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ABSTRACT. A model for the dynamics of a system of particles undergoing simultaneously
coalescence and breakup is considered, each particle being assumed to be fully identified by
its size. Existence of solutions to the corresponding evolution integral partial differential
equation is shown for product-type coagulation kernels with a weak fragmentation. The
failure of density conservation (or gelation) is also investigated in some particular cases.

1. INTRODUCTION

The coagulation-fragmentation equations are a model for the dynamics of cluster growth and
describe the time evolution of a system of clusters under the combined effect of coagulation
and fragmentation. Each cluster is identified by its size (or volume) which is assumed to be
a positive real number in the model considered in this paper. From a physical point of view
the basic mechanisms taken into account are the coalescence of two clusters to form a larger
one and the breakage of clusters into smaller ones. It is also assumed that the rates of these
reactions only depend on the sizes of the clusters involved in the reaction. Other effects
(multiple-coagulation, spatial fluctuations, ...) are neglected. Examples of applications of
these models arise in aerosol physics, polymer science and astronomy (see, e.g., [15] or the
recent survey paper [2] and the references therein). Denoting by ¢(x,t) the density of clusters
of size x at time ¢, the continuous coagulation-fragmentation equations read [15]
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(1.2) c(x,0) = co(2),

where the size variable x ranges in (0,400), the time variable ¢ ranges in (0,400) and ¢
denotes the partial derivative of ¢ with respect to time. Moreover, the reaction rates ¢ and 1
are non-negative functions which are called, respectively, the coagulation and fragmentation
kernels. The first and fourth integrals in (1.1) account for the formation of clusters of size «
due to coagulation of smaller clusters and fragmentation of larger ones, while the second and
third integrals in (1.1) describe the loss of clusters of size x due to coalescence with other
clusters and breakup.

The specific form of ¢ and ¢ of course depends on the particular physical situation to be
described. One interesting example of coagulation kernel is the so-called product kernel
o(x,y) = (xy)?, v > 0, and the main requirement we impose on the coagulation kernels to

be considered in this paper is to have a product kernel as dominating part. More precisely,
1



we assume that

(1.3) He,y) =r(z) r(y) + alz,y), (r,y) € R,
where the functions r and « satisfy
r e C(R+), a & C(Ri),
(1.4)
0 < ale,y) = aly,2) < A r(e) ry), (.)€ 1, +o0),

for some positive real number A. Here and in the following we use the notations Ry =
[0, +00) and RZ = R x Ry.

As for the fragmentation kernel it is natural to assume that [15]

(1.5) ¥ € C(R2),

(1.6) U(z,y) >0, (z,y) €RT and ¢(z,y)=0 if y>z>0.

We next require that the fragmentation is weaker than the coagulation, namely : there is a
non-increasing and bounded function w : Ry — Ry and a positive real number B such that

(1.7) xl_l}{l_noow(x) =0,

(1.8) / Y(x,y) dy < w(x) max(x,r(z)), =€ Ry,
0

(19) P(ey) < B (1 +max(e, (o)), (0,y) € B2

We finally assume that the initial datum ¢q satisfies

(1.10) co € XT,

where X is the positive cone of the Banach space
X = LI(O, +oo; (1 + a) dx)
endowed with the norm ||.|| defined by

l|lu|| = /000(1 + ) |u(x)| de, weX.

Thus,
Xt={ueX, u>0ae.}.
We first investigate the existence of solutions to (1.1)-(1.2) for the class of kernels and initial

data described above. Before stating our result, let us make precise the notion of solution
to (1.1) to be used in the sequel.

Definition 1.1. Let 7' € (0,4+oc]. A solution ¢ to (1.1) on [0,7T) is a function ¢ :[0,7T) —
Xt such that, for every ¢ € (0,7, there holds

(1.11) c € C([0,1]; L'(0, +00)) N L™(0,¢; X),

(x,y,s) = Qb(xvy) c(xvs) c(y,s) S Ll(((),—l—oo)2 X (Ovt))v
(1.12)

(z,y,8) = ¥y, z) cly,s) € L'((0,+00)* x (0,1)),



and for almost every x € R,

(1.13) c(x,t) =

L,

0
/Of)/ox Sle =y, y) (e —y,s) ey, s) dyds
- /Ot (i, 5) /0% b, y) dyds
N /Ot o(x, 5) /OOO $a,y) ely, s) dyds
b [ vt et dvds

o
1
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Existence of solutions to (1.1) in the sense of Definition 1.1 (the initial datum ¢y and thus the
function ¢ possibly enjoying additional regularity properties) has been the subject of several
papers since the pioneering works of Melzak [15] and McLeod [14]. For bounded kernels ¢
and v existence of solutions to (1.1) is studied in [15, 1, 13], while the case of unbounded
kernels has been investigated in [17, 4, 5] assuming the following growth condition on ¢,

