting system of four �eld equations in its own right,

because it exhibits already several serious mathematical aspects of the initial and

boundary value problem.

The resulting system of �eld equations is of the symmetric hyperbolic type. In this

paper we consider mainly this system in one space dimension and solve its pure initial

value problem as well as the initial and boundary value problem by using kinetic

representations for the unknown �elds. The system consists of a conservation law

for the energy density e and of a balance law for the heat �ux Q , and it is derived

by averaging the Boltzmann-Peierls equation. The closure problem is solved by

the Maximum Entropy Principle [6].

The Boltzmann-Peierls equation describes the evolution of the phase density

f(t;x;k). f(t;x;k) d3x d3k is interpreted as the number of phonons which are at time

t in a small spatial volume element d3x at location x and which have a momentum

�hk in the range d3k. k denotes the wave vector and �h is Plancks constant. For

more details we refer the reader to [4]. The Boltzmann-Peierls equation reads

@f

@t
+
@!

@kk

@f

@xk
= �(f) : (1.1)

In a real crystal there are three phonon modes and thus there are three phase

densities corresponding to two transversal modes and one longitudinal mode. In [4]

it is described that for simplicity one can replace the actual crystal by a so called

Debye solid, which is characterized by a single mode only. In addition the assumed

dispersion relation between the phonon frequency ! and the wave vector k is given

by

! = c jkj : (1.2)

Here the constant Debye velocity c is related to a mean of the two transversal and

longitudinal sound speeds of the actual crystal.

The collision term �(f) in (1.1) describes the so called R- and N-processes. R-

processes include interactions of phonons with lattice impurities which destroy the

periodicity of the crystal, while N-processes can be interpreted as phonon-phonon

interactions which are due to deviations of the harmonicity of the crystal forces.

N-processes conserve phonon momentum while R-processes do not. Both kinds of

processes conserve the energy of the phonons.

In section 2 we derive the equations of balance for the energy density e and the heat

�ux Q as transfer equations from the Boltzmann-Peierls equation. The basic
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�elds and their corresponding �uxes turn out to be given by the following moments

of the phase density f :

e(t;x) = �hc

Z 1

�1
jkjf(t;x;k) d3k;

Qi(t;x) = �hc2
Z 1

�1
kif(t;x;k) d

3k; (1.3)

Nik(t;x) = �hc

Z 1

�1

kikk

jkj f(t;x;k) d
3k:

Nik appears as a �ux in the equation of balance for the heat �ux and it does not occur

among the variables e and Q. Nik will be related to the variables by the Maximum

Entropy Principle. It states that the phase density f = f (4) that corresponds to the

macroscopic knowledge of the four �elds e and Q, is obtained by maximizing the

entropy density under the constraints of prescribed �elds e and Q.

In order to evaluate this principle one needs, however, a kinetic representation of

the entropy density which will be given in section 3.

In section 4 we present a modi�ed Boltzmann-Peierls equation without the

collision term. However, it will lead to the same system of �eld equations that results

from the original Boltzmann-Peierls equation. The solution of the modi�ed

Boltzmann-Peierls equation is easily obtained and implies a solution of the non-

linear hyperbolic system.

For example, the pure initial value problemmay be solved as follows: At any time the

moments e andQ are determined by a phase density f that results from the modi�ed

Boltzmann-Peierls equation for the initial condition f(t0;x;k) = f (4)(t0;x;k).

Here the initial phase density maximizes the entropy for given initial data e(t0;x)

and Q(t0;x) as constraints.

At the next time t1 = t0 + �M , where �M > 0 is a given time step size, the moments

e(t1;x) and Q(t1;x) constructed from the phase density f(t0;x;k) above are used

as the new initial data. The procedure will be repeated for the subsequent times

t1 < t2 < t3 < :::. This kinetic approach is described in section 5, which ends with

two explicit examples: The �rst example compares the numerical results with the

analytical predictions for the propagation of a single shock front taken from [6]. In

the second example we consider the interaction of two heat pulses.

In section 6 we extend the representation formulas for the pure initial value problem

so that boundary conditions are also included. Here we are confronted with a serious

problem. From an experimental point of view the energy density e and the heat �ux

Q cannot be given simultaneously at a boundary, either e orQ can be controlled. We

will show that this ambiguity can be removed by three continuity conditions. Those

conditions lead to the surprising result that after a very short time the solution

assumes boundary data for e and Q that are related to the initial data by the

so-called Rankine-Hugoniot shock-condition. Up to now this observation is only

supported by numerical tests. A careful study of this astonishing phenomenon is
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left for a future investigation. Instead we present here three explicit examples for

the initial and boundary value problem: The �rst two deal with a rectangular pulse

and a cosine disturbance, respectively, as boundary data for the energy density e.

