
Abstract. This paper studies stochastic particle sys-

tems related to the coagulation-fragmentation equation.

For a certain class of unbounded coagulation kernels

and fragmentation rates, relative compactness of the

stochastic systems is established and weak accumula-

tion points are characterized as solutions. These results

imply a new existence theorem. Finally a simulation

algorithm based on the particle systems is proposed.
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1. Introduction

The continuous coagulation-fragmentation equation

@

@t
c(t; x) =

1

2

Z
x

0

K(x� y; y) c(t; x� y) c(t; y) dy �
Z

1

0

K(x; y) c(t; x) c(t; y) dy

+

Z
1

0

f(x; y) c(t; x+ y) dy �
1

2

Z
x

0

f(x � y; y) c(t; x) dy ; (1.1)

c(0; x) = c0(x) � 0 ;

describes the time evolution of the average concentration of particles of size x > 0 : Here
K(x; y) denotes the coagulation rate of clusters of size x and y while f(x; y) denotes the

1Supported by Deutsche Forschungsgemeinschaft (Schwerpunktprogramm �Interagierende stochasti-

sche Systeme von hoher Komplexität�)
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fragmentation rate of an (x+ y)-cluster into clusters of size x and y : Both functions are

assumed to be non-negative and symmetric. According to (1.1), the concentration c(x; t)
can increase

� by coagulation of clusters of size y < x and x� y (�rst term) or

� by fragmentation of an (x+ y)-cluster into clusters of size x and y (third term)

and can decrease

� by coagulation of an x-cluster with a cluster of any size y (second term) or

� by fragmentation of an x-cluster into clusters of size y < x and x� y (fourth term).

If the clusters only can take sizes i = 1; 2; : : : ; then a discrete version of equation (1.1) is

obtained, where all integrals are replaced by sums. The discrete coagulation equation was

�rst published by Smoluchowski in [26], and solved for the case of constant coagulation

rate. The combined coagulation fragmentation equation appeared in [21]. Both the con-

tinuous and the discrete equation have a wide range of applications, e.g., in astrophysics,

biology, chemistry and meteorology (see the survey papers by Drake [7] and Aldous [1]).

Stochastic particle systems related to the coagulation equation were introduced by

several authors as Marcus [19], Gillespie [12] and Lushnikov [18]. Besides, Filippov [10]

used stochastic methods to study the continuous multiple fragmentation equation. Lang

and Nguyen [16] gave a rigorous derivation of a spatially inhomogeneous version of Smolu-

chowski's coagulation equation with constant rate from a system of particles performing

Brownian motion.

The stochastic approach to coagulation and fragmentation was reviewed in [1]. Here,

in particular, the problem was raised to prove a weak law of large numbers for the relevant

stochastic particle systems with general kernels [1, Problem 10(a)]. Recently, several other

authors have obtained rigorous results concerning this problem. Guias [14] showed con-

vergence of the particle system to the solution of the discrete coagulation-fragmentation

equation for bounded coagulation kernels and bounded total fragmentation rates. Jeon

[15] considered the discrete coagulation fragmentation equation and showed (among other

results) that weak limit points of the stochastic particle system exist and provide solu-

tions. He assumed that K(i; j) = o(i) o(j) and that the total fragmentation rate of

an i-cluster is o(i) : Norris [22] considered a weak form of the continuous coagulation

equation. Among other results, he proved that weak limit points of the corresponding

stochastic particle system exist and provide solutions, if K is continuous and satis�es

K(x; y) = o(x) o(y) (x; y !1) :

Beside the derivation of the coagulation-fragmentation equation, stochastic particle

systems play a signi�cant role in numerical algorithms for that equation (see [13], [6]).

We refer to [23] concerning a survey of Monte Carlo methods and e�ective stochastic

algorithms.

In this paper we consider a weak integral version of (1.1). We use a fragmenta-

tion measure instead of the fragmentation kernel f(x; y) ; since this is convenient for a

simultaneous treatment of both the discrete and the continuous equation. Technically,

the fragmentation measure has not to be absolutely continuous with respect to Lebesgue
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measure. We prove tightness of the corresponding stochastic particle systems and char-

acterize the weak limit points as solutions. We require a continuous coagulation kernel

satisfying

K(x; y) = o(x) o(y) for x; y!1 ;

a weakly continuous fragmentation measure for which the total fragmentation rate of a

cluster of size x (given as 1
2

R
x

0
f(x�y; y) dy in terms of equation (1.1)) is o(x) as x!1 ;

and an initial function with �nite zeroth and �rst moments. In the particular cases of the

discrete coagulation-fragmentation equation and of the continuous pure coagulation equa-

tion these results basically coincide with the corresponding results in [15, Theorems 1, 2]

and [22, Theorem 4.1], respectively. Our approach is related to [27], where stochastic

models for the Boltzmann equation were studied.

The above mentioned results on stochastic particle systems imply existence of a

solution for the coagulation-fragmentation equation. We discuss the relationship with

previously known results based on deterministic approaches.

In the discrete case there are existence results assuming no restriction to the total

fragmentation rates, including the case K(i; j) = O(i)O(j) or requiring only �nite zeroth

moment for the initial data (see [2], [5], [17]). In the continuous pure coagulation

case [11] gives an existence theorem, where K(x; y) = o(x) o(y) : In the continuous pure

fragmentation case [20] contains an existence theorem for the multiple fragmentation

equation assuming that the total fragmentation rate is bounded on bounded intervals.

Thus, in all these cases we do not get new existence results.

