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Abstract

We give an overview of the theory of multidimensional hysteresis operators de-

�ned as solution operators of rate-independent variational inequalities in a Hilbert

space X with given convex constraints. Emphasis is put on analytical properties of

these operators in the space of functions of bounded variation with values in X , in

Sobolev spaces and in the space of continuous functions. We discuss in detail the

in�uence of the geometry of the convex constraint on the input-output behavior. It

is shown how multidimensional hysteresis operators arise naturally in constitutive

laws of rate-independent plasticity and concrete examples of application of the above

theory in material sciences are given.

Introduction

One may wonder why such a particular problem like the variational inequality

h _u(t)� _x(t); x(t)� ~xi � 0 8~x 2 Z ;(0.1)

where Z is a convex closed subset of a Hilbert space X , u is a given X -valued function

of t 2 [0; T ] , x is the unknown function with values in Z and dot denotes the derivative

with respect to t , should draw an exceptional attention. As in many analogous cases,

it has been extracted as a common feature of di�erent physical models. Its variational

character is typically interpreted as a special form of the maximal dissipation principle in

evolution systems with convex constraints. It turns out that inequalities of the form (0.1)

play (explicitly or implicitly) a central role in modeling nonequilibrium processes with

rate-independent memory in mechanics of elastoplastic and thermoelastoplastic materials

including metals, polymers or for instance bread dough, as well as in ferromagnetism,

piezoelectricity or phase transitions (see e.g. [DL, LC, Al, LT, NH, BS, V, Be, KS1,

KS2, KS3, KS4, AGM]). They also naturally arise in the analysis of fatigue and damage

accumulation, see [BDK, BS].

Another area of application is related to mathematical optimization, where inequality

(0.1) is known as a special case of the Skorokhod problem, cf. [DI, DN], which consists in

approximating a given function u : [0; T ]! X by a function � of bounded total variation

in a given convex neighborhood of u in such a way that _� (in a generalized sense) points

in a prescribed direction. Equation (0.1) corresponds to the case where _� = _u� _x belongs

to the outward normal cone to Z at the point x . On the other hand, (0.1) is a special

case of a `sweeping process', see [M].

If Z has nonempty interior, the decomposition u = x + � de�ned by inequality (0.1),

where x is Z -valued and � has bounded variation, can be extended to every continuous

function u . Moreover, there are some indications to conjecture that this decomposition is

minimal in the sense that among all decompositions of u of this form, the total variation

of � is minimal with respect to a suitable norm in X . In the case dimX = 1 , this

observation has been made by V. Chernorutskii and a proof can be found in [K] ; in

higher dimensions, this question seems to be open.

The present text is devoted to a discussion about the in�uence of the geometry of the

convex constraint Z (the characteristic) on analytical properties of the mappings u 7! x
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and u 7! � (the so-called stop and play operators). They are hysteresis operators, that

is, according to the classi�cation in [V], operators that are causal and rate-independent

(see (1.25), (1.26) below). This terminology is justi�ed by the fact that in the scalar case

dimX = 1 , hysteresis operators are exactly those that admit a local representation by

means of superposition operators in each interval of monotonicity of the input, with a

possible branching when the input changes direction.

Most of the material collected here is taken from [KP, K] with some small improvements.

More recent contributions ([BK, D, DT]) are referred to in the text, the results of Sections

5 and 7 are new to a large extent.

In Section 1 we present some typical issues of elastoplasticity related to inequality (0.1).

Basic elements of convex analysis are recalled in Section 2. In Section 3 we construct

the play and stop operators in the space of continuous X -valued functions of bounded

variation and prove their continuity in W
1;p(0; T ;X) for every 1 � p < 1 and every

convex closed set Z . A continuous extension to the space C([0; T ];X) of continuous

functions is established provided Z has nonempty interior. The uniform continuity in

C([0; T ];X) is proved in Section 4 under the hypothesis that the set Z is uniformly

strictly convex. The local Lipschitz continuity in W
1;1(0; T ;X) is obtained in Section

5 when the boundary of Z is smooth. If Z is a convex polyhedron, the play and stop

are globally Lipschitz in both C([0; T ];X) and W
1;1(0; T ;X) ; a detailed proof is given

in Section 6. In Section 7 we prove a maximal regularity result, namely that the total

variation of the derivative of the output can be estimated above by that of the input.

Indeed, one cannot expect the output derivative to be continuous across the boundary of

Z even if the input is arbitrarily smooth. The last Section 8 gives a brief survey of the

theory of Hilbert space-valued functions.

Even in application to elastoplasticity, the investigation of the stop and play operator

is not just an academic question. Indeed, the theory of monotone operators provides

a traditional tool for solving classical problems ([DL, NH, Al, LT]) without referring to

hysteresis operators. The advantage of the hysteresis approach consists however in the fact

that additional geometrical considerations allow for solving also nonmonotone problems.

Typical examples can be found in [K] and [BK].

We do not give an exhaustive list of related publications and historical references here;

an interested reader may consult in particular the pioneering monographs [KP] and [V],

or a recent survey paper [Bro].

1 Physical motivation

The equation of motion of a deformable body 
 � R
N for some N 2 N , where N denotes

the set of positive integers and R
N is the N -dimensional Euclidian space, is in classical

continuum mechanics ([LL]) considered in the form

�
@
2
u
i

@t2
=

NX
j=1

@�
ij

@x
j

+ g
i
; i = 1; : : : ; N;(1.1)

where x 2 
 , t > 0 are the space and time variables, respectively, u = (u
i
) is the

displacement vector, � > 0 is the density, � = (�
ij
) is the symmetric stress tensor and
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g = (g
i
) is the volume force density, i; j = 1; : : : ; N . The meaningful choice in applications

is usually N = 3 . Equation (1.1) has to be coupled with initial and boundary conditions

and with a constitutive law between the stress tensor � = (�
ij
) and, for example, the

linearized strain tensor " = ("
ij
) de�ned as the symmetric derivative of u

"
ij
=

1

2

�
@u

i

@x
j

+
@u

j

@x
i

�
; i; j = 1; : : : ; N:(1.2)

While (1.1) is a general physical law, the constitutive relation characterizes speci�c prop-

erties of a given material, subject to time-dependent loading.

