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Abstract

In this paper we consider a piecewise linear collocation method for the solution of

a pseudo-di�erential equations of order r = 0;�1 over a closed and smooth bound-

ary manifold. The trial space is the space of all continuous and piecewise linear

functions de�ned over a uniform triangular grid and the collocation points are the

grid points. For the wavelet basis in the trial space we choose the three-point hi-

erarchical basis together with a slight modi�cation near the boundary points of the

global patches of parametrization. We choose three, four, and six term linear com-

binations of Dirac delta functionals as wavelet basis in the space of test functionals.

Though not all wavelets have vanishing moments, we derive the usual compression

results, i.e: we prove that, for N degrees of freedom, the fully populated sti�ness

matrix of N2 entries can be approximated by a sparse matrix with no more than

O(N [logN ]
2:25

) non-zero entries. The main topic of the present paper, however, is

to show that the parametrization can be approximated by low order piecewise poly-

nomial interpolation and that the integrals in the sti�ness matrix can be computed

by quadrature, where the quadrature rules are combinations of product integration

applied to non analytic factors of the integrand and of high order Gauÿ rules applied

to the analytic parts. The whole algorithm for the assembling of the matrix requires

no more than O(N [logN ]
4:25

) arithmetic operations, and the error of the colloca-

tion approximation, including the compression, the approximative parametrization,

and the quadratures, is less than O(N
�1

[logN ]
2
). Note that, in contrast to well-

known algorithms by v.Petersdor�, Schwab, and Schneider, only a �nite degree of

smoothness is required.

1 Introduction

It is a well-known fact that usual �nite element discretizations of linear integral equa-

tions (e.g: of boundary integral equations) lead to systems of linear equations with fully

populated matrices. Thus, even an iterative solution method requires a huge number

of arithmetic operations and a large storage capacity. In order to improve these �nite

element approaches for integral equations, several algorithms have been developed. One

of these consists in employing wavelet bases of the �nite element spaces. The basic idea

goes back to Beylkin, Coifman, and Rokhlin [3], and has been thoroughly investigated

by Dahmen, v.Petersdor�, Pröÿdorf, Schneider, and Schwab [13, 14, 33, 32, 31, 44] (cf:

also the contributions by Alpert, Harten, Yad-Shalom, and the author [1, 22, 39]). In the

present paper, we shall apply the wavelet technique to the piecewise linear collocation of

two-dimensional boundary integral equations of order r = 0 and r = �1 corresponding to
three-dimensional boundary value problems.

First we shall present a new simple biorthogonal wavelet basis (compare the de�nition of

univariate biorthogonal wavelets by Cohen, Daubechies, and Feauveau [9]) of continuous

piecewise linear functions de�ned over triangular grids. The grids will be supposed to

be uniform re�nements of a coarse initial triangulation, and the basis will be the system

of three-point hierarchical basis functions, i.e: each basis function will be a linear com-

bination of no more than three �nite element functions de�ned over the corresponding

level of a grid hierarchy. If the function is located in the interior of a triangular patch of

the initial triangulation, then it will have two vanishing moments. If the basis function

intersects the boundary of the coarse triangles corresponding to the initial triangulation,
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then no vanishing moment condition will be ful�lled. We shall prove that this basis is a

Riesz basis in the Sobolev space of order s over the boundary manifold for �0:5 < s < 1:5

(compare the general approach by Dahmen [11]). In comparison to other bases of continu-

ous wavelet functions our basis functions will have a rather small support, and we believe

that this property is essential for the wavelet algorithm. Indeed, small supports lead to

better compression rates, especially, for lower levels and to faster quadrature algorithms

for the assembling of the sti�ness matrix. Similar systems of hierarchical three-point

functions have been analyzed before for the real plane and for manifolds by Junkherr,

Stevenson, Lorentz, and Oswald [24, 46, 27]. For manifolds, however, the constructions

are either more involved or the range of Sobolev orders for the Riesz property is smaller.

In comparison to tensor product wavelets over rectangular partitions (cf: the almost anal-

ogous construction in [38]), we believe that triangular grids are easier to adapt to general

geometries. Note, however, that the general construction of tensor product wavelets by

Canuto, Dahmen, Schneider, Tabacco, and Urban [15, 16, 17, 5, 6, 7] o�er interesting

additional features, which seem to be useful, especially, for integral operators of di�erent

order and Galerkin discretizations. Piecewise linear and continuous wavelet functions over

triangular grids have been constructed by Dahmen and Stevenson [18]. Note that, though

these wavelets have larger supports, the corresponding wavelet transforms are fast and

the Riesz property is satis�ed for �1:5 < s < 1:5. A last alternative for the basis in the

trial space is provided by discontinuous wavelet functions. These so called multiwavelets

are easy to construct. They have been introduced by Alpert [1] and generalized to two-

dimensional manifolds by v.Petersdor�, Schneider, and Schwab [30]. The corresponding

spaces lead to larger systems of equations, and it seems to be an open question whether

the increase in the degrees of freedom can be compensated by higher compression rates

and better constants in the error estimates.

For the basis in the test space spanned by Dirac delta functionals, we shall take the usual

test functionals which can be considered at as scaled versions of di�erence formulas (cf:

the wavelet collocation methods by Dahmen, Pröÿdorf, Schneider, Harten, Yad-Shalom,

and the author [14, 22, 39, 38, 40]). Applying the wavelet basis functions of the trial

and test space, we shall obtain the well-known compression results for trial wavelets

with vanishing moments due to Dahmen, v.Petersdor�, Pröÿdorf, Schneider, and Schwab

[14, 33, 44]. The compression for trial functions without vanishing moments is the same

as in [38] (cf: also the univariate analogue for the Galerkin method treated in [33, 4]). In

particular, to compute an approximate collocation solution with optimal asymptotic order

of convergence, it is su�cient to compute and store O(N [logN ]1:75) entries of the fully

populated N �N sti�ness matrix. Here N stands for the number of degrees of freedom.

In general, the sti�ness matrix cannot be computed exactly. This is the case, for instance,

if the boundary manifold is given by a discrete set of points, only, or if no analytic formula

is available to integrate the kernel and trial function. Therefore, we shall consider an

algorithm for the approximation of the boundary surface and for the quadrature of the

integrals. We emphasize that this is the most time consuming and the most di�cult

part of the wavelet method. To set up the sti�ness matrix, we shall proceed as follows.

Depending on the test functional, we shall de�ne an appropriate partition of the supports

of the trial basis functions. Over these subdomains we shall replace the parametrization

of the boundary manifold by a quadratic or cubic interpolation. We shall assume that the

kernel function is a �nite sum of terms (P;Q) 7! k(P;Q)p(P �Q)=jP�Qj�, where k(P;Q)
is 2�r times continuously di�erentiable and where p(P�Q) is a polynomial with constant

2



coe�cients. For the part k(P;Q) of the kernel function, we shall apply a low order product

integration rule with the weight function chosen as the product of Q 7! p(P �Q)=jP�Qj�

times trial wavelet. The quadrature weights of the product rule, i.e., the integrals over the

function p(P�Q)=jP�Qj� times trial wavelet will be computed by Gauÿ rules of order less

than O(logN). This way and using well-known ideas to treat singular integrals, we shall

arrive at a fully discretized wavelet algorithm with O(N [logN ]4:25) arithmetic operations

to compute O(N [logN ]2:25) entries of the sti�ness matrix. Assuming that the collocation

is stable, the asymptotic error of the exact collocation solution is known to be less than

O(N�(2�r)=2) which is optimal for piecewise linear trial spaces. The fully discrete wavelet

algorithm will be shown to be stable, too, and to be convergent with an almost optimal

error less than O(N�(2�r)=2[logN ]2) for r = 0 and less than O(N�(2�r)=2[logN ]1:625) for

r = �1.

Notice that alternative quadrature algorithms have been considered by Beylkin, Coifman,

Rokhlin [3] for integral operators with smooth kernels and by v.Petersdor�, Schwab, and

Schneider [33, 44] (cf: also the numerical implementation by Lage and Schwab [26]) for

boundary integral operators with Green kernels over piecewise analytic boundaries. To

our knowledge, the fully discrete algorithm of the present paper is the �rst which applies

to boundary integral equations over surfaces with �nite degree of smoothness. In fact,

the required degree of smoothness for the geometry will be equal to the convergence

order 2� r increased by one, i.e., the same as for the conventional collocation algorithm.

Moreover, beside the usual singular main part p(P �Q)=jP � Qj� of Green kernels, the

kernel function of the integral operator will be allowed to have an additional factor k(P;Q)

of �nite smoothness degree 2� r. In the proof of corresponding error estimates, we shall

show that the techniques developed for the compression algorithm apply to the analysis

of the discretization as well. The only thing to do is to replace the decay properties in the

matrix entries due to the vanishing moments of the trial functions and the norm estimates

due to the smoothness of the solution by error estimates of the approximate parameter

mappings and of the quadrature rules, respectively.

The powers of logarithms in the asymptotic convergence and complexity estimates are, of

course, not optimal. Using the re�ned compression technique of Schneider [44], choosing

wavelet basis functions with more vanishing moments, and applying higher order quadra-

ture rules, the logarithmic powers can be dropped or, at least, their exponents can be

reduced. Note, however, that the application of higher order moment conditions and

quadratures requires additional smoothness assumptions. Furthermore, we believe that a

simple algorithm like the one in the present paper is often more e�cient than an asymp-

totically optimal method since the number of degrees of freedom does not tend to in�nity

in realistic numerical computations.

The plan of the paper is as follows. In Sect. 2 we shall describe the boundary manifold,

the integral equation, and the conventional piecewise linear collocation method. We shall

introduce the three-point hierarchical wavelet functions of the piecewise linear trial space,

the test wavelet functionals, and the corresponding compression algorithm in Sect.3. Sect.

4 will be devoted to the description of the interpolation of the parameter mappings and to

the quadrature algorithm. All proofs will be deferred to Sects. 5 and 6. In particular, in

Sect.5 we shall prove the Riesz property of the wavelet basis, count the numbers of entries

in the compressed matrix, and derive the compression estimates and preconditioners.

Finally, the discretization including the approximation of the parametrizations and of the

integration will be analyzed in Sect. 6.
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2 The Piecewise Linear Collocation Method

2.1 The Manifold

We suppose that the integral equation to be solved is given on a closed boundary manifold

� � IR
3 with �nite degree of smoothness. More exactly, we assume that � is the union of

m� triangular patches �
m
, i:e:

� = [m�

m=1�m; �
m

:= �
m
(T ); (2.1)

T :=
n
(s; t) 2 IR2 : 0 � s � 1; 0 � t � minfs; 1� sg

o
:

Here the �
m
denote parametrization mappings from the standard triangle T to the man-

ifold �. We assume that the �
m

extend to mappings from a small neighbourhood of

T � IR
2 to � and that these extensions are d� times continuously di�erentiable. Here

d� is an integer which is assumed to be greater or equal to three when dealing with zero

order operators and greater or equal to four when dealing with operators of order r = �1.
Further we suppose that the intersection of two patches �

m
and �

m
0 is either empty or a

corner point for both patches or a whole side for �
m
and �

m
0. In the last case we assume

that the representations

�
m
\ �

m
0 =

n
�
m

�
c1 + �(c2 � c1)

�
: 0 � � � 1

o
;

�
m
\ �

m
0 =

n
�
m
0

�
c
0
1 + �(c02 � c

0
1)
�
: 0 � � � 1

o

satisfy the condition

�
m

�
c1 + �(c2 � c1)

�
= �

m
0

�
c
0
1 + �(c02 � c

0
1)
�
; 0 � � � 1: (2.2)

Note that, for the numerical method, the parameter mappings �
m
need not to be given

for all points of T . We shall use only the values of �
m
at the points of a uniform grid over

the triangle T .

In the construction of the wavelet basis the numbering of the patches will play a crucial

role since the basis functions will �rst be de�ned on �1, then on �2, and so on. To secure

stability of the so constructed basis, we even need an assumption connected with the num-

bering. We suppose that, if the corner P of a patch �
m
is contained in the union [m�1

m
0=1�m0

of the preceding patches, then at least one of the sides of �
m

ending at P is contained

in [m�1
m
0=1�m0 . It is not hard to see that, for a boundary manifold � homeomorphic to the

sphere and for any �xed triangulation, there always exists a numbering of the triangular

patches which ful�lls the assumption. However, the numbering assumption seems to be

a severe topological restriction. It seems to us that, for boundaries homeomorphic to the

torus a construction of similar basis systems is possible only if the triangular patches are

combined with rectangular ones and if the piecewise linear functions over the triangular

patches are combined with piecewise bilinear functions over the rectangular patches (cf:

[38]).

To secure stability of the wavelet construction, we need a �nal assumption on the paramet-

rizations. For any m = 2; : : : ;m� � 1, we suppose that, if one of the two �shorter� sides

�
m
(f(s; s) : 0 � s � 0:5g) and �

m
(f(s; 1 � s) : 0:5 � s � 1g) is contained in [m�1

m
0=1�m,

then the other must also be contained in [m�1
m
0=1�m. This last assumption can always be
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satis�ed if the parameter mappings �
m
are replaced by a composition of �

m
with a suitable

a�ne automorphism of T .

Since the manifold is at least thrice continuously di�erentiable, for each Q 2 �, there

exists a unit vector n
Q
normal to � at Q and pointing into the exterior domain bounded

by �. The Sobolev spaces Hs(�) over � can be de�ned in the usual way. We de�ne the

space Hs(�
m
) over �

m
as the image of the Sobolev space over T , i:e:

H
s(�

m
) := ff : f � �

m
2 Hs(T )g :

Consequently, we get

H
s(�) =

(
(f
m
)m�

m=1 2
m�M
m=1

H
s(�

m
) : f

m
j�m\�m0 = f

m
0 j�m\�m0

)
;

1

2
< s <

3

2
;

H
s(�) =

m�M
m=1

H
s(�

m
); �

1

2
< s <

1

2
; (2.3)

kfk
H
s(�) �

vuut m�X
m=1

kf j�mk2Hs(�m) ; f 2 Hs(�); �
1

2
< s <

3

2
:

Finally, we note that the sphere can serve as a simple example for a boundary manifold

ful�lling all assumptions. To get the corresponding parametrization mappings, we inscribe

a tetrahedron and take the projections from the midpoint mapping the triangular faces of

the tetrahedron onto triangular patches of the sphere. Composing these parametrizations

with suitable a�ne mappings, we arrive at a representation (2.1) for the sphere. The

numbering of these four parameter patches can be chosen arbitrarily.

2.2 The Integral Equation

Over � we consider a pseudo-di�erential operator A of order r = 0 or r = �1 mapping

H
r=2 into H�r=2. We suppose that A is an integral operator of the form A = K for r = �1

and A = aI+K for r = 0, where aI stands for the operator of multiplication by a function

a which may be zero, and the integral operator K is de�ned by

Ku(P ) :=

Z
�
k(P;Q; n

Q
)
p(P �Q)

jP �Qj�
u(Q) d

Q
�: (2.4)

The function p stands for a homogeneous polynomial of degree deg(p), the real number

� is equal to r + 2 + deg(p), and the kernel function k depends on the points P;Q 2 �.

This function need not to be a restriction to � � � of a function de�ned on the space

IR
3 � IR

3. It may depend for instance on the unit normals n
P
and n

Q
pointing into the

exterior or on any di�erent kind of di�erentiable vector �eld over �. To simplify the

notation, we assume a special dependence and take k = k(P;Q; n
Q
) with k de�ned on

at least a neighbourhood of f(P;Q; n) : P;Q 2 �; n = n
Q
g � � � � � IR

3. If r = 0,

then the integrand in (2.4) can be strongly singular and the integral is to be understood

in the sense of a Cauchy principal value. To ensure the existence of this principal value,

we assume that p is odd, i.e: p(Q� P ) = �p(P �Q). Note that in applications we often

have a �nite sum of integrals of the above type and additional terms of lower order. Only

for simplicity of notation we restrict ourselves to the one term of (2.4).
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For the operator A including the just de�ned integral operator K, we assume the conti-

nuity of the mapping

A : Hs+r(�) �! H
s(�) (2.5)

with s = 0 and s = 1:1 (or s = 1:1 replaced by a di�erent s with 1 < s < 1:5) and the

invertibility of (2.5) with s = 0. Further, we suppose a �nite degree of smoothness, i.e:

the function a is supposed to be twice continuously di�erentiable and the kernel k to be d
k

times continuously di�erentiable. More precisely, for any d
k
-th order derivative @

dk

P
taken

with respect to variable P 2 � and for any d
k
-th order derivative @

dk

Q;n
taken with respect

to the variables Q 2 � and n 2 IR3, we require that @
dk

P
@

dk

Q;n
k(P;Q; n

Q
) is continuous. The

degree of smoothness d
k
is supposed to be greater or equal to two for r = 0 and greater

or equal to three for r = �1. For an operator A which satis�es all these assumptions, we

shall solve the operator equation Au = v with known right-hand side v and unknown u.

To get error estimates with optimal order, we �nally assume u 2 H2(�).

Let us consider some examples. For instance, single and double layer potential equations

belong to our class of operator equations. Indeed, for the single layer case A = A
s

corresponding to Laplace's equation, the order r
s
is �1, and

k
s
(P;Q; n

Q
) :=

1

4�
; p

s
(P �Q) := 1; �

s
= 1:

In case of the double layer operator A = A
d
we get the order r

d
= 0, and the multiplication

function a
d
� 0:5 is constant. The integral operator K

d
is the sum of three terms Kx

d
,

K

y

d
, and Kz

d
. The �rst term K

x

d
is de�ned by

k
x

d
(P;Q; n

Q
) = k

x

d

�
P;Q; (nx

Q
; n

y

Q
; n

z

Q
)
�

:= �
n
x

Q

4�
; �

d
:= 3;

p
x

d
(P �Q) = p

x

d

�
(P x �Q

x

; P
y �Q

y

; P
z �Q

z)
�

:= P
x �Q

x

;

and the second and third analogously by changing x to y and z, respectively. Note that the

operator K
d
without aI is a pseudo-di�erential operator of order �1. Boundary integral

operators for the Stokes system or for Lamè's system can be represented in a similar

fashion (cf: [28]).

To get a further example, we take the adjoint operator K�
d
and replace the normal vector

�eld n
Q
by an oblique �eld o

Q
. We arrive at a strongly singular boundary integral operator

A = A
o
which corresponds to the oblique derivative boundary value problem for Laplace's

equation. In this case, a
o
:= �0:5n

P
� o

P
and K

o
= K

x

o
+K

y

o
+K

z

o
with

k
x

o
(P;Q; o

P
) = k

x

o

�
P;Q; (ox

P
; o

y

P
; o
z

P
)
�

:=
o
x

P

4�
; �

o
:= 3;

p
x

o
(P �Q) = p

x

o

�
(P x �Q

x

; P
y �Q

y

; P
z �Q

z)
�

:= P
x �Q

x

:

The de�nitions for the second and third kernels corresponding to Ky

o
and Kz

o
, respectively,

are analogous.

2.3 Grid and Collocation Points

Let us introduce a hierarchy of uniform grids over the standard triangle T . For the step

sizes 2�l, l = 0; : : : ; L, we set

4T

l
:= 14T

l
[ 24T

l
;
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Figure 1: Grid 4IR
2

0 .

14T

l
:=

n
(i2�l; j2�l) : 0 � i � 2l; 0 � j � minf2l � i; ig

o
;

24T

l
:=

n
(2�l�1; 2�l�1) + (i2�l; j2�l) : 0 � i < 2l; 0 � j < minf2l � i; i+ 1g

o

and denote the grid points by � = (s; t) 2 4T

l
. The grid 4T

l
is the restriction of the grid

(cf: Figure 1)

4IR
2

l
:=
n
(i2�l; j2�l) : i; j 2 ZZ2

o
[
n
(2�l�1; 2�l�1) + (i2�l; j2�l) : i; j 2 ZZ2

o

to the triangle T . Using the parametrizations, we arrive at a grid hierarchy on �.

4�
l

:=
n
�
m
(� ) : m = 1; : : : ;m�; � 2 4T

l

o
:

Clearly, a grid point P = �
m
(� ) may have more than one representation. If P is in the

interior of a side of the triangular patch �
m
which is a common side with �

m
0 , then there

are exactly two representations P = �
m
(� ) and P = �

m
0(� 0). If P is a corner point of a

patch, then there exist k > 2 representations P = �
m1

(�1) = �
m2

(�2) = : : : = �
mk

(�
k
).

We introduce i4�
l
as the set of those P 2 4�

l
whose representation P = �

m
(� ) with the

smallest m satis�es � 2 i4T

l
, i:e:,

i4�
l

:= [m�

m=1

n
�
m
(� ) : � 2 i4T

l
; �

m
(� ) 62 [m�1

m
0=1�m0(4T

l
)
o
;

and arrive at 4�
l
= 14�

l
[ 24�

l
. The points of 4�

l
will be denoted by upper capital letters

like P and Q.

To each grid 4�
l
there corresponds a partition of � into triangular pieces. Indeed, let us

introduce the sets of centroids

utIR
2

0 :=

��
1

2
;

1

6

�
+ k;

�
1

2
;

5

6

�
+ k;

�
1

6
;

1

2

�
+ k;

�
5

6
;

1

2

�
+ k : k 2 ZZ2

�
;

utIR
2

l
:=

n
2�l� : � 2utIR

2

0

o
; utT

l
:= T \ utIR

2

l
;

ut�
l

:=
n
�
m
(� ) : � 2utT

l
; m = 1; 2; : : : ;m�

o
:

For each point � 2 utT
l
, there exist three uniquely de�ned neighbour points �1, �2, and

�3 such that �1; �2; �3 2 4T

l
, that the triangle T

�
spanned by the three corners �1, �2,
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and �3 is of square measure 2�2l=4, and that � is the centroid of T
�
. We arrive at the

triangulation fT
�
: � 2 utT

l
g of T . Note that, for l0 > l, the centroids in utT

l
are located

at the boundaries of the smaller triangles T
�
0 with � 0 2 utT

l
0 . Hence there is a one to one

correspondence between the triangles T
�
over several levels and the centroids in [L

l=0ut
T

l
.

Similarly to the triangulation over T , we de�ne the triangulation fT
�
: � 2utIR2

l
g of IR2.

For � and a point Q = �
m
(� ) 2 ut�

l
, we set �

Q
:= f�

m
(�) : � 2 T

�
g and arrive at the

triangulation f�
Q

: Q 2 ut�
l
g. Further, we denote the level l of the points Q 2 ut�

l
by

l(Q). Notice that each partition triangle �
Q
; Q 2ut�

l
; of the generation l splits into four

subtriangles of the generation l + 1. We call �
Q
the father of the four subtriangles and,

for Q 2 ut�
l
; l > 0, we denote the father of �

Q
by �

Q
F .

Beside the grids 4�
l
we introduce the di�erence grids

r�
l

:=

(
4�

0 if l = �1
4�
l+1 n 4

�
l

if l = 0; : : : ; L� 1;

and obtain 4�
L
=
S
L�1
l=�1r�

l
. For P 2 4�

L
, we denote the unique level l for which P 2 r�

l

by l(P ). Analogously to r�
l
, we de�ne the di�erence grids and the point levels over T

and IR
2 and get 4T

L
=
S
L�1
l=�1r

T

l
as well as 4IR

2

L
=
S
L�1
l=�1r

IR
2

l
. Finally, in accordance

to the splitting 4T

l
= 14T

l
[ 24T

l
, we introduce irT

l
= rT

l
\ i4T

l+1 for i = 1; 2 and get

rT

l
= 1rT

l
[ 2rT

l
as well as 2rT

l
= 24T

l+1. Similarly, we de�ne irIR
2

l
and ir�

l
.

Now the set of collocation points will be the grid 4�
L
, i.e: the test functionals of the

collocation scheme are the Dirac delta functionals �
P
with P 2 4�

L
. The test space Dir�

L

is the span of all these �
P
.

2.4 The Trial Functions
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Figure 2: Hat function (s; t) 7! 1
'(s; t).

To prepare the introduction of linear spaces, we �rst de�ne two-dimensional hat functions

for the grid 4IR
2

0 .

1
' (s; t) := max

n
0; 1 �maxfjs� tj; js+ tjg

o
;

2
' (s; t) := max

n
0; 1 � 2maxfjsj; jtjg

o
:
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Clearly, the function 1
' and the function 2

' shifted to the point (0:5; 0:5) are piecewise

linear functions subordinate to the triangulation fT
�
: � 2 utIR20 g (cf: the grid in Figure

1, the graph of 1
' in Figure 2, and the graph of 2

' shifted to the point (0:5; 0:5) in Figure

3). Note that 2
' can be obtained from 1

' by rotation with angle �=4 and by dilation with

factor
p
2, i:e:,

2
'(s; t) := 1

'(s+ t; s� t):

Now we get piecewise linear basis functions by dilating and shifting 1
' and 2

' to each grid

point. More precisely, for each grid point on T , we set

'
l

�
(�) := i

'

�
2l(� � � )

�
; � 2 i4T

l
:

With the help of the parametrizations we introduce the piecewise linear (with respect to

the parametrization) hat functions over �. For each grid point P 2 4�
l
, we set

'
l

P
(Q) :=

(
'
l

�
(�) if there exist m; �; � s.t. Q = �

m
(�); P = �

m
(� )

0 else.
(2.6)

Due to the assumptions on the parametrizations (cf: (2.2)) the basis functions are well

de�ned. Note that if P 2 4�
l
is in the interior of the parametrization patch �

m
, then the

support supp'l
P
of 'l

P
is contained in �

m
. If P = �

m
(� ) = �

m
0(� ) is in the interior of a

side, then supp'l
P
� �

m
[ �

m
0 . For corner points P = �

m1
(�1) = �

m2
(�2) = : : : = �

mk
(�
k
)

of the triangular parametrization patches we get supp'l
P
� [k

n=1�mn
. We denote the

span of the functions 'l
P
; P 2 4�

l
by Lin�

l
. Obviously, this is the space of all continuous

and piecewise linear functions over the partition f�
Q
: Q 2 ut�

l
g corresponding to the grid

4�
l
, where linearity is understood with respect to the parametrization. The space Lin�

L

will be the set of trial functions for the collocation.
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Figure 3: Hat function (s; t) 7! 2
'(s� 0:5; t� 0:5).