(1.14) oz, y) <K (1+a+y), (vy)eR2

In the absence of fragmentation (1) = 0) global existence results are available assuming either
(1.14) [9] or the weaker assumption [10]

(1.15) im  A5Y

(z,y)—=+oo Ty

Also the kernel ¢(x,y) = ay has been considered in [14] (local existence) while explicit
global solutions are constructed in [8] by means of the Laplace transform. Let us finally
mention that under the assumption (1.15) existence of measure-valued solutions to the pure
coagulation equations (¢ = 0) and to the full coagulation-fragmentation equations (with
suitable assumptions on ) has been obtained, respectively, in [16] and [7] by a probabilistic
approach (see also [2]). The solutions obtained therein taking only their values in the space
of measures thus satisfy (1.1) in a weaker sense than the one required by Definition 1.1.
Browsing on the aforementioned papers one sees that no existence results (in the sense of
Definition 1.1) are available for (1.1) when ¢ #Z 0 and ¢ does not satisfy (1.14). Our first
result is a step in that direction within the class of kernels described above.

Theorem 1.2. Assume that the coagulation and fragmentation kernels ¢ and b fulfill, re-
spectively, (1.3)-(1.4) and (1.5)-(1.9). For every co € X% there exists at least one solution
cto (1.1) on [0,+00) with ¢(0) = ¢y satisfying

(1.16) / z c(x,t) de < / x co(x) de, t€R,.
0 0

It is worth mentioning at this point that no growth condition is required on the function r
in (1.4). Therefore, Theorem 1.2 also provides the existence of global solutions to the pure
coagulation equations (1) = 0) when r increases superlinearly and when ¢(x,y) = zy+a(z,y),
a # 0, both results being new to our knowledge.



Our next result deals with the large time behaviour of the total density p of solutions ¢ to

(1.1)-(1.2) defined by

(1.17) o(t) = /OOO xce(x,t) de, teRy,

when ¢ = 0 and r(x) > R x, « € Ry, for some R > 0. It turns out that, in the coagulation-
fragmentation process described by (1.1) there is neither sink nor source of clusters, so that
the total density o is expected to be constant through time evolution, i.e. o(¢) = p(0) for
t € R;. While this is true in some cases (e.g., when ¢ satisfies (1.14) [18, 5]) it is well-known
that, if ¢(x,y) = xy and 1» = 0 there are explicit solutions for which this property fails to
be true, a phenomenon known as gelation [8] . This picture is in fact valid for a wider class
of coagulation kernels and initial data as the following result shows.

Theorem 1.3. Assume that ¢ satisfies (1.3)-(1.4) and » = 0. Assume further that there
exists R > 0 such that

(1.18) r(z) > Rz, x€Ry.

Consider cg € XT, ¢g £0, and let ¢ be a solution to (1.1) on [0, +00) with initial datum cg.
Then

co 91/2 |Co|1/12
(1.19) o(t) := / z c(x,t) de < TL V2 e (0, +00).
0
If cq satisfies in addition
(1.20) 1, ::/ 7 cp(x) dr < oo
0

for some q € (0,400), there holds

g+ (q+ 2)t/T*> _(q“)/(q“)}

(1.21) o(t) < 0(0) miﬂ{17< 20q+ 1)

where

(1.22) T. = 2 [/t y(0)- @+,
R

Finally, if co =0 on (0,8) for some § > 0 we have

(1.23) o(t) < 0(0) miﬂ{la (#y }

where

2
(1.24) T, = 5 R (0]
It follows from Theorem 1.3 that the temporal decay of the total density o depends strongly
on the amount of clusters of very small size (# & 0) in the initial distribution, and the smaller
this amount is, the faster is the decay of the total density ¢. This fact has already been
noticed in [8] when ¢(z,y) = xy for some specific initial data for which explicit solutions are
available. Theorem 1.3 thus provides an extension of the results of [8].



We finally investigate the possible occurrence of the gelation phenomenon in the coagulation-
fragmentation equations, still assuming that ¢ fulfills (1.3)-(1.4) and (1.18). Indeed, as al-
ready mentioned above we expect from our assumptions (1.7)-(1.8) that the dynamics of the
system of clusters will be dominated by coagulation which is the gelation-inducing mecha-
nism. It is thus likely that gelation still takes place in the full coagulation-fragmentation
equations under our assumptions. One partial result in that direction is the following.

Proposition 1.4. Let ¢ and ¢ be coagulation and fragmentation kernels satisfying, respec-

tively, (1.3)-(1.4), (1.18) and (1.5)-(1.9) together with
(1.25) /gcgb(x,y) <1 — g) dy <T min(l,z), z &Ry,
0 T

Jor some I' > 0. Consider next cog € X1 and denote by ¢ a solution to (1.1) on [0, +00) with
initial datum cq. 1If

(1.26) 0(0) >
then gelation occurs in a finite time, i.ec.