In engineering applications, one has always been searching for a mathematically simple

phenomenological description of the strain - stress constitutive behavior for a possibly

large class of di�erent types of material response including memory e�ects. Rheological

models play a prominent role here and o�er one of the main tools in the theory of inelastic

constitutive laws (see e.g. [LC], [Al], [LT]). We recall here its main constituents.

1.1 Rheological elements

Let T be the space of symmetric tensors � = (�
ij
) , i; j = 1; : : : ; N , N 2 N , �

ij
=

�
ji
, endowed with the scalar product � : � :=

P
N

i;j=1 �ij �ij , and let � be the well-known

Kronecker tensor

� 2 T; �
ij
=

�
0 if i 6= j ;

1 if i = j :

We split the space T into the subspace T
�
:= span f�g and its orthogonal complement

(the so-called deviatoric space) Tdev := T
?
�
. According to this decomposition, we denote

by �
I
:= � : � the �rst invariant (trace) of a symmetric tensor � 2 T and by �dev := � �

1=N �
I
� 2 Tdev the deviator of � .

The strain and stress tensors " and � , respectively, are in general functions of the space

variable x 2 
 � R
N and time variable t � 0 with values in T. We consider here only

homogeneous media, where the constitutive law is independent of the spatial variable x

which thus plays the role of a parameter.

De�nition 1.1 A system consisting of

(i) a constitutive relation between " and �;(1.3)

(ii) a potential energy U � 0

is called a rheological element.

A rheological element is said to be thermodynamically consistent, if the quantity

_q := _" :� � _U(1.4)

called dissipation rate, where the dot denotes the time derivative, is nonnegative in the

sense of distributions for all "; �; U satisfying (1.3).
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Example 1.2 The elastic element E .
Elastic materials are characterized by a linear stress-strain relation and by the complete

reversibility of dynamical processes. In mathematical terminology, it is assumed that

there exists a matrix A = (A
ijk`

) over T such that

� = A" or equivalently �
ij
=

NX
k;`=1

A
ijk`

"
k`
; i; j = 1; : : : ; N:(1.5)

Reversibility means that the potential energy U involves no memory and can be chosen

in such a way that the dissipation rate _q vanishes, i.e. the value of U(t) for each t > 0

depends only on the instantaneous value of "(t) and _U = _" :A" almost everywhere for

every absolutely continuous " . This necessarily implies that the matrix A is symmetric

with respect to the scalar product ` : ' and U has the form

U =
1

2
A" : "(1.6)

up to an additive constant. Indeed, for an arbitrary " 2 W
1;1(0; T ;T) and t 2 ]0; T [

put ~"(� ) := "(0) + �=t ("(t)� "(0)) for � 2 [0; t] . We can choose the initial value for U

arbitrarily, for instance U(0) := 1=2A"(0) : "(0) . We have by hypothesis

U(t) = U(0) +

Z
t

0

_~"(� ) :A~"(� ) d� =
1

2
"(t) :A"(t) +

1

2
"(t) : (A�A

T )"(0) ;(1.7)

where (AT )
ijk`

= A
k`ij

, hence

_U(t) = _"(t) :A"(t) +
1

2
_"(t) : (A�A

T )("(0)� "(t))

and we easily conclude that the matrix A is symmetric and (1.6) holds.

To guarantee that the stress-strain relation is one-to-one and the material law is deter-

ministic, we assume that the matrix A is positive de�nite.

The elastic element is said to be isotropic, if the matrix A has the form

A = 2� I +N �P
�
;(1.8)

where �; � are positive numbers called Lamé's constants (see [Ra]), I is the identity

matrix I� = � and P
�
is the orthogonal projection onto T

�
, that is P

�
� = 1=N �

I
� .

Example 1.3 The viscous element E .
Modeling of rate-dependent relaxation e�ects makes often use of the concept of viscosity

based on the hypothesis that there exist two coe�cients � > 0; � > 0 of proportionality

between the deviators and �rst invariants of the strain rate and stress, that is

�dev = � _"dev; �I = � _"
I
:(1.9)

The assumption that no reversible energy can be stored by the viscous element (U = 0)

ensures its thermodynamical consistency.
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Example 1.4 The rigid-plastic element R .

The basic concept in plasticity is the yield surface in the stress space which can be

described as the boundary @Z of a convex closed set Z � T.

The rigid-plastic behavior consists of two di�erent phases characterized by the instanta-

neous value � of the stress tensor. The material remains rigid as long as � 2 Int Z (the

interior of Z ). In this case no deformation occurs and _" = 0 . The material becomes

plastic if � reaches the boundary @Z of Z . Plasticity is governed by three physical princi-

ples: the stress values remain con�ned to the set Z , no reversible energy is stored, and the

dissipation rate is maximal with respect to all admissible stress values. Mathematically,

this means

� 2 Z ;(1.10)

U = 0 ;(1.11)

_" : (� � ~�) � 0 8~� 2 Z ;(1.12)

Geometrically, _" points in the direction of the outward normal cone, and condition (1.12)

is also called the normality rule. We see that the variational inequality (1.12) includes the

rigid behavior (for � 2 Int Z it entails _" = 0). In order to ensure the thermodynamical

consistency, we assume 0 2 Z . In fact, it is natural to assume that no deformation occurs

for � = 0 . This is equivalent to the hypothesis 0 2 Int Z which, as we show in the next

sections, has a considerable impact on the regularity in the mathematical setting.

It has been observed that volume changes are negligible during plastic deformation ([Ra]).

Combining constitutive relation (1.10) - (1.12) with the volume invariance condition

_"
I
= 0 ;(1.13)

we conclude from Proposition 2.9 below that Z has the form of a cylinder

Z = Z0 +T�
;(1.14)

where Z0 � Tdev is a convex closed set. In applications, it is often assumed that Z0

is bounded. The classical models of Tresca and von Mises are special cases of (1.10)�

(1.14) with (von Mises) Z0 = B
r
(0) \Tdev (ball centered at 0 with radius r) or (Tresca)

Z0 :=f� 2 Tdev ;
P

N

k=1 j�kj � rg for some r > 0 , where f�
k
g are the eigenvalues of the

symmetric matrix � = (�
ij
) . Note that we have

P
N

k=1
�
k
= 0 for � 2 Tdev . The Tresca

set Z0 is usually represented for N = 3 by a hexagon in the plane �1 + �2 + �3 = 0 .

