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Abstract. A model for the dynamics of a system of particles undergoing simultaneously
coalescence and breakup is considered, each particle being assumed to be fully identi�ed by
its size. Existence of solutions to the corresponding evolution integral partial di�erential
equation is shown for product-type coagulation kernels with a weak fragmentation. The
failure of density conservation (or gelation) is also investigated in some particular cases.

1. Introduction

The coagulation-fragmentation equations are a model for the dynamics of cluster growth and
describe the time evolution of a system of clusters under the combined e�ect of coagulation
and fragmentation. Each cluster is identi�ed by its size (or volume) which is assumed to be
a positive real number in the model considered in this paper. From a physical point of view
the basic mechanisms taken into account are the coalescence of two clusters to form a larger
one and the breakage of clusters into smaller ones. It is also assumed that the rates of these
reactions only depend on the sizes of the clusters involved in the reaction. Other e�ects
(multiple-coagulation, spatial uctuations, ...) are neglected. Examples of applications of
these models arise in aerosol physics, polymer science and astronomy (see, e.g., [15] or the
recent survey paper [2] and the references therein). Denoting by c(x; t) the density of clusters
of size x at time t, the continuous coagulation-fragmentation equations read [15]

ct(x; t) =
1

2

Z x

0

�(x� y; y) c(x� y; t) c(y; t) dy(1.1)

� c(x; t)

Z x

0

y

x
 (x; y) dy

� c(x; t)

Z
1

0

�(x; y) c(y; t) dy

+

Z
1

x

 (y; x) c(y; t) dy;

c(x; 0) = c0(x);(1.2)

where the size variable x ranges in (0;+1), the time variable t ranges in (0;+1) and ct

denotes the partial derivative of c with respect to time. Moreover, the reaction rates � and  
are non-negative functions which are called, respectively, the coagulation and fragmentation
kernels. The �rst and fourth integrals in (1.1) account for the formation of clusters of size x
due to coagulation of smaller clusters and fragmentation of larger ones, while the second and
third integrals in (1.1) describe the loss of clusters of size x due to coalescence with other
clusters and breakup.
The speci�c form of � and  of course depends on the particular physical situation to be
described. One interesting example of coagulation kernel is the so-called product kernel
�(x; y) = (xy),  � 0, and the main requirement we impose on the coagulation kernels to
be considered in this paper is to have a product kernel as dominating part. More precisely,
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2 PHILIPPE LAURENC�OT

we assume that

�(x; y) = r(x) r(y) + �(x; y); (x; y) 2 R2
+;(1.3)

where the functions r and � satisfy8<
:

r 2 C(R+); � 2 C(R2
+);

0 � �(x; y) = �(y; x) � A r(x) r(y); (x; y) 2 [1;+1)2;
(1.4)

for some positive real number A. Here and in the following we use the notations R+ =
[0;+1) and R2

+ = R+�R+.
As for the fragmentation kernel it is natural to assume that [15]

 2 C(R2
+);(1.5)

 (x; y) � 0; (x; y) 2 R2
+ and  (x; y) = 0 if y > x � 0:(1.6)

We next require that the fragmentation is weaker than the coagulation, namely : there is a
non-increasing and bounded function ! : R+ ! R+ and a positive real number B such that

lim
x!+1

!(x) = 0;(1.7)

Z x

0

 (x; y) dy � !(x) max (x; r(x)); x 2 R+;(1.8)

 (x; y) � B (1 + max(x; r(x))) ; (x; y) 2 R2
+:(1.9)

We �nally assume that the initial datum c0 satis�es

c0 2 X
+
;(1.10)

where X+ is the positive cone of the Banach space

X = L
1(0;+1; (1 + x) dx)

endowed with the norm k:k de�ned by

kuk =

Z
1

0

(1 + x) ju(x)j dx; u 2 X:

Thus,

X
+ = fu 2 X; u � 0 a.e.g :

We �rst investigate the existence of solutions to (1.1)-(1.2) for the class of kernels and initial
data described above. Before stating our result, let us make precise the notion of solution
to (1.1) to be used in the sequel.

De�nition 1.1. Let T 2 (0;+1]. A solution c to (1.1) on [0; T ) is a function c : [0; T )!
X

+ such that, for every t 2 (0; T ), there holds

c 2 C([0; t];L1(0;+1)) \ L1(0; t;X);(1.11)

8<
:

(x; y; s) 7! �(x; y) c(x; s) c(y; s) 2 L1((0;+1)2 � (0; t));

(x; y; s) 7!  (y; x) c(y; s) 2 L1((0;+1)2 � (0; t));
(1.12)
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and for almost every x 2 R+,

c(x; t) = c(x; 0)(1.13)

+
1

2

Z t

0

Z x

0

�(x� y; y) c(x� y; s) c(y; s) dyds

�

Z t

0

c(x; s)

Z x

0

y

x
 (x; y) dyds

�

Z t

0

c(x; s)

Z
1

0

�(x; y) c(y; s) dyds

+

Z t

0

Z
1

x

 (y; x) c(y; s) dyds:

Existence of solutions to (1.1) in the sense of De�nition 1.1 (the initial datum c0 and thus the
function c possibly enjoying additional regularity properties) has been the subject of several
papers since the pioneering works of Melzak [15] and McLeod [14]. For bounded kernels �
and  existence of solutions to (1.1) is studied in [15, 1, 13], while the case of unbounded
kernels has been investigated in [17, 4, 5] assuming the following growth condition on �,

�(x; y) � K (1 + x+ y); (x; y) 2 R2
+:(1.14)

In the absence of fragmentation ( � 0) global existence results are available assuming either
(1.14) [9] or the weaker assumption [10]

lim
(x;y)!+1

�(x; y)

xy
= 0:(1.15)

Also the kernel �(x; y) = xy has been considered in [14] (local existence) while explicit
global solutions are constructed in [8] by means of the Laplace transform. Let us �nally
mention that under the assumption (1.15) existence of measure-valued solutions to the pure
coagulation equations ( � 0) and to the full coagulation-fragmentation equations (with
suitable assumptions on  ) has been obtained, respectively, in [16] and [7] by a probabilistic
approach (see also [2]). The solutions obtained therein taking only their values in the space
of measures thus satisfy (1.1) in a weaker sense than the one required by De�nition 1.1.
Browsing on the aforementioned papers one sees that no existence results (in the sense of
De�nition 1.1) are available for (1.1) when  6� 0 and � does not satisfy (1.14). Our �rst
result is a step in that direction within the class of kernels described above.