2.5 The Collocation Scheme

Now the collocation method seeks an approximate solution u
L
for the exact solution u of

Au = v. This is sought in the trial space Lin�
L
by solving

Au
L
(P ) = v(P ); P 2 4�

L
: (2.7)
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Using the representation u
L
=
P
P24�

L

�
P
'
L

P
, the collocation equation can be written in

form of a matrix equation A
L
� = �, where we set

� := (�
P
)
P24�

L

; � := (�
P
)
P24�

L

; �
P
:= v(P ):

The matrix of the linear system is the so called sti�ness matrix given by

A
L
:= (a

P
0
;P
)
P
0
;P24�

L

; a
P
0
;P

:= (A'L
P
)(P 0):

Moreover, using the interpolation projection R
L
de�ned by R

L
f :=

P
P24�

L

f(P )'L
P
, the

collocation can be treated as a projection equation of the form R
L
Au

L
= R

L
v.

Throughout this paper we shall assume that the collocation method applied to the op-

erator equation Au = v is stable. For the exact de�nition of stability and some remarks

we refer to Sect. 5.4. If the collocation is stable, if the exact solution u is in H2(�), and

if h � 2�L denotes the step size of the discretization, then the approximate solution u
L

satis�es the well-known optimal convergence estimates (cf: Sect. 5.4)

ku� u
L
k
L
2(�) � Ch

2
; r = 0;�1; (2.8)

ku� u
L
k
H
�1(�) � Ch

3
; r = �1: (2.9)

3 The Wavelet Algorithm

3.1 The Wavelet Basis of the Trial space
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Figure 4: Neighbours �1 and �2.

Now we introduce a simple wavelet basis for the piecewise linear space. These functions

have been considered �rst for the case of di�erent grids in the plane IR2 (cf: [24, 46, 27])

and are called three-point hierarchical basis functions. More precisely, for the plane and

for any point � 2 4IR
2

L
, we set (cf: Figure 5 for the supports of such functions)

 
�
:=

8>><
>>:
'
0
�

if � 2 rIR
2

�1

'
l+1
�

� 1
2

n
'
l+1
�1

+ '
l+1
�2

o
if � 2 1rIR

2

l
with l = l(� ) 2 f0; : : : ; L� 1g

'
l+1
�

� 1
4

n
'
l+1
�1

+ '
l+1
�2

o
if � 2 2rIR

2

l
with l = l(� ) 2 f0; : : : ; L� 1g:

(3.1)
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Figure 5: Supports of wavelets  
�
and  

�
0.

Here �1 and �2 denote the uniquely de�ned neighbours of � on 4IR
2

l+1 (cf: Figure 4). Indeed

any di�erence grid point � 2 2rIR
2

l
� 4IR

2

l+1 has exactly two neighbour points �1 and �2 at

minimal distance which belong to 4IR
2

l
� 4IR

2

l+1. Any di�erence grid point � 0 2 1rIR
2

l
�

4IR
2

l+1 has exactly two neighbour points � 01 and �
0
2 at minimal distance which belong to

14IR
2

l
� 4IR

2

l+1. The functions  
�
with � 2 rIR

2

l
; l = 0; : : : ; L � 1 have two vanishing

moments, i.e: they are orthogonal to all constant and linear functions.

The wavelet functions  
�
on the manifold � are slight modi�cations of (3.1). The de�-

nition is not very di�cult. However, to motivate this de�nition, we shortly explain the

construction:

� We start with the �rst parametrization patch �1 and the de�nition of functions  
P

such that P 2 4�
L
\ �1. First we restrict the functions  � from (3.1) to T . If these

restrictions intersect the boundary of T , then we modify them adding restrictions

of three-point basis functions  
�
0 with � 0 outside of T . The resulting basis functions

 
&
�

are restrictions of functions which are symmetric (even) with respect to the

boundary of T . For P = �1(� ), we take the composition  
P
=  

&
�
� ��11 to arrive at

functions over the parametrization patch �1. To get continuous trial functions over

�, we extend the  
P
with P 2 r�

l
\ �1; l = �1; 0; : : : ; L� 1 from �1 to � such that

the extensions are piecewise linear on the partition f�
Q
: Q 2 ut�

l+1g corresponding
to the grid 4�

l+1 and vanish at all grid points from 4�
l+1 n �1.

� Next we de�ne the functions  
P
such that P 2 4�

L
\ f�2 n �1g. We start again

with the restrictions of (3.1) to T . Since we have already basis functions over the

boundary �1 \ �2, we need basis functions on �2 vanishing over �1 \ �2, i.e: basis

functions on T vanishing on the side S0 for which �2(S
0) = �2 \ �1. Therefore, we

modify the functions on T such that they are restrictions of functions antisymmetric

(odd) with respect to the side S0 and symmetric (even) with respect to the sides

S of T with �2(S) 6� �1. Clearly all these functions vanish on S
0. We take the

composition with ��12 to arrive at functions over the parametrization patch �2 which

vanish over �2\�1. To get continuous trial functions, we extend these functions  
P

with P 2 r�
l
\f�2 n�1g; l = �1; 0; : : : ; L� 1 from �2 to � such that the extensions

are piecewise linear on the partition f�
Q

: Q 2 ut�
l+1g corresponding to the grid

4�
l+1 and vanish at all grid points from 4�

l+1 n �2.
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� Analogously to the previous step, we de�ne the functions  
P
such that the point

P is in 4�
L
\ f�3 n (�1 [ �2)g. Then we construct the functions  

P
with point P

in 4�
L
\ f�4 n (�1 [ �2 [ �3)g and so on. Finally, we de�ne  

P
with point P in

4�
L
\ f�

m�
n [m��1

m=1 �
m
g.

For more details and the properties of the basis we refer to Sect. 5.1. The �nal de�nition

of the three-point hierarchical wavelet functions over the manifold � is

 
P
:=

8>><
>>:
'
0
P

if P 2 r�
�1

'
l+1
P

� 1
2

n
"
P;P1

'
l+1
P1

+ "
P;P2

'
l+1
P2

o
if P 2 1r�

l
with l 2 f0; : : : ; L� 1g

'
l+1
P

� 1
4

n
"
P;P1

'
l+1
P1

+ "
P;P2

'
l+1
P2

o
if P 2 2r�

l
with l 2 f0; : : : ; L� 1g;

(3.2)

where P1 and P2 are the uniquely de�ned neighbours on 4�
l+1 of P 2 r�

l
, i.e. P1 = �

m
(�1)

and P2 = �
m
(�2) if P = �

m
(� ) is the representation with the minimal m 2 f1; : : : ;m�g

and if �1; �2 are the neighbours of � . The coe�cients "P;P
0

are equal to one in almost all

cases. Only if the point P 0 = P1; P2 is at the boundary of a parametrization patch, then

a value "P;P
0

di�erent from one is needed. More precisely, the coe�cients "P;P
0

are given

by (cf: Sect. 2.3 for the de�nition of i4�
L
)

"
P;P

0

:=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 if there is a parametrization patch �
m
such that P and P 0 belong

to the interior of the triangle �
m

or there exists a side �
m
\ �

m
0 of a parametrization patch such

that P and P 0 belong to the interior of the side �
m
\ �

m
0

2 if there exists a side �
m
\ �

m
0 of a parametrization patch such

that m < m
0
; that P is an interior point of �

m
; and that P 0

belongs to the interior of the side �
m
\ �

m
0

or P 0 = \k
i=1�mi

is a corner of a parametrization patch, P 0 2 24�
0 ;

the point P is an interior point of a side �
m1
\ �

m2
; and

m1 < m
i
; i = 2; : : : ; k

4 if P
0 = \k

i=1�mi
is a corner of a parametrization patch, P 0 2 14�

0 ;

the point P is an interior point of a side �
m1
\ �

m2
; and

m1 < m
i
; i = 2; : : : ; k

orP 0 = \k
i=1�mi

is a corner of a parametrization patch, P 0 2 24�
0 ;

the point P is an interior point of the face �
m1
; and

m1 < m
i
; i = 2; : : : ; k

0 else:

(3.3)

Clearly, the support of  
P
is contained in the union of all those �

m
in which P or at least

one of the neighbour points P1 or P2 is located. The basis f P : P 2 4�
L
g spans the trial

space Lin�
L
since the system is linearly independent (cf: (5.20)). Moreover, it represents

a hierarchical basis, i.e.

n
 
P
: P 2 4�

L

o
=

L�1[
l=�1

n
 
P
: P 2 r�

l

o
;

Lin
�
0 � Lin

�
1 � : : : � Lin

�
L
;

Lin
�
l
0 = span

l
0�1[
l=�1

n
 
P
: P 2 r�

l

o
:

12



The function  
P
with P 2 r�

l
; l = 0; : : : ; L�1 and with supp 

P
contained in the interior

of only one parametrization patch has two vanishing moments, i.e: it is orthogonal to

the set of all functions that are constant or linear with respect to the parametrization.

Orthogonality means here orthogonality with respect to the L2 scalar product in the

parameter domain.

3.2 The Wavelet Basis of the Test space
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Figure 6: First case, point � at the boundary of T
�
.

Let us retain the de�nition of neighbour points P1; P2 2 4�
l
of P 2 r�

l
; l = 0; : : : ; L� 1

from the last subsection, and recall that �
P
stands for the Dirac delta functional at point

P . With this notation, we introduce the functionals

#
P
:=

(
�
P

if P 2 r�
�1

�
P
� 1

2
f�

P1
+ �

P2
g if P 2 r�

l
with l = l(P ) 2 f0; : : : ; L � 1g: (3.4)

Clearly, the support supp #
P
is contained in �

m
if P belongs to �

m
. In particular, supp #

P

is on the side of a parametrization patch if P is on this side. If P is a corner of a

parametrization patch, then supp #
P
= fPg. The set f#

P
: P 2 4�

L
g is a hierarchical

basis of the test space Dir�
L
(cf: the Sects.2.3 and 5.2 ). For any P 2 r�

l
; l = 0; : : : ; L�1,

the functional #
P
has two vanishing moments, i.e: it vanishes over the set of all functions

that are constant or linear with respect to the parametrization. To simplify the notation,

some times we shall write f(#
P
) for #

P
(f).

The basis f#
P
g will be suitable for the collocation applied to operators of order r = 0.

For r = �1, a basis with more vanishing moments is needed (cf: [14, 44]). This wavelet

basis f#+
P
: P 2 4�

L
g is given by

#
+
P
:=

8><
>:
�
P

if P 2 r�
�1

#
P

if P 2 r�
l
with l = l(P ) 2 f0; 1g

#
P
� 1

4
#
P
+ if P 2 r�

l
with l = l(P ) 2 f2; : : : ; L� 1g:

(3.5)

Here P+ is de�ned as follows. We assume that P = �
m
(� ) with � 2 rT

l
and that � is in

the closed triangle T
�
with � 2 utT

l�1 (cf: the notation of Sect. 2.3 and recall that T
�
is a

partition triangle of the level l � 1 partition de�ned by its centroid �). We distinguish
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three cases. If � is at the boundary of T
�
(cf: Figure 6), then we choose �+ to be the

midpoint of that side of T
�
at which � is located, and we set P+ := �

m
(�+). If � is not

at the boundary and not at the symmetry axis of T
�
(cf: Figure 7), then we choose �+

to be the midpoint of that side of T
�
which is parallel to the straight line segment �1�2

de�ned by the two neighbours �1; �2 of � from the grid 4T

l
. Again, we set P+ := �

m
(�+).

Finally, if � is not at the boundary but at the symmetry axis of T
�
(cf: Figure 8), then we

choose a neighbour triangle T
�
0 of T

�
which has a small side in common with T

�
. Clearly,

the hypotenuse of T
�
0 is parallel to the straight line segment �1�2 de�ned by the two

neighbours of � from the grid 4T

l
. We choose �+ to be the midpoint of the hypotenuse

of T
�
0 and set P+ := �

m
(�+). Note that, if �1; �2 and �

+
1 ; �

+
2 denote the neighbour points

of � and �+, respectively, then the straight lines through �; �1; �2 and through �+; �+1 ; �
+
2

are parallel in all three cases. In accordance with (3.5), we get

#
+
P
:= �

�m(�) �
1

2

n
�
�m(�1) + �

�m(�1)

o
�

1

4
�
�m(�+) +

1

8

n
�
�m(�+

1
) + �

�m(�+
1
)

o
;

for P 2 r�
l
with l � 2. The set f#+

P
: P 2 4�

L
g is a hierarchical basis of Dir�

L
, too

(cf: Sect. 5.2). For any P 2 r�
l
; l = 2; : : : ; L � 1, the functional #+

P
has three vanishing

moments, i.e: it vanishes over all polynomials of total degree less than three.
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Figure 7: Second case, point � not at the boundary of T
�
.

3.3 Wavelet Transforms

For the trial space Lin
�
L
we have two di�erent systems of basis functions f'L

P
g and

f 
P
g at our disposal. We denote the basis transform by T

A
(lower index A stands for

ansatz), i.e: the matrix T
A
maps the coe�cient vector �L := (�L

P
)
P24�

L

of the represen-

tation u
L
=
P
P24�

L

�
L

P
'
L

P
into the coe�cient vector � := (�

P
)
P24�

L

of the representation

u
L
=
P
P24�

L

�
P
 
P
. This transform can be determined by a pyramid type algorithm

which is called fast wavelet transform.

To describe this, we write � = (��1; �0
; : : : ; �

L�1) for �l = (�l
P
)
P2r�

l

:= (�
P
)
P2r�

l

and

introduce the auxiliary coe�cient vectors �l := (�l
P
)
P24�

l

by
P
P24�

l

�
l

P
'
l

P
=
P
P24�

l

�
P
 
P
.
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Figure 8: Third case, point � not at the boundary of T
�
.

Now the algorithm for T
A
looks as follows.

Wavelet Transform T
A

initial value �l is given for l = L

do l = L;L� 1 : : : ; 1

use the splitting Lin�
l
= Lin

�
l�1 � span f 

P
: P 2 r�

l�1g to compute

�
l�1 and �l�1 from

P
P24�

l

�
l

P
'
l

P
=
P
P24�

l�1
�
l�1
P
'
l�1
P

+
P
P2r�

l�1
�
l�1
P
 
P

enddo

set ��1 := �
0

form � = (��1; �0
; : : : ; �

L�1)

(3.6)

Similarly, the inverse transform T �1
A

can be realized by:

Wavelet Transform T �1
A

initial values �l are given for l = �1; 0; : : : ; L� 1

set �0 = �
�1

do l = 1; 2; : : : ; L

use the splitting Lin�
l
= Lin

�
l�1 � span f 

P
: P 2 r�

l�1g to compute

�
l from

P
P24�

l

�
l

P
'
l

P
=
P
P24�

l�1
�
l�1
P
'
l�1
P

+
P
P2r�

l�1
�
l�1
P
 
P

enddo

(3.7)

For the implementation of the inner part in the do loop of (3.7), we substitute the two

scale relations (cf: (3.2) and (3.3))

'
l�1
P

=
X

P
024�

l
: P 02supp'l�1

P

'
l�1
P

(P 0)'l
P
0 ; (3.8)
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P

=
X

P
024�

l

d
P
0
;P
'
l

P
0; P 2 r�

l�1; (3.9)

d
P
0
;P

:=

8><
>:

1 if P 0 = P

�1
2
"
P;P

0

if P 0 2 fP1; P2g and P 2 1r�
l

�1
4
"
P;P

0

if P 0 2 fP1; P2g and P 2 2r�
l

(3.10)

into the splitting equation
P
P24�

l

�
l

P
'
l

P
=
P
P24�

l�1
�
l�1
P
'
l�1
P

+
P
P2r�

l�1
�
l�1
P
 
P
and compare

the coe�cients of the 'l
P
. This yields the representation �l = M1�

l�1 +M2�
l�1 with the

sparse matrices

M1 =
�
'
l�1
P

(P 0)
�
P
024�

l
;P24�

l�1

; M2 = (d
P
0
;P
)
P
024�

l
;P2r�

l�1

:

There exists a small constant dependent only on the geometry of � such that the number

of non-zero entries in each column of M1 and M2 is less than this number. Hence, the

multiplication by M1 and M2 requires only O(22l) arithmetic operations, and O(22L)

operations are su�cient for the whole algorithm (3.7). For the algorithm (3.6), equation

�
l = M1�

l�1 +M2�
l�1 is to be solved for the unknowns �l�1 and �

l�1. If this is done

by an appropriate iterative solver, then the whole algorithm (3.6) requires no more than

O(22L), too.

Analogously to the trial space, we have two di�erent bases in the test space. By T
T

(lower index T stands for test space) we denote the linear transform which maps the

vector 
 = (

P
)
P24�

L

:= (#
P
(f))

P24�
L

of functionals applied to a function f into the

vector of function values � = (�
P
)
P24�

L

:= (�
P
(f))

P24�
L

= (f(P ))
P24�

L

. Again, the

transform can be realized by a fast wavelet algorithm. We write 
 = (
�1; 
0; : : : ; 
L�1) for



l := (


P
)
P2r�

l

and introduce the auxiliary coe�cient vectors �l = (�l
P
)
P24�

l

:= (�
P
)
P24�

l

.

Now we arrive at the following algorithm.

Wavelet Transform T
T

initial values 
l are given for l = �1; : : : ; L� 1

set �0 = 

�1

do l = 1; 2; : : : ; L

compute �l :

if P 2 4�
l�1 then �

l

P
= �

l�1
P

if P 2 r�
l�1 then f(P ) = #

P
(f) + 1

2
ff(P1) + f(P2)g;

i.e: �
l

P
= 


l�1
P

+ 1
2
f�l�1

P1
+ �

l�1
P2
g

enddo

(3.11)

Clearly, the algorithm in the inner of the do loop requires O(22l) arithmetic operations

and the whole algorithm (3.11) no more than O(22L). Due to 
l�1
P

= �
l

P
� 1

2
f�l�1

P1
+ �

l�1
P2
g

(cf: (3.4)), the inverse T �1
T

is simply a multiplication by a sparse matrix. Hence, the

algorithmic complexity of the transforms T
T
and T �1

T
is O(22L). The wavelet transforms

T
T
and T �1

T
with the basis functionals #

P
replaced by #+

P
can be treated analogously.

3.4 Wavelet Algorithm

Analogously to the sti�ness matrix A
L
in Sect.2.5 we can set up a matrix with respect to

the wavelet basis. We introduce Aw

L
by

A
w

L
:=
�
a
w

P
0
;P

�
P
0
;P24�

L

; a
w

P
0
;P

:= #
P
0(A 

P
): (3.12)
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Note that A
L
= T

T
A
w

L
T
A
. It will turn out that most of the entries aw

P
0
;P

are so small that

they can be neglected. Thus in the next subsection we will give an a priori matrix pattern

P � 4�
L
�4�

L
with no more than O(22LL1:75) elements. We will replace Aw

L
by the sparse

matrix obtained by the compression

A

w;c

L
:=
�
a

w;c

P
0
;P

�
P
0
;P24�

L

; a

w;c

P
0
;P

:= #
P
0(a 

P
) +

(
#
P
0(K 

P
) if (P 0; P ) 2 P

0 else.
(3.13)

In the numerical computation the entries have to be computed by approximating the

parametrization and by quadrature. We denote the approximate value for a
w;c

P
0
;P

by a
w;c;q

P
0
;P

and set

A

w;c;q

L
:=
�
a

w;c;q

P
0
;P

�
P
0
;P24�

L

; A
c

L
:= T

T
A

w;c

L
T
A
; A

c;q

L
:= T

T
A

w;c;q

L
T
A
: (3.14)

With this notation we can describe two variants of the wavelet algorithm which di�er in

the iterative solution of the discretized linear systems. The �rst is designed for integral

operators of arbitrary order r and requires the application of one transform T �1
A

and one

transform T �1
T

during the whole algorithm.

First Wavelet Algorithm

i) compute the right-hand side 
 := (#
P
(v))

P
= T �1

T
(v(P ))

P

ii) compute the sparsity pattern P
iii) assembleA

w;c;q

L
by a quadrature algorithm

iv) solve A
w;c;q

L
� = 
 iteratively; e.g. by the diagonally preconditioned

GMRes method

v) compute � = T �1
A
�

vi) post processing of the values u(P ) � �
P
; e.g. computation

of linear functionals of the solution u

(3.15)

The second is designed for operators of order r = 0. Though an application of the two

wavelet transforms T
A
and T

T
is required in each iteration, the corresponding number of

all iterations is often much smaller, and the second algorithm is faster.

Second Wavelet Algorithm

i) compute the right-hand side � := (v(P ))
P

ii) compute the sparsity pattern P
iii) assemble Aw;c;q

L
by a quadrature algorithm

iv) solve A
L
� = � iteratively; e.g. by the GMRes method;

whenever a multiplication by matrix A
L
is required, then

multiply by T
A
; by A

w;c;q

L
; and by T

T

v) post processing of the values u(P ) � �
P
; e.g. computation

of linear functionals of the solution u

(3.16)

The GMRes algorithm is described in [42], and the diagonal preconditioner for the algo-

rithm (3.15) will be derived in Sect. 5.4 (cf: (5.37)).

To reduce the complexity of the quadrature algorithm in step iii) of algorithm (3.16), we

modify the wavelet algorithm. We split operator A into the sum of a singular near �eld

part Asn and a part Ans;f covering the non-singular near �eld and the far �eld part. More
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precisely, for P 0 2 �, we introduce the characteristic function �
P
0 of a small neighbourhood

of size O(2�L) around P 0 by de�ning

�
P
0(R) :=

(
1 if R 2 [

Q2ut�
L
:P 02�Q�Q

0 else :

Using this cut o� function, we set Asn

u(P 0) := A(�
P
0u)(P 0) and A

ns;f := A � A
sn. In

correspondence to this splitting, we introduce the approximate matrix [Asn]
L
for operator

A
sn as well as the matrices [Ans;f ]

L
and [Ans;f ]

w;c;q

L
for operator Ans;f . By [Asn]

q

L
we denote

a quadrature approximation of the almost diagonal matrix [Asn]
L
. Using this notation,

we arrive at the following modi�cation of steps iii) and iv) in algorithm (3.16).

iii) assemble [Ans;f ]
w;c;q

L
and [Asn]

q

L
by a quadrature algorithm

iv) solve A
L
� = � iteratively; e.g. by the GMRes method;

whenever a vector v
L
is to be multiplied by matrix A

L
; then:

compute T
A
v
L
; [Ans;f ]w;c;q

L
fT

A
v
L
g; and T

T
f[Ans;f ]w;c;q

L
T
A
v
L
g;

multiply v
L
by [Asn]

q

L
; compute the sum

fT
T
[Ans;f ]

w;c;q

L
T
A
v
L
g+ f[Asn]

q

L
v
L
g

(3.17)

3.5 The Compression Algorithm

In order to introduce the compression pattern P, we need some notation. Let us retain

the de�nition of r�
l
and 4�

L
from Sect. 2.3. For P 2 4�

L
, recall that l(P ) is the level of P

(cf: the end of Sect. 2.3). By 	
P
we denote the support of the function  

P
and by �

P
the

convex hull of the support of the test functional #
P
, i:e:, #

P
:= �

m
(conv(��1

m
(supp #

P
))).

Furthermore, we introduce six suitable non-negative parameters a; b; c; ~a; ~
b, and ~c

and two functions d = d(L) � 1 and ~
d = ~

d(L) � 1. Depending on these, the set

P = P(a; b; c; d;~a;~b; ~c; ~d) is the set of all (P 0; P ) 2 4�
L
�4�

L
such that 	

P
is completely

contained in the interior of a single parameter patch �
m
and

dist (	
P
;�

P
0) � max

n
2�l(P ); 2�l(P

0)
; d2aL�bl(P )�cl(P

0)
o

(3.18)

or such that 	
P
contains points of at least two parameter patches and

dist (	
P
;�

P
0) � max

n
2�l(P ); 2�l(P

0)
;
~
d2~aL�

~
bl(P )�~cl(P 0)

o
: (3.19)

In numerical computations all compression parameters from a to ~
d should be determined

by experiments. However, to get an asymptotically optimal compression result, we can

choose a = c = 4=5, b = ~
b = 1, and ~a = ~c = 5=3. The functions d and ~

d can be de�ned

by d = CL
3=8 and ~

d = C L
3=4, where C is a su�ciently large constant.

Theorem 3.1 For the pattern P = P(4=5; 1; 4=5; CL3=8
; 5=3; 1; 5=3; CL3=4), the number

of non-zero entries NP is less than CL7=422L � N [logN ]1:75, where N � 22L is the number

of degrees of freedom. If the piecewise linear collocation is stable, then the collocation

method with compression is stable, too. The asymptotic error estimates for the compressed

collocation method are the same as for the uncompressed collocation, i.e: (2.8) and (2.9)

remain valid.
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Proof. The bound for NP will follow from Lemma5.6, and the stability together with

the error estimates will be a consequence of Sect. 5.4 and Lemma5.8.