Ty = inf{t € Ry, o(t) < 0(0)} < 0.

2
ﬁv

As far as we know only few results on the onset of gelation in the coagulation-fragmentation
equations were available and only the case ¢(z,y) = xy had been considered together with
some special cases of fragmentation kernels ¢» by formal arguments in [3] and [19]. Some frag-
mentation kernels considered in the above mentioned papers however do not fulfill (1.7)-(1.9).
For the discrete coagulation-fragmentation equations a result in the spirit of Proposition 1.4
may be found in [11, Theorem 4] for a different (stochastic) notion of gelation.

2. PRELIMINARIES
Let (£,)n>1 be a sequence of smooth cut-off functions such that 0 < ¢, <1 and

1 if 0<a<n,

) =
0 if z>n+1.

For n > 1 we define a sequence of approximations of ¢ and ¢ by

(2.1) bulz,y) = @(x,y) &al®) &aly), (z,y) € RE,

(2.2) Yulz,y) = ¥(z,y) &le), (2.y) € RL

A straightforward consequence of (1.3)-(1.8) and the properties of &, is the following result.

Lemma 2.1. For each n > 1 the functions ¢, and ¥, are non-negative and bounded con-
tinuous functions on R% and satisfy

(2.3) Gul@,y) = ral@) raly) + anlz,y), (o,y) € R,

(2.4) 0 < an(e,y) < Ara(z) raly), (2,y) € [1,+00)%,
(2.5) /0 Yo, y) dy < w(x) max (xé,(x),r.(x)), xRy,
where

(2.6) () = r(2) &aul(2),  anlz,y) = ale,y) &) &ly).



We also consider a sequence of non-negative functions (co) in D(0, 4+00) such that

.7) il o] =0,

Consequently,

(2.8) Co :=sup ||¢p]] < oo.
n>1

Owing to Lemma 2.1 we may use the results of Melzak [15] to establish the existence of a
solution to (1.1)-(1.2) with (¢, co) replaced by (¢, ¥, ). More precisely we have the
following result.

Proposition 2.2. For each n > 1 there is a unique function

" € C(RA) N L¥(0,T; LY0,400)), T € (0,+00),
such that, for every (x,t) € R3 there holds
(2.9) (x,t) =

+ 5(/} /0 bal —y,y) "z —y,5) (y,5) dyds
_ /Otcn(:z;,s) /j%;/}n(x,y) dyds

_/ (2, 5) / Gulz,y) " (y.5) dyds
// by, @) M (y,s) dyds.

Since the coagulation and fragmentation kernels ¢, and ), are bounded and compactly
supported in R we deduce from (2.9) the following useful identities.

Lemma 2.3. Let g be a locally bounded function on Ry such that g(x) < G (1+z), € Ry,
for some G > 0. Forn>1,1t€ (0,+00) and s € [0,t) there holds

(2.10) /000 g(x) (*(x,t)— (x,s)) d

=5 [ e sty ) 0.0) deio
// (z,0) /¢nxy )—%g(m)) dy dvdo,
where

(2.11) i(z,y) =g(z +y) —g(x) —gly), (z,y)€RE,

(2.12) / xc(x,t) de = / x cy(x) de.
0 0
In fact (2.12) follows from (2.10) with g(x) =

We next use the special form (2.1) of the coagulation kernel to derive some estimates valid
uniformly with respect to n > 1. In the following we denote by (C;);>1 any positive constant
which depends only on ¢, r, a, A, ¥, w, B, ¢y and Cy in (2.8). The dependence of the C;’s

upon further parameters will be indicated explicitly.



Lemma 2.4. For M > 0 and n > M there holds

(2.13) /t /OO /OO bul(,y) (2, 5) "(y,s) dedyds
<—+2 // (/ bz, y) dy> *(z,s) duds.
Proof. We take g(z) = min (z, M) in (2.10). A

g(z,y) <0 if z€[0,M] or yel0,M],
(l’,y):—M if (Jf,y)E[M,+OO)2,

Qe

we obtain

o0

gla) ("(z,1) — cg(x)) de

_g// / Sul,y) "(2,3) " (y, 5) dudyds
// (2,5) /%w ( )-%) dy drds
M// / balz,y) (2,5) (y,s) dedyds

+M// (2,5) /¢nxy)dydxds

A simple consequence of Lemma 2.4 and (2.3)-(2.5) is the following result.

N S—

_|_

| /\

hence (2.13).

Lemma 2.5. Let T € (0,400). For M >0, t € [0,T] and n > M there holds

(2.14) /Ot (/Oo ra(z) (2, 5) d:z;>2 ds < C\(T) (M~ + w(M)).