Example 1.5 The rigid-plastic element with isotropic hardening J .

In many materials, the yield surface does not remain �xed in time, but changes according

to the loading history. This phenomenon is called hardening (softening). We �rst recall

the concept of isotropic hardening, where the yield surface evolution is a simple dilation

governed by a scalar hardening parameter � . Following [NH] we assume analogously as in

Example 1.4 that a bounded convex closed set Z0 � Tdev is given such that 0 2 Int Z0 ,

and we denote by M0 : Tdev ! [0;1[ the Minkowski functional associated to Z0 by

De�nition 2.18 below. Let further a concave nondecreasing function ' : [1;1[! [1;1[

be given, '(1) = 1 .
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We denote by T1 the space T�R1 endowed with the natural scalar product h(�; �); (�; 
)i
:= � : � + �
 for �; � 2 T, �; 
 2 R1 , and by Z1 the convex closed subset of T1

Z1 := f(�; �) 2 T1 ; � � 0; M0(�dev) � '(1 + �)g :(1.15)

The constitutive relations are analogous to (1.10)-(1.12), namely

(�; �) 2 Z1 ;(1.16)

U = 0 ; �(0) = 0 ;(1.17)

h( _";�(1=c) _�); (�; �)� (~�; ~�)i � 0 8(~�; ~�) 2 Z1 ;(1.18)

where c > 0 is a given physical constant.

We immediately observe that choosing ~� = � in (1.18), we obtain _�(�� ~�) � 0 for every

~� � � , hence _� � 0 .

Let Z� := f� 2 T; (�; �) 2 Z1g be the domain of admissible stresses for an instantaneous

value � of the hardening parameter. We see that Z� increases without changing its shape

with increasing � .

1.2 Composition of rheological elements

A large variety of models for the material behavior can be obtained by composing rheo-

logical elements from Examples 1.2 - 1.5 in series or in parallel.

Let G1; G2 be two rheological elements and let "
i
; �

i
; U

i
be the strain, stress and potential

energy, respectively, corresponding to the elements G
i
, i = 1; 2 .

The total strain " , stress � and potential energy U for the combination in parallel G1jG2

and in series G1 �G2 are de�ned by the following relations

G1jG2 G1 �G2

" = "1 = "2 " = "1 + "2

� = �1 + �2 � = �1 = �2

U = U1 + U2 U = U1 + U2

in analogy with the theory of electrical circuits. It is easy to see that every combination

of thermodynamically consistent elements is thermodynamically consistent.

Example 1.6 Elastoplastic models E �R; E=R .

There are good reasons for rewriting constitutive variational inequalities in plasticity in

operator form. This enables us to distinguish clearly between input and output quantities:

while the input can be controlled, the output is determined by solving the constitutive

equation.

Let us compare the constitutive relations for two elastoplastic models EjR , E �R . We

denote by "
e

; �
e and "

p

; �
p the strain and stress on the elastic and rigid-plastic element,

respectively.
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EjR E �R
" = "

e = "
p

" = "
e + "

p

� = �
e + �

p

� = �
e = �

p

�
e = A" � = A"

e

�
p 2 Z � 2 Z
_" : (�p � ~�) � 0 8~� 2 Z _"p : (� � ~�) � 0

U = 1
2
" :�e U = 1

2
"
e :�

Recall that Z � T is a given convex closed set, 0 2 Int Z . We see that both models are

governed by a variational inequality of the same type, namely

EjR : (A�1( _� � _�p)) : (�p � ~�) � 0

E �R : (A�1(A _"� _�)) : (� � ~�) � 0
8~� 2 Z:(1.19)

The solvability of such equations is ensured by the following theorem whose detailed proof

(in a more general setting) will be given in Section 3. De�nition and general information

about the space W 1;1(0; T ;X) of absolutely continuous Hilbert space valued functions is

given in Section 8.

Theorem 1.7 Let X be a real separable Hilbert space endowed with a scalar product


:; :
�
.

Let Z � X be a convex closed set, 0 2 Z , and let x
0 2 Z be a given element. Then for

every function u 2 W
1;1(0; T ;X) there exists a unique x 2 W

1;1(0; T ;Z) satisfying the

variational inequality 

_u(t)� _x(t); x(t)� ~x

� � 0 a.e. 8~x 2 Z(1.20)

and the initial condition

x(0) = x
0
:(1.21)

We de�ne the solution operators S;P : Z�W 1;1(0; T ;X)! W
1;1(0; T ;X) of the problem

(1.20), (1.21) by the formula

S(x0; u) := x; P(x0; u) := u� S(x0; u):(1.22)

According to [KP], the operators S;P are called stop and play, respectively. The set Z

is called the characteristic of S and P .

The constitutive relations for the elastoplastic models above can be written in the form� E=R : " = A
�1P(�

p

0; �); U = 1
2
(A�1P(�

p

0; �)) : P(�p0; �);
E �R : � = S(�0; A"); U = 1

2
(A�1 S(�0; A")) : S(�0; A");(1.23)

where S;P are the stop and play in X = T endowed with the scalar product


�; �
�
:=

(A�1�) : � , and �
p

0; �
0 are given initial output values.
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It is clear that the roles of input and output in the models EjR and E � R cannot be

reversed.

The de�nition immediately suggests that the stop has the

Semigroup property : For u 2 W
1;1(0; T ;X) , s 2 ]0; T [ and t 2 [0; T � s] put

u
s
(t) := u(s+ t) . Then for every x0 2 Z we have

S(x0; u)(t+ s) = S(S(x0; u)(s); us)(t):(1.24)

An operator F acting in some space R(0; T ;X) of functions [0; T ]! X is called

Rate-independent , if for every u 2 R(0; T ;X) and every nondecreasing mapping � of

[0; T ] onto [0; T ] such that u
�
(t) := u(�(t)) belongs to R(0; T ;X) we have

F (u
�
)(t) = F (u)(�(t)) for all t 2 [0; T ] ;(1.25)

Causal , if the implication

u(t) = v(t) 8 t 2 [0; t0] ) F (u)(t0) = F (v)(t0) :(1.26)

Rate-independence and causality characterize hysteresis operators according to the classi-

�cation of [V]. By de�nition, the stop and play are hysteresis operators in W
1;1(0; T ;X)

(we will see in the next section that they can be extended to the space of continuous func-

tions C([0; T ];X)). Indeed, the concept of `hysteresis branching' or `hysteresis loops' is

meaningful only in the scalar case dimX = 1 . However, the play operator turns out to be

the main building block for a very large family of scalar hysteresis models used in elasto-

plasticity (Prandtl-Ishlinskii model), ferromagnetism (Preisach and Della Torre models),

fatigue analysis (the `rain�ow' method) and many others. A more complete information

can be found in [BS] and [K]. Recent applications to thermoplasticity ([KS1, KS2]) and

phase transitions ([KS3, KS4]) also con�rm its universal character.