In the continuous coagulation-fragmentation case, to our knowledge, the most

general existence results are given in [24] and [8]. In [24] the author considers kernels

K(x; y) = o(x) + o(y) (x; y !1) ; f(x; y) = o(x + y) (x+ y!1)

and an initial function with �nite zeroth and �rst moments. In [8] the authors consider a

coagulation kernel

K(x; y) = O(x) +O(y) (x; y!1)

and some technical condition which is satis�ed if

f(x; y) = O((x + y)�) (x+ y !1) ; � � 0 ;

and if the initial function has �nite zeroth and r-th moments with r > 1 + � : Thus, in

this case we obtain a new existence result for a certain class of unbounded coagulation

kernels and fragmentation rates.

If uniqueness of solutions to the weak integral version of the coagulation-fragmentation

equation is known, then our results imply convergence so that the stochastic particle

systems can be used to approximate the solution of the coagulation-fragmentation equa-

tion. We do not study the problem of uniqueness in this paper. Uniqueness results can

be found for the discrete case in [2], [4], [5] and for the continuous case in [8], [11], [20],

[25]. We refer also to the result on convergence to a local solution in [22, Theorem 4.4].

This paper is organized as follows. The main results are formulated in Section 2. In

Section 3 we collect some basic properties of the stochastic particle systems. Section 4

contains the proof of the relative compactness. In Section 5 the weak limit points are char-

acterized as solutions. Finally, Section 6 contains some ideas concerning the application

of the stochastic system in simulation algorithms.
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2. Main results

Let Z be a closed subset of [0;1) such that x + y 2 Z ; 8x; y 2 Z and x � y 2
Z ; 8 y � x 2 Z : This assumption allows us to treat both the continuous and the

discrete case simultaneously. Let B(Z) denote the Borel-�-algebra, Mb(Z) the set of

all non-negative �nite Borel measures on Z (with weak topology) and Cb(Z) the set of

all bounded continuous functions equipped with the supremum norm.

The coagulation kernel K : Z �Z ! R+ is assumed to satisfy the conditions

K(x; y) is measurable in (x; y) ; (2.1)

K(x; y) = K(y; x) ; x; y 2 Z ; (2.2)

K(x; y) is bounded on compact sets : (2.3)

The fragmentation measure F : Z � B(Z)! R+ is assumed to satisfy the conditions

F (x; �) 2 Mb(Z) ; 8x 2 Z ; (2.4)

F (�; B) is measurable for all B 2 B(Z) ; (2.5)

F (x; �) has support on [0; x] \ Z ; (2.6)

Z
Z

'(x� y)F (x; dy) =

Z
Z

'(y)F (x; dy) ; 8x 2 Z ; ' 2 Cb(Z) ; (2.7)

F (�;Z) is bounded on compact sets : (2.8)

We consider the weak integral version of the coagulation-fragmentation equationZ
Z

'(x)P (t; dx) =

Z
Z

'(x)P0(dx)+ (2.9)Z
t

0

Z
Z

Z
Z

h1
2
'(x+ y)� '(x)

i
K(x; y)P (s; dy)P (s; dx) ds +Z

t

0

Z
Z

Z
Z

h
'(y)�

1

2
'(x)

i
F (x; dy)P (s; dx) ds ; 8t � 0 ; ' 2 Cb(Z) :

We call P 2 C ([0;1);Mb(Z)) a measure-valued solution for initial measure P0 2
Mb(Z) if P satis�es equation (2.9) andZ

t

0

�Z
Z

Z
Z

K(x; y) P (s; dx) P (s; dy) +

Z
Z

F (x;Z) P (s; dx)

�
ds <1 ; 8t � 0 : (2.10)

To show the connection with the standard form (1.1) of the coagulation-frag-

mentation equation we consider the case Z = [0;1) and assume

F (x; dy) = 1fy�xg(y)f(x� y; y) dy ; f(x; y) = f(y; x) � 0 ;
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P0(dx) = c0(x) dx and P (t; dx) = c(t; x) dx :

Using the identity Z
1

0

Z
1

0

 (x; y) dy dx =

Z
1

0

Z
x

0

 (x� y; y) dy dx ;

equation (2.9) takes the formZ
1

0

'(x) c(t; x) dx =

Z
1

0

'(x) c0(x) dx+

Z
1

0

'(x)

Z
t

0�
1

2

Z
x

0

K(x� y; y) c(s; x� y) c(s; y) dy ds �
Z

1

0

K(x; y) c(s; x) c(s; y) dy

+

Z
1

0

f(x; y) c(s; x+ y) dy �
1

2

Z
x

0

f(x� y; y) c(s; x) dy

�
ds dx ;

and (1.1) follows under appropriate regularity assumptions.

We want to approximate the measure-valued solution of equation (2.9) by means of a

particle system with variable particle number. For this reason we de�ne a sequence

of jump processes on a suitable space of discrete measures.

For every N 2 N de�ne

SN =

(
p =

1

N

nX
i=1

�xi ; xi 2 Z ; n = 1; 2; : : : : p(Z) � cN ;

Z
Z

x p(dx) �M

)
; (2.11)

where M > 0 and cN 2 (0;1) such that

lim
N!1

cN =1 : (2.12)

On Cb(SN) de�ne the coagulation operator KN by

KN�(p) =
1

2N

X
1�i6=j�n

h
�(JK(p; i; j))� �(p)

i
K(xi; xj) ; (2.13)

where

JK(p; i; j) = p+
1

N
(�xi+xj � �xi � �xj) ; i 6= j ; (2.14)

and the fragmentation operator FN by

FN�(p) =
1

2

nX
i=1

Z
Z

h
�(JF (p; i; y))� �(p)

i
F (xi; dy) ; (2.15)

where

JF (p; i; y) =

�
p + 1

N
(�y + �xi�y � �xi) ; if p(Z) � cN � 1

N
;

p ; otherwise.
(2.16)
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Note that y 2 [0; xi] \ Z in (2.16), according to (2.6). Moreover JK(p; i; j) ; JF (p; i; y) 2
SN sinceZ