We consider the cases of high and zero damping. In a third example we consider

the re�ection of a heat pulse at the boundary and show in the linear limit that the

analytical solution agrees with the numerical result.

Another interesting result regards the speed of the fastest shock front which runs

into equilibrium. It turned out to be apparently larger than cp
3
. Furthermore, we

observe a broadening of an original heat pulse at later times. Both phenomena

cannot be obtained from the linearized four �eld system, as explained in [4].

Finally we consider the boundary-value problem for a stationary heat- conduction

process between two boundaries and calculate its analytical solution when either the

energy density is prescribed at both boundaries, or the energy density is given at

one boundary and the heat �ux at the other.

2 Equations of Balance for Energy and Heat Flux

The Boltzmann-Peierls equation for the phonon phase density

@f

@�
+ c

ki

jkj
@f

@xi
= �(f) (2.1)

implies in�nitely many equations of balance for moments of the phase density. We

are only interested in the �rst four equations which are obtained by multiplication

of (2.1) by �hcjkj and �hc2 ki and integration over k: There results the equations of

balance for the energy density e and the heat �ux Qi

@e

@�
+
@Qk

@xk
= �h c

Z +1

�1
jkj �(f) d3k ;

(2.2)
@Qi

@�
+
@(c2Nik)

@xk
= �h c2

Z +1

�1
ki �(f) d

3k :

When we consider e and Qi as the (macroscopic) basic variables for which initial

and boundary value problems have to be solved, we must close the system (2.2) so

that the �ux Nik and the production terms on the right hand sides are related to

the variables.

This objective is achieved by applying theMaximum Entropy Principle, which gives,

as shown in the next section, a phase density of the form

f (4)(t;x;k) = w(4)(e(t;x);Q(t;x);k): (2.3)

Here the (t; x) dependence is in fact a dependence on the variables e(t; x) and

Qi(t; x).
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Note that this function is no longer a solution of the Boltzmann-Peierls equation.

But nevertheless we will keep equations (2.2) and replace f by f (4). It can be shown,

see [7] and [8], that the resulting closed system is of symmetric hyperbolic type and

has a convex extension.

3 The Maximum Entropy Principle for Four Fields

In this section we maximize the entropy of the phonon-Bose gas under the constraints

of given energy density and heat �ux. The entropy density h and the entropy �ux

�k of the phonon-Bose gas are given according to the kinetic theory [4] as

h = �kB
Z 1

�1

�
f ln(

f

y
)� y(1 +

f

y
) ln(1 +

f

y
)

�
d3k ;

(3.1)

�k = �kB
Z 1

�1
c
kk

jkj
�
f ln(

f

y
)� y(1 +

f

y
) ln(1 +

f

y
)

�
d3k :

kB = 1; 38 � 10�23J=K is Boltzmann's constant and y = 3=8�3.

For the maximization of h with respect to f under the given constraints

e = �hc

Z 1

�1
jkjf d3k ; Qi = �hc2

Z 1

�1
kif d

3k ; (3.2)

we may introduce Lagrange multipliers �0 corresponding to e and �i correspond-

ing to Qi and maximize

G =
1

kB
h� �0

�
�hc

Z 1

�1
jkjf d3k� e

�
� �i

�
�hc2
Z 1

�1
kif d

3k�Qi

�
(3.3)

without constraints. The resulting phase density reads

f (4)(t;x;k) =
y

exp(�)� 1
; (3.4)

with

�(t;x;k) = �hc (jkj�0(t;x) + cki�i(t;x)) ; (3.5)

�0 = 

(F
e
)
1

4

(4� F )
3

4

; �i = �

4

(F
e
)
5

4

(4� F )
3

4

Qi ; F =
6

1 +

r
1� 3

4

�
jQj
ce

�2 ; 
 =

�
4�5y

45h3c3

� 1

4

:

(3.6)
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For experimental purposes it is sometimes useful to use the (absolute) temperature

T instead of the energy density e. Both quantities are related to each other so that

the Stefan-Boltzmann law for phonons is established, viz.

T =
1

kB

�
10�h3c3

�2
e

� 1

4

: (3.7)

Obviously, the heat �ux must be zero in equilibrium, and the equilibrium phase-

density f (1) thus reads

f (1)(t;x;k) =
y

exp(�)� 1
; �(t;x;k) =

�hcjkj
kBT (t;x)

: (3.8)

Formally f (1) can be obtained from f (4) by setting Qi equal to zero.

In the kinetic theory of phonons it can be shown [4] that the collision term of the

Boltzmann-Peierls equation may be approximated by

�(f) =
f (1) � f

�R
+
f (4) � f

�N
; (3.9)

which represents a good approximation to the quantum mechanically based true

collision production. The collision function � contains two relaxation times �R and

�N . �R describes resistive processes which include interaction of phonons with lat-

tice impurities, while the second relaxation time �N takes care of phonon-phonon

interactions which are due to the non- harmonicity of the lattice.