M

Proof. We infer from Lemma 2.4, (2.12), (2.3), (2.5) and the properties of w that
t 00 2
/ (/ ro(x) *(x,s) d:z;) ds
0
< 20 90 / / )+ ra(x) (x,s) deds

< Cy(T) (M_l —|—w(M)> +2 w(M) /0 (/MOO ro(x) " (x, ) d:z;) ds
< Cy(T) (M_l —|—w(M)> +2w(M)*t

1 t o] 2
+= (/ ro(x) " (x, ) d:z;) ds,
2 Jo \Jm

hence (2.14).



Before going further we introduce the following notation : for n > 1, @ € (1,4+x], § €
(0,+00) and t € Ry we put

/Oa 15(z) *(z,t) de,

55,5@) = sup
FE measurable subset of R, with [F| <§

Here 15 denotes the characteristic function of F.
We may now proceed as in [17, Lemma 3.5] with some modifications to prove the following
result.

Lemma 2.6. Let T € (0,400) and a € (1,+00). For everyn > 1, t € [0,T] and § €
(0, +00) there holds

(2.15) /OO (x,t) de < Co(T),
(2.16) /0 ( 000 ro(x) *(x,s) d:z;) ds < Cy(T),
(2.17) Enslt) < Cs(a,T) (&5(0) +9).

Proof. We first take g =1 in (2.10) and use (2.8), (2.3), (2.4), (2.5) and (2.12) to obtain
00 1 t 00 2
/ "(x,t) de + = / (/ ro(x) (x, ) d:z;) ds
0 2 Jo \Jo

t 00

<y —I—/ / (x 4+ rp(x)) "(x,s) dads
o Jo

1 t

< CoT) + 5 /0 (/Ooorn(x) (. 5) d:z;>2 ds,
hence (2.15)-(2.16).

Next, let a € (1,400), § € (0,400) and consider a measurable subset £ of R, with |E] < 4.
Thanks to the non-negativity of ¢,, ¢, and ¢" it follows from (2.9) that

/oa Lp(z) '(w,1) dv < &5(0)
1 1 a T
—I—§ /0 /0 /0 1g(x) du(x —y,y) (2 —y,s) *(y,s) dydads

+/Ot /0 15(2) /;o oy, @) My, s) dydads.



The Fubini theorem then entails
[ 1nte) ety de < €250

// / —y+5(7) Gnlz,y) "(z,5) "(y, 5) dyduds
/e

+/ (z,s) / 5(y) Uu(z,y) dy dzds

/ / (x,s / g(y) Yu(x,y) dy dads.

The Lebesgue measure being invariant with respect to translation and ¢,,, ©,, being uniformly
bounded on [0, a] x [0,a] with respect to n > 1 (the bound depending on a) we infer from
the above estimate that

/0“ 1g(x) *(x,t) doe < 5575(0)

+Ca(a) /Ot " (s) /Oacn(x,s) de ds
+Cy(a) |E| /Ot /0 M, s) dads
—|—/Ot /aoo (z,s) /Ox 15(y) Yoz, y) dy deds.

It then follows from (2.12), (2.15), (2.16) and (1.9) that

/Oa Lp(e) (et) de < €15(0) + Cs(a, T) (/Ot " () ds—|—5>
+ /Ot/aoo(l—l—x—l—rn(x)) (2, 5) || duds
< €4(0) + Cola, T) (/Ot " () ds—|—5>.

The Gronwall lemma then yields (2.17). O

Lemma 2.7. Let T' € (0,+00) and a € (1,400). For everyn > 1,1t € [0,T] and s € [0,1]
there holds

(2.18) /0“ | (x,t) — &z, 8)] de < Cr(a,T) (t — )2



Proof. We take g(x) = 1pq(x) sign (¢"(x,t) — ¢"(z,s)) in (2.10) and obtain

/|c (z,t) — "(x,5)| de

<2 / /0 /0 bulsy) ¢ (2,0) My, ) dadydo
12 /t/ac”(x,a) /xg/)n(x,y) dy dedo
// (2,0) /¢nxy)dydxda
//0/ bulsy) (2,0) ¢ (y.0) dadydo
3),

It then follows from (2.3) (2.12), (2.15) and (2.16) that

/Oa " (2, 1) — ¢"(x, 5)| da

< Cy(a) /: (Uzt[ng]|c”(.,U)|il—I—/Oa:licn(:l:,a) d:z;) do
// ) (2 4+ ra(2) (2, 0) dudo
L1+ A) / (/0 (@) (2, 0) d:z;) (/aoorn(x) &z, o) d:z;) do

< Cy(a,T) (t —s) + Cro / /OO(:L' + () *(x,0) dedo

+(1 4+ A) [r|ro(0,) /|c o)l (/Oorn(:z;) "(x,0) d:z;) do

< Cn(a T) <(t — S —|— (t )1/2> 5
and the proof of Lemma 2.7 is complete. O

Owing to (2.12), Lemma 2.6 and Lemma 2.7 we may now prove a compactness result for the
sequence (c").