Z

x JK(p; i; j)(dx) =

Z
Z

x JF (p; i; y)(dx) =

Z
Z

x p(dx) ; 8p 2 SN ; (2.17)

and

JK(p; i; j)(Z) = p(Z)�
1

N
; JF (p; i; y)(Z) =

�
p(Z) + 1

N
; if p(Z) � cN � 1

N
;

p(Z) ; otherwise.
(2.18)

According to (2.11) we obtain

jKN�(p) + FN�(p)j � k�kN %(p) ; 8p 2 SN ; (2.19)

where

%(p) =

Z
Z

Z
Z

K(x; y) p(dx) p(dy) +

Z
Z

F (x;Z) p(dx) ; p 2 Mb(Z) ; (2.20)

and

xi � N

Z
Z

x p(dx) � N M ; 8p 2 SN ; (2.21)

which implies

sup
p2SN

%(p) � c2
N

supfK(x; y) : x; y 2 Z \ [0; NM ]g+ cN supfF (x;Z) : x 2 Z \ [0; NM ]g :

Thus, according to (2.19), (2.3) and (2.8), the operator

GN = KN + FN (2.22)

is bounded for �xed N and an SN -valued jump process UN (t) with generator GN exists

for any random initial state UN (0) in SN (cf. [9, p.162]). This process is mass preserving,

i.e. Z
Z

x UN (t; dx) =

Z
Z

x UN (0; dx) ; t � 0 ; (2.23)

according to (2.17). It has trajectories in the Skorokhod space D ([0;1);DM (Z)) ; where

DM (Z) =

�
p 2 Mb(Z) :

Z
Z

x p(dx) �M

�
: (2.24)

Theorem 2.1 Assume

sup
N

E
�
UN (0;Z)

�2
<1 ; (2.25)

K(x; y) � CK [x y + x+ y + 1] ; for some CK � 0 ; (2.26)

and

F (x;Z) � CF [x+ 1] ; for some CF � 0 : (2.27)

Then UN is relatively compact in D ([0;1);DM (Z)) :
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Theorem 2.2 Assume (2.25),

UN (0) ) P0 (convergence in distribution) ; (2.28)

K(�; �) is continuous on Z �Z ; (2.29)

and Z
Z

'(y)F (�; dy) is continuous on Z for any ' 2 Cb(Z) : (2.30)

Suppose there is a continuous function h : Z ! [0;1) ; with h(x) = o(x) for x ! 1 ;

such that

K(x; y) � h(x)h(y) ; x; y 2 Z ; (2.31)

and

F (x;Z) � h(x) ; x 2 Z : (2.32)

Then each weak accumulation point X of UN solves the coagulation-fragmentation equa-
tion (2.9) a.e. for initial measure P0 :

Corollary 2.3 If
R
Z
xP0(dx) <1 and (2.29)-(2.32) are ful�lled, then Theorems 2.1 and

2.2 imply existence of at least one solution to equation (2.9). Note that h(x) � C (1+x)
for some C > 0 and therefore (2.31) and (2.32) imply (2.26) and (2.27), respectively.

Assumptions (2.25) and (2.28) are satis�ed if, e.g., UN (0) is deterministic and converges
weakly to P0 :

Corollary 2.4 If equation (2.9) has at most one solution, then Theorems 2.1 and 2.2
imply convergence of the sequence UN to the unique solution.

3. Basic properties of the particle systems

Lemma 3.1 (Martingale representation) Assume (2.1)-(2.8) and let (cf. (2.11))

�(p) = h'; pi ; p 2 SN ; ' 2 Cb(Z) : (3.1)

where the notation

hf; �i =
Z
Z

f(z) �(dz) ; f 2 Cb(Z) ; � 2 Mb(Z) ; (3.2)

is used. Then (cf. (2.22))

MN

'
(t) = h';UN (t)i � h';UN (0)i �

Z
t

0

(GN�)(UN (s)) ds (3.3)
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is a martingale and we have the representations (cf. (2.13), (2.15))

KN�(p) = (3.4)Z
Z

Z
Z

K(x; y)
h1
2
'(x+ y)� '(x)

i
p(dx) p(dy) �

1

2N

Z
Z

K(x; x)
h
'(2x)� 2'(x)

i
p(dx)

and

FN�(p) =

Z
Z

Z
Z

h
'(y)�

1

2
'(x)

i
F (x; dy) p(dx) � �

fp(Z)�cN�
1

N
g
(p) ; (3.5)

where �A denotes the indicator function of a set A : Moreover, the following inequalities

hold (cf. (2.20))

jGN�(p)j �
3

2
k'k %(p) ; (3.6)

E
�
MN

'
(T )
�2 �

9 k ' k2

2N
E

�Z
T

0

%(UN (r)) dr

�
: (3.7)

Proof: The de�nition of weak convergence and the boundedness of measures in SN

imply � 2 Cb(SN ) for ' 2 Cb(Z) and accordingly MN

'
is a martingale. Note that (2.13),

(2.14), (3.1) imply

KN�(p) =
1

2N2

X
1�i6=j�n

K(xi; xj)
h
'(xi + xj)� '(xi)� '(xj)

i
(3.8)

and (3.4) follows from (2.2). Analogously, (2.15), (2.16) and (3.1) imply

FN�(p) =

(
1
2N

P
n

i=1

R
Z

h
'(y) + '(xi � y)� '(xi)

i
F (xi; dy) ; if p(Z) � cN � 1

N
;

0 ; otherwise ;

and (3.5) follows from (2.7). Estimate (3.6) is a consequence of (2.22), (3.8), (3.5) and

(2.20). Since �2 2 Cb(SN ), we obtain

E
�
MN

'
(t)�MN

'
(s)
�2

= E

Z
t

s

[GN�2 � 2�GN�] (UN (r)) dr : (3.9)