When the thermodynamic state is described by the four �elds e and Qi only, as it

is done here, it follows that the �N part drops out from the collision integral and

the applicability of the current theory is thus restricted to the limit �N ! 0. Thus

heat conduction is only due to second sound and to di�usion. For the general case

we refer the reader to the review article by Dreyer and Struchtrup [4]. Here we

are mainly interested in the initial and boundary value problem for the four �eld

system, which now reads

@e

@�
+
@Qk

@xk
= 0 ;

@Qi

@�
+
@(c2Nik)

@xk
= � 1

�R
Qi ; (3.10)

Nik =
1

3
e Æik +

1

2
e(3�� 1)

Q<iQk>

Q2
;

where � is the so called Eddington-factor

� =
5

3
� 4

3

s
1� 3

4

�
Q

c e

�2

: (3.11)

6



By use of f (4) we may also calculate the entropy density h, the entropy �ux �k and

the entropy production � as local functions of e and Q , which turn out to be (see

[6] and [9])

h =

�
2a

3

� 1

4

e
3

4 (3� �)
1

2 (1� �)
1

4 ;

�k = 2

�
2a

3

� 1

4

e�
1

4 (3� �)�
1

2 (1� �)
1

4 Qk; (3.12)

� = �kB
�R

3X
i=1

�iQi ; a := ��
2

10
k4B=(�h

3c3) :

Entropy density, entropy �ux and entropy production are related to each other by

an additional balance law, viz.

@h

@t
+
@�k

@xk
= � � 0 : (3.13)

Furthermore, it follows that the entropy production is zero in equilibrium and oth-

erwise positive [8].

4 A Modi�ed Kinetic Model

Note that we already abandoned the Boltzmann-Peierls equation by using the

Maximum Entropy Principle for the determination of the phase density. In other

words: the hyperbolic system (3.10) does not constitute a solution of theBoltzmann-

Peierls equation. Now we proceed one step further in the same direction and

replace the Boltzmann-Peierls equation by a much more simpler equation, which

however leads in fact to the solution of the hyperbolic system (3.10). To this end

we start at time t0 with initial data e0(x) = e(t0;x) and Q0(x) = Q(t0;x), and use

as the initial phase density

f(t0;x;k) = w(4)(e0(x);Q0(x);k) : (4.1)

For t > t0 we de�ne the phase density f according to

f(t0 + �;x;k) = f(t0;x� c  (�)
k

jkj ;k) ; (4.2)

where the bounded function  (�) is de�ned for � � 0 as

 (�) = �R (1� exp(� �

�R
)) < �R : (4.3)
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We conclude that the phase density (4.2) satis�es the collision-free kinetic equation

@f

@�
+ _ (�) c

ki

jkj
@f

@xi
= 0 : (4.4)

However, the hyperbolic system (3.10), and in particular the non-vanishing right-

hand side of (3.10)2 will now turn out to be a consequence of (4.2) and (4.4).

This will be established by a rede�nition of the moments (1.3). While the energy

density e will be de�ned as before, but with the phase density (4.2), the heat �ux

Qi and its �ux Nik involve in addition the functions _ (�) and _ 2(�) as new time-

dependent factors:

e(t0 + �;x) = �hc

Z 1

�1
jkjf(t0 + �;x;k) d3k;

Qi(t0 + �;x) = �hc2 _ (�)

Z 1

�1
kif(t0 + �;x;k) d3k; (4.5)

Nik(t0 + �;x) = �hc _ 2(�)

Z 1

�1

kikk

jkj f(t0 + �;x;k) d3k:

These de�nitions imply equations of balance that have the same structure as the

corresponding hyperbolic system (3.10)

@e

@�
+
@Qk

@xk
= 0;

(4.6)
@Qi

@�
+
@(c2Nik)

@xk
= � 1

�R
Qi:

It is important to note that in contrast to the local system (3.10), the system (4.6)

is non-local in time and space. In the next two sections we will show how the

representations (4.5) can be used in order to solve the initial and boundary-value

problem for the local hyperbolic system (3.10).

5 The Pure Initial Value Problem (IVP)

5.1 Kinetic solution of the IVP

In order to solve the initial value problem for the nonlinear four �eld system (3.10),

we start at a �xed time t0 with given initial data e0 for the energy density and Q0

for the heat �ux. Next we consider the �nite time interval t0 � t � t0 + �M for a

given time step �M , where we let the phase density f(t0 + �;x;k) develop according

to (4.2), viz. f(t0;x� c  (�) kjkj ;k).