Theorem 1.2. Assume that the coagulation and fragmentation kernels � and  ful�ll, re-

spectively, (1.3)-(1.4) and (1.5)-(1.9). For every c0 2 X
+ there exists at least one solution

c to (1.1) on [0;+1) with c(0) = c0 satisfyingZ
1

0

x c(x; t) dx �

Z
1

0

x c0(x) dx; t 2 R+:(1.16)

It is worth mentioning at this point that no growth condition is required on the function r
in (1.4). Therefore, Theorem 1.2 also provides the existence of global solutions to the pure
coagulation equations ( � 0) when r increases superlinearly and when �(x; y) = xy+�(x; y),
� 6� 0, both results being new to our knowledge.



4 PHILIPPE LAURENC�OT

Our next result deals with the large time behaviour of the total density % of solutions c to
(1.1)-(1.2) de�ned by

%(t) =

Z
1

0

x c(x; t) dx; t 2 R+;(1.17)

when  � 0 and r(x) � R x, x 2 R+, for some R > 0. It turns out that, in the coagulation-
fragmentation process described by (1.1) there is neither sink nor source of clusters, so that
the total density % is expected to be constant through time evolution, i.e. %(t) = %(0) for
t 2 R+. While this is true in some cases (e.g., when � satis�es (1.14) [18, 5]) it is well-known
that, if �(x; y) = xy and  � 0 there are explicit solutions for which this property fails to
be true, a phenomenon known as gelation [8] . This picture is in fact valid for a wider class
of coagulation kernels and initial data as the following result shows.

Theorem 1.3. Assume that � satis�es (1.3)-(1.4) and  � 0. Assume further that there

exists R > 0 such that

r(x) � R x; x 2 R+:(1.18)

Consider c0 2 X
+, c0 6� 0, and let c be a solution to (1.1) on [0;+1) with initial datum c0.

Then

%(t) :=

Z
1

0

x c(x; t) dx �
21=2 jc0j

1=2

L1

R
t
�1=2

; t 2 (0;+1):(1.19)

If c0 satis�es in addition

Iq :=

Z
1

0

x
�q
c0(x) dx <1(1.20)

for some q 2 (0;+1), there holds

%(t) � %(0) min

(
1;

�
q + (q + 2)t=T�

2(q + 1)

��(q+1)=(q+2)
)
;(1.21)

where

T� =
2

R2
I
1=(q+1)
q %(0)�(q+2)=(q+1)

:(1.22)

Finally, if c0 � 0 on (0; �) for some � > 0 we have

%(t) � %(0) min

(
1;

�
1 + t=T�

2

��1)
;(1.23)

where

T� =
2

� R2 �(0)
:(1.24)

It follows from Theorem 1.3 that the temporal decay of the total density % depends strongly
on the amount of clusters of very small size (x � 0) in the initial distribution, and the smaller
this amount is, the faster is the decay of the total density %. This fact has already been
noticed in [8] when �(x; y) = xy for some speci�c initial data for which explicit solutions are
available. Theorem 1.3 thus provides an extension of the results of [8].
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We �nally investigate the possible occurrence of the gelation phenomenon in the coagulation-
fragmentation equations, still assuming that � ful�lls (1.3)-(1.4) and (1.18). Indeed, as al-
ready mentioned above we expect from our assumptions (1.7)-(1.8) that the dynamics of the
system of clusters will be dominated by coagulation which is the gelation-inducing mecha-
nism. It is thus likely that gelation still takes place in the full coagulation-fragmentation
equations under our assumptions. One partial result in that direction is the following.

Proposition 1.4. Let � and  be coagulation and fragmentation kernels satisfying, respec-

tively, (1.3)-(1.4), (1.18) and (1.5)-(1.9) together withZ x

0

 (x; y)
�
1�

y

x

�
dy � � min(1; x); x 2 R+;(1.25)

for some � > 0. Consider next c0 2 X
+ and denote by c a solution to (1.1) on [0;+1) with

initial datum c0. If

%(0) >
2�

R2
;(1.26)

then gelation occurs in a �nite time, i.e.

Tgel = inf ft 2 R+; %(t) < %(0)g <1:

As far as we know only few results on the onset of gelation in the coagulation-fragmentation
equations were available and only the case �(x; y) = xy had been considered together with
some special cases of fragmentation kernels  by formal arguments in [3] and [19]. Some frag-
mentation kernels considered in the above mentioned papers however do not ful�ll (1.7)-(1.9).
For the discrete coagulation-fragmentation equations a result in the spirit of Proposition 1.4
may be found in [11, Theorem 4] for a di�erent (stochastic) notion of gelation.

2. Preliminaries

Let (�n)n�1 be a sequence of smooth cut-o� functions such that 0 � �n � 1 and

�n(x) =

8<
:

1 if 0 � x � n;

0 if x � n+ 1:

For n � 1 we de�ne a sequence of approximations of � and  by

�n(x; y) = �(x; y) �n(x) �n(y); (x; y) 2 R2
+;(2.1)

 n(x; y) =  (x; y) �n(x); (x; y) 2 R2
+:(2.2)

A straightforward consequence of (1.3)-(1.8) and the properties of �n is the following result.