We remain here within the multidimensional framework and give some examples of ap-

plication of hysteresis operators for modeling the kinematic and isotropic hardening in

elastoplastic materials.

1.3 Linear kinematic hardening

Let us consider the so-called Prager model E � (EjR) . The general rheological rules yield

� = �
e + �

p

;

" = "
e + "

p

;

�
e = A"

p

;

� = B"
e

;

�
p 2 Z ;

_"p : (�p � ~�) � 0 8~� 2 Z ;
U =

1

2
("e :� + "

p :�e)

9



where A;B are given constant symmetric positive de�nite matrices and Z � T is a convex

closed set, 0 2 Int Z . For t 2 [0; T ] put

Z(t) := Z + �
e(t):(1.27)

Then �(t) 2 Z(t) for all t 2 [0; T ] . Relation (1.27) can be interpreted as a translation of

Z in the stress space T driven by the elastic component �e of the stress without changing

shape and size. This phenomenon is called kinematic hardening and is typical for metals,

see [LC]. The word `linear' is related to the linear dependence between �
e and "

p .

The evolution of �e is governed by variational inequality of the form (1.20), namely�
A
�1 _�e

�
: (�p � ~�) � 0; 8~� 2 Z:(1.28)

Inequality (1.28) can be interpreted as a normality condition for the hardening rate _�e

with respect to the scalar product

 � ; � �

A

:= (A�1 � : � ) ; both the hardening rate _�e

and the plastic strain rate _"p have the outward normal direction to @Z at the point � ,

but with respect to di�erent scalar products.

With the intention to deal with several scalar products in T we introduce the subscript

A for the play PA and stop SA corresponding to the scalar product

 � ; � �

A

.

Using (1.23) we can express the constitutive law for the model E �(E jR) in the form

" = B
�1
� +A

�1PA(�p0; �)(1.29)

with input � and output " . We now prove that the constitutive operator B�1 +A
�1PA

is invertible. Identity (1.31) below gives an equivalent expression for (1.29) with input "

and output � .

Lemma 1.8 Let �
p

0 2 Z be given and let A;C be given constant matrices such that A;CA

are symmetric and positive de�nite. Put Â := A+ CA . Then for all � 2 W
1;1(0; T ;T)

we have

S
Â
(�

p

0; � + CPA(�p0; �)) = SA(�p0; �) :(1.30)

Proof. Put x := SA(�p0; �) , y := S
Â

(�p0; �+CPA(�p0; �)) . Then y = S
Â

(�p0 , (I+C)��Cx) ,
where I is the identity matrix. Putting ~� := (x+ y)=2 in the variational inequalities

A
�1( _� � _x) : (x� ~�) � 0 ;

Â
�1((I + C) _� � C _x� _y) : (y � ~�) � 0 ;

and using the identity Â�1+ Â�1C = A
�1 , we conclude



_x� _y; x�y�

Â

� 0 , hence x = y .

l

We now apply Lemma 1.8 with C = BA
�1 to the constitutive equation (1.29). We obtain

S
Â
(�

p

0; B") = SA(�p0; �) for Â = A+B;

hence (I +BA
�1)� = B"+BA

�1S
Â
(�p0; B") , or equivalently

� = (A�1 +B
�1)�1"+BÂ

�1S
Â
(�

p

0; B") = B"�BÂ
�1P

Â
(�

p

0; B") ;(1.31)
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where " is the input and � is the output.

In the particular case B = I;A = 1



I for some 
 > 0 , we obtain PA = P
Â
= PI and the

inversion formula

(I + 
PI(x0; :))�1 = I � 


1 + 

PI(x0; :)(1.32)

holds for all x0 2 Z , where I is the identity mapping in W
1;1(0; T ;X) .

Exercise 1.9 Assume that the matrices A;B commute, i.e. AB = BA . Prove that

(1.31) is the constitutive equation of the model E j(E �R) with

�
e = ~A" ; ~A = (A�1 +B

�1)�1 ;

�
p = ~B"e ; ~B = B

2(A+B)�1 ;

"
p : (�p � ~�) � 0 8~� 2 ~Z ; ~Z = B(A+B)�1(Z) :

Hint . Use the identity CSA(x0; u) = ~SCAC
(Cx0; Cu) for each positive de�nite symmetric

matrix C , where ~S is the stop with characteristic ~Z = C(Z) .

The commutativity hypothesis AB = BA is satis�ed for instance if both elastic elements

are isotropic. In this case the models E �(E jR) and E j(E �R) are equivalent.

1.4 Isotropic and kinematic hardening

Let us consider now the model E �(E jJ ) . With the notation taken from Example 1.5,

the constitutive relations are analogous to the model E �(E jR) , namely

(�; 0) = (�e;��) + (�p; �) ; (�p; �) 2 Z1 ;(1.33)

(";�(1=c)�) = ("e; 0) + ("p;�(1=c)�) ; � = B"
e

; �
e = A"

p

;(1.34)

h( _"p;�(1=c) _�) ; (�p; �)� (~�; ~�)i � 0 8(~�; ~�) 2 Z1 ;(1.35)

where A;B are symmetric positive de�nite matrices.