At time t0+�M , we calculate the �elds e(t0+�M ; �) and Q(t0+�M ; �) from (4.5) with

f(t0;x� c  (�M) kjkj ;k) . For t > t0 + �M we let the phase density develop according
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to f(t0 + �M ;x� c  (�) kjkj ;k), using the new initial data e(t0 + �M ; �), Q(t0 + �M ; �).
At time t0+2�M we calculate the �elds e(t0+2�M ; �), Q(t0+2�M ; �) from (4.5), and

so on.

In summary the procedure runs as follows. To initialize the scheme we start with

� Bounded and integrable initial data for x 2 IR3 at time t = 0:

e(0;x) = e0(x) � � > 0, Q(0;x) = Q0(x) under the restriction jQj < c e.

� A �xed time step �M > 0, so that the maximization of entropy is carried out

at the equidistant times tn = n�M , n = 0; 1; 2; ::: :

e(tn + �;x) = �h c

Z +1

�1
jkjfn(y;k) d3k;

(5.1)

Qi(tn + �;x) = �h c2 exp(� �

�R
)

Z +1

�1
ki fn(y;k) d

3k;

where the phase-density at the maximization time tn reads

fn(y;k) = w(4)(e(tn;y);Q(tn;y);k) ; y = x� c  (�)
k

jkj : (5.2)

In the following we are only interested in one-dimensional solutions, which do not

depend on x2 and x3. In this case we may choose polar-coordinates for the k-

integration, and, using (3.4), (3.5),(3.6), the three-dimensional integral representa-

tions reduce to one-dimensional integrals

e(tn + �; x) =
3

2

Z +1

�1

e (4� F )3

F (1� F

4

Q�

c e
)4
(tn; y) d � ;

(5.3)

Q(tn + �; x) =
3

2
c exp(� �

�R
)

Z +1

�1

e (4� F )3 �

F (1� F

4

Q�

c e
)4
(tn; y) d �

with

y = x� c  (�) � ; F =
6

1 +

q
1� 3

4

�
Q

c e

�2 : (5.4)

In the explicit cases dealt with in the next sections we could observe that a unique

solution of the hyperbolic system (3.10) including all possible shocks is established

by the kinetic procedure in the limit �M ! 0. The one-dimensional weak form of

(3.10) for discontinuous solutions is given in the following subsection.

9



5.2 Riemannian initial data and shock condition

We consider now a single shock front which propagates into a region of thermal

equilibrium. In this case one can explicitely solve the Rankine-Hugoniot conditions

for a single shock solution, and this was already done by Dreyer & Seelecke in [6]. In

the following we will use their results to reach two objectives. In this section we will

compare our numerical results with their analytical predictions. In section 6 we will

observe that in general the Rankine-Hugoniot shock conditions may serve to remove

an ambiguity appearing in the solution formulas of the initial and boundary-value

problems.

As before, we restrict ourselves to the one-dimensional case and write down the weak

formulation of the four-�eld system (3.10) with a convex region 
 in space and time:R
@


(e dx � Qdt) = 0 ;R
@


(Qdx � c2 e� dt) = � 1
�R

R



R
Q dt dx ;

� = 5
3
� 4

3

q
1� 3

4

�
Q

ce

�2
:

(5.5)

Next we prescribe Riemannian initial data

e0(x) =

�
e� ; x � 0

e+ ; x > 0
; Q0(x) =

�
Q� ; x � 0

Q+ ; x > 0
: (5.6)

In order to guarantee that only a single shock solution occurs, we introduce the

shock-parameter X = e�=e+ > 1, which determines the strength of the shock. Then

we choose the equilibrium state e+ > 0, Q+ = 0 to the right of the shock and

calculate the state e�; Q� to the left of the shock according to the Dreyer-Seelecke

condition

e� = Xe+ ; Q� = (X � 1)e+
cp
3

s
3
p
X � 1p
X + 1

: (5.7)

The shock speed Vs > 0 is also taken from [6] and reads

Vs =
cp
3

s
3
p
X � 1p
X + 1

: (5.8)

Note that the condition X > 1 selects the single shock solution from other possible

solutions of the Riemann problem and implies that always Vs > c=
p
3. We will see

that instead of a single shock a more complicated solution with a rarefaction wave

will appear for an initial data that do not satisfy the condition X > 1.
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Sometimes it is useful to de�ne another shock parameter via the shock speed. The

new shock parameter gives the deviation from c and is de�ned as

� =
Vs

c
=

1p
3

s
3
p
X � 1p
X + 1

: (5.9)

Note that Vs is restricted to the range c=
p
3 < Vs < c. Using �, with 1=

p
3 < � < 1,

instead of X, the Dreyer-Seelecke condition reads

e� =
1

9
e+

(3�2 + 1)2

(1� �)2
; Q� =

8

9
ce+�

3�2 � 1

1� �2
: (5.10)

In the following we set c = 1 for simplicity.