Lemma 2.1. For each n � 1 the functions �n and  n are non-negative and bounded con-

tinuous functions on R2
+ and satisfy

�n(x; y) = rn(x) rn(y) + �n(x; y); (x; y) 2 R2
+;(2.3)

0 � �n(x; y) � A rn(x) rn(y); (x; y) 2 [1;+1)2;(2.4) Z x

0

 n(x; y) dy � !(x) max (x�n(x); rn(x)); x 2 R+;(2.5)

where

rn(x) = r(x) �n(x); �n(x; y) = �(x; y) �n(x) �n(y):(2.6)
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We also consider a sequence of non-negative functions (cn0 )n�1 in D(0;+1) such that

lim
n!+1

kc
n
0 � c0k = 0:(2.7)

Consequently,

C0 := sup
n�1

kc
n
0k <1:(2.8)

Owing to Lemma 2.1 we may use the results of Melzak [15] to establish the existence of a
solution to (1.1)-(1.2) with (�; ; c0) replaced by (�n;  n; c

n
0). More precisely we have the

following result.

Proposition 2.2. For each n � 1 there is a unique function

c
n
2 C(R2

+) \ L
1(0; T ;L1(0;+1)); T 2 (0;+1);

such that, for every (x; t) 2 R2
+ there holds

c
n(x; t) = c

n
0 (x)(2.9)

+
1

2

Z t

0

Z x

0

�n(x� y; y) cn(x� y; s) cn(y; s) dyds

�

Z t

0

c
n(x; s)

Z x

0

y

x
 n(x; y) dyds

�

Z t

0

c
n(x; s)

Z
1

0

�n(x; y) c
n(y; s) dyds

+

Z t

0

Z
1

x

 n(y; x) c
n(y; s) dyds:

Since the coagulation and fragmentation kernels �n and  n are bounded and compactly
supported in R2

+ we deduce from (2.9) the following useful identities.

Lemma 2.3. Let g be a locally bounded function on R+ such that g(x) � G (1+x), x 2 R+,

for some G > 0. For n � 1, t 2 (0;+1) and s 2 [0; t) there holdsZ
1

0

g(x) (cn(x; t)� c
n(x; s)) dx(2.10)

=
1

2

Z t

s

Z
1

0

Z
1

0

�n(x; y) ~g(x; y) c
n(x; �) cn(y; �) dxdyd�

+

Z t

s

Z
1

0

c
n(x; �)

Z x

0

 n(x; y)
�
g(y)�

y

x
g(x)

�
dy dxd�;

where

~g(x; y) = g(x+ y)� g(x)� g(y); (x; y) 2 R2
+;(2.11) Z

1

0

x c
n(x; t) dx =

Z
1

0

x c
n
0 (x) dx:(2.12)

In fact (2.12) follows from (2.10) with g(x) = x.
We next use the special form (2.1) of the coagulation kernel to derive some estimates valid
uniformly with respect to n � 1. In the following we denote by (Ci)i�1 any positive constant
which depends only on �, r, �, A,  , !, B, c0 and C0 in (2.8). The dependence of the Ci's
upon further parameters will be indicated explicitly.
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Lemma 2.4. For M > 0 and n �M there holdsZ t

0

Z
1

M

Z
1

M

�n(x; y) c
n(x; s) cn(y; s) dxdyds(2.13)

�

2C0

M
+ 2

Z t

0

Z
1

M

�Z x

0

 n(x; y) dy

�
c
n(x; s) dxds:

Proof. We take g(x) = min(x;M) in (2.10). As

~g(x; y) � 0 if x 2 [0;M ] or y 2 [0;M ];

~g(x; y) = �M if (x; y) 2 [M;+1)2;

we obtain Z
1

0

g(x) (cn(x; t)� c
n
0 (x)) dx

� �

M

2

Z t

0

Z
1

M

Z
1

M

�n(x; y) c
n(x; s) cn(y; s) dxdyds

+

Z t

0

Z
1

M

c
n(x; s)

Z x

0

 n(x; y)

�
g(y)�

My

x

�
dy dxds

� �

M

2

Z t

0

Z
1

M

Z
1

M

�n(x; y) c
n(x; s) cn(y; s) dxdyds

+M

Z t

0

Z
1

M

c
n(x; s)

Z x

0

 n(x; y) dy dxds;

hence (2.13).

A simple consequence of Lemma 2.4 and (2.3)-(2.5) is the following result.

Lemma 2.5. Let T 2 (0;+1). For M > 0, t 2 [0; T ] and n �M there holdsZ t

0

�Z
1

M

rn(x) c
n(x; s) dx

�2

ds � C1(T )
�
M
�1 + !(M)

�
:(2.14)

Proof. We infer from Lemma 2.4, (2.12), (2.3), (2.5) and the properties of ! thatZ t

0

�Z
1

M

rn(x) c
n(x; s) dx

�2

ds

�

2C0

M
+ 2 !(M)

Z t

0

Z
1

M

(x �n(x) + rn(x)) c
n(x; s) dxds

� C1(T )
�
M
�1 + !(M)

�
+ 2 !(M)

Z t

0

�Z
1

M

rn(x) c
n(x; s) dx

�
ds

� C1(T )
�
M
�1 + !(M)

�
+ 2 !(M)2 t

+
1

2

Z t

0

�Z
1

M

rn(x) c
n(x; s) dx

�2

ds;

hence (2.14).
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Before going further we introduce the following notation : for n � 1, a 2 (1;+1], � 2
(0;+1) and t 2 R+ we put

E
n
a;�(t) = sup

8>><
>>:

Z a

0

1E(x) c
n(x; t) dx;

E measurable subset of R+ with jEj � �

9>>=
>>;:

Here 1E denotes the characteristic function of E.
We may now proceed as in [17, Lemma 3.5] with some modi�cations to prove the following
result.