Let A1; B1 : T1 ! T1 be the linear mappings de�ned by the identities A1(�; �) :=

(A�; c �) , B1(�; �) := (B�; c �) . We have



A
�1
1 (( _�; 0)� ( _�p; _�)) ; (�p; �)� (~�; ~�)

� � 0 8(~�; ~�) 2 Z1 ;

hence (�p; �) = S1 ((�p0; 0); (�; 0)) , (�e;��) = P1 ((�p0; 0); (�; 0)) , where S1;P1 are the

stop and play in T1 endowed with the scalar product


A
�1
1 �; �

�
, with characteristic Z1

and with a given initial condition (�
p

0; 0) 2 Z1 . The constitutive equation has the form

(";�(1=c)�) = B
�1
1 (�; 0) +A

�1
1 P1 ((�p0; 0); (�; 0)) :(1.36)

We derive now some consequences of the constitutive equation. For a function f : [0; T ]!
R

1 and t 2 [0; T ] we denote kfk[0;t] := sup fjf(� )j ; � 2 [0; t]g .

11



Lemma 1.10 Let � 2 W
1;1(0; T ;T) be given and assume �(0) = �

p

0 = 0 . Let "; � be

given by the equation (1.36). Then we have

'(1 + �(t)) = max
�
1; kM0(�

p

dev)k[0;t]
	
;(1.37)

where ';M0 are as in (1.15) and �
p

dev is the deviator of the plastic stress �
p

.

Proof. We have (�p(t); �(t)) 2 Z1 for all t 2 [0; T ] , hence M0 (�
p

dev(t)) � '(1 + �(t))

by de�nition. The fact that � is nondecreasing (cf. (1.18)) entails kM0(�
p

dev)k[0;t] �
'(1 + �(t)) . In the case kM0(�

p

dev)k[0;t] < 1 we obviously have �(t) = 0 and (1.37)

holds. Let us assume now 1 � kM0(�
p

dev)k[0;t] < '(1 + �(t)) for some t 2 ]0; T [ . Then

there exists � 2 ]0; t[ such that _�(� ) > 0 and kM0(�
p

dev)k[0;� ] < '(1 + �(� )) , hence

(�p(� ); �(� )) 2 Int Z1 . From (1.35) we conclude _�(� ) = 0 , which is a contradiction. l

According to general rheological principles, we associate to the model E �(E jJ ) the

potential energy U =
�

"
e

; �
�
+


"
p

; �
e

��
=2 . The dissipated energy q(t) is then equal to

the plastic work
R
t

0
_"p(� ) :�p(� ) d� and is related to �(t) by the following identity.

Proposition 1.11 Let the assumptions of Lemma 1.10 hold. Put r := inff� > 0;'0(1 +

�) = 0g 2 [0;1] . For p 2 [0; r] put

�(p) :=

Z
p

0

'(1 + �)

c'0(1 + �)
d� :

Then we have �(t) 2 [0; r] for all t 2 [0; T ] and

q(t) = �(�(t)) provided �(t) 2 [0; r[:(1.38)

Proof. Assume �(t) > r for some t 2 ]0; T [ . Then there exists � < t such that _�(� ) > 0

and �(� ) > r . Putting ~� := �
p(� ); ~� = r we have '(1 + ~�) = '(1 + �(� )) , hence

(~�; ~�) 2 Z1 and (1.35) yields _�(� ) � 0 , which is a contradiction.

Identity (1.38) can be equivalently written in the form

_q(t) = _�(t)
'(1 + �(t))

c'0(1 + �(t))
a.e. provided �(t) < r:(1.39)

To prove (1.39) we distinguish two cases.

a) _�(t) = 0 . We choose a > 0 su�ciently small and b > 0 su�ciently large such that

~� := (1+a)�p(t) and ~� := �(t)+b satisfy M0(~�dev)�'(1+~�) = (1+a)
�
M0(�

p

dev(t))�
'(1 + �(t))

�
+ (1 + a)'(1 + �(t))� '(1 + �(t) + b) � 0 , that is, (~�; ~�) 2 Z1 . From

inequality (1.35) we infer a _"p :�p � 0 , hence _q(t) = 0 .

b) _�(t) > 0 . We will see in Section 3 that the play depends continuously on the

characteristic with respect to the Hausdor� distance. It therefore su�ces to assume

that ' and M0 are smooth functions. We have (�p(t); �(t)) 2 @Z1 and according to

12



(1.35), the vector ( _"p(t);�(1=c) _�(t)) points in the direction of the outward normal

vector to Z1 . In other words, we have

( _ep(t);�(1=c) _�(t)) =
_�(t)

c'0(1 + �(t))
(@M0(�

p

dev(t));�'0(1 + �(t))) ;

where @M0 is the gradient of M0 . This yields

_q(t) = _"p(t) :�p(t) = _"p(t) :�
p

dev(t) =
_�(t)

c'0(1 + �(t))
@M0(�

p

dev(t)) :�
p

dev(t) :

We have @M0(�
p

dev) :�
p

dev = M0(�
p

dev) by Lemma 2.21 and M0(�
p

dev(t)) = '(1+�(t))

by hypothesis, hence identity (1.39) holds.

l

As a consequence of Proposition 1.11, we see that the isotropic hardening can be equiva-

lently characterized by the plastic work (or dissipation) q . For this reason it is sometimes

referred to as work hardening, see [NH], [LC].

1.5 Nonlinear kinematic hardening

In order to account for the phenomenon of ratchetting which is manifested by the accumu-

lation of the plastic strain under cyclic stress loading, Armstrong and Frederick proposed

in [AF] a modi�cation of the Prager model from Example 1.3, replacing the linear relation

between �
e and "

p by a nonlinear one, namely

_�e = 
 (R _"p � �
e j _"pj)(1.40)

with given positive constants 
 , R . It is assumed that the convex closed set Z is the von

Mises cylinder of radius r > 0 ,

Z = (B
r
(0) \Tdev) +T� :(1.41)

The normality rule here implies _"p = �
p

dev j _"pj=r , hence (1.40) is equivalent to

_�e = 
 ((R+ r) _"p � �dev j _"pj) :(1.42)

Introducing an auxiliary function u by the formula

u := 
 (R + r) "p + �
p

dev ;(1.43)

we see that the variational inequality

_"p : (�p � ~�) � 0 8~� 2 Z(1.44)

can be rewritten as

( _u� _�
p

dev) : (�
p

dev � ~�) � 0 8~� 2 B
r
(0) \Tdev ;(1.45)
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hence �
p

dev = S(�p0dev; u) , "p = (1=(
(R+r)))P(�
p

0dev; u) according to the above notation

for a given initial plastic stress �
p

0 . The function u is to be determined as the solution of

the operator - di�erential equation

_u = _�dev +
�dev

R+ r

���� d
dt
P(�p0 dev; u)

����(1.46)

for each given stress input � and with an appropriate initial condition. The constitutive

operator of the stress-controlled Armstrong-Frederick model thus contains a superposi-

tion of the play operator to the solution operator � 7! u of the equation (1.46). It is

shown in [BK] that the model is well posed. The strain-controlled case leads to similar

considerations. We do not give the details here; let us just point out that the solvability of

equation (1.46) is closely related to the local Lipschitz estimate (5.6) for the play operator

in W
1;1(0; T ;Tdev) .