Proposition 2.8. For each T € (0,400) the sequence (¢") is relatively sequentially compact
in €0, T L}(0, +o0)..).

Here we have use the notation C([0,77];Y,) to denote the space of all weakly continuous
functions from [0, 7] into the Banach space Y.

Proof. According to a variant of the Arzela-Ascoli theorem (see, e.g., [20, Theorem 1.3.2])
we need only to check that the sequence (¢*) enjoys the following two properties :

(2.19) The set {¢"(t),n > 1} is weakly compact in L'(0, +o0)
' for every t € [0,T].

(2.20) The set {c",n>1} is weakly equicontinuous in
' LY0,+00) at every ¢ € [0,T] (see [20, Definition 1.3.1]).



— Proof of (2.19). We fix t € [0,T]. Let ¢ € (0,400). By (2.8) and (2.12) we have

(2.21) / c"(x,t) de < @, M € (0,40).
M M

We may therefore choose M. large enough such that
(2.22) / c"(x,t) de <

Consider next § € (0,400) and a measurable subset F of (0,4+00) with |E] < §. Owing to
(2.17) and (2.22) there holds

n > 1.

Y -

DO ™

M. -
/ (x,t) de < / 1g(x) *(x,t) do + =,
E 0 2

5
< O, T) (E105(0) +6) + 5
As (c§) converges strongly to ¢ in L'(0,400) by (2.7) we have

lim sup £4,. 5(0) = 0.

Consequently there is §, > 0 such that, if |F] < 4.,

(2.23) sup/ "z, 1) de <e.
E

n>1

Gathering (2.22) and (2.23) we deduce from the Dunford-Pettis theorem (see, e.g., [6]) that
(2.19) holds true.

— Proof of (2.20). Let € € (0,400). As (2.21) holds uniformly with respect to ¢t € [0,7T] and
n > 1 there is a. > 1 such that

(2.24) / c"(x,t) de <
Let t € [0,T] and s € [0,¢]. By (2.18) and (

|-l & < [l - s ot
0 0

, n>1, tel0,T].

[N] =] ®™

.24) we have

< Crlan,T) (t=5)" 4+ 2
(2.25) < e,
provided
2
€
2.2 t—s| < 7= —— .
(2.26) =+l <0l T) o= g

Therefore (") is equicontinuous with respect to the strong topology of L'(0,+0c0) and thus
also for the weak topology of L*(0,+00), hence (2.20).
We may then apply [20, Theorem 1.3.2] and obtain Proposition 2.8. O

The last result of this section states a continuity property of some bilinear integral operator
with respect to the weak topology of L1 x L.



Lemma 2.9. Consider 0 < a < b < oo and H € L*((0,a) x (0,b)). We define a mapping
A on LY0,a) x L*(0,b) by

Alu,v) = /0 /Ob H(z,y) u(z) v(y) dedy.

If (w,) is a sequence in L'(0,a) converging weakly to u in L*(0,a) and (v,,) is a sequence in
L*(0,b) converging weakly to v in L'(0,b) there holds

lim A(ug, v,) = A(u, v).

n——+oo

The proof of Lemma 2.9 follows the lines of that of [17, Lemma 4.1] to which we refer.

3. PrROOF OF THEOREM 1.2

We are now in a position to prove Theorem 1.2. Indeed we infer from Proposition 2.8 that
there is a subsequence of (¢") (not relabeled) and a function

¢ € C([0, +o0); LN(0, +o0)y),
such that for each T' € (0, +00) there holds
(3.1) e, — ¢ in C([0,T]; L*(0,4+00)y).

As ¢(.,t) is a weak limit of non-negative functions we deduce that ¢(.,t) > 0 a.e. in (0, +00)
for every t € R,. We also claim that in fact,

(3.2) ¢ € C([0, +00); L'(0, +00)).

Indeed, let (,s) € R and € € (0,+00). Since (¢"(t) — ¢"(s)) converges weakly to ¢(t) — ¢(s)
in LI(O, +00) we infer from (2.25) that

|e(t) = els)|or <o,

as long as (¢, s) fulfills (2.26), hence the claim (3.2).
Next, let T' € (0,40o0), a € (0,400) and consider M > a. For n > M it follows from (2.14)
and the properties of &, that

/OT (/aM r(x) ¢"(x,s) d:z;>2 ds < C(T) (a—l —I—w(a)) '

As 7 1 m) € L(0,400) we infer from (3.1), (2.15) and the Lebesgue dominated convergence

theorem that
2

/OT (/aMr(x) c(z,s) dx) ds < Cy(T) (a7 +w(a)).

As M > a is arbitrary we finally obtain

(3.3) /OT (/OO r(z) oz, s) d:z;>2 ds < Cy(T) (" + wla).