Lemma 2.6. Let T 2 (0;+1) and a 2 (1;+1). For every n � 1, t 2 [0; T ] and � 2

(0;+1) there holds

Z
1

0

c
n(x; t) dx � C2(T );(2.15)

Z t

0

�Z
1

0

rn(x) c
n(x; s) dx

�2

ds � C2(T );(2.16)

E
n
a;�(t) � C3(a; T )

�
E
n
a;�(0) + �

�
:(2.17)

Proof. We �rst take g � 1 in (2.10) and use (2.8), (2.3), (2.4), (2.5) and (2.12) to obtain

Z
1

0

c
n(x; t) dx+

1

2

Z t

0

�Z
1

0

rn(x) c
n(x; s) dx

�2

ds

� C0 +

Z t

0

Z
1

0

(x+ rn(x)) c
n(x; s) dxds

� C2(T ) +
1

4

Z t

0

�Z
1

0

rn(x) c
n(x; s) dx

�2

ds;

hence (2.15)-(2.16).
Next, let a 2 (1;+1), � 2 (0;+1) and consider a measurable subset E of R+ with jEj � �.
Thanks to the non-negativity of �n,  n and cn it follows from (2.9) that

Z a

0

1E(x) c
n(x; t) dx � E

n
a;�(0)

+
1

2

Z t

0

Z a

0

Z x

0

1E(x) �n(x� y; y) cn(x� y; s) cn(y; s) dydxds

+

Z t

0

Z a

0

1E(x)

Z
1

x

 n(y; x) c
n(y; s) dydxds:
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The Fubini theorem then entails

Z a

0

1E(x) c
n(x; t) dx � E

n
a;�(0)

+

Z t

0

Z a

0

Z a

0

1�y+E (x) �n(x; y) c
n(x; s) cn(y; s) dydxds

+

Z t

0

Z a

0

c
n(x; s)

Z x

0

1E(y)  n(x; y) dy dxds

+

Z t

0

Z
1

a

c
n(x; s)

Z x

0

1E(y)  n(x; y) dy dxds:

The Lebesgue measure being invariant with respect to translation and �n,  n being uniformly
bounded on [0; a]� [0; a] with respect to n � 1 (the bound depending on a) we infer from
the above estimate that

Z a

0

1E(x) c
n(x; t) dx � E

n
a;�(0)

+C4(a)

Z t

0

E
n
a;�(s)

Z a

0

c
n(x; s) dx ds

+C4(a) jEj

Z t

0

Z a

0

c
n(x; s) dxds

+

Z t

0

Z
1

a

c
n(x; s)

Z x

0

1E(y)  n(x; y) dy dxds:

It then follows from (2.12), (2.15), (2.16) and (1.9) that

Z a

0

1E(x) c
n(x; t) dx � E

n
a;�(0) + C5(a; T )

�Z t

0

E
n
a;�(s) ds + �

�

+

Z t

0

Z
1

a

(1 + x+ rn(x)) c
n(x; s) jEj dxds

� E
n
a;�(0) + C6(a; T )

�Z t

0

E
n
a;�(s) ds + �

�
:

The Gronwall lemma then yields (2.17).

Lemma 2.7. Let T 2 (0;+1) and a 2 (1;+1). For every n � 1, t 2 [0; T ] and s 2 [0; t]
there holds

Z a

0

jc
n(x; t)� c

n(x; s)j dx � C7(a; T ) (t� s)1=2:(2.18)
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Proof. We take g(x) = 1[0;a](x) sign (c
n(x; t)� c

n(x; s)) in (2.10) and obtainZ a

0

jc
n(x; t)� c

n(x; s)j dx

�

3

2

Z t

s

Z a

0

Z a

0

�n(x; y) c
n(x; �) cn(y; �) dxdyd�

+2

Z t

s

Z a

0

c
n(x; �)

Z x

0

 n(x; y) dy dxd�

+

Z t

s

Z
1

a

c
n(x; �)

Z a

0

 n(x; y) dy dxd�

+

Z t

s

Z a

0

Z
1

a

�n(x; y) c
n(x; �) cn(y; �) dxdyd�

It then follows from (2.3), (2.4), (2.5), (2.12), (2.15) and (2.16) thatZ a

0

jc
n(x; t)� c

n(x; s)j dx

� C8(a)

Z t

s

 
sup

�2[0;T ]

jc
n(:; �)j2

L1 +

Z a

0

x c
n(x; �) dx

!
d�

+

Z t

s

Z
1

a

!(x) (x+ rn(x)) c
n(x; �) dxd�

+(1 +A)

Z t

s

�Z a

0

rn(x) c
n(x; �) dx

� �Z
1

a

rn(x) c
n(x; �) dx

�
d�

� C9(a; T ) (t� s) + C10

Z t

s

Z
1

0

(x+ rn(x)) c
n(x; �) dxd�

+(1 +A) jrjL1(0;a)

Z t

s

jc
n(:; �)j

L1

�Z
1

0

rn(x) c
n(x; �) dx

�
d�

� C11(a; T )
�
(t� s) + (t� s)1=2

�
;

and the proof of Lemma 2.7 is complete.

Owing to (2.12), Lemma 2.6 and Lemma 2.7 we may now prove a compactness result for the
sequence (cn).

Proposition 2.8. For each T 2 (0;+1) the sequence (cn) is relatively sequentially compact

in C([0; T ];L1(0;+1)w).