Figure 1 shows for Riemannian initial data of type (5.6) three initial value problems

for the two �elds energy density e and heat �ux Q. The space region is �0:5 � x �
0:5 and the time is restricted to 0 � t � 0:5. The �rst row displays a single shock

solution resulting from the initial data e+ = 1, Q+ = 0, X = 2 for large relaxation

time �R = 8. The light and dark colours correspond to small and large values of

the �elds, respectively, ranging from emin = 1, Qmin = 0 (light colour) to emax = 2,

Qmax = 0:67 (dark colour).

The second row displays the same initial value problem but for small relaxation time

�R = 0:2. This value corresponds to a dominant right-hand side and causes a strong

di�usion of the original shock front. The extreme values of e and Q are the same as

before.

The third row displays the development of initial conditions that violate the Dreyer-

Seelecke shock condition X > 1. Here the initial data result from e+ = 1, Q+ = 0,

X = 0:3 for a large relaxation time �R = 8. The extreme values of the �elds range

from emin = 0:3, Qmin = �0:26 (light colour) to emax = 1, Qmax = 0 (dark colour).
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TIME

P
O
S
I
T
I
O
N

e: tauR 8.0 eM 0.3 eP 1

TIME

P
O
S
I
T
I
O
N

Q: tauR 8.0 eM 0.3 eP 1

TIME

P
O
S
I
T
I
O
N

e: tauR 0.2 eM 2.0 eP 1

TIME

P
O
S
I
T
I
O
N

Q: tauR 0.2 eM 2.0 eP 1

TIME

P
O
S
I
T
I
O
N

e: tauR 8.0 eM 2.0 eP 1

TIME

P
O
S
I
T
I
O
N

Q: tauR 8.0 eM 2.0 eP 1

Figure 1: Fields of energy density and heat �ux

for various inital conditions and relaxation times
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5.3 Two interacting heat pulses

The next example for a pure IVP demonstrates the interaction of two heat pulses

which leads to a large increase of the energy density at the collision point during a

short time interval. Figure 2 represents the solution of the IVP for the initial data

e0(x) =

8>>>><
>>>>:

1 ; x � 0:3

2 ; 0:3 < x � 0:4

1 ; 0:4 < x � 0:6

2 ; 0:6 < x � 0:7

1 ; x � 1

; Q0(x) =

8>>>><
>>>>:

0 ; x � 0:3

1 ; 0:3 < x � 0:4

0 ; 0:4 < x � 0:6

�1 ; 0:6 < x � 0:7

0 ; x � 1

: (5.11)

The two contour plots of the �rst row show the two �elds energy density e and

heat �ux Q within the time range 0 � t � 0:5 and the space region 0 � x � 1.

The relaxation time is �R = 8 and the time step �M = 0:005. The light and dark

colours correspond to small and large values of the �elds, respectively, ranging from

emin = 0:7884, Qmin = �1 (light colour) to emax = 4:1384, Qmax = 1 (black colour).

The two curves in the second row show the given initial data. The third row depicts

the energy density and the heat �ux at time t = 0:2. In comparison to the initial

curve we observe at the collision point x = 0:5 a large increase of the energy density

e.
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Figure 2: Two interacting heat pulses. First row: the �elds of energy density and

heat �ux, second row: initial conditions, third row: spatial dependence of the �elds

at t = 0:2.
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6 Representations for the Initial and Boundary Value

Problem (IBVP)

6.1 Kinetic solution of the IBVP

Boundary value problems that are solved by integral representations of an underlying

kinetic model confront us with a serious problem. For a discussion we consider a

half space problem of a one dimensional crystal with a boundary at x = 0.

Our objective is the calculation of the �elds of energy density and heat �ux at loca-

tion �x and at time 0 < �t � �M . To this end we rely on an extension of representations

(5.3) and (5.4). For every value of the integration variable � 2 [�1; 1] there is a

micro characteristic

x(t) = �x� c� ( (�t)�  (t)) (6.1)

through the point (�t; �x) which starts for � < �0 from the initial line t = 0 and for

� > �0 from the boundary x = 0. The critical value

�0 =
�x

c (�t)
> 0 (6.2)

corresponds to the micro characteristic that originates at the point (0; 0).

Figure 3: Micro characteristics relating (	t,	x) to the initial- and boundary line

Figure 3 illustrates three selected micro characteristics and the functions

x0(�t; �x; �) = �x� c (�t)�; tW (�t; �x; �) = ��R ln

�
exp

�
� �t

�R

�
+

�x

c �R�

�
; (6.3)
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which denote the intersections of the micro characteristics with the initial axes t = 0

and with the boundary x = 0, respectively. These play an important role for the

following representation formulas.