Let bZ be a locally compact separable metric space. For every operator J on Cb( bZ) of
the form

(J )(z) =

Z
bZ

[ (y)�  (z)] �(z; dy) ; z 2 bZ ; (3.10)

where �(z; bZ) � bc ; z 2 bZ ; and �(�; B) ; B 2 B( bZ) ; is measurable, one easily computes

[J 2 � 2  J ](z) =

Z
bZ

[ (y)�  (z)]2 �(z; dy) : (3.11)
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Both KN and FN can be represented in the form (3.10) so that (2.13), (2.15) and formula

(3.11) implyh
KN�2 � 2� KN�

i
(p) =

1

2N3

X
1�i6=j�n

K(xi; xj)
h
'(xi + xj)� '(xj)� '(xi)

i2
(3.12)

and h
FN�2 � 2� FN�

i
(p)

=
1

2 N2

nX
i=1

Z
Z

h
'(y) + '(xi � y)� '(xi)

i2
F (xi; dy) � �fp(Z)�cN� 1

N
g
(p) : (3.13)

From (3.12), (3.13) we get���hGN�2 � 2� GN�
i
(p)
��� �

1

2N

Z
Z

Z
Z

K(x; y)
h
'(x+ y)� '(x)� '(y)

i2
p(dx) p(dy)

+
1

2N

Z
Z

Z
Z

h
'(y) + '(x� y)� '(x)

i2
F (x; dy) p(dx)

�
9 k'k2

2N
%(p) : (3.14)

From (3.9) and (3.14) we obtain inequality (3.7). 2

Corollary 3.2 Applying Doob's inequality and (3.7), we obtain�
E sup

t�T

��MN

'
(t)
���2

� 4 E
�
MN

'
(T )
�2
�

18 k'k2

N
E

�Z
T

0

%(UN (t)) dt

�
: (3.15)

Lemma 3.3 Assume (2.1)-(2.8) and (2.27). Then

E
�
UN (t;Z)

�2 � �E �UN (0;Z)
�2

+ 1
�
exp(2CF (M + 1) t) ; t � 0 : (3.16)

Proof: De�ne �(p) = p(Z)2 ; p2SN (cf. (2.11)). According to (2.22), (2.13)-(2.16) one

obtains

(GN�)(p) =
1

2N

X
1�i 6=j�n

�
J2
K
(p; i; j)(Z)� p2(Z)

�
K(xi; xj)

+
1

2

nX
i=1

Z
Z

�
J2
F
(p; i; y)(Z)� p2(Z)

�
F (xi; dy)

�
1

2N

X
1�i6=j�n

�
�

2

N
p(Z) +

1

N2

�
K(xi; xj) +

1

2

nX
i=1

Z
Z

�
2

N
p(Z) +

1

N2

�
F (xi; dy)

�
�
p(Z) +

1

2N

�Z
Z

F (x;Z) p(dx) � CF [p(Z) + 1] [M + p(Z)]

� 2CF (M + 1)
�
p(Z)2 + 1

�
: (3.17)

Now (3.3) and (3.17) imply

E
�
UN (t;Z)

�2 � E
�
UN (0;Z)

�2
+ 2CF (M + 1)

Z
t

0

�
E
�
UN (s;Z)

�2
+ 1
�
ds :

Thus (3.16) follows from Gronwall's inequality (see, e.g., [9, p.498]). 2
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4. Relative compactness

Let C(Z) the set of all continuous functions on Z ; C0(Z) the set of all f 2 C(Z)
vanishing at in�nity, and Cc(Z) the set of all f 2 C(Z) having compact support. A

sequence �n 2 Mb(Z) is called weakly convergent to � 2 Mb(Z) (denoted by �n
w! �) if

hf; �ni ! hf; �i ; 8f 2 Cb(Z) ;

where the notation (3.2) is used. The space Cc(Z) is separable that is there is a sequence
f'kg1k=1 � Cc(Z) that is dense with respect to supremum norm. The distance

dweak(�; �) =
1X
k=0

1

2k
minf1; jh'k; �i � h'k; �ijg ; �; � 2 Mb(Z) ; (4.1)

with '0 � 1 ; metricizes the weak topology (cf. [3, Theorems 30.8, 31.5]). Since Z is

Polish, the space (Mb(Z); dweak) is also Polish.

Lemma 4.1 Suppose �n
w! � in Mb(Z) and let G 2 C(Z) be a non-negative function

such that hG; �ni � m; for some m > 0 : Then hG; �i � m and for any g 2 C(Z) with
g

G
2 C0(Z) we have

hg; �ni ! hg; �i : (4.2)

Proof: De�ne non-negative Borel measures e�n ; e� by

e�n(B) =

Z
B

G d�n ; e�(B) =

Z
B

G d� ; B 2 B(Z) ;

and note that e�n(Z) � m: For any ' 2 Cc(Z) the product ' � G belongs to Cc(Z) and
thus

h'; e�ni = h' �G; �ni ! h' �G; �i = h'; e�i :
By [3, Lemma 30.3] we obtain

hG; �i = e�(Z) � lim inf
n

e�n(Z) � m

and, by [3, Theorem 30.6],

hg; �ni = h
g

G
; e�ni ! h

g

G
; e�i = hg; �i

so that (4.2) is established. 2

Lemma 4.2 The space (DM (Z); dweak) is Polish (cf. (2.24)), and

Sc;M = fp 2 DM (Z) : p(Z) � cg ; c > 0 ; (4.3)

are compact subsets.
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Proof: According to Lemma 4.1, DM (Z) and Sc;M are closed subsets of the Polish

space Mb(Z). Thus it remains to show, that any sequence (pn) from Sc;M is relatively

compact. Assume without restriction pn(Z) > 0 and choose a subsequence (pnk ) such that

limk!1 pnk (Z) > 0 : If there are no such subsequences, then (pn) converges weakly to the

zero measure. The sequence of probability measures given by qk(B) = 1
pnk

(Z)
pnk (B) ; B 2

B(Z) ; is tight, since

qk((z;1) \ Z) �
1

z pnk (Z)