Here we have use the notation C([0; T ];Yw) to denote the space of all weakly continuous
functions from [0; T ] into the Banach space Y .

Proof. According to a variant of the Arzel�a-Ascoli theorem (see, e.g., [20, Theorem 1.3.2])
we need only to check that the sequence (cn) enjoys the following two properties :�

The set fcn(t); n � 1g is weakly compact in L1(0;+1)
for every t 2 [0; T ].

(2.19)

�
The set fc

n
; n � 1g is weakly equicontinuous in

L
1(0;+1) at every t 2 [0; T ] (see [20, De�nition 1.3.1]).

(2.20)
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{ Proof of (2.19). We �x t 2 [0; T ]. Let " 2 (0;+1). By (2.8) and (2.12) we haveZ
1

M

c
n(x; t) dx �

C0

M
; M 2 (0;+1):(2.21)

We may therefore choose M" large enough such thatZ
1

M"

c
n(x; t) dx �

"

2
; n � 1:(2.22)

Consider next � 2 (0;+1) and a measurable subset E of (0;+1) with jEj � �. Owing to
(2.17) and (2.22) there holdsZ

E

c
n(x; t) dx �

Z M"

0

1E(x) c
n(x; t) dx+

"

2
;

� C(M"; T )
�
E
n
+1;�(0) + �

�
+
"

2
:

As (cn0) converges strongly to c0 in L
1(0;+1) by (2.7) we have

lim
�!0

sup
n�1

E
n
+1;�(0) = 0:

Consequently there is �" > 0 such that, if jEj � �",

sup
n�1

Z
E

c
n(x; t) dx � ":(2.23)

Gathering (2.22) and (2.23) we deduce from the Dunford-Pettis theorem (see, e.g., [6]) that
(2.19) holds true.
{ Proof of (2.20). Let " 2 (0;+1). As (2.21) holds uniformly with respect to t 2 [0; T ] and
n � 1 there is a" � 1 such thatZ

1

a"

c
n(x; t) dx �

"

4
; n � 1; t 2 [0; T ]:(2.24)

Let t 2 [0; T ] and s 2 [0; t]. By (2.18) and (2.24) we haveZ
1

0

jc
n(x; t)� c

n(x; s)j dx �

Z a"

0

jc
n(x; t)� c

n(x; s)j dx+
"

2

� C7(a"; T ) (t� s)1=2 +
"

2
� ";(2.25)

provided

jt� sj � �("; T ) :=
"
2

4C7(a"; T )2
:(2.26)

Therefore (cn) is equicontinuous with respect to the strong topology of L1(0;+1) and thus
also for the weak topology of L1(0;+1), hence (2.20).
We may then apply [20, Theorem 1.3.2] and obtain Proposition 2.8.

The last result of this section states a continuity property of some bilinear integral operator
with respect to the weak topology of L1

� L
1.
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Lemma 2.9. Consider 0 < a � b < 1 and H 2 L
1((0; a)� (0; b)). We de�ne a mapping

� on L1(0; a)� L
1(0; b) by

�(u; v) =

Z a

0

Z b

0

H(x; y) u(x) v(y) dxdy:

If (un) is a sequence in L1(0; a) converging weakly to u in L1(0; a) and (vn) is a sequence in

L
1(0; b) converging weakly to v in L1(0; b) there holds

lim
n!+1

�(un; vn) = �(u; v):

The proof of Lemma 2.9 follows the lines of that of [17, Lemma 4.1] to which we refer.

3. Proof of Theorem 1.2

We are now in a position to prove Theorem 1.2. Indeed we infer from Proposition 2.8 that
there is a subsequence of (cn) (not relabeled) and a function

c 2 C([0;+1);L1(0;+1)w);

such that for each T 2 (0;+1) there holds

cn �! c in C([0; T ];L1(0;+1)w):(3.1)

As c(:; t) is a weak limit of non-negative functions we deduce that c(:; t) � 0 a.e. in (0;+1)
for every t 2 R+. We also claim that in fact,

c 2 C([0;+1);L1(0;+1)):(3.2)

Indeed, let (t; s) 2 R2
+ and " 2 (0;+1). Since (cn(t)� c

n(s)) converges weakly to c(t)� c(s)
in L1(0;+1) we infer from (2.25) that

jc(t)� c(s)jL1 � ";

as long as (t; s) ful�lls (2.26), hence the claim (3.2).
Next, let T 2 (0;+1), a 2 (0;+1) and consider M > a. For n �M it follows from (2.14)
and the properties of �n thatZ T

0

�Z M

a

r(x) cn(x; s) dx

�2

ds � C1(T )
�
a
�1 + !(a)

�
:

As r 1[a;M ] 2 L
1(0;+1) we infer from (3.1), (2.15) and the Lebesgue dominated convergence

theorem that Z T

0

�Z M

a

r(x) c(x; s) dx

�2

ds � C1(T )
�
a
�1 + !(a)

�
:

As M > a is arbitrary we �nally obtainZ T

0

�Z
1

a

r(x) c(x; s) dx

�2

ds � C1(T )
�
a
�1 + !(a)

�
:(3.3)
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In the same way we infer from (2.12), (2.15), (2.16) and (3.1) thatZ T

0

�Z
1

0

r(x) c(x; s) dx

�2

ds � C12(T );(3.4)

sup
t2[0;T ]

kc(t)k � C12(T );(3.5)

Z
1

0

x c(x; t) dx �

Z
1

0

x c0(x) dx; t 2 [0; T ]:(3.6)

A �rst consequence of (1.3), (1.4), (1.8), (3.4), (3.5) and the Fubini theorem is that8<
:

(x; y; s) 7! �(x; y) c(x; s) c(y; s) 2 L1((0;+1)2 � (0; T ));

(x; y; s) 7!  (y; x) c(y; s) 2 L1((0;+1)2 � (0; T ));
(3.7)

We now check that the function c is indeed a solution to (1.1)-(1.2) in the sense of Def-
inition 1.1. For that purpose consider a function g 2 L

1(0;+1) with jgjL1 � 1 and
t 2 (0;+1). Owing to (2.7) and (3.1) we have

lim
n!+1

Z
1

0

(cn(x; t)� c
n
0(x)) g(x) dx(3.8)

=

Z
1

0

(c(x; t)� c0(x)) g(x) dx:

Next consider a 2 (1;+1). For n � 1 and s 2 (0; t) we put

K1;n(a; s) =

Z a

0

Z a

0

�n(x; y) ~g(x; y) c
n(x; s) cn(y; s) dxdy;

K2;n(a; s) = 2

Z a

0

Z
1

a

�n(x; y) ~g(x; y) c
n(x; s) cn(y; s) dxdy;

K3;n(a; s) =

Z
1

a

Z
1

a

�n(x; y) ~g(x; y) c
n(x; s) cn(y; s) dxdy;

F1;n(a; s) =

Z a

0

c
n(x; s)

Z x

0

 n(x; y)
�
g(y)�

y

x
g(x)

�
dy dx;

F2;n(a; s) =

Z
1

a

c
n(x; s)

Z x

0

 n(x; y)
�
g(y)�

y

x
g(x)

�
dy dx;

and

K1(a; s) =

Z a

0

Z a

0

�(x; y) ~g(x; y) c(x; s) c(y; s) dxdy;

K2(a; s) = 2

Z a

0

Z
1

a

�(x; y) ~g(x; y) c(x; s) c(y; s) dxdy;

K3(a; s) =

Z
1

a

Z
1

a

�(x; y) ~g(x; y) c(x; s) c(y; s) dxdy;

F1(a; s) =

Z a

0

c(x; s)

Z x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy dx;

F2(a; s) =

Z
1

a

c(x; s)

Z x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy dx;
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where ~g is de�ned by (2.11).
For n � a we have �n � � in [0; a]� [0; a] and it follows from Lemma 2.9 and (3.1) that for
each s 2 (0; t) there holds

lim
n!+1

K1;n(a; s) = K1(a; s):

The above inequality, (2.15) and the Lebesgue dominated convergence theorem then entail

lim
n!+1

Z t

0

K1;n(a; s) ds =

Z t

0

K1(a; s) ds:(3.9)

It next follows from (2.3), (2.4), (2.14) and (2.16) thatZ t

0

jK2;n(a; s) +K3;n(a; s)j ds

� 9 (1 +A)

Z t

0

�Z
1

0

rn(x) c
n(x; s) dx

� �Z
1

a

rn(x) c
n(x; s) dx

�
ds

Z t

0

jK2;n(a; s) +K3;n(a; s)j ds � C13(t)
�
a
�1 + !(a)

�
:(3.10)

Similarly it follows from (1.3), (1.4), (3.3) and (3.4) thatZ t

0

jK2(a; s) +K3(a; s)j ds � C14(t)
�
a
�1 + !(a)

�
:(3.11)

Therefore by (3.9)-(3.11) we have

lim sup
n!+1

�����
Z t

0

3X
i=1

(Ki;n(a; s)�Ki(a; s)) ds

����� � C15(t)
�
a
�1 + !(a)

�
:

At this point notice that K1;n(a; s)+K2;n(a; s)+K3;n(a; s) and K1(a; s)+K2(a; s)+K3(a; s)
do not depend on a 2 (1;+1). The above inequality being valid for every a 2 (1;+1) we
�nally obtain, thanks to (1.7)

lim
n!+1

Z t

0

Z
1

0

Z
1

0

�n(x; y) ~g(x; y) c
n(x; s) cn(y; s) dxdyds(3.12)

=

Z t

0

Z
1

0

Z
1

0

�(x; y) ~g(x; y) c(x; s) c(y; s) dxdyds:

Next, for n � a we have  n �  in [0; a]� [0; a] and����
Z x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy

���� � 2 j jL1((0;a)�(0;a)) a.e. in (0; a):

It then follows from (3.1) that

lim
n!+1

Z t

0

F1;n(a; s) ds =

Z t

0

F1(a; s) ds:(3.13)

We also infer from (2.5), (2.12) and (2.16) thatZ
t

0

jF2;n(a; s)j ds � 2

Z
t

0

Z
1

a

c
n(x; s)

Z
x

0

 n(x; y) dy dxds

� 2 !(a)

Z t

0

Z
1

0

(x+ rn(x)) c
n(x; s) dxds
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0

jF2;n(a; s)j ds � C16(t) !(a):(3.14)

Proceeding in a similar way we deduce from (1.8), (3.4) and (3.5) that

Z t

0

jF2(a; s)j ds � C17(t) !(a):(3.15)

Combining (3.13)-(3.15) yields

lim sup
n!+1

�����
Z t

0

2X
i=1

(Fi;n(a; s)� Fi(a; s)) ds

����� � C18(t) !(a):

As F1;n(a; s) + F2;n(a; s) and F1(a; s) + F2(a; s) do not depend on a 2 (1;+1) we may let
a! +1 in the above inequality and obtain

lim
n!+1

Z t

0

Z
1

0

c
n(x; s)

Z x

0

 n(x; y)
�
g(y)�

y

x
g(x)

�
dy dxds(3.16)

=

Z t

0

Z
1

0

c(x; s)

Z x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy dxds:

We now let n! +1 in (2.10) and use (3.8), (3.12) and (3.16) to obtain that c satis�es