2 Convex sets

The aim of this section is to recall some basic elements of convex analysis in Hilbert

spaces. Most of the results are well-known. We present them in order to �x the notation

and to keep the presentation consistent (for more information we refer the reader to the

monographs [Ro] and [AE]). The complementary function of a convex set (De�nition 2.4

below) has been introduced in [K].

Throughout the section, X denotes a real separable Hilbert space endowed with a scalar

product

�; �� and norm jxj := 


x; x
�1=2

. By Z we denote a convex closed subset of X

such that 0 2 Z . We �x the number

m := dist (0; @Z) := inf fjzj ; z 2 @Zg � 0:(2.1)

It is clear that m > 0 if and only if 0 2 Int Z .

We start with a simple lemma.

Lemma 2.1 For each x 2 X there exists a unique z 2 Z such that jx�zj = dist (x;Z) =

minfjx� yj ; y 2 Zg.

Proof. Let x 2 X be given. Put p := inf fjx� yj ; y 2 Zg and let fy
n
g be a sequence in

Z such that jx� y
n
j ! p . From the identity

ju� vj2 + ju+ vj2 = 2(juj2 + jvj2)(2.2)

for u = x� y
n
, v = x� y

k
, it follows

1

2
jy
n
� y

k
j2 = jx� y

n
j2 + jx� y

k
j2 � 2

����x� y
n
+ y

k

2

����
2

� jx� y
n
j2 + jx� y

k
j2 � 2p2;

hence fy
n
g is a convergent sequence and it su�ces to put z := lim

n!1
y
n
. Uniqueness is

obtained analogously. l
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Using Lemma 2.1 we can de�ne the projection Q : X ! Z onto Z and its complement

P := I �Q (I is the identity) by the formulae

Qx 2 Z ; jPxj = dist (x;Z) for x 2 X :(2.3)

In the sequel, we call (P;Q) the projection pair associated to Z . We make extensive use

of the following lemma.

Lemma 2.2 For every x; y 2 X we have

(i)


Px;Qx� z

� � 0 8z 2 Z ,

(ii)


Px� Py;Qx�Qy

� � 0 ,

(iii)


Px; x

� � mjPxj+ jPxj2 with m given by (2.1),

(iv) Q(x+ �Px) = Qx 8� � �1 .

Proof. (i) For z 2 Z , z 6= Qx and 
 2 ]0; 1[ we have jx � 
z � (1 � 
)Qxj2 > jPxj2 ,
hence 2



Px;Qx � z

�
+ 
jQx � zj2 > 0 and the assertion follows easily. Statement (ii)

is an obvious consequence of (i). We obtain (iii) from (i) by putting z := mPx=jPxj if
x =2 Z , the case x 2 Z is trivial. To prove (iv) we notice that for all z 2 Z we have

jx+ �Px� zj2 = jQx� zj2 + (1 +�)2jPxj2 +2(1 + �)


Px;Qx� z�, hence the minimum

of jx+ �Px� zj is attained for z = Qx . l

2.1 Recession cone

De�nition 2.3 A nonempty closed convex set C � X is called a cone, if the implication

x 2 C ) �x 2 C holds for all x 2 X and � � 0 .

De�nition 2.4 Let Z � X be a convex closed set, 0 2 Z . The set

C
Z
:= fx 2 Z ; �x 2 Z 8� � 0g(2.4)

is called the recession cone of Z and the function K
Z

: [0;1[! [0;1[ de�ned by the

formula

K
Z
(r) := sup fdist (x;C

Z
) ; x 2 Z \B

r
(0)g for r � 0(2.5)

is called the complementary function of Z , where

B
r
(x0) := fx 2 X ; jx� x0j � rg(2.6)

denotes the ball centered at x0 with radius r .

The following properties of the complementary function are proved in [K].
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Proposition 2.5 Let Z � X be a convex closed set with 0 2 Int Z and with the recession

cone C
Z
and complementary function K

Z
. Then

(i) x+ y 2 Z 8x 2 C
Z
; 8y 2 B

m
(0) , where m is given by (2.1),

(ii) K
Z
is nondecreasing in [0;1[ , 1 � K

Z
(s)=s � K

Z
(r)=r for 0 < s < r ,

(iii) if dimX <1 , then

lim
r!1

K
Z
(r)

r
= 0:(2.7)

Let us note that by Proposition 2.5 (ii) we have K
Z
(r) �K

Z
(s) � (r � s)K

Z
(r)=r for

r > s > 0 , hence K
Z
is Lipschitz.

Property (2.7) is crucial for the extension of hysteresis operators to the space of continuous

functions. We therefore introduce the following terminology.

De�nition 2.6 A convex closed set Z � X is called a recession set if 0 2 Int Z and the

complementary function K
Z
satis�es (2.7).

Indeed, every convex closed set Z � X with 0 2 Int Z is a recession set if dimX <1 .

This is not true for in�nitely dimensional spaces, where there exist unbounded sets Z with

C
Z
= f0g , but condition (2.7) holds for instance for all sets of the form Z = C + Z

B
,

where C is a cone and Z
B
is bounded, 0 2 Int Z

B
.