Z
Z

x pnk (dx) ; z > 0 :

By Prohorov's theorem there is a subsequence weakly converging to some probability

measure q : The corresponding subsequence of (pn) is also weakly converging. 2

Lemma 4.3 If (2.26) and (2.27) hold, then (cf. (2.20), (4.3))

sup
p2Sc;M

%(p) <1 ; 8c 2 (0;1) : (4.4)

If, in addition, (2.25) holds, then

sup
N

E

�Z
T

0

%(UN (t)) dt

�
< 1 ; T � 0 : (4.5)

Proof: For p 2 DM (Z) one obtains from (2.26), (2.27)

%(p) � CK

�
M2 + 2Mp(Z) + [p(Z)]2

�
+ CF [M + p(Z)] (4.6)

so that (4.4) follows. Moreover, (4.6) implies

E

�Z
T

0

%(UN (t)) dt

�
�

(CK + CF )

�
M (M + 1)T + (2M + 1) E

Z
T

0

UN (t;Z) dt+ E

Z
T

0

[UN (t;Z)]2 dt

�
:

So by Lemma 3.3 and assumption (2.25) condition (4.5) is satis�ed. 2

Lemma 4.4 (Compact containment) Assume (2.25), (2.26) and (2.27). Then, for

any T > 0 and � > 0 ; there is c > 0 such that

inf
N

P (UN (t) 2 Sc;M ; 0 � t � T ) � 1� � : (4.7)

Proof: Let ' � 1 and �(p) = h'; pi = p(Z). From (3.3) we obtain

P

�
sup
t�T

UN (t;Z) � c

�
= P

�
sup
t�T

�
MN

'
(t) + UN (0;Z) +

Z
t

0

(GN�)(UN (s)) ds

�
� c

�
� P

�
sup
t�T

��MN

'
(t)
��+ Z T

0

��(GN�)(UN (s))
�� ds+ UN (0;Z) � c

�
:
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Applying Tschebysche�'s inequality, (3.15), (3.6) and 2
p
x � 1 + x ; one obtains

P

�
sup
t�T

UN (t;Z) � c

�
�

1

c

�
E sup

t�T

��MN

'
(t)
��+ E

Z
T

0

��(GN�)(UN (s))
�� ds+ E UN (0;Z)

�
�

1

c

�
1

2
+

�
9

N
+

3

2

�
E

Z
T

0

%(UN (s)) ds+ E UN (0;Z)

�
:

Thus, by (4.5) and (2.25), we can choose c > 0 such that the right-hand side of the last

inequality becomes smaller than � for all N and (4.7) results. 2

Proof of Theorem 2.1: For y 2 D ([0;1);DM (Z)), � > 0 and T > 0, de�ne the

modulus of continuity w(y; �; T ) by (cf. (4.1))

w(y; �; T ) = inf
ftig

max
i

sup
s;t2[ti�1;ti)

dweak(y(s); y(t)) ;

where ftig ranges over all partitions of the form 0 = t0 < t1 < � � � < tn�1 < T � tn with

min1�i�n(ti � ti�1) > � and n � 1. By Lemma 4.2 the space DM (Z) is Polish and Sc;M
is a compact subset. Lemma 4.4 gives the tightness of UN (t) for any t � 0 : Thus, by
[9, Corollary 3.7.4] it is enough to show that

8T; � > 0 9� > 0 : lim sup
N!1

P (w(UN ; �; T ) � �) � � :

Let T; � > 0. For y 2 D ([0;1);DM (Z)), �t > � and the concrete partition ti = i�t,
i = 0; 1; : : :, we obtain

w(y; �; T ) � 2 max
ti<T

sup
s2[ti;ti+1)

dweak(y(s); y(ti)) :

So it remains to show

lim sup
N!1

P

 
max
ti<T

sup
s2[ti;ti+1)

dweak(U
N (s); UN(ti)) � �

!
� � (4.8)

for su�ciently small �t : Let '0 � 1 and f'kg1k=1 � Cc(Z) as in (4.1). De�ne

�k(p) = h'k; pi ; p 2 SN ; k = 0; 1; : : : :

Using (3.3) and (4.1) we obtain

dweak(U
N (s); UN (t)) =

1X
k=0

1

2k
min

n
1;
���h'k; UN(s)i � h'k; UN (t)i

���o
�

1X
k=0

1

2k
min

�
1;
���MN

'k
(s)�MN

'k
(t)
���+ Z s

t

��� �GN�k

�
(UN (r))

��� dr� : (4.9)

According to Lemma 4.4 there is c > 0 such that

inf
N

P (UN (t) 2 Sc;M ; 0 � t � T +�t) � 1�
�

2
: (4.10)

12



By (4.10), (4.9), (3.6) and Tschebysche�'s inequality we obtain

P

 
max
ti<T

sup
s2[ti;ti+1)

dweak(U
N (s); UN (ti)) � �

!