Z
1

0

g(x) (c(x; t)� c0(x)) dx(3.17)

=
1

2

Z t

0

Z
1

0

Z
1

0

�(x; y) ~g(x; y) c(x; s) c(y; s) dxdyds

+

Z
t

0

Z
1

0

c(x; s)

Z
x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy dxds;

the function ~g still being de�ned by (2.11). But on account of (3.7) the Fubini theorem
allows us to rewrite the �rst term of the right-hand side of (3.17) as

Z
1

0

g(x)

Z t

0

�
1

2

Z x

0

�(x� y; y) c(x� y; s) c(y; s) dy

� c(x; s)

Z
1

0

�(x; y) c(y; s) dy

�
dsdx

and the second term on the right-hand side of (3.17) as

Z
1

0

g(x)

Z t

0

�Z
1

x

 (y; x) c(y; s) dy

� c(x; s)

Z x

0

y

x
 (x; y) dy

�
dsdx:
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Therefore (3.17) readsZ
1

0

g(x) (c(x; t)� c0(x)) dx

=

Z
1

0

g(x)

Z t

0

�
1

2

Z x

0

�(x� y; y) c(x� y; s) c(y; s) dy

� c(x; s)

Z x

0

y

x
 (x; y) dy

� c(x; s)

Z
1

0

�(x; y) c(y; s) dy

+

Z
1

x

 (y; x) c(y; s) dy

�
dsdx:

This equality being valid for every g 2 L
1(0;+1) we have shown that c ful�lls De�ni-

tion 1.1 (iii). Recalling (3.5), (3.6) and (3.7) we see that c is a solution to (1.1) on [0;+1)
in the sense of De�nition 1.1 with c(0) = c0 and satisfying (1.16). The proof of Theorem 1.2
is therefore complete.

Remark 3.1. If r(x) � C (1 + x) for some  2 [0; 1=2) and  (x; y) = F (y; x� y) for some
symmetric and continuous function F satisfying

F (x; y) � C (1 + x+ y)�; � 2 [0; 1);

Theorem 1.2 follows from [17, Theorem 4.2]. Our result thus improves [17, Theorem 4.2]
along the direction of coagulation kernels growing faster than (1 + x)1=2(1 + y)1=2.

4. Gelation in the pure coagulation model

Throughout this section we assume that  � 0 and that � satis�es (1.3)-(1.4) and (1.18).
Also c0 is a function in X+ and we denote by c a solution to (1.1) on [0;+1) with initial
datum c0 (recall that such a solution exists by Theorem 1.2). We then put

%(t) =

Z
1

0

x c(x; t) dx; t 2 R+:(4.1)

From De�nition 1.1 we deduce the following identity.

Lemma 4.1. Let g 2 L1(0;+1). For t 2 (0;+1) and s 2 [0; t) there holdsZ
1

0

g(x) (c(x; t)� c(x; s)) dx(4.2)

=
1

2

Z t

s

Z
1

0

Z
1

0

�(x; y) ~g(x; y) c(x; �) c(y; �) dxdyd�;

where ~g is de�ned by (2.11).

As a consequence of Lemma 4.1 we obtain that % is a non-increasing function.

Lemma 4.2. For t 2 (0;+1) and s 2 [0; t) there holds

%(t) � %(s):(4.3)

Next let w : (0;+1)! R+ be a non-negative and non-increasing function such that

w(x+ y) � w(x) + w(y); (x; y) 2 (0;+1)2:(4.4)
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Then, if c0 enjoys the additional integrability propertyZ
1

0

w(x) c0(x) dx <1;(4.5)

so does c(:; t) and Z
1

0

w(x) c(x; t) dx �

Z
1

0

w(x) c(x; s) dx:(4.6)

Proof. Let M 2 (0;+1) and take g(x) = x 1[0;M ](x) in (4.2). As

~g(x; y) � x+ y � x� y = 0 if (x; y) 2 [0;M ]� [0;M ];

~g(x; y) � �g(x)� g(y) � 0 if x �M or y �M;

we obtain Z M

0

x c(x; t) dx �

Z M

0

x c(x; s) dx:

The above inequality and De�nition 1.1 (i) then entail (4.3) by letting M ! +1.
Next the function w being as in Lemma 4.2 we de�ne

w"(x) = min (w("); w(x)); x 2 (0;+1);

for " 2 (0; 1). By (4.4) the function w" is a non-negative and non-increasing bounded function
in (0;+1) and

w"(x+ y) � w"(x) + w"(y); (x; y) 2 (0;+1)2:(4.7)

Also for each x 2 (0;+1) there holds

lim
"!0

w"(x) = w(x):

We may then take g � w" in (4.2) and obtain, thanks to (4.7),Z
1

0

w"(x) c(x; t) dx �

Z
1

0

w"(x) c(x; s) dx:(4.8)

We �rst take s = 0 in (4.8) and let " ! 0. The monotone convergence theorem and (4.5)
entail Z

1

0

w(x) c(x; t) dx <1:

We may then let "! 0 in (4.8) and obtain (4.6).