In the same way we infer from (2.12), (2.15), (2.16) and (3.1) that

(3.4) /OT (/Ooo r(z) () d:z;>2 ds < Cro(T),
(3.5) Sup [e(t)]] < Cra(T),
(3.6) /OOO v (e, t) dr < /OOO v eo(z) du, t€1[0,T].

A first consequence of (1.3), (1.4), (1.8), (3.4), (3.5) and the Fubini theorem is that
{ (2,y.5) = d(z,y) c(z,s) c(y,s) € L'((0, +00)? x (0,T)),

(2,y,8) =~ U(y, ) c(y,s) € L'((0,+00)* x (0,T)),

We now check that the function ¢ is indeed a solution to (1.1)-(1.2) in the sense of Def-
inition 1.1. For that purpose consider a function ¢ € L*(0,4+00) with |g|p~ < 1 and
t € (0,400). Owing to (2.7) and (3.1) we have

o0

(3.8) lim ("(x,t) — c5(x)) g(x) da

n——+oo 0

~ [ (ete.t) = ) o) d.

Next consider a € (1,4+00). For n > 1 and s € (0,¢) we put
Kin(a,s) = / / onl(,y) gla,y) (x,s) "(y, ) dedy,
o Jo
Kanles) = 2 [ [ 6uteaw) dtesw) €0, (0.9) dady,
0 a

(3.7)

Kalars) = [ [ oules alean) (es) 0ns) dedy
Futes) = [ o) [ e (o) - L) i
Putes) = [ @tes [ oo (s -2 olo)) dyds,

and
Ki(a,s) = /Oa /Oa oz, y) glx,y) ez, s) cly, s) dedy,
Ky(a,s) = 2 /Oa /aoo olx,y) gz, y) c(x,s) cly,s) dedy,
Kalos) = [ [ 600) aloap) eos) olys) dody
Aes) = [ o) [ ot (s -2 ole)) dyds,
Bos) = [ des) [ oo (s - Low) dy e



where ¢ is defined by (2.11).
For n > a we have ¢,, = ¢ in [0, a] x [0, ] and it follows from Lemma 2.9 and (3.1) that for
each s € (0,t) there holds

n1—1>5—nm Kin(a,s) = Ki(a,s).

The above inequality, (2.15) and the Lebesgue dominated convergence theorem then entail
t

¢
(3.9) lim Kin(a,s) ds= / Ki(a,s) ds.
0

n——+oo 0

It next follows from (2.3), (2.4), (2.14) and (2.16) that

¢
/ |K2n(a,s)+ Ksp,(a,s)| ds
0

<9 (1+A) /Ot (/Ooorn(x) &z, s) d:z;) (/aoorn(x) &z, s) d:z;) ds

(3.10) /t | Ky nla,s) + Kan(a,s)| ds < Cia(t) (a=" +w(a)) .
Similarly it follows from (1.3), (1.4), (3.3) and (3.4) that

(3.11) /t |Ky(a,s) + Ka(a,s)| ds < Cua(t) (™' +w(a)).
Therefore by (3.9)-(3.11) we have

/Z (Kin(a,s) — Ki(a,s)) ds

At this point notice that Ky ,(a,s)+ Ksn(a, s)+ Ksn(a,s) and Ki(a,s)+ Ks(a, s)+ Ks(a, s)
do not depend on a € (1,400). The above inequality being valid for every a € (1, +00) we
finally obtain, thanks to (1.7)

lim sup
n——+oo

< C5(t) (a_l + w(a)) .

(.12 Jim [ i) st ) ) dedy
// [ ) ate0) o) elys) dedys
Next, for n > a we have ¢, = ¢ in [0,a] x [0, «] and

[ vt (st = L ot)) o] <2 Wlimmninny v 00
0

It then follows from (3.1) that

¢ ¢
(3.13) lim Fia(a,s) ds= / Fi(a,s) ds.
0

n——+oo 0

We also infer from (2.5), (2.12) and (2.16) that

/'F““3|d3<2// xS/%l‘y)dydxds
)/0/0 (@ +rn(2)) *(x,s) dads



¢
(3.14) / | Fyn(a, s)] ds < Cie(t) w(a).
0
Proceeding in a similar way we deduce from (1.8), (3.4) and (3.5) that
¢
(3.15) / |Fola, s)| ds < Ci7(t) w(a).
0

Combining (3.13)-(3.15) yields

/o > (Finla,s) = Fifa,s)) ds

As Fi,(a,s) + Fan(a,s) and Fi(a,s) 4+ Fz(a,s) do not depend on a € (1,4+00) we may let

a — 400 1n the above inequality and obtain

< Chs(t) w(a).

lim sup
n——+oo

(3.16) i [ [ e [T (o)~ o) d dods

= [ [ et [Coten (o)~ L ote) o deds.