� P

 n
max
ti<T

sup
s2[ti;ti+1)

dweak(U
N (s); UN (ti)) � �

o
\
n
UN (t) 2 Sc;M ; 0 � t � T +�t

o!
+
�

2

� P

 
1X
k=0

1

2k
min

(
1;max

ti<T

sup
s2[ti;ti+1)

���MN

'k
(s)�MN

'k
(ti)
���+�t

3

2
k'kk sup

p2Sc;M

%(p)

)
� �

!
+
�

2

�
1

�

1X
k=0

1

2k
min

(
1; 2 E

h
sup

s�T+�t

���MN

'k
(s)
���i+ �t

3

2
k'kk sup

p2Sc;M

%(p)

)
+
�

2
:

Thus, (3.15) and Lemma 4.3 imply (4.8) for su�ciently small �t : 2

5. Characterization of weak limit points

Lemma 5.1 (path property) If a subsequence UNk weakly converges to X then

P (X 2 C ([0;1);DM (Z))) = 1 :

Proof: Consider p 2 SN and let p0 be any possible consecutive state. According to

(2.14) and (2.16) we obtain (cf. (4.1))

dweak(p; p
0) �

1X
k=0

1

2k
min

�
1;

3 k'kk
N

�
:

Thus the distance between arbitrary successive states uniformly vanishes and the claim

follows from [9, Theorem 3.10.2(a)]. 2

For p 2 Mb(Z) with %(p) <1 (cf. (2.20)) and ' 2 Cb(Z) de�ne

K('; p) =

Z
Z

Z
Z

h1
2
'(x+ y)� '(x)

i
K(x; y) p(dy) p(dx) (5.1)

and

F('; p) =

Z
Z

Z
Z

h
'(y)�

1

2
'(x)

i
F (x; dy) p(dx) : (5.2)

Note that

jK('; p) + F('; p)j �
3

2
k'k %(p) : (5.3)

Remark 5.2 Since

sup
t�T

y(t;Z) <1 ; 8T � 0 ; y 2 D ([0;1);DM (Z)) ;

assumptions (2.26) and (2.27) imply

sup
t�T

%(y(t)) <1 ; 8T � 0 ; y 2 D ([0;1);DM (Z)) ; (5.4)

according to (4.4).
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With the notations (5.1), (5.2), equation (2.9) takes the form

h';P (t)i = h';P0i +
Z

t

0

h
K(';P (s)) + F(';P (s))

i
ds ; t � 0 : (5.5)

According to Remark 5.2, condition (2.10) is ful�lled for all P 2 D ([0;1);DM (Z)) under
the assumptions (2.26) and (2.27).

For each ' 2 Cb(Z) and y 2 D ([0;1);DM (Z)) ; we de�ne

M'(y; T ) = h'; y(T )i � h'; y(0)i �
Z

T

0

h
K('; y(t)) + F('; y(t))

i
dt ; T � 0 : (5.6)

Lemma 5.3 Assume (2.26), (2.27) and let

'm
bp! ' ; 'm ; ' 2 Cb(Z) ; (5.7)

that is sup
m
k'mk <1 and 'm(x)! '(x) for every x 2 Z (cf. [9, p.495]). Then

M'm(y; T ) ! M'(y; T ) ; 8T � 0 ; y 2 D ([0;1);DM (Z)) : (5.8)

Proof: The dominated convergence theorem (cf. [9, p.492]) and (5.7) imply

h'm; pi ! h'; pi ; 8p 2 DM (Z) : (5.9)

Consider p 2 DM (Z) and de�ne non-negative Borel measures by

�1(dx; dy) = K(x; y) p(dx) p(dy) ; �2(dx; dy) = F (x; dy) p(dx) :

Note that �1; �2 2 Mb(Z �Z) because of (2.26), (2.27). Using (5.7) one obtains

gm(x; y) =
1

2
'm(x+ y)� 'm(x)

bp! g(x; y) =
1

2
'(x+ y)� '(x)

and

hm(x; y) = 'm(y)�
1

2
'm(x)

bp! h(x; y) = '(y)�
1

2
'(x) :

By the dominated convergence theorem we obtain (cf. (5.1), (5.2))

K('m; p) = hgm; �1i ! hg; �1i = K('; p) (5.10)

and

F('m; p) = hhm; �2i ! hh; �2i = F('; p) : (5.11)

Using (5.3) and (5.4), one obtains

sup
t�T

���K('m; y(t)) + F('m; y(t))
��� � 3

2
k'mk sup

t�T

%(y(t)) < 1 ;

and, because of (5.10), (5.11) and (5.9), one further application of the dominated conver-

gence theorem gives (5.8). 2
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Lemma 5.4 Assume (2.29), (2.30), (2.31) and (2.32). Then

M'(U
Nk ; T ))M'(X;T ) ; 8 T � 0 ; ' 2 Cb(Z) ; (5.12)

whenever

UNk ) X in D ([0;1);DM (Z)) :

Proof: We will check that the mapping (cf. (5.6))

M'(�; T ) : D ([0;1);DM (Z))! R

is a.s. continuous with respect to the limiting distribution for all T � 0 and ' 2 Cb(Z) :
By Lemma 5.1 it is su�cient to show that

M'(y
N ; T ) ! M'(y; T ) (5.13)

whenever

yN 2 D ([0;1);DM (Z)) ! y 2 C ([0;1);DM (Z)) : (5.14)

Let pN
w! p in DM (Z) and de�ne G(x; y) = (1 + x)(1 + y). Since Z is separable, the

product measures pN � pN weakly converge to p� p 2 Mb(Z �Z). Furthermore,

sup
N

Z
Z

Z
Z

G(x; y) pN (dx) pN (dy) � sup
N

�
pN (Z) +M

�2
< 1 :

According to (2.29), the function

g(x; y) = K(x; y)
h1
2
'(x+ y)� '(x)

i
; x; y 2 Z ; ' 2 Cb(Z) ;

is continuous and g

G
2 C0(Z �Z) because of (2.31). By Lemma 4.1 (cf. (5.1))

K('; pN ) = hg; pN � pN i ! hg; p � pi = K('; p) : (5.15)

Now consider the functions G0(x) = 1 + x and

g0(x) =

Z
Z

h
'(y)�

1

2
'(x)

i
F (x; dy) ; x 2 Z ; ' 2 Cb(Z) :

According to (2.30) the function g0 is continuous. Since sup
N

R
Z
G0(x) pN (dx) < 1 and

since g
0

G0
2 C0(Z) because of (2.32), we can apply Lemma 4.1 once again to get (cf.