After this preparation we are ready to prove Theorem 1.3. Let s 2 (0;+1) and t 2 (s;+1).
We take g � 1 in (4.2) and use (1.18) to obtainZ t

s

j%(�)j2 d� �
2

R2

Z
1

0

c(x; s) dx:(4.9)

{ Proof of (1.19). It follows from (4.3) and (4.9) with s = 0 that

t %(t)2 �
2

R2

Z
1

0

c0(x) dx;

hence (1.19).
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{ Proof of (1.21). Here the function c0 enjoys the additional property (1.20). Clearly the
function w(x) = x

�q satis�es the assumptions of Lemma 4.2. Consequently,Z
1

0

x
�q
c(x; s) dx � Iq =

Z
1

0

x
�q
c0(x) dx;

which yields, together with the H�older inequality,Z
1

0

c(x; s) ds � %(s)q=(q+1)

�Z
1

0

x
�q
c(x; s) dx

�1=(q+1)

Z
1

0

c(x; s) ds � %(s)q=(q+1)
I
1=(q+1)
q :(4.10)

We then obtain from (4.9) and (4.10) thatZ t

s

j%(�)j2 d� �
2

R2
I
1=(q+1)
q %(s)q=(q+1)

:

As the above inequality is valid for every t > s we �nally obtainZ
1

s

j%(�)j2 d� �
2

R2
I
1=(q+1)
q %(s)q=(q+1)

; s 2 R+:(4.11)

Introducing

E(s) = %(s)q=(q+1)
; m =

q + 2

q
and

1

�
=

2

R2
I
1=(q+1)
q ;

(4.11) reads Z
1

s

E(�)m+1
d� �

1

�
E(s); s 2 R+;

and (1.21) follows from [12, Theorem 9.1].
{ Proof of (1.23). We take w = 1[0;�] in Lemma 4.2. Since c0 � 0 on (0; �) we obtainZ �

0

c(x; �) dx = 0

for every � 2 R+, hence

c(x; �) = 0 a.e. in (0; �); � 2 R+:(4.12)

Recalling (4.9) it follows from (4.12) thatZ
t

s

j%(�)j2 d� �
2

R2 �
%(s):

The above inequality being valid for every t > s we have in factZ
1

s

j%(�)j2 d� �
2

R2 �
%(s); s 2 R+:

We then use once more [12, Theorem 9.1] to conclude that (1.23) holds true.

Remark 4.3. Theorem 1.3 gives some upper bound on the gelation time Tgel de�ned by

Tgel = inf ft 2 R+; %(t) < %(0)g <1:

Indeed it follows from (1.19) that

Tgel �
2 jc0jL1

R2 %(0)2
:
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This upper bound is however not optimal [8].

5. Gelation in the coagulation-fragmentation model

Let � and  be coagulation and fragmentation kernels satisfying, respectively, (1.3)-(1.4),
(1.18) and (1.5)-(1.9), (1.25). We next consider c0 2 X

+ and denote by c a solution to
(1.1) on [0;+1) with initial datum c0. Similarly as in the previous section we deduce from
De�nition 1.1 the following identity.

Lemma 5.1. Let g 2 L1(0;+1). For t 2 (0;+1) and s 2 [0; t) there holds

Z
1

0

g(x) (c(x; t)� c(x; s)) dx(5.1)

=
1

2

Z t

s

Z
1

0

Z
1

0

�(x; y) ~g(x; y) c(x; �) c(y; �) dxdyd�

+

Z t

s

Z
1

0

c(x; �)

Z x

0

 (x; y)
�
g(y)�

y

x
g(x)

�
dy dxd�;

where ~g is de�ned by (2.11).

Putting

%(t) =

Z
1

0

x c(x; t) dx; t 2 R+;(5.2)

we obtain the following estimate on %.

Lemma 5.2. For t 2 (0;+1) and s 2 [0; t) there holds

Z t

s

j%(�)j2 d� �
2

R2
jc(s)jL1 +

2 �

R2

Z t

s

%(�) d�;(5.3)

%(t) � %(s):(5.4)

Proof. We take g � 1 in (5.1) and obtain

1

2

Z t

s

Z
1

0

Z
1

0

�(x; y) c(x; �) c(y; �) dxdyd�

�

Z
1

0

c(x; s) dx+

Z t

s

Z
1

0

c(x; �)

Z x

0

 (x; y)
�
1 �

y

x

�
dy dxd�:

Then (5.3) follows from (1.3), (1.4), (1.18), (1.25) and the above inequality.
Next, let M 2 (0;+1) and take g(x) = min (x;M) in (5.1). As

~g(x; y) � x+ y � x� y = 0 if (x; y) 2 [0;M ]� [0;M ];

~g(x; y) �M � g(x)� g(y) � 0 if x �M or y �M;
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it follows from (1.25) thatZ
1

0

min (x;M) (c(x; t)� c(x; s)) dx

�

Z t

s

Z
1

M

c(x; �)

Z x

0

 (x; y)

�
g(y)�

M y

x

�
dy dxd�

�M

Z t

s

Z
1

M

c(x; �)

Z x

0

 (x; y)
�
1 �

y

x

�
dy dxd�

� �

Z t

s

Z
1

M

x c(x; �) dxd�:

As c 2 L1(0; t;X) we may let M ! +1 in the above inequality and obtain (5.4).

We are now in a position to prove Proposition 1.4. For t 2 R+ we put

M(t) =

Z
t

0

%(s) ds:

Let t 2 (0;+1). On the one hand it follows from the Jensen inequality that

M(t)2 � t

Z t

0

j%(s)j2 ds:(5.5)

On the other hand (5.3) entailsZ t

0

j%(s)j2 ds �
2

R2
jc0jL1 +

2 �

R2
M(t):(5.6)

Combining (5.5) and (5.6) yields

M(t)2 �
2 � t

R2
M(t)�

2 t

R2
jc0jL1 � 0;

hence

M(t) �
� t

R2

 
1 +

�
1 +

2 R2

�2 t
jc0jL1

�1=2
!
:

Recalling that % is non-increasing by (5.4) we obtain

%(t) �
�

R2

 
1 +

�
1 +

2 R2

�2 t
jc0jL1

�1=2
!
:(5.7)

As the limit as t ! +1 of the right-hand side of (5.7) is 2 �=R2 Proposition 1.4 follows
from (1.26) and (5.7).
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