We now let 7 — +oo in (2.10) and use (3.8), (3.12) and (3.16) to obtain that ¢ satisfies
(3.17) /Ooog(x) (c(2, 1) = co(w)) da

=5 [ s aten) etes) et dedyas

[ et [Coten (ot -2 o)) dy deds,

the function g still being defined by (2.11). But on account of (3.7) the Fubini theorem
allows us to rewrite the first term of the right-hand side of (3.17) as

/000 9(x) /Ot (% /Ow Oz —y,y) clx —y,s) cly,s) dy

— c(x,s) /OOO oz, y) cly, s) dy) dsdx

and the second term on the right-hand side of (3.17) as

/Ooog(x) /Ot (/;zb(y,x) c(y, s) dy

— c(x,s) /Ol’% Y, y) dy) dsdzx.



Therefore (3.17) reads

/0 " o) (elat) — eole)) d

= [Tate) [(5 [ ooyt — ) clyes)

~clees) [ Loty dy
~cles) [ o) ey dy
—I—/IOo Yy, ) ey, s) dy) dsdzx.

This equality being valid for every g € L*(0,4+00) we have shown that ¢ fulfills Defini-
tion 1.1 (iii). Recalling (3.5), (3.6) and (3.7) we see that ¢ is a solution to (1.1) on [0, +00)
in the sense of Definition 1.1 with ¢(0) = ¢g and satisfying (1.16). The proof of Theorem 1.2
is therefore complete.

Remark 3.1. If r(2) < C (1 4+ 2)7 for some v € [0,1/2) and ¢(z,y) = F(y,x — y) for some

symmetric and continuous function F' satisfying
Fla,y) <C (L+x+y)’, Bel01),

Theorem 1.2 follows from [17, Theorem 4.2]. Our result thus improves [17, Theorem 4.2]
along the direction of coagulation kernels growing faster than (1 4 )"/2(1 + y)'/2.

4. GELATION IN THE PURE COAGULATION MODEL

Throughout this section we assume that ¢» = 0 and that ¢ satisfies (1.3)-(1.4) and (1.18).
Also ¢p is a function in Xt and we denote by ¢ a solution to (1.1) on [0,400) with initial
datum ¢ (recall that such a solution exists by Theorem 1.2). We then put

(4.1) o(t) = / xce(x,t) de, teR,.
0
From Definition 1.1 we deduce the following identity.
Lemma 4.1. Let g € L™(0,4+00). Fort € (0,400) and s € [0,t) there holds

(4.2) /OOO g(x) (c(z,t) —c(x,s)) du

1 t 00 00 .
5 [ [ ] e st eao) ety dedydon
5 0 0
where § is defined by (2.11).
As a consequence of Lemma 4.1 we obtain that o is a non-increasing function.

Lemma 4.2. Fort € (0,400) and s € [0,t) there holds
(4.3) o(t) < o(s).

Neat let w : (0,400) — Ry be a non-negative and non-increasing function such that

(4.4) w(z +y) <w(x) +w(y), (v,y)€ (0,400)%



Then, if cg enjoys the additional integrability property

(4.5) /OOO w(x) o) de < oo,
so does ¢(.,t) and
(4.6) /000 w(x) e(x,t) de < /000 w(x) e(x,s) d.

Proof. Let M € (0,+00) and take g(x) = = 1paq(x) in (4.2). As

g(:lﬁ,y)gx—l—y—x—y:() if (l’,y)E[O,M]X[O,M],
glw,y) < —g(x) —gly) <0 if 2> M or y>M,

M M
/ x ce(x,t) de < / xe(x,s) du.
0 0

The above inequality and Definition 1.1 (i) then entail (4.3) by letting M — +oc.
Next the function w being as in Lemma 4.2 we define

we obtain

we(x) = min (w(e), w(x)), x € (0,+0),

fore € (0,1). By (4.4) the function w. is a non-negative and non-increasing bounded function

in (0,400) and
(4.7) we( +y) < w.(e) +w(y), (v,y) € (0,+00)*
Also for each © € (0,400) there holds

limw.(z) = w(x).

e—=0
We may then take ¢ = w. in (4.2) and obtain, thanks to (4.7),
(4.8) / we(x) e(x,t) de < / we(x) e(x,s) du.
0 0

We first take s = 0 in (4.8) and let ¢ — 0. The monotone convergence theorem and (4.5)
entail

/ w(x) e(x,t) de < co.
0
We may then let ¢ — 0 in (4.8) and obtain (4.6). O

After this preparation we are ready to prove Theorem 1.3. Let s € (0,4+00) and t € (s, +00).
We take g = 1 in (4.2) and use (1.18) to obtain

o0

¢
2
(4.9) /5 lo(o)|? do < ) c(x,s) du.
— Proof of (1.19). It follows from (4.3) and (4.9) with s = 0 that
2 o0
Lolt) < = / colw) da,

hence (1.19).