For the implementation of step ii) in the wavelet algorithms (3.15) and (3.16), the hier-

archical structure of the wavelet basis is essential. More precisely, we observe that the

pattern P has the following property. If (P 0; P1) =2 P and supp 
P2
� supp 

P1
, then

(P 0; P2) =2 P. To set up a sparsity pattern P with this property, we can proceed as fol-

lows. For each P 0, we have to determine the set of P with (P 0; P ) 2 P. We do this for

each level l = l(P ) separately. First we check (P 0; P ) 2 P for l = l(P ) = �1. Then, if

the subset of all P 2 r�
l�1 with (P 0; P ) 2 P is determined, the search for the P 2 r�

l
can

be restricted to all P with

supp 
P
\
h
[
R2r�

l�1
: (P 0;R)2P supp R

i
6= ;:

Doing this for all l = 0; : : : ; L�1 and for all P 0 2 4�
L
, only O(NP) of the N

2 pairs (P 0; P )

have to be checked.

Clearly the number of necessary arithmetic operations of all steps in the algorithms (3.15)

and (3.16) except the steps iii) and iv) is less than C NP . Step iv) requires CNP logN

operations. However, if we solve the systems successively over the grids 4�
l
; l = 0; : : : ; L

and if the initial solution for the grid 4�
l+1 is the �nal solution from the coarser grid 4�

l
,

then the number of necessary iterations is uniformly bounded. This cascadic iteration

method requires no more than C NP operations. The key point for a fast algorithm,

however, is the implementation of step iii). Usually, this is the most time consuming part

of the numerical computation. For its realization and complexity, we refer to the results

in Sect. 4 and the proofs in Sect. 6. Further details for the implementation of the wavelet

algorithm can be found in [26, 37].

4 Approximation of the Parametrization and Quadra-

ture

4.1 Parametrization and Quadrature for the Far Field

Now we consider the computation of the matrix entries a
w;c;q

P
0
;P

(cf: Sect. 3.4). Obviously,

the terms #
P
0(a 

P
) (cf: (3.13)) can be computed without di�culty, and the corresponding

number of arithmetic operations is less than O(N logN). Therefore, we only have to deal

with the computation of #
P
0(K 

P
) corresponding to the integral operator K. First we

shall indicate the assembling of those entries for which dist(	
P
;�

P
0) is large in a certain

sense. We shall �x P 0 and de�ne a quadrature partition in dependence on P 0. Clearly,

if a trial function  
P
has discontinuous �rst order derivatives over a subdomain, then

the standard low order quadrature rules are not very accurate. Therefore, the quadrature

partition will be �ner than the partition into the patches of linearity, i.e., all trial functions

 
P
with (P 0; P ) in the sparsity pattern P (cf: Sect.3.5) will not only be piecewise linear but

linear with respect to the parametrization �
m
on each quadrature subdomain. In the class

of all partitions, we shall choose the coarsest partition with the just mentioned property.

Over the subdomains of this partition we shall approximate the parametrizations �
m
by

a low order polynomial interpolation and apply a composite quadrature rule.
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Let us de�ne the partition. For l = 0; : : : ; L, we introduce the set Qua�
l
as the set of all

Q 2ut�
l
such that:

i) There is a P 2 r�
l�1 such that (P 0; P ) 2 P and that support 	

P
intersects the father

�
Q
F of �

Q
.

ii) If l < L, then we suppose that, for any P 2 r�
l
with (P 0; P ) 2 P, there holds

�
Q
\	

P
= ;.

Lemma 4.1 The set f�
Q
: Q 2 [L

l=0Qua
�
l
g is a partition of �. For all P with (P 0; P ) 2

P and for all Q 2 [L
l=0Qua

�
l
, the restriction of  

P
to �

Q
is linear with respect to the

parametrization. Moreover, the partition f�
Q
: Q 2 [L

l=0Qua
�
l
g is the coarsest partition

with this linearity property and with f�
Q
: Q 2 [L

l=0Qua
�
l
g � f�

Q
: Q 2 [L

l=0ut�
l
g.

Proof. Clearly, condition i) means that in a partition of � the subset �
Q

cannot be

substituted by a larger �
Q
0 without violating the linearity property. Namely, if �

Q
would

be replaced by �
Q
0, then �

Q
F � �

Q
0 and the function  

P
with (P 0; P ) 2 P and with

supp  
P
\ �

Q
F 6= ; (cf: condition i)) has a discontinuous �rst derivative over �

Q
0 . On the

other hand, condition ii) means that it is not necessary to divide �
Q
further into smaller

subdomains since already all the trial basis function  
P
with (P 0; P ) 2 P are linear over

�
Q
. Indeed, the wavelet functions of level l with (P 0; P ) 2 P vanish over �

Q
due to ii),

and, due to the de�nition of P in (3.18), (3.19), the higher level wavelet functions with

(P 0; P ) 2 P vanish over �
Q
, too. The lower level wavelets, however, are linear on �

Q
.

To show that f�
Q
: Q 2 [L

l=0Qua
�
l
g is a partition of �, we have to prove that the partition

subsets cover � and that their interiors are disjoint. Obviously, � is covered. Indeed, for

any Q
L
2 ut�

L
, let us consider the sequence

�
QL
; �

QL�1
:= father of �

QL
; �

QL�2
:= father of �

QL�1
; : : : ;�

Q0
:= father of �

Q1
:

In view of the conditions i) and ii), there is exactly one �
Qm

in this sequence belonging to

Qua
�
m
. Hence, each �

QL
is contained in the union of the subdomains f�

Q
: Q 2 [L

l=0Qua
�
l
g.

Furthermore, we observe that two sets �
Q
and �

Q
0 either have disjoint interiors or one of

the two sets is contained in the other. If, for example, �
Q
0 � �

Q
, then at most one of the

sets �
Q
and �

Q
0 ful�lls i) and ii). Hence, the interiors of the sets in f�

Q
: Q 2 [L

l=0Qua
�
l
g

are disjoint.

Now the �rst part of this proof implies that the partition f�
Q
: Q 2 [L

l=0Qua
�
l
g is the

coarsest satisfying the desired linearity property.

The partition f�
Q
: Q 2 [L

l=0Qua
�
l
g can be determined analogously to the determination

of the sparsity pattern in the step ii) of the algorithms (3.15) and (3.16) described at the

end of Sect. 3.5. For each P 0, we have to determine the sets Qua�
l
with l = 0; : : : ; L. We

do this for each level l separately. First we set up Qua�0 . Then, if the subsets Qua
�
l
0; l
0 =

0; : : : ; l� 1 are determined, the search for the Q 2 ut�
l
satisfying the conditions i) and ii)

can be restricted to all Q 2 ut�
l
with

�
Q
� � n

h
[l�1
l
0=0 [R2Qua�

l0
�
R

i
:

Doing this for all l = 1; : : : ; L and for all P 0 2 4�
L
, only O(NP) of the O(N

2) domains �
Q

have to be checked whether they satisfy the conditions i) and ii) or not.
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In view of (3.18) and (3.19), condition i) is equivalent to the existence of a P 2 r�
l�1 such

that 	
P
\ �

Q
F 6= ; and that either

dist (	
P
;�

P
0) � max

n
2�(l�1); 2�l(P

0)
; d2aL�b(l�1)�cl(P

0)
o

(4.1)

for 	
P
contained in the interior of a single parametrization patch �

m
or

dist (	
P
;�

P
0) � max

n
2�(l�1); 2�l(P

0)
;
~
d2~aL�

~
b(l�1)�~cl(P 0)

o
(4.2)

for 	
P
not contained in the interior of a single parametrization patch. On the other hand,

for an appropriate constant c0 > 0, the diameter of 	
P
; P 2 r�

l�1 is less than c02
�(l�1).

Hence, the inequalities (4.1) and (4.2) imply either the estimate

dist (�
Q
;�

P
0) � (1 + c0) max

n
2�(l(Q)�1); 2�l(P

0)
; d2aL�b(l(Q)�1)�cl(P

0)
o

(4.3)

or the estimate

dist (�
Q
;�

P
0) � (1 + c0) max

n
2�(l(Q)�1); 2�l(P

0)
;
~
d2~aL�

~
b(l(Q)�1)�~cl(P 0)

o
: (4.4)

In particular, if �
Q
is contained in the interior of a single parametrization patch �

m
and

if its distance to the boundary of �
m
is greater than c02

�(l�1), then (4.3) holds.

Condition ii) is satis�ed, if and only if, for any P 2 r�
l
with �

Q
\ 	

P
6= ; and with 	

P

contained in the interior of a single parametrization patch �
m
, there holds

dist (	
P
;�

P
0) > max

n
2�l; 2�l(P

0)
; d2aL�bl�cl(P

0)
o
; (4.5)

and, for any P 2 r�
l
with �

Q
\ 	

P
6= ; and with 	

P
not contained in the interior of a

single parametrization patch �
m
, there holds

dist (	
P
;�

P
0) > max

n
2�l; 2�l(P

0)
;
~
d2~aL�

~
bl�~cl(P 0)

o
: (4.6)

On the other hand, �
Q
is covered by the 	

P
with 	

P
\ �

Q
6= ;. Hence, the criteria (4.5)

and (4.6) ensure either the validity of

dist (�
Q
;�

P
0) > max

n
2�l(Q); 2�l(P

0)
; d2aL�bl(Q)�cl(P

0)
o

(4.7)

or the validity of

dist (�
Q
;�

P
0) > max

n
2�l(Q); 2�l(P

0)
;
~
d2~aL�

~
bl(Q)�~cl(P 0)

o
: (4.8)

In particular, if �
Q
is contained in the interior of a single parametrization patch �

m
and

if its distance to the boundary of �
m
is greater than c02

�l, then (4.7) holds. Having in

mind the estimates (4.7) and (4.8), we shall call the quadrature subdomains of [L�1
l=0 f�Q :

Q 2 Qua
�
l
g the far �eld subdomains corresponding to the functional #

P
0. The domains

f�
Q
: Q 2 Qua�

L
g will be referred to as near �eld subdomains.

In accordance with (3.13) and (2.4), we shall introduce quadrature approximations a
w;c;q

P
0
;P;Q

for

#
P
0

 Z
�Q

k(�; R; n
R
)
p(� �R)

j � �Rj�
 
P
(R) d

R
�

!
: (4.9)
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Here the functional #
P
0 is applied to the function in brackets depending on the variable

indicated by a dot. Using these a
w;c;q

P
0
;P;Q

, we de�ne the entries a
w;c;q

P
0
;P

by

a

w;c;q

P
0
;P

:= #
P
0(a 

P
) +

(
0 if (P 0; P ) 62 PP
L

l=0

P
Q2Qua�

l
: �Q�supp P a

w;c;q

P
0
;P;Q

if (P 0; P ) 2 P: (4.10)

We shall defer the de�nition of the near �eld terms a
w;c;q

P
0
;P;Q

; Q 2 Qua�
L
to Sects.4.2 and 4.3.

In this subsection we introduce the far �eld terms aw;c;q
P
0
;P;Q

with Q 2 Qua
�
l
and l running

from 0 to L � 1.

Let us �x a far �eld subdomain �
Q
with Q = �

m
(� ) 2 Qua

�
l
. Using the parametrization

�
m
over T

�
= �

�1
m
(�
Q
), we write the integral of (4.9) in the form

#
P
0

0
@Z

T�

k(�; �
m
(�); n

�m(�))
p

�
� ��

m
(�)

�
j � ��

m
(�)j�

~
 
P
(�)J

m
(�) d�

1
A
; (4.11)

where J
m
(�) := j@

�1
�
m
(�)�@

�2
�
m
(�)j is the Jacobian determinant of the transformation

�
m

at � = (�1; �2) 2 T
�
and where ~

 
P
(�) stands for the factor  

P
(R) =  

P
(�

m
(�))

which is independent of the parametrization �
m

(cf: (3.2) and (2.6)). We derive the

approximation a
w;c;q

P
0
;P;Q

for (4.11) in three steps.

In the �rst step, we replace the parametrization �
m
over T

�
by a polynomial interpolation

�
0
m
of degree m := 2 � r, i.e., we use a cubic interpolation with nine interpolation knots

for r = �1 and a quadratic interpolation with six knots for r = 0. For instance, the

quadratic interpolation is de�ned as in [2]. Denoting by �
i
; i = 1; 2; 3 the three corner

points and by �
i
; i = 4; 5; 6 the mid-points

�4 =
1

2
(�2 + �3) ; �5 =

1

2
(�1 + �2) ; �6 =

1

2
(�1 + �3) ;

of the three sides of the triangle T
�
= �

�1
m
(�
Q
), we set

�
0
m
(�) =

6X
i=1

�
m
(�
i
)L

i
(�); (4.12)

L1

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= s[2s� 1];

L2

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= t[2t� 1];

L3

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= (1 � s� t)[2(1� s� t)� 1];

L4

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= 4t(1 � s� t);

L5

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= 4st;

L6

�
�3 + s(�1 � �3) + t(�2 � �3)

�
:= 4s(1 � s� t):

Hence, we approximate (4.11) by

#
P
0

0
@Z

T�

k(�; �
m
(�); n0

�
0
m(�))

p

�
� ��0

m
(�)

�
j � ��0

m
(�)j�

~
 
P
(�)J 0

m
(�) d�

1
A
; (4.13)
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where J 0
m
(�) := j@

�1
�
0
m
(�)�@

�2
�
0
m
(�)j is the Jacobian determinant of the transformation

�
0
m
at � = (�1; �2) 2 T� . The symbol n0

�
0
m(�) in the last formula stands for the unit vector

at the point �0
m
(�) which is normal to the approximating surface �0

m
(T

�
).

In the second step, we split the integrand of (4.13) into the product f(�)~%(�)

f(�) := k(�; �
m
(�); n

�
0
m
(�))J 0m(�);

~%(�) := %

�
�
0
m
(�)

�
=

p

�
� ��0

m
(�)

�
j � ��0

m
(�)j�

~
 
P
(�):

Note that f is globally m times di�erentiable by assumption whereas % is singular at the

points of supp#
P
0 . We apply a product quadrature with weight ~% and of order m to the

integral in (4.13). If r = �1, then we choose the six point rule based upon the quadratic

interpolation which has been used for (4.12). In case r = 0 we take the three point rule.

To simplify the notation, however, we write all the following formulae explicitly for the

three point rule. The modi�cations for the corresponding formulae including the six point

rule are straightforward. In the estimates and the convergence results, we always suppose

that a quadrature of order m is in use. The product quadrature rule takes the form

Z
T�

f(�)~%(�) d� �
3X

�=1

f(�
�
)

Z
T�

~
�
Q;�

(�)~%(�) d�;

where ~
�
Q;�

is the linear function on T
�
de�ned by ~

�
Q;�

(�
�
0) = �

�;�
0. In other words, the

integral (4.13) is approximated by

#
P
0

 
3X

�=1

k(�; Q
�
; n
0
Q
0
�

)J 0
m
(�
�
)bw;c;q
P;Q;�

(�)
!
; (4.14)

b

w;c;q

P;Q;�
(R) :=

Z
T�

~
�
Q; �

(�)
p

�
R� �

0
m
(�)

�
jR � �

0
m
(�)j�

~
 
P
(�) d�; (4.15)

where Q
�
:= �

m
(�
�
) and Q

0
�
:= �

0
m
(�
�
) denote the corner points of the triangles �

Q
=

�
m
(T

�
) and �0

m
(T

�
), respectively. The symbol n0

Q
0
�

in the last formula stands for the unit

vector at the point Q0
�
= �

0
m
(�
�
) which is normal to the approximating surface �0

m
(T

�
).

In the third and last step we have to compute the quadrature weights b
w;c;q

P;Q;�
of the product

rule, i.e: the integrals over T
�
of g(�) := ~

�
Q;�

(�)%(�0
m
(�)). In some applications these

integrals can be computed analytically. For the general case, we have to compute them

by quadrature. Note that the weight % is a smooth function on �
Q

with singularities

su�ciently far from �
Q
. Under these circumstances, the integral of g can be approximated

e.g: by panel clustering or multipole techniques (cf: [41, 21]). We, however, describe a

third alternative following [20, 23, 32, 44]. To get a quadrature rule over T
�
, we start

from the Gauÿ-Legendre rule over [0; 1], i.e., from the interpolatory rule including the

zeros �k
G
; k = 1; : : : ; n

G
of the Legendre polynomial as quadrature knots.

Z 1

0
F �

nGX
k=1

F (�k
G
)!k

G
: (4.16)

The order n
G
will be speci�ed later. Introducing Du�y's coordinates and applying the

Gauÿ type tensor product rule to the resulting double integral, we arrive atZ
T�

g(�) d� =

Z 1

0

Z 1

0
g

�
�3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)
�
�
D

1 d�D2 d�D1 � 2 jT� j
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�
nGX
k1=1

nGX
k2=1

g

�
�3 + �

k1

G
(�1 � �3) + �

k1

G
�
k2

G
(�2 � �3)

�
�
k1

G
!
k1

G
!
k2

G
� 2 jT

�
j

=:

n
2
GX

k=1

g(�k
�
)!k

�
: (4.17)

Note that, for the numerical implementation, one could try to replace the rule (4.17) by

triangular rules of high order or e:g: by Stroud's conical product rule (cf. [47]) which is a

slight modi�cation of (4.17).

Thus the formulae (4.14), (4.15), and (4.17) together yield

a

w;c;q

P
0
;P;Q

:= #
P
0

0
@ 3X
�=1

k(�; Q
�
; n
0
Q
0
�
)J 0

m
(�
�
)

n
2
GX

k=1

~
�
Q;�

(�k
�
)

2
4p
�
� ��0

m
(�k

�
)
�

j � ��0
m
(�k

�
)j�

~
 
P
(�k

�
)

3
5
!
k

�

1
A
: (4.18)

For Q 2 Qua�
l
, we choose the quadrature order n

G
in the last formula by

n
G

:= n
A
+ n

B

2
664 l

1 + 2log

�
dist (�

P
0 ;�

Q
)

2�l

�
3
775 ; (4.19)

where the integers n
A
> 0 and n

B
> 0 have to be determined by numerical experiments.

In Sect. 6.1 we shall prove the existence of positive integers n
A
and n

B
such that the

additional error due to the far �eld quadrature is, roughly speaking, less than the error

of the exact collocation. Analogous error estimates are true also for the approximation of

the near �eld and the singular integrals in the Sects. 4.2 and 4.3. More precisely, to get

asymptotically optimal results, we choose the compression parameters a = c = b = ~
b = 1,

and ~a = ~c = 5=3. We de�ne the functions d = C L
1=8 and ~

d = C L
1=4 with a su�ciently

large constant C and get

Theorem 4.1 For the pattern P = P(1; 1; 1; CL1=8
; 5=3; 1; 5=3; CL1=4), the number of

non-zero entries NP is less than CL9=422L � N [logN ]2:25, where N � 22L is the number

of degrees of freedom. If the exact collocation described in Sect.2.5 is stable, then the com-

pressed collocation with approximation of the boundary and with the quadrature of Sects.

4.1 - 4.3 is stable, too. The error for the collocation solution u
L
, including compression,

approximation of the parameter mappings, and quadrature, satis�es

ku� u
L
k
L
2(�) � C h

2

(
[log h�1]2 if r = 0

[log h�1]1:625 if r = �1; (4.20)

ku� u
L
k
H
�1(�) � C h

3 [log h�1]1:625 if r = �1: (4.21)

The number of quadrature knots and the number of necessary arithmetic operations for

the computation of the sti�ness matrix A
w;c;q

L
is less than C N [logN ]4:25.

Proof. The bound for the number of entries in the compressed sti�ness matrix will follow

from Lemma5.6. Stability and error estimates will be a consequence of the Lemmata 5.8,

6.1, 6.3, and 6.5. The complexity bound will be shown in the Lemmata 6.2, 6.4, and 6.6.
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Remark 4.1 A clever code for the computation of the a
w;c;q

P
0
;P;Q

computes �rst, for �xed #
P
0

and Q, the quadratures in (4.18) with  
P
� �

m
replaced by the three linear basis functions

�
Q; �
; � = 1; 2; 3 over T

�
(cf: the basis functions �

Q; �
in Sect. 6.1). Then, in a loop over all

P with �
Q
� supp 

P
, the values a

w;c;q

P
0
;P;Q

are evaluated as a linear combination of the three

quadratures over the basis functions, and a
w;c;q

P
0
;P;Q

is updated to the actual value of the sum

(4.10).

4.2 Parametrization and Quadrature for the Near Field

Let us �x a test functional #
P
0 and a Q 2 Qua

�
L
, and let us consider the integral (4.9)

for which we seek the quadrature a
w;c;q

P
0
;P;Q

. Recall from Sect. 3.2 that the test functional

#
P
0 is a linear combination of point evaluation functionals. Thus there are points P

�
and

uniformly bounded coe�cients �
�
such that

#
P
0(f) =

�
P 0X

�=1

�
�
f(P

�
): (4.22)

Obviously, �
P
0 = 1 if P 0 2 r�

�1 and �P 0 = 3 else. If the test functional is replaced by #+
P
0,

then we get �
P
0 = 4; 6 for P 0 2 r�

P
0 with l � 2. In correspondence with (4.22), we can

split the unknown quadrature expression a
w;c;q

P
0
;P;Q

into

a

w;c;q

P
0
;P;Q

=

�
P 0X

�=1

�
�
a

w;c;q

P
0
;�;P;Q

;

where a
w;c;q

P
0
;�;P;Q

is de�ned as a quadrature for the integral

Z
�Q

k(P
�
; R; n

R
)
p(P

�
�R)

jP
�
�Rj�

 
P
(R) d

R
�: (4.23)

We distinguish two cases. If P
�
is in �

Q
, then the integral (4.23) is singular, and we defer

the de�nition of the singular quadrature a
w;c;q

P
0
;�;P;Q

to Sect. 4.3. For P
�
62 �

Q
, the integral

(4.23) is not singular and the corresponding non-singular near �eld quadrature a
w;c;q

P
0
;�;P;Q

is

treated now. We apply the technique of the previous subsection (cf: the quadrature rule

of (4.18)) to (4.23) and get

a

w;c;q

P
0
;�;P;Q

:=
3X

�=1

k(P
�
; Q

�
; n
0
Q
0
�

)J 0
m
(�
�
)

n
2
GX

k=1

~
�
Q;�

(�k
�
)

2
4p
�
P
�
� �

0
m
(�k

�
)
�

jP
�
� �

0
m
(�k

�
)j�

~
 
P
(�k

�
)

3
5
!
k

�
; (4.24)

where this time the order n
G
is chosen by n

G
:= n

C
+Ln

D
. In practical computations the

integers n
C
> 0 and n

D
> 0 have to be determined by experiments. However, in Sect. 6.2

we shall prove the existence of positive integers n
C
and n

D
such that the additional error

due to the non-singular near �eld quadrature is, roughly speaking, less than the error of

the exact collocation.

4.3 Parametrization and Quadrature for Entries with Singular

Integrals

4.3.1. First we consider the case of weakly singular integrals. This occurs if r = �1 or if
r = 0 and the kernel function depending on the variables P and R contains a factor
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n
P
� (P � R) or n

R
� (P � R). For definiteness, we restrict our consideration to the case

of an additional factor n
R
� (P �R). More precisely, we suppose that the kernel takes the

form

k(P;R; n
R
)
p(P �R)

jP �Rj�
= ~

k(P;R; n
R
)
~p(P �R)[n

R
� (P �R)]1+r

jP �Rj�
: (4.25)

Here ~
k = k and ~p = p if r = �1. For r = 0, we assume that ~k ful�lls all the assumptions

made for k in Sect. 2.2 and that ~p is a homogeneous polynomial of degree deg(~p) =

deg(p)� 1 , i:e:, deg(~p)� � = �3. Hence, for a suitable constant C > 0, we get

jn
R
� (P �R)j � C jP �Rj2;�����~k(P;R; nR) ~p(P �R)[n

R
� (P �R)]1+r

jP �Rj�

����� � C jP �Rj�1 ;

and our kernel (4.25) is weakly singular, indeed. Notice that the kernel of the double layer

integral operator K
d
(cf: Sect. 2.2) can be represented as in (4.25) if r is set to zero.

Now we �x the test functional #
P
0, a point P

�
2 supp #

P
0 , and a triangle �

Q
= �

m
(T

�
)

with Q = �
m
(� ) 2 ut�

L
and P

�
2 �

Q
. Clearly, the grid point P

�
is one of the corner points

of �
Q
. We denote the three corners of T

�
by �

�
; � = 1; 2; 3 and suppose �

m
(�3) = P

�
. In

the triangles T
�
and �

Q
we introduce Du�y's coordinates.