2.2 Tangent and normal cones

A natural generalization of normal vectors and tangent hyperplanes which in general are

not uniquely determined, is the concept of normal cone N
Z
(x) and tangent cone T

Z
(x)

to a convex closed set Z � X at a point x 2 Z . They are de�ned by the formula(
N
Z
(x) := fy 2 X;



y; x� z

� � 0 8z 2 Zg;
T
Z
(x) := fw 2 X;



w; y

� � 0 8y 2 N
Z
(x)g:(2.8)

Every element u 2 X admits a unique orthogonal decomposition into the sum u = v+w

of the normal component v 2 N
Z
(x) and the tangential component w 2 T

Z
(x) , namely

v = Q
N
(u) , w = P

N
(u) , where (P

N
; Q

N
) is the projection pair associated to N

Z
(x) .

Indeed, by Lemma 2.2 (i) we have


w; (1��) v� � 0 for all � � 0 , hence



w; v

�
= 0 and


w; y
� � 0 for every y 2 N

Z
(x) . Uniqueness is easy: assume v1 +w1 = v2 +w2 for some

v
i
2 N

Z
(x) , w

i
2 T

Z
(x) , hw

i
; v

i
i = 0 , i = 1; 2 . Then 0 � hw1�w2; v1�v2i � �jw1�w2j2 ,

hence w1 = w2 , v1 = v2 .

For x 2 Int Z we obviously have N
Z
(x) = f0g , T

Z
(x) = X . One might expect

that for x 2 @Z the normal cone should contain nonzero elements. The example

Z := fx 2 X; j
x; e
k

�j � 1=k 8k 2 Ng , where fe
k
g is an orthonormal basis, shows

that this conjecture is false, since 0 2 @Z and N
Z
(0) = f0g . In regular cases this cannot

happen.

16



Proposition 2.7 Assume Int Z 6= ; . Then for every x 2 @Z we have N
Z
(x) n f0g 6= ; .

Proof. Let fz
n
;n 2 Ng be a sequence in X n Z such that lim

n!1 jzn � xj = 0 . Put

"
n
:= jPz

n
j > 0 , y

n
:= z

n
+ 1="

n
Pz

n
. We have "

n
� jz

n
� xj and Lemma 2.2 (iv) yields

Qy
n
= Qz

n
, Py

n
= (1 + 1="

n
)Pz

n
. By Lemma 2.2 (i) we further have jQy

n
� xj2 =

jQz
n
� xj2 = jz

n
� xj2 � jPz

n
j2 � 2



Pz

n
; Qz

n
� x

� � jz
n
� xj2 and



Py

n
; Qy

n
� z
� � 0 8z 2 Z; 8n 2 N:(2.9)

Passing to subsequences we can assume that fPy
n
g converges weakly to an element �

which belongs to N
Z
(x) by (2.9). It remains to verify that � 6= 0 . We �x an arbitrary

ball B
�
(x0) � Int Z . Putting z := x0+ �=(1+ "n)Pyn in (2.9) we obtain � � 
�; x�x0�,

hence � 6= 0 . l

Let us mention the important particular case of cylinders in X .

De�nition 2.8 Let Y � X be a closed subspace of X , let Y
?
be its orthogonal comple-

ment and let ~Z � Y be a convex closed set. Then the set Z := ~Z +Y
?
is called a convex

cylinder in X .

Proposition 2.9 A convex closed set Z � X is a convex cylinder of the form Z = ~Z+Y ?

with ~Z � Y if and only if N
Z
(x) � Y for all x 2 Z .

Proof. The `only if' part is trivial. To prove the converse we put ~Z := Z \ Y and choose

arbitrarily u 2 ~Z and w 2 Y ? . From Lemma 2.2 (i) we infer


P (u+w); Q(u+w)�u� � 0 ,

hence jP (u+w)j2 � 
P (u+w); w
�
. On the other hand, we have P (u+ w) 2 N

Z
(Q(u+

w)) � Y , and we conclude


P (u+w); w

�
= jP (u+w)j2 = 0 . Consequently, ~Z+Y ? � Z

and equality follows from the convexity of Z . l

Remark 2.10 Cylinders of the form Z = ~Z + Y
? with ~Z � Y are characterized by the

condition Px 2 Y for all x 2 X . Denoting by ( ~P ; ~Q) the projection pair associated to
~Z in Y , we obtain for every x 2 X of the form x = u+w , u 2 Y , w 2 Y ? the identities

Px = ~Pu , Qx = ~Qu+ w .

2.3 Strict convexity

In general, the boundary @Z of a convex closed set Z � X can contain straight segments.

We recall two criteria for their existence. It is easy to verify that @Z contains a segment

of length r > 0 if one of the following conditions is satis�ed.

Internal criterion There exist x; y 2 @Z such that jx� yj = r , (x+ y)=2 2 @Z .

External criterion There exists a point z 2 @Z and a sequence fw
n
;n 2 Ng in X nT

Z
(z)

such that jw
n
j = 1 , lim

n!1
w
n
= w , z + rw 2 @Z .
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The terminology is justi�ed by the fact that we always have (x+ y)=2 2 Z for x; y 2 Z

and z + rw =2 Z for z 2 @Z , w 2 X n T
Z
(z) and r > 0 .

According to these criteria we introduce the functions �; � : [0;1[! [0;1[ by the for-

mulae (
�(r) := inf

�
dist

�
1
2
(x+ y); @Z

�
; x; y 2 Z; jx� yj = 2r

	
;

�(r) := inf fjP (z + rw)j ; z 2 @Z; w 2 X n T
Z
(z); jwj = 1g ;(2.10)

where P is de�ned by (2.3). We naturally have �(r) = +1 if 2r > diam Z :=

sup fjx� yj ; x; y 2 Zg (the diameter of Z ) and �(r) � j(x+ y)=2� xj = r for 0 � r <

1=2 diam Z . Choosing an arbitrary x 2 XnZ we obtain �(r) �
��P (Qx+r Px=jPxj)

�� = r

by Lemma 2.2.

The case dimX = 1 is trivial (then �(r) = r for r < 1=2 diam Z , �(r) = r for all

r � 0), as well as the case Int Z = ; (then �(r) = �(r) = 0 for r < 1=2 diam Z ).

Proposition 2.11 Let Z � X be a convex closed set, Int Z 6= ; . Then for all 0 � p < r

we have

(i) �(p)=p � �(r)=r ,

(ii) �(p)=p � �(r)=r ,

(iii) �(r) � �(r) .