We introduce the abbreviation

U(e; Q; �) =
3

2

e (4� F )
3

F
�
1� F

4

Q

ce
�
�4 with F =

6

1 +

q
1� 3

4

�
Q

c e

�2 ; (6.4)

and form the representation formula of the initial and boundary value problem (in

the following abbreviated as IBVP) by means of two auxiliary functions eH(t) and

QH(t) which will be determined later on. To calculate the �elds e(�t; �x) and Q(�t; �x)

we write

e(�t; �x) =

�0Z
�1

U(e0(x0(�t; �x; �)); Q0(x0(�t; �x; �)); �) d�

(6.5)

+

1Z
�0

U(eH(tW (�t; �x; �)); QH(tW (�t; �x; �)); �) d�;

Q(�t; �x) = c exp
�
� �t
�R

� 2
4 �0Z
�1

U(e0(x0(�t; �x; �)); Q0(x0(�t; �x; �)); �) � d�

(6.6)

+

1Z
�0

U(eH(tW (�t; �x; �)); QH(tW (�t; �x; �)); �) � d�

3
5 :

The initial and boundary data are denoted by

e(0; x) = e0(x); Q(0; x) = Q0(x); e(t; 0) = eW (t); Q(t; 0) = QW (t):

(6.7)

Note that either (6:7)3 or (6:7)4 must be prescribed. This is shown next.

The solution of the IBVP, i.e. the representations (6.5) and (6.6), must satisfy the

following two continuity conditions at the boundary

lim
�x!0

e(�t; �x) = eW (�t); lim
�x!0

Q(�t; �x) = QW (�t): (6.8)

These read explicitly at any time t

eW (t) =

0Z
�1

U(e0(x0(t; 0; �)); Q0(x0(t; 0; �)); �) d� +

1Z
0

U(eH(t); QH(t); �) d�; (6.9)
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QW (t) = c exp
�
� t

�R

� 2
4 0Z
�1

U(e0(x0(t; 0; �)); Q0(x0(t; 0; �)); �) � d�

(6.10)

+

1Z
0

U(eH(t); QH(t); �) � d�

3
5 :

Here the auxiliary functions eH and QH do no longer depend on the integration

variable �. Thus the integrals that contain eH and QH can be carried out and the

continuity conditions (6.9) and (6.10) turn out to be algebraic equations for eH and

QH .

We introduce the abbreviations

a =
FH

4

QH

c eH
; f(a) =

1

2

a2 � 3a+ 3

a2 + 3
(1 + a)3; g(a) =

1

4

3� a

a2 + 3
(1 + a)3;

(6.11)

and obtain from (6.9) and (6.10)

eW (t) = eH(t)f(a(t)) +

0Z
�1

U(e0(x0(t; 0; �)); Q0(x0(t; 0; �)); �) d�; (6.12)

QW (t)
exp

�
t

�R

�
c

= eH(t)g(a(t)) +

0Z
�1

U(e0(x0(t; 0; �)); Q0(x0(t; 0; �)); �) � d�:

(6.13)

We conclude that the auxiliary functions eH(t) and QH(t) are determined by two

non-linear algebraic equations if the functions eW (t) and QW (t) were given at the

boundary.

However, this confronts us with a problem. For a discussion we assume for the

moment that eW (t) and QW (t) are prescribed independent of each other. Under

this assumption we consider two cases in order to demonstrate that it leads to a

contradiction and is thus not possible. In the �rst case we additionally assume that

we could choose the auxiliary functions such that they coincide with the boundary

data, i.e. eH = eW and QH = QW . It follows that the algebraic equations (6.12)

and (6.13) are not satis�ed, i.e.

lim
�x!0

e(�t; �x) 6= eW (�t); lim
�x!0

Q(�t; �x) 6= QW (�t): (6.14)

In the second case we assume that eH and QH follow from the algebraic system

(6.12) and (6.13) for given eW and QW . Here another contradiction appears because

the quantity a is restricted to the range [�1;+1] according to its de�nition (6.11).
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However, the corresponding solution of the necessary continuity conditions (6.12)

and (6.13) leads in general to values of a out of that range. We conclude that we

cannot prescribe independently eW (t) and QW (t).

We mention here an experimental consequence, whereupon eW and QW cannot be

given simultaneously. Either the temperature, i.e. eW , is controlled at the wall or

the wall is equipped with a generator of heat and thus the heat �ux is prescribed.