�

�
�
D

�
:= �

�
�
D

1 ; �
D

2

�
:= �3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3) ; (4.26)

~�
m

�
�
D

�
:= �

m

�
�

�
�
D

��
:

The Jacobian determinant corresponding to Du�y's coordinate in T
�
is given by J

�
(�D) =

j(�1��3)� (�2��3)j�D1 = 2 jT
�
j�D1 and the Jacobian ~J

m
(�D) of ~�

m
is equal to the product

J
m
(�(�D))J

�
(�D). We seek an approximation a

w;c;q

P
0
;�;P;Q

for the integral

Z
�Q

~
k(P

�
; R; n

R
)
~p(P

�
�R)[n

R
� (P

�
�R)]1+r

jP
�
�Rj�

 
P
(R) d

R
� = (4.27)

Z 1

0

Z 1

0

(
~
k(P

�
; ~�

m
(�D); n~�m(�D))

~p
�
P
�
� ~�

m
(�D)

�h
n~�m(�D) �

�
P
�
� ~�

m
(�D)

�i1+r
jP
�
� ~�

m
(�D)j�

�

J
m

�
�(�D)

�
J
�
(�D) ~ D

P
(�D)

)
d�D2 d�D1 ;

where ~
 
D

P
(�D) :=  

P
(~�

m
(�D)). Due to the additional factor �D1 in J

�
(�D), the weak

singularity of the kernel function is cancelled.

Similarly as before, we proceed in three steps. First, we replace the parametrization ~�
m

by the approximate parametrization in Du�y coordinates ~�0
m
:= �

0
m
� �, where �0

m
is the

polynomial interpolation to �
m
of polynomial degree m = 2 � r. We suppose that P

�
is

one of the interpolation knots. Second, we apply a product rule of order m. To this end

the integrand in (4.27) with ~�
m
replaced by ~�0

m
is split into the product f � % with

f(�D) := ~
k(P

�
; ~�

m
(�D); n0~�0m(�D))J

0
m

�
�(�D)

�
;

%(�D) :=
~p
�
P
�
� ~�0

m
(�D)

�h
n
0
~�0m(�D) �

�
P
�
� ~�

m
(�D)

�i1+r
jP
�
� ~�

m
(�D)j�

J
�
(�D) ~ D

P
(�D):
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For r = �1, the quadrature rule could be the tensor product variant of a quadratic

interpolatory rule and, for r = 0, we simply take the tensor product linear interpolatory

rule.

Z 1

0

Z 1

0
f(�D)%(�D) d�D2 d�D1 �

4X
�=1

f(�D
�
)

Z 1

0

Z 1

0

~
�
D

�
(�D)%(�D) d�D2 d�D1 ;

where �D
�
; � = 1; : : : ; 4 denote the four corners of [0; 1] � [0; 1] and ~

�
D

�
is the bilinear

function de�ned by ~
�
D

�
(�D
�
0 ) = �

�;�
0 . Again, to simplify the notation we shall write the

subsequent formulae with the linear interpolatory rule. The modi�cations for the tensor

product of the quadratic interpolatory rule are straightforward. In the third and last step

we apply the tensor product variant of the Gauÿ-Legendre rule (4.16) of order n
G

Z 1

0

Z 1

0
g(�D) d�D2 d�D1 �

nGX
k1=1

nGX
k2=1

g

�
�

k1

G
; �

k2

G

�
!

k1

G
!

k2

G
=:

n
2
GX

k=1

g(~�k)~!k;

with order n
G
= n

E
+Ln

F
to compute the integral of the function g(�D) = ~

�
D

�
(�D)%(�D).

Finally, we arrive at

a

w;c;q

P
0
;�;P;Q

:=
4X

�=1

~
k(P

�
; Q

D

�
; n
0
R
D
�

)J 0
m

�
�

�
�
D

�

��
�

n
2
GX

k=1

~
�
D

�
(~�k)

~p
�
P
�
� ~�0

m
(~�k)

�h
n
0
~�0
m
(~�k) �

�
P
�
� ~�0

m
(~�k)

�i1+r
jP
�
� ~�0

m
(~�k)j�

J
�
(~�k) ~ D

P
(~�k)~!k:

Here we have set QD

�
:= ~�

m
(�D
�
) and R

D

�
:= ~�0

m
(�D
�
), and n

0
Q
00 denotes the unit nor-

mal to the approximate surface at Q00. Note that the Jacobian of ~�0
m

takes the form

J 0
m
(�(�D))J

�
(�D). The numbers n

E
and n

F
in the de�nition of n

G
are to be determined

by numerical experiments. However, in Sect. 6.3 we shall prove the existence of values of

n
E
and n

F
ensuring asymptotically optimal error estimates.

4.3.2. Now let us consider r = 0 and suppose the integral operator is strongly singular.

If the value  
P
(P

�
) vanishes or if, according to Remark 4.1,  

P
is replaced by a linear

basis function �
Q; �

and �
Q; �

(P
�
) = 0, then this additional zero turns the strongly singular

integral into a weakly singular, and we may apply the same procedure as for the weakly

singular case treated before. For  
P
(P

�
) 6= 0 or �

Q; �
(P

�
) 6= 0, we substitute  

P
=

 
P
(P

�
) + ( 

P
�  

P
(P

�
)) resp. �

Q; �
= �

Q; �
(P

�
) + (�

Q; �
� �

Q; �
(P

�
)) into the singular

integral. This way the integral splits into two parts, where the integral containing the

functions ( 
P
�  

P
(P

�
)) resp. (�

Q; �
� �

Q; �
(P

�
)) can be approximated like in the case

 
P
(P

�
) = 0. The only strongly singular case occurs if  

P
(P

�
) 6= 0 resp. �

Q; �
(P

�
) 6= 0 and

if the function  
P
resp. �

Q; �
are replaced the constants  

P
(P

�
) resp. �

Q; �
(P

�
). Without

loss of generality we set these constants to one.

4.3.3. For the computation of the corresponding singular integrals, there exist several

techniques (cf: e.g: [25, 43]). Here we shall present a quadrature algorithm similar to that

in [8, 45] since this seems to require less assumptions on the smoothness. We consider

a �xed singularity point P
�
. Since the singular integral is to be understood in the sense

of Cauchy's principal value, we have to treat the quadrature for all �
Q
with P

�
2 �

Q

simultaneously. Let m0 stand for the smallest positive integer such that P
�
2 �

m0
.

Beside m0 we consider an arbitrary m and an arbitrary �
Q
such that P

�
2 �

Q
� �

m
,
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i.e: P
�
= �

m
(�3) for a corner �3 of T

�
= �

�1
m
(�
Q
). Note that the parameter value �3

in P
�
= �

m
(�3) depends, of course, on the parametrization �

m
and on the triangle �

Q
.

However, to simplify the notation, we do not indicate this dependence. By the assumption

of Sect. 2.1 the parametrization �
m0

mapping T onto �
m0

extends to a neighbourhood of

T . Hence, we can de�ne

T (P
�
;m; ") :=

n
� :

���r �
�
�1
m0
� �

m

�
(�3) � (� � �3)

��� � "

o
;

�(P
�
; ") :=

[
m=1;:::;m�:P�2�m

�
m

�
T (P

�
;m; ")

�
� f�

m0
(�) : j� � �3j � "g :

By assumption the polynomial part p of the kernel function is odd. For such kernels, it

is not hard to see that (cf: [29], Chapter XI, Sect. 1)�����
Z
�(P�; ")

k(P
�
; R; n

R
)
p(P

�
�R)

jP
�
�Rj�

d
R
�

����� � C ": (4.28)

We seek a quadrature with error less than C 2�2L. Therefore, the integral over � can be

replaced by that over � n �(P
�
; 2�2L), and it remains to approximate the integralZ

�Qn�(P�;2�2L)
k(P

�
; R; n

R
)
p(P

�
�R)

jP
�
�Rj�

d
R
� = (4.29)

Z
T�nT (P�;m;2�2L)

k

�
�
m
(�3); �m(�); n�m(�)

� p��
m
(�3)� �

m
(�)

�
j�
m
(�3)� �

m
(�)j�

J
m
(�) d�;

for each �
Q
with P 2 �

Q
. We replace the parametrization �

m
over T

�
n T (P

�
;m; 2�2L) by

the quadratic interpolation �0
m
de�ned over T

�
in (4.12), and it remains to compute

Z
T�nT 0(P�;m;2�2L)

k

�
�
m
(�3); �m(�); n

0
�
0
m
(�)

� p��0
m
(�3)� �

0
m
(�)

�
j�0
m
(�3)� �

0
m
(�)j�

J 0
m
(�) d�; (4.30)

T
0(P

�
;m; ") :=

n
� :

���r �
[�0
m0
]�1 � �0

m

�
(�3) � (� � �3)

��� � "

o
: (4.31)

Similarly to the product rule in Sect.4.1, we approximate the last integral over the domain

T
�
n T 0(P

�
;m; 2�2L) by

a

w;c;q

P
0
;�;P;Q

:=
3X

�=1

k

�
�
m
(�3); �m(��); n

0
�
0
m
(��)

�
J 0
m
(�
�
) b

w;c;q

P
0
;�;Q;�

; (4.32)

b

w;c;q

P
0
;�;Q;�

�
Z
T�nT 0(P�;m;2�2L)

~
�
Q;�

(�)
p

�
�
0
m
(�3)� �

0
m
(�)

�
j�0
m
(�3)� �

0
m
(�)j�

d�:

In contrast to the third step for the far �eld integrals, the quadrature approximation

b

w;c;q

P
0
;�;Q;�

will be computed by introducing a geometric mesh and by applying high order

quadrature rules over each subdomain. Fixing a grading parameter 0 < q < 1, we denote

the largest � such that (for � cf: (4.26))

T
0(P

�
;m; 2�2L) �

n
�(�D) 2 T

�
: 0 � �

D

1 � q
��1
; 0 � �

D

2 � 1
o

by �0. Clearly, �0 � L. We divide the domain of integration T
�
n T 0(P

�
;m; 2�2L) into the

subdomains

T
�
n T 0(P

�
;m; 2�2L) = [�0

�=1T�;�; (4.33)

T
�;�

:=
n
�(�D) 2 T

�
: q� < �

D

1 � q
��1
; 0 � �

D

2 � 1
o
; � = 1; : : : ; �0 � 1;

T
�;�0

:=
n
�(�D) 2 T

�
: 0 � �

D

1 � q
�0�1

; 0 � �
D

2 � 1
o
n T 0(P

�
;m; 2�2L):
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The optimal grading parameter q should be determined by numerical experiments. Note

that for a di�erent kind of integrals the choice q = 0:15 is optimal (cf: e.g: [45]). For �xed

� with 1 � � � �0, we observe that T
�;�

= f�(�D) : 0 � �
D

2 � 1; S
a
(�D2 ) � �

D

1 � S
b
g,

where S
b
is equal to q��1 and S

a
(�D2 ) := q

� for � < �0. The bound Sa(�
D

2 ) for � = �0 is the

solution �D1 of the equation jr([�0
m0
]�1 ��0

m
)(�3) � (�(�D)� �3)j = 2�2L, i.e., the boundary

curve �D2 7! �(S
a
(�D2 ); �

D

2 ) of the domain T 0(P
�
;m; 2�2L) is an ellipse. We may write the

integral restricted to T
�;�

in the form

Z
T�;�

~
�
Q;�

(�)
p

�
�
0
m
(�3)� �

0
m
(�)

�
j�0
m
(�3)� �

0
m
(�)j�

d� =

Z 1

0

Z
Sb

Sa(�
D

2
)

~
�
Q;�

�
�(�D)

� p ��0
m
(�3)� ~�0

m
(�D)

�
j�0
m
(�3)� ~�0

m
(�D)j�

J
�
(�D) d�D1 d�D2 :

Applying the tensor product variant of the Gauÿ-Legendre rule (4.16) to the last integral,

we complete the formula (4.32) by the quadrature

b

w;c;q

P
0
;�;Q;�

:=
�0X
�=1

nGX
k2=1

nGX
k1=1

~
�
Q; �

�
�(�D

k1;k2
)
� p ��0

m
(�3)� ~�0

m
(�D

k1;k2
)
�

����0
m
(�3)� ~�0

m
(�D

k1;k2
)
���� �

J
�
(�D

k1;k2
)
���S
b
� S

a
(�k2

G
)
���!G

k1
!
G

k2
;

�
D

k1;k2
:=

�
S
a
(�k2

G
) + �

k1

G

h
S
b
� S

a
(�k2

G
)
i
; �

k2

G

�
: (4.34)

The order n
G
in (4.34) is chosen to be n

G
= n

E
+ Ln

F
again.

5 The Analysis of the Wavelet Compression

5.1 The Properties of the Three-Point Hierarchical Basis

The three-point hierarchical basis is well analyzed in the case of a hierarchy of uniform

triangulations over the plane (cf: [24, 46, 27]). The triangles of level l in this hierarchy

are obtained by splitting the level l � 1 triangles into four subtriangles. This splitting is

realized by connecting the three midpoints of the three sides. Unfortunately, we are not

able to prove Riesz stability for the corresponding three-point hierarchical wavelets over

triangles and manifolds. The reason is that the grids, where three straight lines meet

in each grid point, are not suitable for the symmetric extensions which we present after

Lemma5.1. Therefore, we de�ne our basis over the triangulations fT
�
: � 2 utIR2

l
g (cf:

Figure 1). For these partitions, the triangles of level l are obtained from those of level

(l � 1) by cutting each triangle along the lines connecting one midpoint of a side with

the opposite corner and with the two other midpoints. Fortunately, the techniques of

proof from e.g: [46] apply also to our situation. To describe the results we need some

notation. To avoid ambiguities we write  IR
2

�
for  

�
in this section. We de�ne the level

l(� ) of � by l(� ) := l if � in rIR
2

l
. From now on C stands for a generic constant the

value of which varies from instance to instance. For two expressions E1 and E2, we write

E1 � E2 if there is a constant independent of the parameters involved in E1 and E2 such

that E1=C � E2 � C E1. We get
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Lemma 5.1 For ��
H
< s < 1:5, the basis f IR2

�
: � 2 [1

L=04IR
2

L
g is a Riesz basis, i.e.,

for any vector of real numbers (�
�
)
�
we get








X
�2[1

L=0
4IR2

L

�
�
 
IR
2

�









H
s(IR2)

�
vuut X
�2[1

L=0
4IR2

L

22l(�)(s�1)j�
�
j2: (5.1)

The positive real constant �
H

is greater or equal to 0:559 : : : .

Proof. i) In this proof we shall use the technique of Stevenson [46]. The reader is

supposed to be familiar with that paper. Following [46] we introduce the quadrature

approximation of the L2-scalar product and the norm

hu; vi4IR2

l

:= 2�2l

8><
>:
2

3

X
�214IR2

l

u(� )v(� ) +
1

3

X
�224IR2

l

u(� )v(� )

9>=
>; ;

kuk4IR2

l

:=
r
hu; ui4IR2

l

:

With respect to this scalar product the basis f'l
�
: � 2 4IR

2

l
g is orthogonal, it is h�; �i4IR2

l+1

-

biorthogonal to the basis f'l+1
�

: � 2 4IR
2

l
g, and the wavelet functions can be represented

as

 
IR
2

�
= '

l+1
�

�
X

�
024IR2

l

h'l+1
�
; '

l

�
0i4IR2

l+1

h'l+1
�
0 ; '

l

�
0i4IR2

l+1

'
l+1
�
0 ; � 2 rIR

2

l
:

In other words, the wavelets  IR
2

�
; � 2 rIR

2

l
are orthogonal to the space LinIR

2

l
= spanf'l

�
:

� 2 4IR
2

l
g with respect to the scalar product h�; �i4IR2

l+1

, i:e:, they are prewavelets (semi-

orthogonal wavelets) with respect to a non-standard scalar product.

We introduce the mappings ~m
l
: LinIR

2

l
�! Lin

IR
2

l
and ~

Y
l
: LinIR

2

l+1 �! Lin
IR
2

l
by

h ~m
l
u
l
; v

l
i4IR2

l

= hu
l
; v

l
i4IR2

l+1

; u
l
; v

l
2 LinIR

2

l
;D

~
Y
l
u
l+1; vl

E
4IR2

l

= hu
l+1; vli4IR2

l+1

; u
l+1 2 LinIR

2

l+1; vl 2 Lin
IR
2

l
:

For a function v
l
2 Lin

IR
2

l
, we observe that hv

l
; v

l
i4IR2

l

� hv
l
; v

l
i4IR2

l+1

is equivalent to

2�2lhrv
l
;rv

l
i
L
2 , i:e:, krv

l
k2 � h22l(I � ~m

l
)v
l
; v

l
i4IR2

l

. Thus we introduce the norms

kv
l
k4IR2

l
; s

:=





hI + 22l(I � ~m
l
)
i
s=2
v
l






4IR2

l

(5.2)

which are equivalent to kv
l
k
H
s(IR2). Then it is proved in [46] (cf: the paragraph before

[46], Theorem 4.7) that the norm equivalences (5.1) hold for

�1 + 2log

(
1

2
sup

l=0;1;:::




~Y
l
~m�1
l+1





4IR2

l
;�2 4IR2

l+1
;�2

)
< s <

3

2
: (5.3)

Moreover, a simple modi�cation of the derivation of (5.3) yields even the s-range

�1 + 2log

8><
>:
1

2
sup

l=l0;l0+1;:::








l+kY
j=l+1

~
Y
j
~m�1
j+1








1=k

4IR2

l+1
;�2 4IR2

l+k+1
;�2

9>=
>; < s <

3

2
; (5.4)

30



where l0 and k are arbitrarily �xed positive integers. All what left is to compute the lower

bound of the s-range, i:e:, to estimate k
Q ~
Y
j
~m�1
j+1k1=k.

ii) Now we derive the standard representation of ~
Y
j
and ~m

j
from the theory of wavelets

(cf: [19]). We consider the h�; �i4IR2

l+1

-orthonormalized bases

(
1�l

k
:=

s
3

2
2l'l2�lk : k 2 ZZ

2

)
[
(
2�l

k
:=
p
32l'l(2�l�1;�2�l�1)+2�lk : k 2 ZZ

2

)

of the spaces LinIR
2

l
and represent the mappings ~m

l
and ~

Y
l
as matrices with respect to

these bases. As mentioned already by Stevenson, we get ~m
l
= p

�
l
p
l
and ~

Y
l
= p

�
l
, where

p
l
is the matrix of the embedding operator LinIR

2

l
�! Lin

IR
2

l+1. Due to the re�nement

equations

1�0
(0;0) =

1

2
1�1

(0;0) +
1

4

n
1�1

(0;1) +
1�1

(0;�1) +
1�1

(1;0) +
1�1

(�1;0)

o
+

p
2

8

n
2�1

(0;0) +
2�1

(�1;0) +
2�1

(0;1) +
2�1

(�1;1)

o
;

2�0
(0;0) =

p
2

2
1�1

(1;�1) +
1

4

n
2�1

(0;0) +
2�1

(1;0) +
2�1

(0;�1) +
2�1

(1;�1)

o
;

we get (cf: e.g: [19]), for the function u0 =
P
k2ZZ2[�

1
k

1�0
k
+ �

2
k

2�0
k
] embedded as u0 =P

k2ZZ2[�
1
k

1�1
k
+ �

2
k

2�1
k
],

�
k

=
X

k
02ZZ2

h
T

k�2k0�k0 ; �
k
:=

 
�
1
k

�
2
k

!
; �

k
=

 
�
1
k

�
2
k

!
; h

T

k
:=

 
h

1;1
k

h

2;1
k

h

1;2
k

h

2;1
k

!
;

h

i;j

k
:=

8>>>>>><
>>>>>>:

1
2

if i = j = 1; k = (0; 0)
p
2
2

if i = 2; j = 1; k = (1;�1)
1
4

if i = j = 1; k 2 f(0; 1); (0;�1); (1; 0); (�1; 0)g
or i = j = 2; k 2 f(0; 0); (1; 0); (0;�1); (1;�1)g

p
2
8

if i = 1; j = 2; k 2 f(0; 0); (�1; 0); (0; 1); (�1; 1)g:

(5.5)

As usually in the theory of wavelets, we identify the coe�cient vectors (�
k
)
k2ZZ2 and

(�
k
)
k2ZZ2 with the generator functions �(x; y) :=

P
�(k1;k2)e

i2�k1x
e
i2�k2y and �(x; y) :=P

�(k1;k2)e
i2�k1x

e
i2�k2y, respectively. Then the l2 spaces of coe�cient vectors are isometric

to the space of L2 functions over IR2
=ZZ

2, and (5.5) is equivalent to the equation �(x; y) =

h
T (x; y)�(2x; 2y) with the matrix function

h
T (x; y) :=

X
(k1;k2)2ZZ2

h
T

(k1;k2)
e
i2�k1x

e
i2�k2y

=

 
1
2
f1 + cos(2�x) + cos(2�y)g

p
2
2
e
i2�(x�y)

p
2
2
e
i�(y�x) cos(�x) cos(�y) e

i�(x�y) cos(�x) cos(�y)

!
:

In other words, the embedding operator (�
k
)
k
7! (�

k
)
k
= p

l
(�
k
)
k
corresponds to the

multiplication operator �(x; y) 7! �(x; y) := h
T (x; y)�(2x; 2y). We denote the adjoint

matrix function of (x; y) 7! h
T (x; y) by (x; y) 7! �

h(x; y). The formula ~m
l
= p

�
l
p
l
and an

easy computation reveal that the operator ~m
l
acting in the space of generator functions
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is simply the operator of multiplication by the invertible matrix function

~m(x; y) :=
1

4

1X
i;j=0

�
h

�
x

2
+
i

2
;

y

2
+
j

2

�
h
T

�
x

2
+
i

2
;

y

2
+
j

2

�

=

 
5
8
+ 1

8
fcos(2�x) + cos(2�y)g

p
2
8
e
i�(x�y) cos(�x) cos(�y)

p
2
8
e
i�(y�x) cos(�x) cos(�y) 3

4

!
:

We denote the self adjoint and non-negative matrix I � ~m(x; y) by a(x; y) and conclude

that ~m�1
l+1pl corresponds to

�(x; y) 7! ~m�1(x; y)hT (x; y)�(2x; 2y):

The H�2 operator norm k~Y
l
~m�1
l+1k is equal to the H

2 operator norm k ~m�1
l+1plk, and, due to

the norm de�nition in (5.2), the last is equal to the operator norm of the multiplication

operator

�(x; y) 7!
h
I + 22(l+1)a(x; y)

i
~m�1(x; y)hT (x; y)

h
I + 22la(2x; 2y)

i�1
�(2x; 2y) (5.6)

acting in the L2 space over IR2
=ZZ

2. Thus, to compute the lower bound in (5.4), we have

to estimate the norm of the operators (5.6) depending on l and the norm of their products,

respectively.

iii) To estimate the norm of (5.6), we introduce the auxiliary operator Te� depending on

a non-negative parameter � by

Te
�

�(x; y) := [�I + 4a(x; y)] ~m�1(x; y)hT (x; y) [�I + a(2x; 2y)]
�1
�(2x; 2y) (5.7)

and observe that the operator in (5.6) is Te� for � = 2�2l. This 2�2l can be made small by

choosing l0 large in (5.4). In what follows we shall derive an estimate for Te0. We shall

split Te� for � = 2�2l into the sum of three terms, and, using the bound for Te0, we shall

estimate each term separately.

Following the announced program, we observe

Te
0
�(x; y) = Ma(x; y)�(2x; 2y);

Ma(x; y) := 4a(x; y) ~m�1(x; y)hT (x; y)a(2x; 2y)�1: (5.8)

The determinant det(a(x; y)) of a(x; y) has a zero only at (x; y) = (0; 0) and det( ~m(x; y))

does not vanish at all. Moreover, we get det(a(x; y)) � x
2 + y2 for (x; y) �! (0; 0). Since

a(x; y)�1 = a(x; y)A=det(a(x; y)) with

a(x; y)A :=

 
a2;2(x; y) �a1;2(x; y)

�a2;1(x; y) a1;1(x; y)

!
;

we arrive at Ma(x; y) = 4a(x; y) ~m(x; y)AhT (x; y)a(2x; 2y)A=[det(a(2x; 2y)) det( ~m(x; y))].

A lengthy but trivial calculation shows that all entries of a(x; y) ~m(x; y)AhT (x; y)a(2x; 2y)A

vanish together with their �rst derivatives at the points (0; 0), (1=2; 0), (0; 1=2), and

(1=2; 1=2), where det(a(2x; 2y)) has its zeros. Hence, Ma(x; y) is bounded over IR2
=ZZ

2.

Using the periodicity of the function � 2 L
2(IR2

=ZZ
2), the norm of operator Te0 can be
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estimated as follows.

kMa(x; y)�(2x; 2y)k2
L
2 =

Z 1

0

Z 1

0

D
[Ma�Ma](x; y)�(2x; 2y); �(2x; 2y)

E
dxdy

=

Z 1

0

Z 1

0

*
1

4

1X
i=0

1X
j=0

[Ma�Ma]

�
x

2
+
i

2
;

y

2
+
i

2

�
�(x; y); �(x; y)

+
dxdy

kTe0k � sup
(x;y)








1

4

1X
i;j=0

[Ma�Ma]

�
x

2
+
i

2
;

y

2
+
j

2

�






1=2

: (5.9)

The matrix norm on the right-hand side of the last equation is the l2 matrix norm, i.e.,

the operator norm in the two-dimensional Euclidean space. A numerical evaluation of

(5.9) yields kTe0k � 10:37 : : : .