— Proof of (1.21). Here the function ¢ enjoys the additional property (1.20).

function w(a) = x~7 satisfies the assumptions of Lemma 4.2. Consequently,

/ 7 e(x,s)de < I, = / 7 ¢o(x) d,
0 0

which yields, together with the Holder inequality,

o o 1/(q+1)
/ c(x,s) ds < g(s)q/(q+1) (/ = e(x,s) d:z;)
0 0

(4.10) / e(x,s) ds < Q(S)q/(q-l—l) ]ql/(q-l—l)‘
0
We then obtain from (4.9) and (4.10) that
¢
/ lo(e)[2 dor < % [ g(yallath),

As the above inequality is valid for every ¢t > s we finally obtain

- 2
- o) do < o ; ‘e,
(10 [ et do < & o o, e,
Introducing
q+2 1 2
E(s) = Q(S)q/(q-l—l)7 m = T and —=% [ql/(q-|-1)7

(4.11) reads

K

° 1
/ E(o)" do < = E(s), s€Ry,
and (1.21) follows from [12, Theorem 9.1].

Clearly the

— Proof of (1.23). We take w = 15 in Lemma 4.2. Since ¢g = 0 on (0,d) we obtain

)
/ c(x,0) de =0
0
for every o € R, hence

(4.12) c(x,0)=0 a.e in (0,0), o€Ry.
Recalling (4.9) it follows from (4.12) that

[ ol o < 5 ot

The above inequality being valid for every ¢t > s we have in fact

o 2
[l dor < 25 ols). e R

We then use once more [12, Theorem 9.1] to conclude that (1.23) holds true.

Remark 4.3. Theorem 1.3 gives some upper bound on the gelation time T},; defined by

Ty = inf{t € Ry, o(t) < 0(0)} < 0.
Indeed it follows from (1.19) that

2 |CO|L1

T, < =1t
90 =R 0(0)?2



This upper bound is however not optimal [§].

5. GELATION IN THE COAGULATION-FRAGMENTATION MODEL

Let ¢ and ¢ be coagulation and fragmentation kernels satisfying, respectively, (1.3)-(1.4),
(1.18) and (1.5)-(1.9), (1.25). We next consider ¢g € X* and denote by ¢ a solution to
(1.1) on [0, +00) with initial datum ¢y. Similarly as in the previous section we deduce from
Definition 1.1 the following identity.

Lemma 5.1. Let g € L*=(0,+00). Fort € (0,4+00) and s € [0,1) there holds
(5.1) / g(l‘) (c(xﬂ‘) — c(:z:, S)) dx
o1 S
=3 / / / o(x,y) §(x,y) c(x,0) cly, o) dedydo
s 0 0

[ [ o) [t (s~ otw) dy deds

where § is defined by (2.11).

Putting

(5.2) o(t) = /OOO xce(x,t) de, teRy,

we obtain the following estimate on p.

Lemma 5.2. Fort € (0,400) and s € [0,t) there holds

(5.3 [ 1o dr < 2 el + 55 [ ol don
o(t) < o(s).

(5.4) 5

Proof. We take g =1 in (5.1) and obtain

% /:/OOO /Ooogb(x,y) o, o) ey, o) dedydo
§/Oooc(:1;,3) d:z;—l—/:/oooc(x,a) /Ox;/)(:zﬁ,y) (1-%) dy dzdo.

Then (5.3) follows from (1.3), (1.4), (1.18), (1.25) and the above inequality.
Next, let M € (0,+00) and take g(x) = min(x, M) in (5.1). As

g(:li,y)<:1:—|—y—:1;—y:0 if (l’,y)E[O,M]X[O,M],
gla,y) <M —g(x) —g(y) <0 if > M or y> M,



it follows from (1.25) that

/mme)((:L‘ 1) — c(x,s)) du

<[ [ [oten (s 22 byt
gM// c(x,a)/;/)(x,y) 1-%) dy dzdo
<r// ) dado.

As ¢ € L™(0,t; X)) we may let M — +oo in the above inequality and obtain (5.4). O

We are now in a position to prove Proposition 1.4. For ¢t € Ry we put

Let t € (0,400). On the one hand it follows from the Jensen inequality that

¢
(5.5) M@ <t [ o) ds
0
On the other hand (5.3) entails
¢ 2 2T
(5.6) [ VeI ds < 5 leales + T M)

Combining (5.5) and (5.6) yields

21t 2t
M(t) — —5 leolrr <0,

It 2 R? 12
M(t)gﬁ <1+<1+ T2 |c0|L1> .

Recalling that ¢ is non-increasing by (5.4) we obtain

9 1/2
(5.7) o(l) < % (1 n (1 n QFR |CO|L1> ) :

As the limit as ¢ — 400 of the right-hand side of (5.7) is 2 I'/R* Proposition 1.4 follows
from (1.26) and (5.7).

hence
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