To proceed the discussion we consider now exclusively the case that eW (t) but not

QW (t) is prescribed. Consequently, the function QW (t) must also be calculated. We

need one further condition that allows the determination of the auxiliary functions

eH(t) and QH(t) and of QW (t). In addition to the two algebraic conditions (6.12)

and (6.13) we found that it is necessary to require a third continuity condition for

0 < t � �M , namely

eH(t) = eW (t) ; (6.15)

which guarantees that the continuity conditions (6.8) are also satis�ed in the limit

�M ! 0. For evaluation we use Newtons method in order to solve the resulting

equation for a(t), which is a combination of (6.12) and the third continuity condition

(6.15)

1� f(a(t)) =
1

eW (t)

0Z
�1

U(e0(x0(t; 0; �)); Q0(x0(t; 0; �)); �) d� : (6.16)

Since f(a) is monotonically increasing from f(�1) = 0 to f(1) = 1, a solution of

(6.16) only exists whenever the right-hand side of (6.16) is in the range [0; 1].

Finally we may now determine the auxiliary �eld QH(t) according to the de�nition

of a = a(t)

QH(t) =
4c a(t)

a(t)2 + 3
eH(t) : (6.17)

The next two examples exhibit a surprising consequence of condition (6.15): Im-

mediately after the initial time and after a su�cient number of maximizations of

entropy were carried out, the boundary values eW and QW are related to the initial

data according to the Rankine-Hugoniot conditions.

6.2 Two explicit examples for IBVPs

The following numerical results serve to illustrate this observation and additionally

record three nonlinear phenomena: a) the formation and steepening of shock fronts,

b) the speed of shock fronts is apparently larger then c=
p
3,

c) the broadening of initial heat pulses at later times.
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Figures 4 and 5 display the propagation of the heat pulse

eW (t) =

8<
:

1 ; t � 0

3 ; 0 < t � 0:5

1 ; t > 0:5

; (6.18)

which is created at the lower boundary. The initial data are e0 = 1 and Q0 = 0.

In Figure 4 we consider the undamped case. The �rst row of Figure 4 shows the

boundary data. Note that only eW (t) is prescribed but QW (t) is calculated according

to (6.15)-(6.17). The second and third row show the solution at times t = 0:5 and

t = 1:5, respectively, for 0 � x � 1:5.

We observe that the pulse front remains a shock moving with the speed 0:72 c,

which is con�rmed by the Dreyer-Seelecke condition (5.7). The rear side of the

pulse changes into a rarefaction wave. Thereby it comes to a broadening, even if

there is no damping.

Figure 5 illustrates the e�ect of large damping due to the relaxation time �R = 0:5.

In contrast to the undamped case, the heat �ux may become negative here. The

last row of Figure 5 shows the �elds e and Q at time t = 1:5 exhibiting a large

broadening of the rear side of the initial pulse. Note that this phenomenon cannot

be observed in the undamped case, although a rarefaction wave appears at the rear

side of the pulse here. Furthermore the solution decays rapidly to an equilibrium

state.

In the last example which is represented in Figure 6 we create the periodic heat

signal

eW (t) = 2� cos(8� t) (6.19)

at the lower boundary. The initial data are again e0 = 1 and Q0 = 0. The left

and right columns show the e�ect of zero damping (�R ! 1) and high damping

(�R = 0:5), respectively. The �rst two rows of Figure 6 depict the boundary data.

Note again that only eW (t) is prescribed but QW (t) is calculated according to (6.15)-

(6.17). Surprisingly even in this example QW (t) meets the value Q that we obtain

by the Dreyer-Seelecke condition with e+(t) = e0 = 1, Q+(t) = Q0 = 0 and e�(t) =

eW (t), at least in the undamped case. The damped case requires a more detailed

study. The last two rows illustrate the solution at time t = 1:5 for 0 � x � 1:5. The

formation and steepening of shock fronts is clearly visible. As before, we observe

regions in space with a negative heat �ux which is due to the damping.

19



0 0.2 0.4 0.6 0.8 1 1.2 1.4
x coordinate

1

1.5

2

2.5

3

3.5

e

ENERGY DENSITY at t 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x coordinate

0.25

0

0.25

0.5

0.75

1

1.25

1.5

Q

HEAT FLUX at t 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x coordinate

1

1.5

2

2.5

3

3.5

e

ENERGY DENSITY at t 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x coordinate

0.25

0

0.25

0.5

0.75

1

1.25

1.5

Q

HEAT FLUX at t 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
t coordinate

1

1.5

2

2.5

3

3.5

e

ENERGY DENSITY eW

0 0.2 0.4 0.6 0.8 1 1.2 1.4
t coordinate

0.25

0

0.25

0.5

0.75

1

1.25

1.5

Q

HEAT FLUX QW

Figure 4: Creation of a heat pulse for �R ! 1. First row: boundary data for the

energy density and the resulting heat �ux, second and third row: energy density

and heat �ux at time t = 0:5 and at t = 1:5, respectively.
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Figure 5: Creation of a heat pulse for �R = 0:5. First row: boundary data for the

energy density and the resulting heat �ux, second and third row: energy density

and heat �ux at time t = 0:5 and at t = 1:5, respectively.
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Figure 6: A periodic boundary condition. Left and right column: �R ! +1 and

�R = 0:5, respectively. First and second row: boundary data for the energy density

and the resulting heat �ux, third and fourth row: energy density and heat �ux at

time t = 1:5.
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6.3 The linear limit

In this section we choose initial- and boundary data so that the solution of the

non-linear system (5.5) agrees approximately with the solution of the linear limit.