Next we �x a small positive number � and introduce the cut o� function �(x; y) on IR2
=ZZ

2

which is equal to one for jxj; jyj � � and zero else. Using this function, we split

Te
� =

3X
i=1

Te
�

i
; (5.10)

Te
�

1�(x; y) :=
�
1 � �(2x; 2y)

�
Te

�

�(x; y);

Te
�

2�(x; y) := �(2x; 2y)
h
4a(x; y) ~m�1(x; y)hT (x; y)a(2x; 2y)�1

i
a(2x; 2y) [�I + a(2x; 2y)]

�1
�(2x; 2y);

Te
�

3�(x; y) := �(2x; 2y)
h
~m�1(x; y)hT (x; y)

i
�I [�I + a(2x; 2y)]

�1
�(2x; 2y):

Since �2 = � and since

Te
�

i
[��](x; y) = �(2x; 2y)Te�

i
�(x; y);

k�(x; y)k2 = k�(2x; 2y)�(x; y)k2 + k(1� �(2x; 2y))�(x; y)k2;
k�(x; y)k2 = k�(x; y)�(x; y)k2 + k(1 � �(x; y))�(x; y)k2;

we conclude

kTe��k2 = k�(2�; 2�)Te��k2 + k[1� �(2�; 2�)]Te��k2

= kTe�1[��]k
2 + k[Te�2 + Te

�

3][(1� �)�]k2

� max
n
kTe�1k; kTe

�

2 + Te
�

3k
o2n

k��k2 + k(1� �)�k2
o
;

kTe�k � max
n
kTe�1k; kTe

�

2k+ kTe�3k
o
: (5.11)

The matrices a(2x; 2y) are invertible on the support of (1 � �(2x; 2y)) and the inverses

are uniformly bounded. Hence,

kTe�1 � Te
0
1k � C �;

kTe�1k � kTe01k+ C � � 10:37 : : : + C �: (5.12)

Clearly, the last constant C depends on the � from the de�nition of the cut o� function

�. On the other hand, the adjoint operator [Te�2]
� is given by

[Te�2]
�
�(x; y) = �(x; y)a(x; y) [�I + a(x; y)]

�1
[Te0]��(x; y):
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From this and from the matrix inequality a(x; y) [�I + a(x; y)]
�1 � I we obtain k[Te�2]�k �

k[Te0]�k and

kTe�2k � kTe0k � 10:37 : : : : (5.13)

Now we turn to kTe�3k. The non-negative self adjoint matrix a(x; y) can be represented

as a(x; y) = �(x; y)q(x; y) + �(x; y)o(x; y), where �(x; y) and �(x; y) are the eigenvalues

of a(x; y). The matrices q(x; y) and o(x; y) = I � q(x; y) are the orthogonal projections

onto the spaces of eigenvectors. In particular, we get

a(0; 0) =

0
@ 1

8
�
p
2
8

�
p
2
8

1
4

1
A
; q(0; 0) =

0
@ 1

3
�
p
2
3

�
p
2
3

2
3

1
A
; o(0; 0) =

0
@ 2

3

p
2
3p

2
3

1
3

1
A
;

�(0; 0) =
3

8
; �(0; 0) = 0:

Since �(x; y) is separated from 0 by a positive constant, we get

�I [�+ a(2x; 2y)]
�1

= � [�+ �(2x; 2y)]
�1
q(2x; 2y) + � [�+ �(2x; 2y)]

�1
o(2x; 2y);


� [�+ �(2x; 2y)]

�1
q(2x; 2y)




 � C�:

Consequently, we arrive at

kTe"3 � Te
"

4k � C�;

Te
"

4�(x; y) := �(2x; 2y)
h
~m�1(x; y)hT (x; y)

i
� [�+ �(2x; 2y)]

�1
o(2x; 2y)�(2x; 2y):

In other words, the norm kTe"3k is less than C� plus the norm kTe5k of the operator

Te5 : �(x; y) 7! �(2x; 2y)
h
~m�1hT

i
(x; y) o(2x; 2y)�(2x; 2y);

and we even get kTe"3k � C�+ C� + kTe6k with Te6 de�ned by

�(x; y) 7!

8>>>>>>>>>><
>>>>>>>>>>:

h
~m�1hT

i
(0; 0) o(0; 0)�(2x; 2y) if j2xj � � and j2yj � �h

~m�1hT
i �

1
2
; 0
�
o(0; 0)�(2x; 2y) if j2x� 1j � � and j2yj � �h

~m�1hT
i �

0; 1
2

�
o(0; 0)�(2x; 2y) if j2xj � � and j2y � 1j � �h

~m�1hT
i �

1
2
;
1
2

�
o(0; 0)�(2x; 2y) if j2x� 1j � � and j2y � 1j � �

0 else :

(5.14)

Since we have

h
T (0; 0) o(0; 0) = 2 o(0; 0); h

T

�
1
2
; 0
�
o(0; 0) = 0;

h
T

�
0; 1

2

�
o(0; 0) = 0; h

T

�
1
2
;
1
2

�
o(0; 0) = 0;

~m�1(0; 0) o(0; 0) = o(0; 0);

(5.15)

we conclude

Te6 : �(x; y) 7!
(

2 o(0; 0)�(2x; 2y) if j2xj � � and j2yj � �

0 else
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and kTe"3k � 2 + C� + C�. This and the estimates (5.11), (5.12), and (5.13), lead us to

kTe�k � 12:37 : : : + C� + C�. Choosing � small and choosing � small in comparison to

�, we get kTe�k � 12:37 : : : . Using (5.4) with k = 1 and su�ciently large l0, the Riesz

property (5.1) follows for �1:62 : : : < s < 1:5�.

iv) To improve the lower bound of the Sobolev range, we apply (5.4) with larger k.

Analogously to (5.7) and (5.8), we de�ne

Te
�

�(x; y) :=
h
�I + 4ka(x; y)

i k�1Y
i=0

( h
~m�1hT

i �
2ix; 2iy

�) h
�I + a(2kx; 2ky)

i�1
�(2kx; 2ky)

Ma(x; y) := 4ka(x; y)
k�1Y
i=0

( h
~m�1hT

i �
2ix; 2iy

�)
a(2kx; 2ky)�1:

For k = 10, numerical computations lead us to the estimate (compare (5.9))

sup
(x;y)








1

4k

2k�1X
j;j

0=0

[Ma�Ma]

 
x

2k
+

j

2k
;

y

2k
+
j
0

2k

!






1=2

� 20661:3 : : : :

Analogously to (5.14), we de�ne Te6 by

�(x; y) 7!

8>>><
>>>:
Q
k�1
i=0

( h
~m�1hT

i �
2i j

2k
; 2i j

0

2k

�)
o(0; 0)�

�
2kx; 2ky

�
if j2kx� jj � �

and j2ky � j
0j � �

0 else :

(5.16)

In view of (5.15) we conclude

Te6 : �(x; y) 7!

8>><
>>:

2ko(0; 0)�
�
2kx; 2ky

�
if j2kxj � �

and j2kyj � �

0 else ;

and the arguments from part iii) of the present proof lead us to the estimate kTe�k �
20661:3 : : : + 210 +C�+ C�. Choosing small values � and �, we get kTe�k � 21685:3 : : : ,

and (5.4) implies the Riesz property (5.1) for �0:559 : : : < s < 1:5 .

Next we deal with functions over the triangle T . In the construction of Sect. 3.1 we need

basis functions which admit symmetric (even) or antisymmetric (odd) extensions with

respect to the boundary of T . To construct such functions, we shall extend the piecewise

linear functions on T by symmetry mappings to periodic functions over the plane IR2.

More precisely, we shall suppose that a subset of the three sides of T is given through

which the functions should possess an even extension. Through the rest of the sides there

should exist odd extensions. In accordance to these symmetry properties, we shall de�ne

an extension procedure from functions over T to periodic functions over IR2. For the

periodic extensions, however, there exists a natural basis. Restricting this basis to the

triangle, we shall arrive at our basis over T .

In view of the assumptions in Sect. 2.1, the two shorter sides f(s; s) : 0 � s � 0:5g and

f(s; 1 � s) : 0:5 � s � 1g simultaneously belong to the �xed subset of sides or not. For

the sake of de�niteness, we suppose the only side with odd extension is the lower side
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Figure 9: Torus TT .

f(s; 0) : 0 � s � 1g. To prepare the de�nition of the extension, we introduce the points

(cf: Figure 9)

P := (0; 0); U := (1; 0); Z := (0:5; 0:5);

W := (0; 1); X := (1; 1); Q := (0;�1);
R := (1;�1); S := (2;�1); Y := (2; 1);

V := (2; 0):

Clearly, a piecewise linear function u
L
on T admits a continuous extension through the

boundary if and only if u
L
vanishes on the side of odd extension. If a function u

L
vanishing

on f(s; 0) : 0 � s � 1g is given, then we can extend u
L
to triangle PZW by symmetry

with respect to the line through P and Z, i.e: v
L
(s; t) := u

L
(t; s). The extended function

on triangle PUW will be denoted by v
L
. We can extend v

L
to triangleWUX as a function

symmetric with respect to the line through W and U by v
L
(s; t) := v

L
(1 � t; 1 � s).

Similarly, we extend v
L
to the square QRUP as a function antisymmetric with respect

to the line through T and U by v
L
(s; t) := �v

L
(s;�t). Again we extend v

L
to the

rectangle RSY X as a function antisymmetric with respect to the line through R and X

by v
L
(s; t) := �v

L
(2 � s; t). In other words, the function u

L
is extended to a continuous

piecewise linear function v
L
on the square QSYW . This function extends to a function

which is 2-periodic with respect to both variables, and we denote the periodic extension

v
L
by uext

L
.

Let us consider the periodic functions more carefully. Periodicity of a piecewise linear

function w
L
means that w

L
satis�es

w
L
(s; t) = w

L
(s+ 2k; t+ 2k0) ; (k; k0) 2 ZZ2

:

The periodic functions are functions de�ned on the torus, i.e., on the quotient space

TT := IR
2
=

n
(2k; 2k0) : (k; k0) 2 ZZ2

o
:

We denote the space of periodic linear functions by LinTT
L
. To get periodic basis functions,

we take periodizations  per
�

of  IR
2

�
de�ned by

 
per

�
(s; t) :=

X
(k;k0)2ZZ2

 
IR
2

�
(s+ 2k; t+ 2k0) =

X
(k;k0)2ZZ2

 
�+(2k;2k0)(s; t):
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If we de�ne the grid 4TT

L
by

4TT

L
:=
n
(s; t) 2 4IR

2

L
: 0 � s; t < 2

o
;

then f per
�

: � 2 4TT

L
g is a �nite system of basis functions of LinTT

L
. It is well known that

Lemma5.1 remains true for periodic functions and for the Sobolev spaces over the torus,

i.e., for �0:559 : : : < s < 1:5 and for all vectors of coe�cients �
�
,








X
�2[1

L=0
4TT

L

�
�
 
per

�









H
s(TT )

�
vuut X
�2[1

L=0
4TT

L

22l(�)(s�1)j�
�
j2: (5.17)

On the other hand, the extension v
L
= u

ext

L
of a linear function u

L
on triangle T

belongs to the subspace

Lin

Sym

L
:=
n
w
L
2 LinTT

L
: [w

L
j
T
]
ext

= w
L

o
which is determined by the properties of symmetry included in the extension procedure

[w
L
j
T
] 7! [w

L
j
T
]ext. For a point � 2 4T

L
n f(s; 0) : 0 � s � 1g, we denote by � �1 ; : : : ; �

�

k

those points of4TT

L
for which the function value [u

L
]ext(� �

i
) is set to �u

L
(� ) in the extension

procedure u
L
7! [u

L
]ext. We de�ne �

i
2 f1;�1g by [u

L
]ext(� �

i
) = �

i
u
L
(� ). Clearly,

the points � �
i
are obtained by the symmetric re�ections mapping the triangle T to the

subtriangles of the quadrangle QSYW . The number of these points is k = 16 if � is an

interior point of T , k = 8 if � is on a side of T , and k = 4 if � is the corner Z. Now a

function w
L
belongs to LinSym

L
, if and only if, w

L
(� ) = �

i
w
L
(� �
i
); i = 1; : : : ; k. Obviously,

the set of functions
P
k

i=1 �i['
L

�
�

i

]per with � 2 4T

L
n f(s; 0) : 0 � s � 1g forms a basis

of LinSym
L

and the cardinality of 4T

L
n f(s; 0) : 0 � s � 1g is the dimension of LinSym

L
.

Another basis is formed by
P
k

i=1 �i 
per

�
�

i

with � 2 4T

L
n f(s; 0) : 0 � s � 1g. Indeed this

system of functions has the right cardinality, all its elements belong to the space LinSym
L

,

and they are linearly independent since the functions  per
�
; � 2 4�

T
n f(s; 0) : 0 � s � 1g

are linearly independent. We introduce the functions

 
ext

�
:=

kX
i=1

�
i
 

per

�
�

i

;  
T

�
:=  

ext

�
j
T
; � 2 4T

L
n f(s; 0) : 0 � s � 1g

and obtain w
L
=
P
�24T

L
nf(s;0): 0�s�1g �� 

ext

�
. Applying this to the extension w

L
= [u

L
]ext

of a function u
L
on T , we arrive at u

L
=
P
�24T

L
nf(s;0): 0�s�1g �� 

T

�
. It turns out that

f T
�
: � 2 4T

L
g is a basis of the space of piecewise linear functions over T vanishing over

the side f(s; 0) : 0 � s � 1g. Using ku
L
k
H
s(T ) � k[u

L
]extk

H
s(TT ), the Riesz property (5.17)

implies







X

�2[1
L=0
4T

L
nf(s;0): 0�s�1g

�
�
 
T

�









H
s(T )

�
vuut X
�2[1

L=0
4T

L
nf(s;0): 0�s�1g

22l(�)(s�1)j�
�
j2 (5.18)

for �0:559 : : : < s < 1:5. We note that, for � 2 4T

L
n f(s; 0) : 0 � s � 1g,

 
T

�
:=

8>>>>>>><
>>>>>>>:

'
0
�
j
T

if � 2 4T

L
\rT

�1

'
l+1
�
j
T
� 1

2

n
"
�;�1
'
l+1
�1
j
T
+ "

�;�2
'
l+1
�2
j
T

o
if � 2 4T

L
\ 1rT

l
;

l = 0; : : : ; L� 1

'
l+1
�
j
T
� 1

4

n
"
�;�1
'
l+1
�1
j
T
+ "

�;�2
'
l+1
�2
j
T

o
if � 2 4T

L
\ 2rT

l
;

l = 0; : : : ; L� 1;

(5.19)
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"
�;�

0

:=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1 if � and � 0 belong to the interior of T

or there exists a side of T such that � and � 0

belong to the interior of this side

2 if � is an interior point of T and � 0 belongs to

a side of T

or � 0 = Z and � is on a side of T

4 if �
0 = Z and � is an interior point of T

0 else.

With  T
�
we have constructed a three-point wavelet basis for the space of linear func-

tions on T vanishing on f(s; 0) : 0 � s � 1g. Completely analogously, we can construct

a basis for the linear functions on T vanishing on three, two or no sides. These functions

are the basis ingredients for the wavelet basis on the manifold. Indeed, as indicated in

Sect. 3.1, the three-point hierarchical basis of (3.2) is constructed as follows.

We start with functions  
P
such that P 2 4�

L
\ �1. We just take the basis f T

�
g on

T with no zero condition for boundary sides. For P = �1(� ), we take the composition

 
P
=  

T

�
���11 to get functions over the parametrization patch �1. To get continuous trial

functions, we extend these functions  
P
with P 2 r�

l
\�1 � 4�

l+1 \�1 from �1 to � such

that the extension is piecewise linear on the partition f�
Q
: Q 2 ut�

l+1g corresponding to

the grid 4�
l+1 and vanishes at all grid points from 4�

l+1 n �1. This simply means that,

if  T
�
= '

l+1
�

� 1
2
f"�;�1'l+1

�1
+ "

�;�2
'
l+1
�2
g resp.  T

�
= '

l+1
�

� 1
4
f"�;�1'l+1

�1
+ "

�;�2
'
l+1
�2
g, then

 
P
= '

l+1
P

� 1
2
f"�;�1'l+1

P1
+ "�;�2'l+1

P2
g resp.  

P
= '

l+1
P

� 1
4
f"�;�1'l+1

P1
+ "�;�2'l+1

P2
g, where 'l+1

P

and 'l+1
Pi

are the continuous hat functions introduced in Sect. 2.4.

Next we de�ne the functions  
P
for P 2 4�

L
\ �2 n �1. The patch �2 has one or no

common side with �1. We take the basis f T
�
g on T which vanishes on those sides (one

ore maybe no side) which are mapped by �2 into a side common with �1. Again we

take the composition with ��12 to get functions over the parametrization patch �2 which

vanish over �2 \ �1. To get continuous trial functions, we extend these functions  
P

with P 2 r�
l
\ �2 n �1 � 4�

l+1 \ �2 from �2 to � such that the extension is piecewise

linear on the grid 4�
l+1 and vanishes at all grid points from 4�

l+1 n �2. In other words,

if  T
�
= '

l+1
�

� 1
2
f"�;�1'l+1

�1
+ "

�;�2
'
l+1
�2
g resp.  T

�
= '

l+1
�

� 1
4
f"�;�1'l+1

�1
+ "

�;�2
'
l+1
�2
g, then

 
P
= '

l+1
P

� 1
2
f"�;�1'l+1

P1
+ "�;�2'l+1

P2
g resp.  

P
= '

l+1
P

� 1
4
f"�;�1'l+1

P1
+ "�;�2'l+1

P2
g, where 'l+1

P

and 'l+1
Pi

are the continuous hat functions introduced in Sect. 2.4.

Analogously to the previous step, we de�ne the functions  
P
for P 2 4�

L
\ �3 n f�1 [ �2g

which vanish over [[2
m=1�m] \ �3. Then we construct the functions  

P
with P 2 4�

L
\

�4 n f�1 [ �2 [ �3g vanishing over [[3
m=1�m] \ �4 and so on. Finally, we de�ne  

P
with

P 2 4�
L
\ �

m�
n [m��1

m=1 �
m
vanishing over the boundary of �

m�
. We arrive at the basis of

(3.2). If the level l(P ) of P is de�ned by l(P ) := l for P in r�
l
, then we get

Lemma 5.2 i) For �0:5 < s < 1:5, the basis f 
P
: P 2 [1

L=04�
L
g is a Riesz basis,

i.e., for any vector of real numbers (�
P
)
P
, we get









X
P24�

L

�
P
 
P









H
s(�)

�
vuut X
P24�

L

22l(P )(s�1)j�
P
j2: (5.20)
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ii) For the Sobolev space orders s � t � 2; s < 1:5, the functions from Lin
�
L
ful�l the

approximation property (Jackson type theorem)

inf
uL2Lin�L

ku� u
L
k
H
s(�) � C2�L(t�s)kuk

H
t(�): (5.21)

iii) For the interpolation projection R
L
de�ned in Sect. 2.5, for u 2 H t(�), and for the

Sobolev space orders 0 � s � t � 2; s < 1:5; t > 1, we get

ku�R
L
uk

H
s(�) � C2�L(t�s)kuk�m�

m=1
H
t(�m): (5.22)

iv) For the L2(�) orthogonal projection P
L
and for the Sobolev space orders �2 � s �

t � 2; s < 1:5; t > �1:5, we get

ku� P
L
uk

H
s(�) � C2�L(t�s)kuk

H
t(�): (5.23)

v) For the Sobolev space orders s � t < 1:5, the functions u
L
from Lin

�
L
ful�l the

inverse property (Bernstein inequality)

ku
L
k
H
t(�) � C2L(t�s)ku

L
k
H
s(�): (5.24)

Proof. The assertions ii) - v) are well known. It remains to proof the Riesz property. Let

�0:5 < s < 1:5 and f =
P
P24�

L

�
P
 
P
. Since  

P
=  

�
� ��11 for any P = �1(� ) 2 �1 \4�

L

and since all the  
P
with P 62 �1 vanish over �1, the corresponding estimate over �1

analogous to (5.18) implies









X

P24�
L
\�1

�
P
 
P









H
s(�1)

�
vuut X
P24�

L
\�1

22l(P )(s�1)j�
P
j2: (5.25)

Now we set f+2 :=
P
P24�

L
\�2n�1 �P P and f�2 := (f � f+2 )j�2. Clearly, the second function

f
�
2 is

P
P24�

L
\�1 �P P j�2, and we observe that, for each restriction  

P
j�2; P 2 4�

L
\ �1,

the function  
P
� �2 is equal to a restriction to T of a wavelet  IR

2

�
or at least to the

linear combinations of three restrictions to T of wavelets  IR
2

�
. First suppose all  

P
� �2jT

with P 2 4�
L
\ �1 are restrictions of wavelets  

IR
2

�
. Then the upper estimate of the Riesz

properties (5.1) applied to the  
P
��2jT and the lower estimate (5.25) yield (cf: also (2.3))

kfk
H
s(�2) � kf+2 kHs(�2) + kf�2 kHs(�2)

� kf+2 kHs(�2) + C

vuut X
P24�

L
\�1

22l(P )(s�1)j�
P
j2

� kf+2 kHs(�2) + C kfk
H
s(�1); (5.26)

kfk
H
s(�2) � kf+2 kHs(�2) � C kfk

H
s(�1): (5.27)

The case that not all  
P
��2jT are restrictions of wavelets  IR

2

�
occurs only if P = �2(� ) is

at the boundary of �2(T ), if  P = '
l+1
P

� 1
4
f'l+1

P1
+'l+1

P2
g resp.  

P
= '

l+1
P

� 1
2
f'l+1

P1
+'l+1

P2
g,

and if the corresponding wavelet on IR
2 is  IR

2

�
= '

l+1
�

� 1
2
f'l+1

�1
+ '

l+1
�2
g resp.  

IR
2

�
=

'
l+1
�

� 1
4
f'l+1

�1
+ '

l+1
�2
g. The functions 'l+1

�i
j
T
, however, are restrictions to T of wavelets

 
IR
2

�
0
i

with � 0
i
2 IR2 n T and � 0

i
2 rIR

2

l
. Moreover these 'l+1

�i
j
T
coincide with the restrictions
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of  
Pi
� �2jT for certain P

i
2 4�

L
\ �1. Hence, for an upper bound of kf�2 k2, we get the

sum of terms 22l(P )(s�1)j�
P
j2 and 22l(Pi)(s�1)j�

Pi
� 1

4
�
P
j2, and the estimates (5.26) and (5.27)

remain valid. From these and (5.25) we get that

kfk
H
s(�1) + kfk

H
s(�2) �

vuut X
P24�

L
\�1

22l(P )(s�1)j�
P
j2 + kf+2 kHs(�2);

and the estimate over �2 analogous to (5.18) leads to

kfk
H
s(�1) + kfk

H
s(�2) �

vuut X
P24�

L
\[�1[�2]

22l(P )(s�1)j�
P
j2:

Repeating the last arguments with �1 replaced by �1[�2 and �2 replaced by �3, we arrive

at

kfk
H
s(�1) + kfk

H
s(�2) + kfk

H
s(�3) �

vuut X
P24�

L
\[�1[�2[�3]

22l(P )(s�1)j�
P
j2:

Further applications of the arguments lead �nally to

m�X
m=1

kfk
H
s(�m) �

vuut X
P24�

L
\[m�

m=1
�m

22l(P )(s�1)j�
P
j2 =

vuut X
P24�

L

22l(P )(s�1)j�
P
j2

The Riesz property implies the existence of a projection Q
L
, which is de�ned by

u =
X

P2[1
l=0
4�
l

�
P
 
P
7! Q

L
u :=

X
P24�

L

�
P
 
P

and which is bounded in H
s

; �0:5 < s < 1:5. For the wavelet coe�cients of smooth

functions, we obtain the following decay estimate.

Lemma 5.3 Suppose the continuous function u belongs to �m�

m=1H
s(�

m
) for an s with

�0:5 < s � 2 and suppose
P
P24�

L

�
P
 
P
is the representation of either the interpolation

R
L
u or the orthogonal projection P

L
u or the projection Q

L
u. Thenvuut X

P24�
L

22l(P )(s�1)j�
P
j2 � C kuk�m�

m=1
H
s(�m) �

(
1 if � 0:5 < s < 1:5p
L if 1:5 � s � 2:

(5.28)

Proof. The case �0:5 < s < 1:5 follows immediately from the Riesz property (5.20), and

it remains to consider 1:5 � s � 2. First we suppose that
P
�
P
 
P
is the projection Q

L
u.

The Riesz property and the approximation property of Lemma 5.2, iii), which remains

valid for R
L
replaced by the uniformly bounded Q

L
(cf: (5.20)), implyvuut X

P2r�
l�1

2�2(l�1)j�
P
j2 � kQ

l
u�Q

l�1ukL2 � kQ
l
u� uk

L
2 + ku�Q

l�1ukL2

� C 2�lskuk�m�
m=1

H
s(�m);vuut X

P2r�
l�1

22(l�1)(s�1)j�
P
j2 � C kuk�m�

m=1
H
s(�m):
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Passing to the squares and summing up over l = �1; : : : ; L � 1, we get the upper bound

C L kuk2. Taking square roots we obtain the assertion for 1:5 � s � 2.

Now we denote the coe�cients of R
L
u by ~

�
P
in order to distinguish them from those of

Q
L
u. From the assertion with Q

L
u and from Lemma5.2 ii) and iii) we get

vuut X
P24�

L

2�2l(P )j�
P
� ~
�
P
j2 � kQ

L
u�R

L
uk

L
2 � kQ

L
u� uk

L
2 + ku�R

L
uk

L
2

� C 2�Lskuk�m�
m=1

H
s(�m);vuut X

P24�
L

22l(P )(s�1)j�
P
� ~
�
P
j2 � C kuk�m�

m=1
H
s(�m):

This together with the estimate (5.28) for the coe�cients �
P
of Q

L
u implies (5.28) for the

coe�cients ~�
P
of R

L
u. Similarly we can prove the assertion for the orthogonal projection.