(5.2))

F('; pN) = hg0; pN i ! hg0; pi = F('; p) : (5.16)

From (5.14) one obtains yN(t)
w! y(t) and

h'; yN(t)i ! h'; y(t)i ; 8t � 0 ; ' 2 Cb(Z) : (5.17)
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On the other hand

K('; yN(t)) + F('; yN(t)) ! K('; y(t)) + F('; y(t)) ; 8t � 0 ; ' 2 Cb(Z) ;(5.18)

by (5.15) and (5.16). Due to uniform convergence on �nite time intervals we obtain

sup
N

sup
t�T

yN (t;Z) <1 : (5.19)

Using (5.3) and (5.19) one obtains

sup
N

sup
t�T

��K('; yN(t)) + F('; yN(t))
�� � 3

2
k'k sup

N

sup
t�T

%(yN(t)) <1 ;

according to (4.4) (cf. Corollary 2.3). Applying (5.17), (5.18) and the dominated conver-

gence theorem we obtain (5.13) (cf. (5.6)). 2

Lemma 5.5 Assume (2.25) and (2.27). Then

E

�Z
T

0

�
�
fUN(t;Z)>cN�

1

N
g

Z
Z

F (x;Z) UN (t; dx)

�
dt

�
! 0 ; 8T � 0 : (5.20)

Proof: By (2.11) and Tschebysche�'s inequality one obtains

E

Z
T

0

�
�
fUN(t;Z)>cN�

1

N
g

Z
Z

F (x;Z) UN (t; dx)

�
dt �

CF E

Z
T

0

�
�
fUN(t;Z)>cN�

1

N
g
UN (t;Z)

�
dt+ CF M E

Z
T

0

�
�
fUN(t;Z)>cN�

1

N
g

�
dt

� CF (cN +M)

Z
T

0

P

�
UN (t;Z) > cN �

1

N

�
dt

� CF (cN +M)

R
T

0
E
�
UN (t;Z)

�2
dt

(cN � 1
N
)2

:

Thus Lemma 3.3, (2.25) and (2.12) imply (5.20). 2

Lemma 5.6 Assume (2.25), (2.27) and suppose there is a continuous function h : Z !
[0;1) such that h(x) = o(x) for x!1 and

K(x; y) � C [h(x)h(y) + x+ y] (5.21)

Then

1

N
E

�Z
T

0

Z
Z

K(x; x) UN (t; dx) dt

�
! 0 ; 8T � 0 : (5.22)

Proof: Assumption (5.21) implies

1

N
E

�Z
T

0

Z
Z

K(x; x) UN (t; dx) dt

�
�
C

N
E

�Z
T

0

Z
Z

h(x)2 UN (t; dx) dt

�
+

2CM T

N
:
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De�ne for t � 0 the intensity measure �N (t) 2 Mb(Z) by

�N (t; B) = E UN (t; B) ; B 2 B(Z) :

It remains to show that

1

N

Z
T

0

Z
Z

h(x)2 �N (t; dx) dt ! 0 : (5.23)

De�ne �N (t; dx) = 1
N
�N (t; dx) and G(x) = (x + 1)2. Note that �N (t) 2 DM (Z) and

�N (t) has support on [0; NM ] \ Z according to (2.21). Using these properties of �N (t) ;
Lemma 3.3 and (2.25), we obtain

sup
N

sup
t�T

Z
Z

G(x)�N (t; dx) � sup
N

sup
t�T

1

N

�
NM2 + 2M + �N (t;Z)

�
< 1 : (5.24)

Since �N (t) weakly converges to the zero measure and h
2

G
2 C0(Z), Lemma 4.1 givesZ

Z

h2(x)�N (t; dx) ! 0 ; t � 0 :

By (5.24) and the dominated convergence theorem we obtain (5.23). 2

Proof of Theorem 2.2: Let a subsequence UNk converge in distribution to X : In

the following we omit the index k : We will prove that (cf. (5.5), (5.6))

M'(X;T ) = 0 ; 8T � 0 ; ' 2 Cb(Z) a.e. (5.25)

Considering the function �(p) = h'; pi on SN ; one obtains from (5.1), (5.2) and (3.3),

(3.4), (3.5) that

E jM'(U
N ; T )j =

E

����h';UN (T )i � h';UN (0)i �
Z

T

0

K(';UN (s)) ds�
Z

T

0

F(';UN(s)) ds

����
� E

����h';UN (T )i � h';UN (0)i �
Z

T

0

(KN�)(UN (s)) ds�
Z

T

0

(FN�)(UN (s)) ds

����
+E

����Z T

0

(KN�)(UN (s)) ds�
Z

T

0

K(';UN (s)) ds

����
+E

����Z T

0

(FN�)(UN (s)) ds�
Z

T

0

F(';UN(s)) ds

����
= E

��MN

'
(T )
��+ 1

2N
E

����Z T

0

Z
Z

K(x; x) ['(2x)� 2'(x)]UN(s; dx) ds

����
+E

����Z T

0

F(';UN(s))�
fUN(s;Z)>cN�

1

N
g
ds

���� : (5.26)

By (3.15) and (4.5) the �rst summand in (5.26) vanishes for N ! 1 : Note that (2.31)

implies (5.21). Thus, according to (5.22), the second term in (5.26) vanishes. By (5.20)
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the third term vanishes. Because of (5.12) we can apply Fatou's lemma (cf. [9, p.492]) to

obtain from (5.26)

E jM'(X;T )j � lim inf
N

E jM'(U
N ; T )j = 0

so that

M'(X;T ) = 0 a.e. ; (5.27)

where the exception set of measure zero depends on T and ' : Let ftng1n=1 be dense in the

time interval [0;1) and f'kg1k=1 dense in Cc(Z) (cf. (4.1)). It follows from (5.27) that

M'k
(X;T ) = 0 ; 8 k 2 N ; T 2 ftng1n=1 a.e. (5.28)

Every ' 2 Cb(Z) can be approximated in the sense of (5.7) by functions from f'kg1k=1 :
Therefore, (5.28) and Lemma 5.3 imply

M'(X;T ) = 0 ; 8 ' 2 Cb(Z) ; T 2 ftng1n=1 a.e. (5.29)

Note thatM'(y; �) is continuous for y 2 C ([0;1);DM (Z)) : Thus, according to Lemma 5.1,

M'(X; �) has almost surely continuous paths and (5.29) implies (5.25). It follows from

(2.28) that X(0) = P0 a.e. Note that X satis�es (2.10) a.e. according to Remark 5.2.