The latter is obtained from the full system by neclegting terms of the order Q2. For

simplicity we set c =
p
3 and consider the case �R !1.

The initial data are

e0(x) =

8<
:

1 ; 0:0 < x � 0:4

1 + � ; 0:4 < x � 0:8

1 ; x > 0:8

; Q0(x) =

8<
:

0 ; 0:0 < x � 0:4

�� ; 0:4 < x � 0:8

0 ; x > 0:8

:

(6.20)

Here � > 0 is a �xed positive constant; in particular we choose � = 0:01. At the

boundary we prescribe the energy density to be

eW (t) = 1 : (6.21)

The solution of this problem according to the representation formulas (6.5) and (6.6)

can be read o� from Figure 7 for 0 � t � 1 and 0 � x � 1.

Figure 7: The nonlinear solution of the IBVP for " = 0:01

The Figure reveals the well known behaviour of a linear wave equation because � was

chosen so that terms of order Q2 show no in�uence. Furthermore we observe that

the prescribed constant boundary data eW = 1 causes a re�ection of the incoming

wave from the initial line.

In order to establish agreement with the linear theory we will compare the solution

of the non-linear system (5.5) in Figure 7 with the solution of its linearized form
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that we study now. The linearized version of (5.5) readsZ
@


(e dx � Qdt) = 0 ;

Z
@


(Qdx � e dt) = 0 : (6.22)

(6.22) leads to the following system of wave equations:

@e

@t
+

@Q

@x
= 0 ;

@Q

@t
+

@e

@x
= 0 : (6.23)

Across a shock with velocity Vs we obtain from (6.22) the jump conditions

Vs (e+ � e�) = Q+ �Q� ; Vs (Q+ �Q�) = e+ � e� ; (6.24)

These equations immediately imply Vs = +1 or Vs = �1, which is a well known

result. In the following we use the jump conditions (6.24) in order to construct the

analytical solution of the IBVP from above.

Figure 8 shows the piecewise constant analytical solution of the linear problem. The

various regions with constant states (e; Q) are bounded by jumps with slopes +1

and �1 or by the t- and x-axis, respectively.

Figure 8: The analytical linear solution of the IBVP for " = 0:01

Due to the small variation of the initial data there is good agreement between the

nonlinear numerical solution of Figure 7 and the linear analytical solution of Figure

8. Note that the light colors in Figure 7 correspond to small values of the �elds

while large values are indicated by dark colors.
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6.4 The stationary boundary value problem

Finally we study the analytical solution of the stationary boundary value prob-

lem. As before we consider the one-dimensional case. We reduce the local three-

dimensional system (3.10) to the stationary one-dimensional case and obtain

d

dx
Q = 0 ;

d

dx
(c2N) = � 1

�R
Q ; N =

5

3
e� 4 e

3

s
1� 3

4

�
Q

c e

�2

; (6.25)

where e = e(x), Q = Q(x) for 0 � x � L. We prescribe values for e at the upper

and lower boundary, viz.

e� = e(0) ; e+ = e(L): (6.26)

The constant Debye velocity is again c = 1. (6.25)1 implies that Q =constant,

whereas (6.25)2 leads to the algebraic equation

5

3
e� 4

3

r
e2 � 3

4
Q2 = 
 � x

�R
Q: (6.27)

The boundary conditions at x = 0 and at x = L are used for the determination of

the integration constants 
 and Q

5

3
e� � 4

3

r
e2� �

3

4
Q2 = 
;

5

3
e+ � 4

3

r
e2+ �

3

4
Q2 = 
 � L

�R
Q: (6.28)

Subtracting these equations leads to a single equation for Q, namely

5

3
(e� � e+)� 4

3

 r
e2� �

3

4
Q2 �

r
e2+ �

3

4
Q2

!
� LQ

�R
= 0 ; (6.29)

which may be solved by Newtons method.

The other constant 
 results then immediately from (6.28)1. With known values for

Q and 
 we may solve the equation for the energy density e in (6.27). It turns out

that the solution only admits the �+� sign and reads

e(x) = � 5

3

�
Qx

�R
� 


�
+

s
16

9

�
Qx

�R
� 


�2

� 4

3
Q2: (6.30)

The same representation can be used in order to solve the mixed boundary value

problem for given e� and Q = Q+. In this case 
 can be read o� from the equation

(6.28)1 .
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