5.2 The Properties of the Wavelet Basis in the Test Space

The properties of the basis of test wavelets introduced in Sect. 3.2 can be described using

the predual basis. We simply de�ne the classical hierarchical basis by �
P

:= '
l+1
P

for

P 2 r�
l
and observe

h#
P
; �

P
0i := #

P
(�

P
0) = �

P;P
0 (5.29)

as well as spanf�
P
: P 2 4�

L
g = Lin

�
L
. The interpolation projection can be represented

as

R
L
u =

X
P24�

L

u(P )'L
P

=
X
P24�

L

h#
P
; ui�

P
:

The following properties are well known.

Lemma 5.4 i) For 1 < s < 1:5, the basis f�
P
: P 2 [1

L=04�
L
g is a Riesz basis, i.e.,

for any vector of real numbers (�
P
)
P
, we get









X

P24�
L

�
P
�
P









H
s(�)

�
vuut X
P24�

L

22l(P )(s�1)j�
P
j2: (5.30)

ii) The approximation and inverse properties for the space predual to the test functionals

are formulated in Lemma5.2 ii)-iv).

The second basis f#+
P
g is a slight modi�cation of f#

P
g. In fact the basis transform from

f#
P
g to f#+

P
g is the identity matrix plus an upper triangular matrix with only one entry

0:25 in each row and no more than six entries 0:25 in each column. Hence, the basis

transform is invertible. A dual system f�+
P
g for a �xed L can easily be constructed from

f�
P
g by applying the inverse adjoint basis transform. Moreover, if we change the basis

f#
P
g to the Hs scaled basis f2l(P )(s�1)#

P
g and f#+

P
g to f2l(P )(s�1)#+

P
g, then the basis
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transform is the identity matrix plus an upper triangular matrix with only one entry

0:25 � 2s�1 in each row and no more than six entries 0:25 � 2s�1 in each column. Due to

Schur's lemma the norm of the triangular matrix is less thanq
[0:25 � 2s�1] � 1

q
[0:25 � 2s�1] � 6 �

p
0:75 < 1:

Thus the basis transform is stable even for 1 < s < 1:5, and assertion i) of Lemma5.4

remains true if we replace f#
P
g by f#+

P
g.

We �nish this subsection with a result on the boundedness of the wavelet transform T
T
.

Lemma 5.5 Suppose that u
L
=
P
P24�

P

�
P
'
L

P
and that � = (�

P
)
P24�

L

= T
T

 with 
 =

(

P
)
P24�

L

. Here the wavelet transform T
T
from Sect. 3.3 could be de�ned also with #

P

replaced by #+
P
. Then, we get

ku
L
k
H
s(�) � C

vuut X
P24�

L

22l(P )(s�1)j

P
j2
( p

L if 0 � s � 1

1 if 1 < s < 1:5 :
(5.31)

Proof. Since the basis transform from f�
P
: P 2 4�

L
g to f�+

P
: P 2 4�

L
g and its inverse

is stable in Hs, we may suppose, without loss of generality, that the wavelet transform is

de�ned with #
P
. The case 1 < s < 1:5 follows from Lemma5.4, i). For 0 � s � 1, we

conclude

ku
L
k
H
s(�) = k

X
P24�

L



P
�
P
k
H
s(�) �

L�1X
l=�1

k
X
P2r�

l



P
�
P
k
H
s(�)

� C

p
L

vuuutL�1X
l=�1

k
X
P2r�

l



P
�
P
k2
H
s(�):

Now it remains to apply the inverse property and a discrete norm estimate for shifts of

hat functions on one level.

ku
L
k
H
s(�) � C

p
L

vuuutL�1X
l=�1

22slk
X
P2r�

l



P
�
P
k2
L
2(�) � C

p
L

vuuutL�1X
l=�1

22l(s�1)
X
P2r�

l

j

P
j2:

5.3 The Complexity of the Compression Algorithm

Lemma 5.6 The number NP of non-zero entries in the compressed matrix Aw;c

L
corre-

sponding to the compression pattern P(a; b; c; d;~a;~b; ~c; ~d) (cf: Sects. 3.4 and 3.5) satis�es

NP � C L 22L + C d
2 22L[a+(1�c)++(1�b)+ ]

8><
>:

1 if c 6= 1; b 6= 1

L
2 if c = b = 1

L else

+C ~
d 22L[~a=2+(1�~c=2)++(1=2�

~
b=2)+]

8><
>:

1 if ~c 6= 2; ~b 6= 1

L
2 if ~c = 2; ~b = 1

L else :

(5.32)

In the last formula (: : :)+ stands for the positive part of (: : :), i.e., (: : :)+ is equal to (: : :)

if (: : :) � 0 and (: : :)+ is zero else.
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Proof. First we count the entries from (3.18) and denote their number by N1
P . For a

�xed test functional #
P
0 , the number of entries with column indices P such that l(P ) = l

and (3.18) hold is less than

C

2
4max

n
2�l; 2�l(P

0)
; d2aL�bl�cl(P

0)
o

2�l

3
5
2

:

We estimate the maximum of the three numbers by the square root of the sum of the

squares. Then we sum up over all levels l, over the O(22l
0

) test functionals with level

l(P 0) = l
0, and over all levels l0. We arrive at

N
1
P �

L�1X
l
0=�1

22l
0
L�1X
l=�1

C

n
1 + 22(l�l

0) + d
222aL+2(1�b)l�2cl

0
o

� C L 22L + C d
2 22L[a+(1�c)++(1�b)+]

8><
>:

1 if c 6= 1; b 6= 1

L
2 if c = b = 1

L else :

(5.33)

Next we count the entries from (3.19) and denote their number by N2
P . For a �xed test

functional #
P
0, the number of entries with column indices P such that l(P ) = l and (3.19)

hold is less than

C

max
n
2�l; 2�l(P

0)
;
~
d2~aL�

~
bl�~cl(P 0)

o
2�l

since all the  
P
intersecting the common boundary of two parametrization patches are

located along a one dimensional submanifold. Estimating the maximum of the three

numbers by their sum and summing up over all levels l, over the O(22l
0

) test functionals

with level l(P 0) = l
0, and over all levels l0, leads to

N
2
P �

L�1X
l
0=�1

22l
0
L�1X
l=�1

C

n
1 + 2(l�l

0) + ~
d2~aL+(1�

~
b)l�~cl0

o

� C L 22L + C
~
d 2L[~a+(2�~c)++(1�

~
b)+]

8><
>:

1 if ~c 6= 2; ~b 6= 1

L
2 if ~c = 2; ~b = 1

L else :

(5.34)

The estimates (5.33) and (5.34) together with NP = N
1
P +N

2
P imply (5.32).

5.4 General Error Estimates for the Numerical Solution and Pre-

conditioning

In this subsection we recall well-known error estimates for stable numerical methods. We

give the precise assumptions on the stability and derive necessary conditions which ensure

that the numerical methods, perturbed by compression and by boundary and quadrature

approximation, admit the same asymptotic orders of convergence as the unperturbed

methods. Moreover, we give necessary conditions which ensure the existence of diagonal

preconditioners for the matrix A
w;c;q of the compressed and approximated collocation

method.
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The collocation method for the equation Au = v de�nes an approximate solution u
L
2

Lin
�
L
by R

L
Au

L
= R

L
v (cf: Sect. 2.5). This method is called stable in the space Hs(�)

if the approximate operators R
L
A : Lin�

L
�! Lin

�
L
are invertible for su�ciently large L

and if their inverses are bounded, i:e:,





�RL
Aj

Lin
�
L

��1
w
L






H
s+r(�)

� C kw
L
k
H
s(�) ; w

L
2 Lin�

L
:

We suppose that the collocation method is stable for s = 0. Additionally, if r = �1 or if

the algorithm (3.15) is applied to an operator A of order r = 0, then we suppose stability

also for s = 1:1 (or for an arbitrary s with 1 < s < 1:5 instead of 1:1). Note that stability

is well known for second kind integral operators including compact integral operators.

In particular this is true for double layer operators over smooth boundaries (cf: e.g: [2]).

For �rst kind operators and operators involving strongly singular integral operators, the

question of stability is not solved yet. A �rst step toward the solution is done in [34,

35, 10, 13]. Note that, since our trial space Lin�
L
is generated by two scaling functions,

the stability is needed for a multiwavelet space (cf: the univariate multiwavelet paper

[36]). Though a rigorous proof of stability is missing engineers frequently use collocation

methods without observing instabilities.

To simplify the notation, let us denote the operator R
L
Aj

Lin
�
L

by A
L
, i.e., by the same

symbol as for its matrix with respect to the basis f'L
P
: P 2 4�

L
g (cf: Sect.2.5). Similarly,

we denote by A
c

L
and A

c;q

L
the operators in Lin

�
L
the matrix of which with respect to

f'L
P
: P 2 4�

L
g is Ac

L
and A

c;q

L
, respectively (cf: (3.14)). Using the L2 orthogonal pro-

jection P
L
, we represent the error u� u

L
of the fully discretized and compressed method

A

c;q

L
u
L
= R

L
v as

u� u
L

= u� P
L
u� (Ac;q

L
)
�1
n
R
L
Au�A

c;q

L
P
L
u

o
= u� P

L
u� (A

c;q

L
)
�1
n
[A

L
�A

c;q

L
]P
L
u+A(I � P

L
)u� (I �R

L
)A(I � P

L
)u
o
:

We apply the boundedness assumption on A (cf: Sect. 2.2), assume the stability of Ac;q

L

for Sobolev index s = 0, and use Lemma5.2 to get

ku� u
L
k
H

r(�) � ku� P
L
uk

H
r(�) + C

n
k[A

L
�A

c;q

L
]P
L
uk

H
0(�)+

k(I � P
L
)uk

H
r(�) + 2�1:1L kA(I � P

L
)uk

H
1:1(�)

o
� C2�(2�r)L kuk

H
2(�) + C k[A

L
�A

c;q

L
]P
L
uk

H
0(�) :

In other words, to ensure the optimal convergence order 2� r, we need the estimate

k [A
L
�A

c;q

L
]P
L
uk

H
0(�) � C2�(s�r)Lkuk

H
s(�) (5.35)

for s = 2 and the stability of A
c;q

L
. Since A

L
is stable by assumption, for the stability of

A

c;q

L
, it will be su�cient to require

kA
L
�A

c;q

L
k
H
0(�) Hr(�) �

1

2
sup

L
0=L0;L0+1;:::

kA�1
L
0 k�1

H
r(�) H0(�):

In view of the inverse property v) of Lemma 5.2 the last condition is a consequence of

(5.35) with the choice s = 1:1 if we show that the constant C in (5.35) can be made
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smaller than any prescribed positive number. It will be the task of the next sections to

prove estimate (5.35) for s = 2 and s = 1:1.

The issue of wavelet preconditioners has been addressed by many authors (cf: e.g: [12, 14,

27, 48]) and we will follow the same ideas. In the case r = 0 the stability of Ac;q

L
implies

that the matrix A
c;q

L
has a condition number which is already uniformly bounded with

respect to L. Thus, for the algorithm (3.16), no preconditioning is needed, and we can

restrict our consideration to algorithm (3.15). Unfortunately, the wavelet transform T �1
T

(cf: Sect. 3.3) has not a uniformly bounded condition number with respect to Euclidean

matrix norm. Therefore, preconditioning is needed even for r = 0, and the preconditioner

is to be derived from the stability for a di�erent Sobolev index. We choose e.g: s = 1:1.

Let us consider an operator A of order r = 0;�1 and suppose the stability of A
L
in the

Sobolev space H1:1(�). If we could prove

kA
L
�A

c;q

L
k
H
1:1(�) H1:1+r(�) �

1

2
sup

L
0=L0;L0+1;:::

kA�1
L
0 k�1

H
1:1+r(�) H1:1(�); (5.36)

then A
c;q

L
is stable in H1:1(�), too. From Sects. 3.1 and 5.2, we recall that A

w;c;q

L
is the

matrix of the operator A
c;q

L
with respect to the bases f 

P
: P 2 4�

L
g and f�

P
: P 2 4�

L
g.

Under assumption (5.36), the assertions i) of the Lemmata 5.4 and 5.2 imply that the

matrices �
�
P;P

02l(P
0)(1:1�1)

�
P;P

024�
L

A

w;c;q

L

�
�
P;P

02�l(P )(r+1:1�1)
�
P;P

024�
L

(5.37)

have condition numbers which are uniformly bounded with respect to L, i.e: the matrix

A

w;c;q

L
admits a diagonal preconditioning. The boundedness of the condition number en-

sures the fast convergence of the iterative solver in the wavelet algorithm (3.15). In other

words, for the fast iterative solution of the linear systems A
w;c;q

L
� = 
 (cf: part iv) of

(3.15)) using preconditioning, we only have to prove (5.36). This will be done in the next

two sections.

5.5 The Estimate of the Compression Error

The fundamental relation for the compression is the following decay property of the entries

a
w

P
0
;P

of the sti�ness matrix (3.12) with respect to the wavelet bases. The decay estimates

rely on the assumptions for the kernel function (cf: Sect.2.2) and on the vanishing moment

properties for the wavelets (cf: Sects.3.1 and 3.2). Letm stand for the number of vanishing

moments of the test functionals. For r = 0, we use the test functionals #
P
0 and getm = 2.

If r = �1, then we use the test functionals #
P
0 and set m = 3. In any case r +m = 2

and m = 2 � r. The support �
P
0 of #

P
0 resp. #+

P
0 is supposed to be de�ned like in the

beginning of Sect. 3.5.

Lemma 5.7 If the support 	
P
of the trial function  

P
is contained in the interior of a

single patch �
m

of the boundary and if the distance of 	
P
to the support �

P
0 of the test

functional #
P
0 resp. #+

P
0 is positive, then we get

���aw
P
0
;P

��� � C 2�ml(P 0)2�4l(P )dist (�
P
0;	

P
)
�r�4�m

: (5.38)
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If 	
P
is not contained in the interior of a single patch �

m
and if the distance of 	

P
to

�
P
0 is positive, then we get���aw

P
0
;P

��� � C 2�ml(P 0)2�2l(P )dist (�
P
0;	

P
)
�r�2�m

: (5.39)

Proof. For a rigorous proof of such estimates we refer e.g: to [14, 44]. We give only a short

explanation for the estimates (5.38) and (5.39). Since the kernel k in (2.4) is bounded and

since p(P �Q)=jP �Qj� behaves like jP �Qj�2�r, the estimate C2�2ldist(P 0; supp'l
P
)�2�r

for the entry (K'l
P
)(P 0) is standard. If we change 'l

P
into the wavelet  

P
with two vanish-

ing moments, then the integration against  
P
is like applying a second order derivative to

the kernel, multiplying by the factor 2�2l(P ), and integrating over the support 	
P
. Using

the bound C jP � Qj�4�r for the second order derivative of the kernel function in (2.4),

we arrive at the estimate C2�4l(P )dist(P 0;	
P
)�4�r for the entry (K 

P
)(P 0). Replacing the

Dirac delta functional at P 0 by the wavelet functional #
P
0 with m vanishing moments is

like applying anm-th order derivative to the kernel and multiplying by the factor 2�ml(P 0).

Thus the entry #
P
0(K 

P
) is bounded by the right-hand side of (5.38). Similarly, we get

(5.39) for a wavelet  
P
without vanishing moments.

Now we suppose that the entries a
w;c

P
0
;P

of A
w;c

L
are computed exactly. In this case the

missing estimate (5.36) and the inequality (5.35) with the Sobolev indices s = 2 and

s = 1:1 follow from

Lemma 5.8 Suppose A
L
2 L(Lin�

L
) is the approximate operator of the collocation method

(cf: Sect. 2.5) and A
c

L
the operator of the compressed collocation method (cf: Sect. 5.4)

including the sparsity pattern P = P(a; b; c; d; ~a;~b; ~c; ~d) (cf: Sect. 3.5) with the parameters

b = ~
b = 1, a = c > 0:75, and ~a = ~c > 1:5. Then we get

kA
L
�A

c

L
k
H
0(�) H2(�) � C fd�4 + ~

d
�2gL1:52�(2�r)L; (5.40)

kA
L
�A

c

L
k
H
0(�) H1:1(�) � C fd�4 + ~

d
�2g

p
L 2�(1:1�r)L; (5.41)

kA
L
�A

c

L
k
H
1:1(�) H1:1+r(�)

� C fd�4 + ~
d
�2g : (5.42)

Proof. First we consider (5.40) and (5.41). We set

b
P
0
;P

:=
p
L2(0�1)l(P

0)
���aw
P
0
;P
� a

w;c

P
0
;P

��� 2�(s�1)l(P )
( p

L if s = 2

1 if s = 1:1 :
(5.43)

In view of Lemmata 5.3 and 5.5 the norm of kA
L
�Ac

L
k can be majorized by the Euclidean

norm of (b
P
0
;P
)
P
0
;P
. Schur's lemma gives




(b
P
0
;P
)
P
0
;P




 �
q
�1 � �2;

�1 := max
P
024�

L

2l(P
0)
X
P24�

L

b
P
0
;P
2�l(P ); (5.44)

�2 := max
P24�

L

2l(P )
X

P
024�

L

b
P
0
;P
2�l(P

0)
;

and it remains to estimate �1 and �2. Let us set dist := dist(�
P
0;	

P
) and max1 :=

maxf2�l; 2�l(P 0); d2aL�bl�cl(P 0)g as well as max2 := maxf2�l; 2�l(P 0); ~d2~aL�~bl�~cl(P 0)g. By ��
l
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we denote the set of P 2 r�
l
such that 	

P
is not contained in the interior of a single patch

�
m
. Furthermore, we set ��

l
:= r�

l
n ��

l
. Finally we write ~

L = L for s = 2 and ~
L =

p
L

if s = 1:1. Now the compression criteria (3.18) and (3.19) as well as Lemma5.7 imply

�1 � C
~
L max
P
024�

L

L�1X
l=�1

2�sl
X
P2r�

l

���aw
P
0
;P
� a

w;c

P
0
;P

���

� C
~
L max
P
024�

L

8><
>:
L�1X
l=�1

2�(s�2)l2�2l
X

P2��
l
: dist>max1

2�ml(P 0)2�4ldist�r�4�m +

L�1X
l=�1

2�(s�1)l2�l
X

P2��
l
: dist>max2

2�ml(P 0)2�2ldist�r�2�m

9>=
>;

� C
~
L max
P
024�

L

8<
:
L�1X
l=�1

2�ml(P 0)2�(s+2)lmax�r�2�m1 +
L�1X
l=�1

2�ml(P 0)2�(s+1)lmax�r�1�m2

9=
;

� C
~
L max
P
024�

L

8<
:
L�1X
l=�1

2�ml(P 0)2�(s+2)l[d2aL�bl�cl(P
0)]�r�2�m+

L�1X
l=�1

2�ml(P 0)2�(s+1)l[ ~d2~aL�
~
bl�~cl(P 0)]�r�1�m

9=
;

� C
~
L

8<
:d�42�a(r+m+2)L max

l
0=�1;:::;L�1

2[c(r+m+2)�m]l0
L�1X
l=�1

2[b(r+m+2)�(2+s)]l +

~
d
�32�~a(r+m+1)L max

l
0=�1;:::;L�1

2[~c(r+m+1)�m]l0
L�1X
l=�1

2[
~
b(r+m+1)�(1+s)]l

9=
; :

Note that, in the step from line two to three of the preceding estimation, we have used

2�2l
X

P2��
l
: dist>max1

dist�r�4�m � C

Z
fP2�: jP 0�P j>max1g

d
P
�

jP 0 � P jr+4+m

� C max�r�2�m1 ;

2�l
X

P2��
l
: dist>max2

dist�r�2�m � C

m�X
m;m

0=1

Z
fP2�m\�m0 : jP 0�P j>max2g

d
P
f�

m
\ �

m
0g

jP 0 � P jr+2+m

� C max�r�1�m2 :

For s = 2 and s = 1:1 and for our special choice of the parameters a; b; c; ~a; ~b, and ~c, we

get c(r+m+2)�m � 0 and b(r+m+2)� (2 + s) � 0 as well as ~c(r+m+1)�m � 0

and ~
b(r+m+ 1) � (1 + s) � 0. Hence, we may continue

�1 � C fd�4 + ~
d
�3g2�(s�r)L

(
L
2 if s = 2p
L if s = 1:1 :

Let us turn to �2. We set � := [L�1
l=�1��

l
as well as � := [L�1

l=�1��
l
, and, similarly to the

estimation for �1, we get

�2 � C
~
L max
P24�

L

L�1X
l=�1

2�(s�2)l(P )2�2l
X

P
02r�

l

���aw
P
0
;P
� a

w;c

P
0
;P

���
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� C
~
Lmax

P2�

8><
>:2�(s�2)l(P )

L�1X
l=�1

2�2l
X

P
02r�

l
: dist>max1

2�ml2�4l(P )dist�r�4�m

9>=
>;

+C ~
Lmax

P2�

8><
>:2�(s�2)l(P )

L�1X
l=�1

2�2l
X

P
02r�

l
: dist>max2

2�ml2�2l(P )dist�r�2�m

9>=
>;

� C
~
Lmax

P2�

8<
:
L�1X
l=�1

2�ml2�(s+2)l(P ) max�r�2�m1

9=
;

+C ~
Lmax

P2�

8<
:
L�1X
l=�1

2�ml2�sl(P ) max�r�m2

9=
;

� C
~
Lmax

P2�

8<
:
L�1X
l=�1

2�ml2�(2+s)l(P )[d2aL�bl(P )�cl]�r�2�m

9=
;

+C ~
Lmax

P2�

8<
:
L�1X
l=�1

2�ml2�sl(P )[ ~d2~aL�
~
bl(P )�~cl]�r�m

9=
;

� C
~
L d
�42�a(r+m+2)L max

l
0=�1;:::;L�1

2[b(r+m+2)�(2+s)]l0
L�1X
l=�1

2[c(r+m+2)�m]l

+C ~
L
~
d
�22�~a(r+m)L max

l
0=�1;:::;L�1

2[
~
b(r+m)�s]l0

L�1X
l=�1

2[~c(r+m)�m]l

For s = 2 and s = 1:1 and for our special choice of the parameters a; b; c; ~a; ~b, and ~c,

we get c(r+m+2)�m � 0 and b(r+m+ 2)� (2 + s) � 0 as well as ~c(r+m)�m � 0

and ~
b(r+m)� s � 0. Hence, we may continue

�2 �
n
C d

�42�mL + C
~
d
�22�mL

o(
L if s = 2p
L if s = 1:1 ;

and the assertions (5.40) and (5.41) follow.

Now we turn to (5.42). The estimation is analogous to that of (5.40). Instead of (5.43)

we set

b
P
0
;P

:= 2(1:1�1)l(P
0)
���aw
P
0
;P
� a

w;c

P
0
;P

��� 2�(1:1+r�1)l(P );
and, proceeding analogously to the preceding estimation of �1 and �2, we arrive at

�1 � C d
�4 + C

~
d
�3
; �2 � C d

�4 + C
~
d
�2
:

This implies (5.42).

6 The Estimation of the Errors due to the Approximate

Parametrization and due to the Quadrature

6.1 The Far Field Estimate

In this subsection we suppose that the near �eld and the singular integrations are per-

formed exactly and derive the convergence estimates for the far �eld case. The error
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estimate for the near �eld and for the singular integrals will be considered in Sects. 6.2

and 6.3, respectively. In view of Sect. 5.4 and Lemma5.8, it remains to prove

Lemma 6.1 Suppose Ac

L
2 L(Lin�

L
) is the approximate operator of the compressed collo-

cation method including the sparsity pattern P = P(a; b; c; d; ~a;~b; ~c; ~d) (cf: Sect. 3.5) with

a = b = c = ~
b = 1 and ~a = ~c > 1:5. If A

c;q

L
is the operator of the compressed collocation

method including the approximation of the parameter mappings and the quadrature of Sect.

4.1, then we get

kAc

L
�A

c;w

L
k
H
0(�) H2(�)

� C fd�(2�r) + ~
d
�(2�r)gL22�(2�r)L; (6.1)

kAc

L
�A

c;w

L
k
H
0(�) H1:1(�) � C fd�(2�r) + ~

d
�(2�r)gL2 2�(2�r)L; (6.2)

kAc

L
�A

c;w

L
k
H
1:1(�) H1:1+r(�) � C fd�(2�r) + ~

d
�(2�r)gL2 2�(0:9�r)L: (6.3)

Proof. i) The three estimates (6.1)-(6.3) follow from the inverse property v) of Lemma

5.2, from the property kfk
H
s0(�) < Ckfk

H
s(�) corresponding to the continuous embedding

H
s(�) � H

s
0

(�) for s > s
0, and from the estimate

kAc

L
�A

c;w

L
k
H
0(�) H1:1+r(�) � C fd�(2�r) + ~

d
�(2�r)gL22�(2�r)L: (6.4)

Hence, the only thing left to be proved is (6.4).