Thus X is almost surely a solution of the coagulation-fragmentation equation for initial

measure P0 : 2

6. Simulation algorithms

We will describe a class of simulation algorithms related to the stochastic particle systems

considered in this paper. The in�nitesimal generator (2.22) (cf. (2.13), (2.15)) does not

change if one adds terms of the form

1

2N

X
1�i6=j�n

h
�(p) � �(p)

ih
K̂(xi; xj)�K(xi; xj)

i
and

1

2

nX
i=1

h
�(p) � �(p)

ih
F̂ (xi)� F (xi;Z)

i
;

where p 2 SN and K̂ ; F̂ are appropriate functions such that

K(xi; xj) � K̂(xi; xj) ; 1 � i 6= j � n ;

and

F (xi;Z) � F̂ (xi) ; 1 � i � n :

However this introduction of arti�cial ��ctitious� jumps (cf., e.g., [9, p. 163]) provides a

variety of ways to generate trajectories of the process. The e�ciency of the simulation

procedure depends on the choice of the functions K̂ and F̂ : We �rst describe the general

procedure before turning to some special cases.
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0. Generate the initial state UN (0; dx) = p(dx) 2 SN (cf. (2.11)).

1. Wait an exponentially distributed time with parameter

%̂(p) = %̂K(p) + %̂F (p) ;

where

%̂K(p) =
1

2N

X
1�i 6=j�n

K̂(xi; xj) (6.1)

and

%̂F (p) =
1

2

nX
i=1

F̂ (xi) : (6.2)

2. With probability

%̂K(p)

%̂(p)

go to step 3, else go to step 4.

3. (a) Choose a pair of indices according to the distribution

K̂(xi; xj)

2N %̂K(p)
; 1 � i 6= j � n : (6.3)

(b) Reject the coagulation with probability

1 �
K(xi; xj)bK(xi; xj)

;

else replace p by the new state JK(p; i; j) (cf. (2.14)), i.e. remove the clusters

xi and xj and add the cluster xi + xj :

(c) Go to step 1.

4. (a) If p(Z) > cN � 1
N
; then go to step 1 (cf. (2.16), (2.18)).

(b) Choose an index according to the distribution

F̂ (xi)

2 %̂F (p)
; 1 � i � n : (6.4)

(c) Reject the fragmentation with probability

1�
F (xi;Z)

F̂ (xi)
;

else choose a fragmentation part y according to the distribution

F (xi; dy)

F (xi;Z)
on [0; xi] \ Z ;

and replace p by the new state JF (p; i; y) (cf. (2.16)), i.e. remove the cluster

xi and add the clusters y and xi � y :
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(d) Go to step 1.

The special case

K̂(x; y) = K(x; y) ; F̂ (x) = F (x;Z) ; x; y 2 Z ;

corresponds to the direct �physical� simulation of the process (see [13], [6]). Here no

�ctitious jumps occur, and the time steps are as large as possible. However, the calculation

of (6.1) and the generation of the distribution (6.3) are very time consuming if n is large

and K has a complicated structure.

In the special case

K̂(x; y) = Kmax = max
i;j

K(xi; xj) ; F̂ (x) = Fmax = max
i

F (xi;Z) ; x; y 2 Z ;

one obtains a simulation procedure (see , e.g., [13], [23]) which is in some sense opposite

to the direct simulation. Namely, the calculation of (6.1) and the generation of the

distribution (6.3) are extremely simple. On the other hand, the time steps are very small,

and many �ctitious jumps occur if K is unbounded and clusters of signi�cantly di�erent

sizes are contained in the system.

Consider the special case

K̂(x; y) = CK (x+ y + 1) ; F̂ (x) = CF (x+ 1) ; x; y 2 Z :

One obtains (cf. (6.1))

%̂K(p) =
CK

2N

h
2N m (n� 1) + n (n � 1)

i
and (cf. (6.2))

%̂F (p) =
CF

2

h
N m+ n

i
;

where

m =

Z
Z

xUN (0; dx) :

Here the mass conservation (2.23) has been used. The distribution (6.3) takes the form

xi + xj + 1

2N m (n � 1) + n (n� 1)
=

xi + xj

2N m (n � 1)

2N m

2N m+ n
+

1

n (n � 1)

n

2N m+ n
:

Accordingly, with probability

n

2N m+ n
;

the indices i; j are generated uniformly. Otherwise, one index is generated according to

the distribution

xi

N m
; i = 1; : : : ; n ; (6.5)
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the other uniformly.

This simulation procedure is extremely simple compared with the direct simulation.

For an e�cient generation of the distribution (6.5), some re�ned acceptance-rejection

techniques can be applied. On the other hand, the number of �ctitious jumps is reduced

signi�cantly for systems with unbounded kernels and strongly varying cluster sizes. Note

that the case

K̂(x; y) = CK (x y + 1) ; F̂ (x) = CF (x+ 1) ; x; y 2 Z ;

can be handled in an analogous way.
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