To estimate (6.4), we need new functions spanning the trial space. We shall represent

the operator of quadrature errors Ac

L
�A

c;w

L
as a matrix ~

A
L
with respect to this system

of functions, and ~
A
L
will be estimated just like the compression error A

L
� A

c

L
in the

proof to Lemma5.8. The new functions �
Q; �

are de�ned as follows. The space of linear

functions over a triangle T
�
with � 2 utT

l
is spanned by the three basis functions which

vanish at two corners and take the value 1 at the third. We denote these three functions

by �
�; �
; � = 1; 2; 3 and extend them by zero over the rest of T . The point where �

�; �

is one will be denoted by �
�
. For Q = �

m
(� ), we set �

Q; �
(�

m
(�)) := ~

�
Q; �

(�) := �
�; �
(�)

over T
�
. Notice that the function ~

�
Q; �

has been de�ned already in Sect. 4.1. We extend

the function �
Q; �

from �
Q

to � by setting it to zero over � n �
Q
. The point �

m
(�
�
)

depending on Q = �
m
(� ) and on � will be denoted by Q

�
. Clearly, �

Q; �
(Q

�
0) = �

�; �
0

and the system f�
Q; �

: Q 2 ut�
l
; � = 1; 2; 3g is a basis of the space of all discontinuous

piecewise linear functions subordinate to the partition f�
Q
: Q 2ut�

l
g of �. The system

f�
Q; �

: � = 1; 2; 3; Q 2 ut�
l
; l = 0; : : : ; Lg is a generating system for the piecewise

continuous and piecewise linear functions over the triangulation f�
Q
: Q 2 ut�

L
g.

To prepare the derivation of a representation for Ac

L
� A

c;w

L
with respect to this new

generating system f�
Q; �
g, we �rst represent the trial functions with respect to this system.

If a function u
L
=
P
�
P
 
P
is given, then, in the quadrature algorithm A

c;w

L
u
L
for the

computation of A
L
u
L
, the function u

L
is compressed, and then it is split into the sum of

the restrictions to smaller integration domains �
Q
on which a quadrature rule is applied.

More precisely, for a �xed test functional #
P
0, we get

u
L

� u
c

L
:=

X
P24�

L
: (P 0;P )2P

�
P
 
P

=
LX
l=0

X
Q2Qua�

l

3X
�=1

u
c

L
(Q

�
)�

Q; �
; (6.5)

where the splitting depends on #
P
0 . Due to the de�nition of Qua�

l
in Sect. 4.1 we get

l = l(Q) > l(P ) for all P 2 4�
L
with (P 0; P ) 2 P and for Q 2 Qua�

l
with �

Q
\ supp 

P
6= ;
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(cf: conditions i) and ii) before Lemma 4.1). Thus, to estimate the quadrature error for a

�xed u
L
=
P
�
P
 
P
, we de�ne the majorant function um

L
:=
P
�
Q; �
�
Q; �

of uc
L
by

�
Q; �

:=
X

P24�
L
: Q2	P and l(Q)>l(P )

j�
P
j j 

P
(Q

�
)j (6.6)

with 	
P
:= supp 

P
. This majorant um

L
is independent of #

P
0 , and its �norm� is almost

less than the norm of u
L
(cf: the subsequent estimate (6.8)). In part ii) of the present

proof we shall estimate the operator norm kAc

L
� A

c;w

L
k of the quadrature error by the

Euclidean matrix norm of a matrix acting on the coe�cients �
Q; �

of um
L
. This matrix will

be treated by the wavelet compression technique, i.e: analogously to the proof of Lemma

5.8.

To show that the �norm� of um
L
is almost less than the norm of u

L
, we formally introduce

the norms




(�
Q; �

)
Q; �





H
0

:=

vuuut LX
l=0

X
Q2ut�

l

3X
�=1

2�2l j�
Q; �
j2;




(�
P
)
P24�

L





H
s

:=

vuut X
P24�

L

22(s�1)l(P ) j�
P
j2; (6.7)




(�
P
)
P24�

L





~
H
0

:=









X
P24�

L

�
P
�
P









H
0(�)

:

Recall that the Hs norm of (�
P
)
P
is equivalent to the Hs norm of

P
�
P
 
P
by assertion i)

of Lemma5.2. We get




(�
Q; �

)
Q; �





H
0

� C




(�
P
)
P24�

L





H
s

(
L if s = 0p
L if 0 < s <

3
2
:

(6.8)

Indeed, from (6.6) and the boundedness of the functions  
P
, we conclude

j�
Q; �
j2 � C

~
L

X
P24�

L
: Q2	P and l(Q)>l(P )

22sl(P ) j�
P
j2 ; ~

L :=

(
L if s = 0

1 if 0 < s <
3
2
;

X
(Q; �)

2�2l(Q) j�
Q; �
j2 � C

~
L

X
P24�

L

22sl(P ) j�
P
j2

X
(Q; �): Q2	P and l(Q)>l(P )

2�2l(Q)

� C
~
L

X
P24�

L

22sl(P ) j�
P
j2

LX
l=l(P )+1

2�2l
X

Q2ut�
l
: Q2	P

3X
�=1

1

� C
~
L

X
P24�

L

22sl(P ) j�
P
j2

LX
l=l(P )+1

2�2l
"
2�l(P )

2�l

#2

� C
~
LL

X
P24�

L

22(s�1)l(P ) j�
P
j2

which proves the estimate (6.8) for �
Q; �

de�ned by (6.6).
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ii) Let us introduce the matrix ~
A
L
the norm of which majorizes the norm of operator

A
c

L
�A

c;w

L
and let us estimate this norm k ~A

L
k. By ~a

P
0
; (Q; �) we denote the absolute value

of the quadrature error in the far �eld integral

#
P
0

 Z
�
k(�; R; n

R
)
p(� �R)

j � �Rj�
�
Q; �

(R) d
R
�

!
(6.9)

where Q 2 Qua
�
l
and l < L (cf: Sect. 4.1), and we set ~a

P
0
; (Q; �) = 0 for Q 2 Qua

�
L
. We

denote the matrix (~a
P
0
; (Q; �))P 0; (Q; �) by ~

A
L
. Due to (6.5) and (6.6), each component of

the vector of quadrature errors [A
w;c

L
� A

w;c;q

L
](�

P
)
P
is less or equal to the corresponding

entry of the vector ~
A
L
(�
Q; �

)
Q; �

. In other words, we obtain


[Aw;c

L
�A

w;c;q

L
] (�

P
)
P24�

L





~
H
0
�




 ~A
L
(�
Q; �

)
Q; �





~
H
0
�



 ~A

L





~
H
0 H0




(�
Q; �

)
Q; �





H
0

� C

p
L




 ~A
L





~
H
0 H0




(�
P
)
P24�

L





H
1:1+r

: (6.10)

It remains to estimate the norm k ~A
L
k. In view of Lemma 5.5, the de�nition of the norm

k � k ~
H
0, and the estimate (6.10), we set

b
P
0
; (Q; �) :=

p
L

p
L 2(0�1)l(P

0) ~a
P
0
; (Q; �) 2

l(Q) (6.11)

and get that the upper bound
p
L k ~A

L
k on the right-hand side of (6.10) is less than the

Euclidean matrix norm of the matrix (b
P
0
; (Q; �))P 0; (Q; �). Now, to get the estimate (6.4), we

can proceed analogously as in the proof to Lemma5.8. We shall prove

~a
P
0
; (Q; �) � C2�ml(P 0)2�(4�r)l(Q)dist (�

P
0;�

Q
)
�2�m

: (6.12)

This estimate (compare (5.38) and (5.39)), the relations (4.7) and (4.8) (compare (3.18)

and (3.19)), and the proof of Lemma5.8 imply (6.4).

iii) Let us prove (6.12). This, however, is a consequence of dist (�
P
0;�

Q
) < C and of the

stronger resp. equivalent estimate

~a
P
0
; (Q; �) � C2�ml(P 0)2�(4�r)l(Q)dist (�

P
0 ;�

Q
)
�r�2�m

: (6.13)

It remains to derive (6.13). The approximation to (6.9) (cf: (4.18)) is obtained by interpo-

lating the parametrization �
m
, by applying a 2� r order product rule to the integral over

T
�
of the integrand � 7! k(�; �

m
(�); n0

�
0
m(�))J

0
m
(�), and by applying an n

G
order quadrature

to the integrals of the weight functions � 7! ~
�
Q;�

(�)p(���0
m
(�)) j ���0

m
(�)j�� �

Q; �
(�

m
(�))

(cf: Remark 4.1). Let us make this more precise. It is not hard to see that the test func-

tional #
P
0 is a scaled version of a di�erence formula and that it satis�es a certain Leibniz

rule of the form

#
P
0(fg) =

i
P 0X
i=1

#
P
0
;1;i(f)#P 0;2;i(g); (6.14)

where the #
P
0
;j;i

are, just like the #
P
0 , �nite linear combination of Dirac delta functionals

with bounded coe�cients and with supp #
P
0
;j;i
� supp#

P
0 . Moreover, the sum m

P
0
;1;i +

m
P
0
;2;i of the vanishing moments m

P
0
;j;i

for #
P
0
;j;i

is equal to the number m := 2 � r of

vanishing moments for #
P
0. Applying (6.14) to (6.9), we get the integrand

i
P 0X
i=1

Z
�Q

k(#
P
0
;1;i ; R; nR)#P 0;2;i

 
p(� �R)

j � �Rj�

!
�
Q; �

(R) d
R
�:
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Consequently, the term ~a
P
0
;(Q;�) is the sum over i of errors due to replacing the param-

eter mapping �
m

by its interpolation �
0
m
, due to applying a 2 � r order product rule

to the integral over T
�
of the integrand � 7! k(#

P
0
;1;i ; �m(�); n

0
�
0
m(�))J

0
m
(�), and due to

applying a tensor product variant of Gauÿ quadrature of order n
G
to the integrals of the

corresponding weight functions � 7! ~
�
Q;�

(�)#
P
0
;2;i(p(� � �0m(�)) j � ��0m(�)j��) ~�Q; �(�) for

� = 1; 2; 3. Indeed, this splitting (6.14) into a sum over i = 1; : : : ; i
P
0 has to be included

into the derivation of formula (4.18). We have not mentioned this since the splitting is not

seen explicitly in the �nal formula and since we did not want to overload the presentation

in Sect. 4.1 by these technical details.

Clearly, concerning the replacement of �
m
, we get j�

m
(�) � �

0
m
(�)j � C 2�(m+1)l(Q) for

� 2 T
�
= �

�1
m
(�
Q
) and jr

�
�
m
(�)�r

�
�
0
m
(�)j � C 2�ml(Q) ifr

�
is the gradient with respect

to �. From the smoothness assumptions on �
m
in Sect. 2.1 and on the integral kernel in

Sect. 2.2, we conclude (cf. the proof of Lemma 5.7)

jJ
m
(�)� J 0

m
(�)j � C2�ml(Q)

; jJ
m
(�)j � C; jJ 0

m
(�)j � C;

���k �#
P
0
;1;i; �m(�); n�m(�)

�
� k

�
#
P
0
;1;i; �m(�); n

0
�
0
m
(�)

���� � C2�ml(Q)2�mP 0;1;i l(P
0)
;���k �#

P
0
;1;i; �m(�); n�m(�)

���� � C2�mP 0;1;i l(P
0)
;���k �#

P
0
;1;i; �m(�); n

0
�
0
m(�)

���� � C2�mP 0;1;i l(P
0)
;

(6.15)������#P 0;2;i
0
@p
�
� ��

m
(�)

�
j � ��

m
(�)j�

1
A� #

P
0
;2;i

0
@p
�
� ��0

m
(�)

�
j � ��0

m
(�)j�

1
A
������ � C

2�(m+1)l(Q) 2�mP 0 ;2;i l(P
0)

dist2+r+mP 0;2;i +1

� C

2�ml(Q) 2�mP 0;2;il(P
0)

dist2+r+mP 0;2;i
;������#P 0;2;i

0
@p
�
� ��

m
(�)

�
j � ��

m
(�)j�

1
A
������ � C

2�mP 0;2;i l(P
0)

dist2+r+mP 0;2;i
;

������#P 0;2;i
0
@p
�
� ��0

m
(�)

�
j � ��0

m
(�)j�

1
A
������ � C

2�mP 0;2;i l(P
0)

dist2+r+mP 0;2;i
;

where we have used the notation dist := dist(�
P
0;�

Q
) and the estimate dist > 2�l(Q) (cf:

(4.7) and (4.8)). Hence, we arrive at

������k
�
#
P
0
;1;i; �m(�); n�m(�)

�
#
P
0
;2;i

0
@p
�
� ��

m
(�)

�
j � ��

m
(�)j�

1
AJ

m
(�)�

�; �
(�)�

k

�
#
P
0
;1;i; �m(�); n

0
�
0
m
(�)

�
#
P
0
;2;i

0
@p
�
� ��0

m
(�)

�
j � ��0

m
(�)j�

1
AJ 0

m
(�)�

�; �
(�)

������
� C

2�ml(Q) 2�ml(P 0)

dist2+r+m
;

and the integral over T
�
of this di�erence is less than the right-hand side of (6.13).

On the other hand, the error of the product rule can be estimated by the supremum

norm interpolation error of the integrand multiplied by the weighted measure of the
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integration domain. Using the smoothness assumptions on �
m
from Sect. 2.1 and on the

kernel function k from Sect. 2.2 as well as the de�nition of �0
m
as an m+ 1 = 3� r order

interpolation to �
m
, we observe that the interpolation error due to the product integration

is less than 2�(2�r)l(Q). Note that, again, from the rate of convergence O(2�(3�r)l(Q)) for

the approximation of the geometry a factor 2�l(Q) is lost since the integrand contains �rst

order derivatives. Estimating the integrals over the weight functions of the product rule

with the help of (6.15), we get an upper estimate C2�mP 0;2;il(P
0)2�2l(Q)dist�r�2�mP 0 ;2;i for

them, and the error of the product rule is less or equal to the right-hand side of (6.13).

iv) Let us turn to the quadrature error of the n
G
-th order quadrature applied to the

integral over the weight function and show that this is less than the right-hand side of

(6.13), too. The tensor product Gauÿ rule (4.17) with n
G
from (4.19) is a very strong

tool for producing a small quadrature error. Since we believe that the values n
A
and n

B

should be determined by numerical tests, we shall not try here to derive the theoretically

optimal values for them. This allows us to simplify the estimation. To deduce an error

estimate for (4.17), we start from a univariate estimate for the Gauÿ rule. If I is the

identity operator and I
G
the operator of polynomial interpolation at the Gauÿ-Legendre

knots �k
G
, then nGX

k=1

F (�k
G
)!k

G
=

Z 1

0
(I
G
F ) :

For any bivariate function (�D1 ; �
D

2 ) 7! ~
f(�D1 ; �

D

2 ), we conclude������
Z 1

0

Z 1

0

~
f �

nGX
k1;k2=1

~
f

�
�

k1

G
; �

k2

G

�
!

k1

G
!

k1

G

������ � sup
[0;1]�[0;1]

��� ~f � [I
G

 I

G
] ~f
���

� C

(
sup

[0;1]�[0;1]

���[(I � I
G
)
 I] ~f

���+
sup

[0;1]�[0;1]

���[I
G

 (I � I

G
)] ~f

���
)
:

In view of the well-known fact that the norm of I
G
in L1 is less than C log n

G
and using

the simple estimate
sup
[0;1]

j(I � I
G
)F j �

C

n
G
!
sup
[0;1]

���F (nG)
��� ;

we continue
(6.16)������

Z 1

0

Z 1

0

~
f �

nGX
k1;k2=1

~
f

�
�

k1

G
; �

k2

G

�
!

k1

G
!

k1

G

������ �
C log n

G

n
G
!

(
sup

[0;1]�[0;1]

����@nG�D
1

~
f

����+ sup
[0;1]�[0;1]

����@nG�D
2

~
f

����
)
:

In particular, setting ~
f(�D1 ; �

D

2 ) := 2jT
�
jf(�3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3))�
D

1 , the rule

(4.17) applied to function f is the tensor product Gauÿ rule applied to ~
f , and we get������

Z
T�

f �
n
2
GX

k=1

f(�k
�
)!k

�

������ � 2 jT
�
j
C log n

G

n
G
!

�
sup

����@nG�D
1

~
f

����+ sup

����@nG�D
2

~
f

����
�
;

@

nG

�
D

2

~
f(�D) = 2jT

�
j @nG

�
+ f

�
�3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)
�
�
D

1

����D1 (�2 � �3)
���nG ;

@

nG

�
D

1

~
f(�D) = 2jT

�
j @nG

�
y f

�
�3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)
�
�
D

1 ����(�1 � �3) + �
D

2 (�2 � �3)
���nG +

n
G
� 2jT

�
j @nG�1

�
y f

�
�3 + �

D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)
�
����(�1 � �3) + �

D

2 (�2 � �3)
���nG�1 ;
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where @
�
+ and @

�
y stand for the derivatives in the directions of (�2 � �3)=j�2 � �3j and

(�1 � �3) + �
D

2 (�2 � �3)

j(�1 � �3) + �
D

2 (�2 � �3)j
;

respectively. Hence, using the relations j�2 � �3j � 2�l(Q) and j(�1 � �3) + �
D

2 (�2 � �3)j �
2�l(Q), we conclude������

Z
T�

f �
n
2
GX

k=1

f(�k
�
)!k

�

������ � 2 jT
�
j
C log n

G

n
G
!

sup

n=nG�1;nG
~�=�+;�y

n
G
2�nl(Q) sup

T�

j@n~�f j : (6.17)

Now consider the weight function to which we apply the tensor product Gauÿ rule, i.e.,

we consider

f(�) := ~
�
Q;�

(�)#
P
0
;2;i

0
@p
�
� ��0

m
(�)

�
j � ��0

m
(�)j�

1
A ~
�
Q; �

(�): (6.18)

We shall show next that the directional derivative of order n to f is less than the expres-

sion C2�mP 0;2;il(P
0)22l(Q)["dist]�r�mP 0;2;i�n including a small �xed constant " > 0. Using

2�l(Q) � C dist (cf: (4.1) and (4.2)), we arrive at a quadrature error of at most

C 2�2l(Q)
log n

G
2�(nG�1)l(Q)

(n
G
� 1)!

2�ml(P 0)22l(Q)["dist]�r�m�(nG�1):

The last expression is less than the right-hand side of (6.13) if

(n
G
� 1)!

1

log n
G

"
"dist

2�l(Q)

#
nG�3

� C2(2�r)l(Q):

Passing to the logarithms and using Stirling's formula for the logarithm of (n
G
� 1)!, we

get the su�cient condition

�
n
G
�

1

2

�
log(n

G
� 1) � (n

G
� 1) � log log n

G
+ (n

G
� 3) log "+ (n

G
� 3) log

"
dist

2�l(Q)

#

� log 2

�
C + (2� r)l(Q)

�
:(6.19)

Choosing n
A
su�ciently large in (4.19), the Gauÿ order n

G
is large and we can replace

the �rst part �
n
G
�

1

2

�
log(n

G
� 1)� (n

G
� 1)� log log n

G
+ (n

G
� 3) log "

on the left-hand side of (6.19) by the smaller term (n
G
� 3) log 2. This leads to the

su�cient condition

(n
G
� 3)

(
1 + 2log

"
dist

2�l(Q)

#)
� C + (2� r)l(Q): (6.20)

In other words, choosing n
A

su�ciently large and setting n
B

= 2 � r in (4.19), the

number n
G
ful�lls (6.20), and the estimate (6.13) is proved if only the upper estimate for

the derivative to the function in (6.18) holds
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v) Let us show the estimateC2�mP 0;2;il(P
0)22l(Q)["dist]�r�mP 0;2;i�n for the n-th order deriva-

tive of the function in (6.18). To simplify the notation we prove the estimate for the

directional derivatives only for the partial derivative with respect to the coordinate t1 of

� = (t1; t2) 2 T� . Clearly, due to the linearity, the absolute value of a j-th order derivative

of ~�
Q; �

with Q 2 Qua�
l
is bounded by C2lj for j = 0; 1, and is zero for j > 1. To show the

uniform boundedness of the derivatives to � 7! #
P
0
;2;i(p(� � �

0
m
(�)) j � ��0

m
(�)j��), we �x

a t2 and consider the function

I 3 t1 7!
p (P

�
� �

0
m
(t1; t2))

jP
�
� �

0
m
(t1; t2)j

�
=:

p

�
p2(t1)

�
jp2(t1)j�

; I := ft1 : (t1; t2) 2 T�g (6.21)

and its extension to the complex plane. We �x a point t
I
2 I. For the polynomial p2 of

degree deg(p2) less or equal to the degree 2�r of the interpolation, the standard estimates

for interpolation imply

 
@

@t1

!
k �
P
�
� �

0
m
(t
I
; t2)

�
�

 
@

@t1

!
k �
P
�
� �

m
(t
I
; t2)

�
; k = 0; 1; : : : ;deg(p2);

������
 
@

@t1

!
k

p2(tI)

������ �

8><
>:
jP
�
� �

m
(t
I
; t2)j if k = 0����� @

@t1

�
k

�
m
(t
I
; t2)

���� if k = 1; : : : ;deg(p2)

�
(

dist if k = 0

C if k = 1; : : : ;deg(p2):

Consequently, for any complex t1 with dist(t1; I) � "dist and with a constant " > 0

su�ciently small, we get

p2(t1) =

deg(p2)X
k=0

@
k

t1
p2(tI)

k!
(t1 � t

I
)k;

jp2(t1)j � jp2(tI)j �
deg(p2)X
k=1

���@k
t1
p2(tI)

���
k!

jt1 � t
I
jk �

1

C

dist�O("dist) �
1

2C
dist;

jp2(t1)j � Cdist:

In other words, the function p(p2(t1))jp2(t1)j�� is analytic for t1 with dist(t1; I) < "dist,

and, using the estimate p(p2(t1)) � distdeg(p), we conclude

������
p

�
p2(t1)

�
jp2(t1)j�

������ � C dist�2�r: (6.22)

If we apply the functional #
P
0
;2;i to p(� ��0m(�)) j � ��

0
m
(�)j��, then we apply a di�erence

formula with a scaling factor of order � 2�l(P
0)m

P 0;2;i . Since the di�erence scheme can

be represented as a derivative taken at an intermediate point, we can write the func-

tion #
P
0
;2;i(p(� � �

0
m
(�)) j � ��0

m
(�)j��) as a sum of functions similar to that in (6.21).

Analogously to (6.22), we arrive at the estimate

������#P 0;2;i
0
@p
�
� ��0

m
(t1; t2)

�
j � � �

0
m
(t1; t2)j

�

1
A
������ � C 2�l(P

0)m
P 0;2;i dist�2�r�mP 0;2;i (6.23)
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valid for the complex extension to all t1 with dist(t1; I) < "dist. Now we represent the

analytic function by Cauchy's integral over a closed countour C around I with distance

"dist to I, i.e., by

#
P
0
;2;i

 
p (� � �

0
m
(t1; t2))

j � � �
0
m
(t1; t2)j

�

!
=

1

2�i

Z
C

(
#
P
0
;2;i

 
p (� � �

0
m
(t; t2))

j � � �
0
m
(t; t2)j

!)
1

t� t1

dt :

Di�erentiating this equation with respect to t1, restricting t1 to I, and using (6.23), we

get����� @
k

@t
k

1

#
P
0
;2;i

 
p (� � �

0
m
(t1; t2))

j � � �
0
m
(t1; t2)j

�

!����� � C 2�l(P
0)m

P 0;2;i ["dist]�2�r�mP 0;2;i�k
; (t1; t2) 2 T� :

This together with the estimate C 2l(Q)j for the j-th derivatives of the functions �
Q; �

and

�
Q;�

, and with dist�1 � 2l(Q) (cf: (4.7) and (4.8)) proves that the n-th order derivatives

of the function f in (6.18) are indeed less than C2�mP 0;2;il(P
0)22l(Q)["dist]�r�mP 0;2;i�n.

Lemma 6.2 The number of necessary arithmetic operations for setting up the far �eld

part of the sti�ness matrix A
w;c;q

L
, including the sparsity pattern P = P(a; b; c; d;~a;~b; ~c; ~d)

with a = b = c = ~
b = 1 and 1:5 < ~a = ~c < 2 is less than Cfd2L4 + ~

dL
3g22L.

Proof. Clearly, if the test functional #
P
0 and the domain of integration �

Q
is �xed, then

the number of operations is less than a constant multiple of the number of quadrature

knots plus the number of trial functions  
P
with �

Q
� 	

P
. Thus, for �xed #

P
0 and

�
Q
, no more than C L2 operations are needed. The number of all arithmetic operations

is less than C L
2 times

P
P
0

P
l
#Qua�

l
where #Qua�

l
is the number of domains �

Q
in

Qua
�
l
. We only have to count the number of domains �

Q
in Qua�

l
. The estimates (4.3)

(compare (3.18)) and (4.4) (compare (3.19)) together with the proof to Lemma5.6 imply

our assertion.

6.2 The Near Field Estimate

In this subsection we suppose that the far �eld integration and the integration of the

singular integrals are performed exactly and derive the convergence estimates for the

non-singular near �eld case. The non-singular near �eld, however, can be treated by the

same method as the far �eld. In view of Sect. 5.4 and Lemma5.8, it remains to prove

Lemma 6.3 Suppose Ac

L
2 L(Lin�

L
) is the approximate operator of the compressed collo-

cation method including the sparsity pattern P = P(a; b; c; d; ~a;~b; ~c; ~d) (cf: Sect. 3.5) with

a = b = c = ~
b = 1 and ~a = ~c > 1:5. If A

c;q

L
is the operator of the compressed collocation

method including the approximation of the parameter mappings and the quadrature of Sect.

4.2, then we get the estimates

kAc

L
�A

c;w

L
k
H
0(�) H2(�) � C 2�(2�r)L ~L; (6.24)

kAc

L
�A

c;w

L
k
H
0(�) H1:1(�) � C 2�(2�r)L ~L; (6.25)

kAc

L
�A

c;w

L
k
H
1:1(�) H1:1+r(�) � C 2�(0:9�r)L ~L; (6.26)

~
L :=

(
L
2 if r = 0

L
3=2 if r = �1:
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Proof. We proceed analogously to Lemma 6.1. Clearly, it is su�cient to show the

analogue of (6.4) which takes the form

kAc

L
�A

c;w

L
k
H
0(�) H1:1+r(�) � C

~
L 2�(2�r)L : (6.27)

For the near �eld estimate, however, we change the de�nition (6.6) to

�
Q; �

:=

( P
P24�

L
: Q2	P j�P j j P (Q�

)j if Q 2 ut�
L

0 if Q 2 ut�
l
; l < L;

(6.28)

and we de�ne the entries ~a
P
0
; (Q; �) of the matrix ~

A
L
to be zero if Q 2 Qua�

l
for some l < L

and to be the absolute value of the non-singular near �eld quadrature error if Q 2 Qua�
L
.

If we take into account the decomposition (4.22) and if we repeat the arguments leading

to (6.13), then we obtain

~a
P
0
; (Q; �) � C2�(4�r)L

X
�=1;:::;�

P 0
: P� 62�Q

dist (P
�
;�

Q
)
�r�2

(6.29)

for the errors of the non-singular quadrature including approximate parametrizations,

product rule, and tensor product Gauÿ rule of order n
G
de�ned with su�ciently large n

C

and n
D
. The estimate (6.8) can be replaced by one of the following estimates.
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Q; �

)
Q; �





H
0
� C




(�
P
)
P24�
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H
s
; 0 < s < 1:5 ; (6.30)

sup
Q; �

j�
Q; �
j � C




(�
P
)
P24�

L





H
s
; 1 < s < 1:5 : (6.31)

Note that (6.30) follows analogously to (6.8), and (6.31) is easy to prove. Moreover, we

get the inequality
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P
024�

L

�
P
0�
P
0









L
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� C









X

P
024�
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�
P
0�
P
0









L
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L�1X
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P
02r�
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�
P
0�
P
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L
1

� C

L�1X
l=�1

sup
P
02r�

l

j�
P
0 j � C L sup

P
024�

L

j�
P
0 j : (6.32)

to estimate the L2 norm of a function
P
P
0 �P 0�P 0.

Now suppose r = 0. Instead of (6.10), we derive from (6.32) that




[Aw;c

L
�A

w;c;q

L
] (�

P
)
P24�

L





~
H
0
� C L sup

P
0

���h ~A
L
(�
Q; �

)
Q; �

i
P
0

��� � C L




 ~A
L





l
1 l1

sup
Q; �

j�
Q; �
j

� C L




 ~A
L





l
1 l1




(�
P
)
P24�

L





H
1:1
; (6.33)

and the inequality (6.27) for r = 0 follows if we prove that the right-hand side of (6.27)

is an upper bound for Lk ~A
L
k. Analogously to (5.44), we set

�0
1 := L




 ~A
L





l
1 l1

= max
P
024�

L

X
Q2ut�

L

3X
�=1

L ~a
P
0
; (Q; �): (6.34)
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Similarly to the estimation of �1 in the proof to Lemma5.8, we conclude that

�0
1 � C L2�2L sup

P
0

�
P 0X

�=1

(
2�2L

X
Q2ut�

L
: P� 62�Q

dist(P
�
;�

Q
)�2
)

� C L2�2L
Z
fR2�: 2�L�jR�P� j�Cg

jR� P
�
j�2 d

R
� � C L2�2LL: (6.35)

In view of (6.33) - (6.35), the estimate (6.27) for r = 0 follows.

For r = �1, we conclude from (6.30) that
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L
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~
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� C L sup
P
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���h ~A
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)
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(�
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)
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H
0

� C��11




(�
P
)
P24�
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H
0:1
; (6.36)

��11 := C L max
P
024�

L

vuuut X
Q2ut�

L

3X
�=1

���~a
P
0
; (Q; �)

���2 22l(Q): (6.37)

Hence, we get

��11 � C L2�3L sup
P
0

vuuut�
P 0X

�=1

(
2�2L

X
Q2ut�

L
: P� 62�Q

dist(P
�
;�
Q
)�2

)

� C L2�3L
sZ
fR2�: 2�L�jR�P�j�Cg

jR� P
�
j�2 d

R
� � C L2�3L

p
L: (6.38)

The estimate (6.27) for r = �1 follows from (6.36) - (6.38) and the proof is completed.

Lemma 6.4 The number of necessary arithmetic operations for setting up the non-singu-

lar near �eld part of the sti�ness matrix A
w;c;q

L
including P = P(a; b; c; d;~a;~b; ~c; ~d) with

a = b = c = ~
b = 1 and 1:5 < ~a = ~c < 2 is less than Cfd2L4 + ~

dL
3g22L.

Proof. Similarly to Sect.6.1, the number of operations is less than C L2 times the number

of domains �
Q
in Qua�

L
. Thus we only have to count the number of domains �

Q
in Qua�

L
.

In view of (4.3) and (4.4), the proof of Lemma5.6 implies our assertion.

6.3 The Singular Case

In this subsection we suppose that the far �eld integration and the integration of the

non-singular integrals are performed exactly and derive the convergence estimates for the

singular near �eld case. The singular near �eld, however, can be treated by the same

method as the far �eld. In view of Sect. 5.4 and Lemma5.8, it remains to prove

Lemma 6.5 Suppose Ac

L
2 L(Lin�

L
) is the approximate operator of the compressed collo-

cation method including the sparsity pattern P = P(a; b; c; d; ~a;~b; ~c; ~d) (cf: Sect. 3.5) with

a = b = c = ~
b = 1 and ~a = ~c > 1:5. If Ac;q

L
is the operator of the compressed colloca-

tion method including the approximation of the parameter mappings and the quadrature

of Sect. 4.3, then, for r = �1 and for the case of r = 0 with weakly singular kernels of
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the form (4.25), the estimates (6.24)-(6.26) remain valid. For the strongly singular case,

(6.24)-(6.26) hold with ~
L replaced by L

3. Now let us turn to the operator A
c;q

L
of the

modi�ed second algorithm (3.17), i.e., A
c;q

L
is the operator whose matrix with respect to

the basis f'L
P
g is [Asn]

q

L
+ T

T
[Ans;f ]

w;c;q

L
T
A
. If r = 0 and the kernel is of the form (4.25),

then (6.24)-(6.26) hold even with ~
L replaced by one. If r = 0 and the kernel is strongly

singular, then (6.24)-(6.26) hold with ~
L replaced by L.

Proof. i)Without loss of generality we suppose �3 = 0 and P
�
= �

m
(0) in the formulae of

Sect.4.3. First we consider the case of weakly singular integrals and consider the error for

�xed #
P
0 , �xed P

�
2 supp #

P
0, and �xed (Q; �) with P

�
2 �

Q
and Q 2 ut�

L
, i.e., we consider

the error for the integral in (4.27) with ~
 
D

P
replaced by ~�

Q; �
:= �

Q; �
� ~�

m
(cf: Remark

4.1). We shall show that the error of approximation is less than O(2�mL). To this end we

consider the errors due to the approximation of �
m
, due to the product integration, and

due to the approximation of the quadrature weights separately.

ii) To estimate the error due to the replacement of �
m
by �0

m
in this integral, we need a

few technical inequalities (cf: the subsequent formulae (6.39)-(6.54)). We observe

~�
m
(�D)� ~�

m
(0) =

Z 1

0
r~�

m
(��D) d� � �D (6.39)

=

Z 1

0

(
r�

m

�
��

D

1 (�1 � �3) + �
2
�
D

1 �
D

2 (�2 � �3)

�
�

�
(�1 � �3) + ��

D

2 (�2 � �3) ; ��
D

1 (�2 � �3)

�)
d� �

 
�
D

1

�
D

2

!

=

Z 1

0

(
r�

m

�
��

D

1 (�1 � �3) + �
2
�
D

1 �
D

2 (�2 � �3)

�
�

�
(�1 � �3) + 2��D2 (�2 � �3)

�)
d��D1 :

This and the corresponding relation for ~�
m
replaced by ~�0

m
imply��� ~�

m
(�D)� ~�

m
(0)

��� � 2�L�D1 ; (6.40)��� ~�0
m
(�D)� ~�0

m
(0)

��� � 2�L�D1 ; (6.41)��� ~p �~�
m
(0) � ~�

m
(�D)

� ��� �
h
2�L�D1

ideg(~p)
; (6.42)��� ~p �~�0

m
(0) � ~�0

m
(�D)

� ��� �
h
2�L�D1

ideg(~p)
: (6.43)

By assumption, we get that J
m
� � and k are bounded. Since �0

m
approximates �

m
over

T
�
with order m+ 1 and since the gradient r�0

m
approximates r�

m
over T

�
with order

m = 2 � r, formula (6.39) leads us to��� ~�
m
(�D)� ~�0

m
(�D)

��� � C 2�(3�r)L�D1 ; (6.44)���J
m

�
�(�D)

�
�J 0

m

�
�(�D)

� ��� � C 2�(2�r)L; (6.45)��� k(P
�
; ~�

m
(�D); n~�m(�D))� k(P

�
; ~�

m
(�D); n0~�0

m
(�D))

��� � C 2�(2�r)L: (6.46)

Moreover, from (6.40), (6.41), and (6.44) it is not hard to conclude

��� ~p �~�
m
(0)� ~�

m
(�D)

�
� ~p

�
~�0
m
(0) � ~�0

m
(�D)

� ��� � C 2�(3�r)L�D1

h
2�L�D1

ideg(~p)�1
(6.47)
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� C 2�(2�r)L
h
2�L�D1

ideg(~p)
; (6.48)���� ���~�m(0)� ~�

m
(�D)

����� � ���~�0
m
(0)� ~�0

m
(�D)

����� ���� � C 2�(3�r)L�D1

h
2�L�D1

i���1
(6.49)

� C 2�(2�r)L
h
2�L�D1

i��
: (6.50)

To estimate n~�m(�D) � (~�m(0) � ~�
m
(�D)), we observe n~�m(�D) � r�m(�(�D)) = 0, and the

equation (6.39) leads us to
(6.51)

n~�m(�D) �
�
~�
m
(�D)� ~�

m
(0)
�
= n~�m(�D) �

Z 1

0

(�
r�

m

�
��

D

1 (�1 � �3) + �
2
�
D

1 �
D

2 (�2 � �3)

�

�r�
m

�
�
D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)

��
�

�
(�1 � �3) + 2��D2 (�2 � �3)

�)
d��D1 :

Analogously to Equation (6.39), we write

r�
m

�
��

D

1 (�1 � �3) + �
2
�
D

1 �
D

2 (�2 � �3)

�
�r�

m

�
�
D

1 (�1 � �3) + �
D

1 �
D

2 (�2 � �3)

�

=

Z 1

0
r2
�
m

�
[1 + �(� � 1)]�D1 (�1 � �3) + [1 + �(�2 � 1)]�D1 �

D

2 (�2 � �3)

�
d� �h

(� � 1)(�1 � �3) + (�2 � 1)�D2 (�2 � �3)
i
� �D1 ; (6.52)

and, from inserting this into the representation of n~�m(�D) � (~�m(0) � ~�
m
(�D)) as well as

from the analogous formula for the expression n0~�0m(�D)
� (~�0

m
(0)� ~�0

m
(�D)), we obtain

��� n~�m(�D) �
�
~�
m
(0)� ~�

m
(�D)

� ��� � C

h
2�L�D1

i2
; (6.53)���n~�m(�D) �

�
~�
m
(0)� ~�

m
(�D)

�
� n

0
~�0
m
(�D) �

�
~�0
m
(0)� ~�0

m
(�D)

� ��� � C 21�r
h
2�L�D1

i2
:(6.54)

Now, using (6.39)-(6.54), the error due to the replacement of �
m
by �0

m
can be represented

as the sum of the errors corresponding to the replacements in the several factors of the

integrand in (4.27). These factors are ~k(P
�
; ~�

m
(�D); n~�m(�D)), ~p(~�

m
(0)�~�

m
(�D), j~�

m
(0)�

~�
m
(�D)j��, [n~�m(�D) �(~�m(0)�~�

m
(�D))]1+r, and J

m
(�(�D)), respectively. The last factor

J
�
(�D)~�

Q; �
(�D) needs no replacement of �

m
. We arrive at the estimate

C

Z 1

0

Z 1

0

(�
2�(2�r)L [2�L�D1 ]

deg(~p) [2�L�D1 ]
�� [2�L�D1 ]

2(1+r)
C

�

+

�
C 2�(2�r)L[2�L�D1 ]

deg(~p) [2�L�D1 ]
�� [2�L�D1 ]

2(1+r)
C

�

+

�
C [2�L�D1 ]

deg(~p) 2�(2�r)L[2�L�D1 ]
�� [2�L�D1 ]

2(1+r)
C

�

+

�
C [2�L�D1 ]

deg(~p) [2�L�D1 ]
�� [2�(1�r)L]1+r[2�L�D1 ]

2(1+r)
C

�
� �r;0

+

�
C [2�L�D1 ]

deg(~p) [2�L�D1 ]
�� [2�L�D1 ]

2(1+r) 2�(2�r)L
�)

2�2L �D1 d�D2 d�D1

� C

(
2�4L if r = �1
2�2L if r = 0:

(6.55)
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This completes the estimate for the �rst step in approximating the integral.

iii) The second step is the product integration of order m = 2 � r. Analogously to

the derivation of (6.55) from (6.39)-(6.54), we conclude that the integral over the weight

function ~
�
D

r
~p j : : : j��[: : :]1+rJ

�

~
�
Q; �

is less than 2�L. Hence, it remains to estimate the in-

terpolation error for the m-th order interpolation which de�nes the product rule. Clearly,

the interpolation error is less than a constant times the supremum of the derivatives to

the integrand function ~
k(P

�
; ~�

m
(�D); n0~�0

m
(�D)) J

0
m
(�D) if the derivatives are taken with

respect to �D1 or �D2 up to the m-th order. Since our product rule relies up on tensor

product interpolation, mixed derivatives need not to be considered. The integrand is a

composite function of the outer functions ~k, �0
m
, and J 0

m
and of the inner function �. By

assumption (cf: Sects.2.1 and 2.2) the corresponding derivatives of �0
m
, J 0

m
, and ~

k do exist

and they are uniformly bounded. For the inner function �, each order of derivative with

respect to �D1 and �D2 brings a factor (�1� �3)+�D2 (�2� �3) and �D1 (�2� �3), respectively.
Thus the derivatives of order m are less than 2�mL, and the estimate on the right-hand

side of (6.55) is an upper bound also for the error of product integration in the second

step of approximation. We even get the better bound 2�3L for r = 0.

iv) To analyze the third step, we introduce the notation

H(�; �) := �(�1 � �3) + �(�2 � �3);

~
H(�; �) := �

�1 � �3

j�1 � �3j
+ �

�2 � �3

j�1 � �3j
:

In this last step an n
G
-th order rule is applied to the integral of the weight function from

the previous step, i.e., to

Z 1

0

Z 1

0

(
~
�
D

Q;�
(�D)

~p
�
~�0
m
(0) � ~�0

m
(�D)

�
j~�0
m
(0)� ~�0

m
(�D)j�

�
n~�0m(�D) �

�
~�0
m
(0)� ~�0

m
(�D)

� �1+r
�

J
�
(�D)~�

Q; �
(�D)

)
d�D1 d�D2

=

Z 1

0

Z 1

0

(
~
�
D

Q;�
(�D)

~p

� R 1
0 r�0m

�
H(��D1 ; �

2
�
D

1 �
D

2 )
�
�H(1; 2��D2 ) d�

�
���R 10 r�0m�H(��D1 ; �

2
�
D

1 �
D

2 )
�
�H(1; 2��D2 ) d�

���� �

�
n~�0

m
(�D) �

R 1
0

�R 1
0r

2
�
0
m

�
H

�
[1 + �(� � 1)]�D1 ; [1 + �(�2 � 1)]�D1 �

D

2

��
d�

H

�
�� 1; (�2 � 1)�D2

�
H

�
1; 2��D2

��
d�

�1+r
2jT

�
j~�

Q; �
(�D)

)
d�D1 d�D2

=
2jT

�
j

j�1 � �3j

Z 1

0

Z 1

0

(
~
�
D

Q; �
(�D)

~p

� R 1
0 r�0m

�
H(��D1 ; �

2
�
D

1 �
D

2 )
�
� ~H(1; 2��D2 ) d�

�
���R 10 r�0m�H(��D1 ; �

2
�
D

1 �
D

2 )
�
� ~H(1; 2��D2 ) d�

���� �

�
n~�0m(�D) �

R 1
0

�R 1
0r

2
�
0
m

�
H

�
[1 + �(� � 1)]�D1 ; [1 + �(�2 � 1)]�D1 �

D

2

��
d�

~
H

�
� � 1; (�2 � 1)�D2

�
~
H

�
1; 2��D2

��
d�

�1+r
~�
Q; �

(�D)

)
d�D1 d�D2 ; (6.56)

where the equalities J
�
(�D) = 2jT

�
j�D1 , (6.39), (6.51), and (6.52) have been substituted

into the �rst integral. The last integrand is a function which can be treated as the
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integrand in part v) of the proof to Lemma 6.1. Indeed, to apply (6.16), we need an

estimate for the derivatives. Without loss of generality we consider the derivative with

respect to �D1 . For the k-th order derivatives of ~�D
Q;�

and ~�
Q;�
, we get the bound C2kL if

k = 0; 1 and the bound zero if k � 2. Similarly to (6.21), we �x �D2 and set

p2(�
D

1 ) :=

Z 1

0
r�0

m

�
H(��D1 ; �

2
�
D

1 �
D

2 )
�
� ~H(1; 2��D2 ) d�;

p3(�
D

1 ) :=

�
n~�0

m
(�D) �

R 1
0

�R 1
0r

2
�
0
m

�
H

�
[1 + �(� � 1)]�D1 ; [1 + �(�2 � 1)]�D1 �

D

2

��
d�

~
H

�
� � 1; (�2 � 1)�D2

�
~
H

�
1; 2��D2

��
d�

�1+r

and consider

[0; 1] 3 �D1 7!
~p(p2(�

D

1 ))

jp2(�D1 )j�
p3(�

D

1 ) (6.57)

together with its extension to the complex plane. Since the parametrizations �
m

are

injective mappings, we get k�
m
(�)�k � k�k; 8� 2 IR2 and

p2(~�
D

1 ) �
Z 1

0
r�

m

�
H(�~�D1 ; �

2~�D1 �
D

2 )
�
� ~H(1; 2��D2 ) d�

� r�
m

�
H(0; 0)

� Z 1

0

~
H(1; 2��D2 ) d�;���p2(~�D1 )��� � 1=C

for a ~�D1 such that 0 � ~�D1 � 1. On the other hand, the k-th order derivative of the

interpolation �0
m
to �

m
is bounded by C2kL if k is less or equal to the total degree of the

polynomial �0
m
, and the k-th order derivative of H(�; �) is less than C2�kL. Consequently,

the k-th order derivative of p2 at �D1 with k � deg(p2) and 0 � �
D

1 � 1 is less then a

constant. We obtain

p2(�
D

1 ) =

deg(p2)X
k=0

@
k

�
D

1

p2(~�
D

1 )

k!
(�D1 � ~�D1 )

k

;

���p2(�D1 )��� �
���p2(~�D1 )����

deg(p2)X
k=1

���@k
�
D

1

p2(~�
D

1 )
���

k!

����D1 � ~�D1

���k

� 1=C �
deg(p2)X
k=1

C

����D1 � ~�D1

���k ;
where ~�D1 with 0 � ~�D1 � 1 can be chosen such that j�D1 �~�D1 j � dist(�D1 ; [0; 1]). Hence, we

can take a su�ciently small " > 0 and observe jp2(�D1 )j � 1=(2C) for any complex �D1 with

dist(�D1 ; [0; 1]) � ". Similarly, we obtain jp2(�D1 )j � C and jp3(�D1 )j � C. Analogously

to part v) of the proof to Lemma 6.1, we arrive at the estimate C"�(k+1) for the k-th

order derivative of (6.57) and at the bound C22L"�(nG�1) for the n
G
-th order derivative of

the integrand in (6.56). The estimate C2�L for the factor 2jT
�
j j�1 � �3j�1 and the error

estimate (6.16) applied to the quadrature approximation of (6.56) yield the bound

C

log n
G

n
G
!
2�L22L"�(nG�1) � C2L�

2log " [nG�1]+2log e [log lognG�(nG+ 1

2
) lognG+nG]

:
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The last bound is less than 2�(3�r)L if we set n
F
:= 4� r and choose n

E
su�ciently large

in n
G
= n

E
+ Ln

F
. Hence, we get the estimate on the right-hand side of (6.55) for the

quadrature error of the Gauÿ rules. We even get the better bound 2�3L for r = 0.

v) Now let us estimate the entries in the case of strongly singular integral operators.

We assume r = 0 and distinguish the two cases �
Q; �

(P
�
) = 0 and �

Q; �
(P

�
) 6= 0. If

�
Q; �

(P
�
) = ~�

Q; �
(0; 0) = 0, then we can repeat the estimate from above. Indeed, the

obvious estimate j�
Q; �

(R)j � C 2L jR � P
�
j provides us with a factor jR � P

�
j which

cancels one factor jR�P
�
j from the denominator jR�P

�
j�. Though we have r = 0, there

is no factor n
R
� (R� P

�
) this time. Hence, we get the estimate C2�3L in (6.55) which is

to be multiplied by the factor 2L from the estimate j�
Q; �

(R)j � C 2L jR � P
�
j. In other

words the �nal estimate for the matrix entries is again C 2�2L.

Finally, we turn to the case �
Q; �

(P
�
) 6= 0 and consider the error of the approximation

(4.32) and (4.34). The �rst part of the error is due to restricting the domain of integration

from T
�
to T

�
n T 0(P

�
;m; 2�2L). This is less than C2�2L by (4.28). The second part of

the error is caused by the replacement of the parametrization in the kernel function.

Writing the di�erence of (4.29) and (4.30) in Du�y's coordinates and using the equations

(6.44)-(6.49) with the polynomial ~p replaced by p, we obtain the bound

C 2�2L
Z
�
�1[TnT (P�;m;2�2L)]

j�D1 j
�1 d�D � C 2�2L

Z 1

2�2L
j�D1 j

�1 d�D1 � C L 2�2L: (6.58)

By simple estimates analogous to those in [29], Chapter XI, Sect.1, the third part of the er-

ror due to the change of the parametrization in the integration domain T
�
nT 0(P

�
;m; 2�2L)

is less than C2�2L. The error bound (6.58) for the fourth part due to product integration

follows as in the case r = �1. Finally, it remains to estimate the error of the tensor

product Gauÿ rule in (4.34). This however can be treated as in the parts iv) and v) of the

proof to Lemma 6.1 and as in part iv) of the present proof since the ratio of the diam-

eter of T
�;�

to the distance of T
�;�

to the singularity point �3 is bounded from below and

since the variable integration bound S
a
(�D2 ) for the inner integration is analytic. Indeed,

the function S
a
(�D2 ) for � = �0 depending on the parameter " = 2�2L (cf: (4.31)) is of the

form S
a
(�D2 ) = 2�2LS(22L�D2 ) with an S such that � 7! �(S(�); �) describes the boundary

curve of an ellipse. The summation over all � from one to �0 = O(L) leads to an additional

factor C L.

vi) In other words, for the algorithms (3.15) and (3.16) without modi�cation, we have the

same estimate like for the almost singular entries in (6.29). Only for the strong singular

case we have an additional factor L. Hence, the proof to Lemma6.3 completes the proof of

the corresponding assertions of Lemma6.5. For r = 0 and the modi�ed second algorithm,

we estimate the Euclidean norm of the error matrix Ac

L
� A

c;q

L
with respect to the basis

f'L
P
g. The singular near �eld part Ac

L
� A

c;q

L
, however, is a matrix whose columns and

rows contain only a small number of entries depending on the geometry of �. Hence, the

matrix norm is less than constant times the supremum norm of the entries. Moreover, the

entries are just the errors for the computation of the integral in (4.27) with  
P
replaced

by 'L
P
. The parts ii)-v) of the present proof imply that these entries are less than C2�2L

if the kernel is of the form (4.25) and less than CL2�2L if the kernel is strongly singular.

The corresponding assertions of Lemma6.5 follow analogously to the derivation of Lemma

6.1.
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Lemma 6.6 If r = �1 or if r = 0 and the operator has a kernel function of the form

(4.25), then the number of necessary arithmetic operations for setting up the singular near

�eld part of the sti�ness matrix A
w;c;q

L
including P = P(a; b; c; d;~a;~b; ~c; ~d) with a = b =

c = ~
b = 1 and 1:5 < ~a = ~c < 2 is less than CL222L . If r = 0 and if the kernel function

is strongly singular, then no more than CL322L arithmetic operations are required.

Proof. First we consider the case that the kernel function is weakly singular and that it

is of the form (4.25). Then the number of all P
�
is less than C 22L, and for each point

there is only a bounded number of Q with P
�
2 �

Q
and l(Q) = L. For each �

Q
, there

are no more than C L2 quadrature knots in �
Q
and no more than C L functions  

P
and

'
L

P
such that �

Q
� supp 

P
resp. �

Q
� supp'L

P
. Thus the number of operations is less

than C L222L. In case that the operator has a strongly singular kernel, �
Q
is divided in

�0 � L subdomains, and the number of quadrature knots is bounded by C L2 for each

subdomain. Thus the whole number of knots is bounded by C L322L.
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