Proof.

(i) Let 0 � p < r and " > 0 be given. Put 
 := p=r . We �x z 2 @Z and w 2 X n T
Z
(z) ,

jwj = 1 such that jP (z + rw)j < �(r) + " . For v := (1� 
)z + 
Q(z + rw) 2 Z we have

�(p) � jP (z + pw)j � jz + pw � vj = 
jP (z + rw)j < p

r
(�(r) + ")

hence (i) holds.

(ii) It su�ces to assume �(r) <1 . We �nd x; y 2 Z and z 2 @Z such that jx� yj = 2r

and ���x+ y

2
� z

���� "

2
� dist

�
x+ y

2
; @Z

�
� �(r) +

"

2
:(2.11)

Put x̂ := 
x+(1�
)z , ŷ := 
y+(1�
)z with 
 as above. Then x̂; ŷ 2 Z , jx̂� ŷj = 2p

and �(p) � ��(x̂+ ŷ)=2� z

�� = 


��(x+ y)=2� z

�� � (�(r) + ") p=r .

(iii) Let x; y; z; " be as in (ii). We �x an arbitrary  2 N
Z
(z) , j j = 1 and assume


 ; x�y� � 0 (otherwise we interchange x and y ). Put v
"
:= (x�y)=2+" 2 X nT

Z
(z) .

Then �(r) � ��P �z+r v
"
=jv

"
j��� � ��z+r v

"
=jv

"
j�x�� � ��z�(x+y)=2

��+��" ��1�r=jv
"
j�v

"

�� ���z � (x+ y)=2
��+ " . Letting " tend to 0 we obtain (iii) from (2.11). l

We see that both � , � are nondecreasing in their domains. One can derive by elementary

means further interesting properties of these functions. Details are left to the reader as

an exercise.
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Exercise 2.12 Let Z � X be a closed convex domain with a nonempty interior. Prove

that

(i) �(r) � �(2r + 2�(r))=2 for r 2 [0; 1=2 diam Z[ ,

(ii) �(r)� �(p) � r � p for 0 � p < r ,

(iii) if dimX � 2 , then for every x 2 Int Z , c := dist (x; @Z) and r 2 [0; c] we have

2c�(r) � r
2 + �

2(r) ;

(iv) if �(r) > 0 for some r 2 ]0; 1=2 diam Z[ , then

diam Z � r

�2(r)
(r2 + �

2(r)) :

Hint . (i) Assume �(2r + 2�(r)) < 2�(r) � " for some r > 0 , " > 0 . Find x 2 @Z ,

w 2 @B1(0) \
�
X n T

Z
(x)
�
such that

��P �x + (2r + 2�(r))w
��� < 2�(r) and put z :=

Q
�
x+ (2r + 2�(r))w

�
. Then z 2 Z , jx� zj > 2r , x+ (r + �(r))w 62 Z , hence

��x+ (r +

�(r))w � (x+ z)=2
�� > �(r) which is a contradiction.

(ii) Use the Lipschitz continuity of P which follows from Lemma 2.2 (ii).

(iii) Let z
"
2 @Z be such that jz

"
�xj � c+" . Find w

"
2 B1(0) such that



w
"
; z

"
�x� = 0

and put u� := x+
p
c2 � r2(z

"
�x)=jz

"
�xj�rw

"
. Then u� 2 Bc

(x) � Z , ju+�u�j = 2r

and �(r) � ��z
"
� (u+ + u�)=2

�� .
(iv) Assume s := jx � yj=2 > r=(2�2(r))

�
r
2 + �

2(r)
�
for some x; y 2 Z . Then s > r ,

hence �(s) � s �(r)=r >
�
r
2 + �

2(r)
�
=(2�(r)) � r . By (iii) we have 2�(s)�(r) � r

2 + �
2(r)

which is a contradiction.

The upper bound for diam Z in Exercise 2.12 (iv) does not seem to be optimal. If Z

is a ball, then we obtain for instance diam Z = (r2 + �
2(r))=�(r) . We can nevertheless

conclude that Z is unbounded if and only if �(r) = 0 for all r � 0 . Let us consider now

the opposite situation.

De�nition 2.13

(i) A convex closed set Z � X is said to be strictly convex, if (x + y)=2 2 Int Z for

all x; y 2 Z , x 6= y .

(ii) A convex closed set Z � X is said to be uniformly strictly convex, if �(r) > 0 for

all r > 0 .

Proposition 2.14 Let Z be a uniformly strictly convex subset of X , dimX � 2 , B
m
(x)

� Z for some x 2 Int Z . Then �
�1 : [0;1[! [0;1[ is locally Lipschitz in ]0;1[ ,

lim
s!1

�
�1(s)=s = 1 , ��1(s) � pms for all s � 0 .

Proof. Proposition 2.11 (i) entails �(r) � �(p) � (r � p)�(p)=p for all r > p > 0 , hence

�
�1 is locally Lipschitz in ]0;1[ . We obviously have r � �(r) � r � diam Z , hence

lim
s!1(��1(s))=s = 1 . To conclude, notice that Exercise 2.12 (iii) and Proposition 2.11

(iii) yield m�(r) � r
2 for r 2 [0;m] and the trivial inequality �(r) � r < r

2
=m for

r > m completes the proof. l
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2.4 The Minkowski functional

De�nition 2.15 Let A � X be a given set. Then

A
� := fy 2 X; hy; xi � 1 8x 2 Ag(2.12)

is called the polar of A .

We immediately see that A� is convex and closed, 0 2 A
� . The following duality state-

ment holds.

Lemma 2.16 Let A be as in De�nition 2.15, let A
��

be the polar of A
�
and let conv

denote the closure of the convex hull. Then

A
�� = conv (A [ f0g) :

Proof. Put Â := conv (A [ f0g) . We have by de�nition

A
�� = fz 2 X; hy; zi � 1 8 y 2 A

�g ;(2.13)

hence 0 2 A
�� and A � A

�� . Since A
�� is convex and closed, we necessarily have

Â � A
�� . To prove the inclusion A�� � Â, we �x an arbitrary z 2 A�� and apply Lemma

2.1 with the projection pair ( P̂ ; Q̂) associated to Â. This yields

hP̂ z ; z � P̂ z � xi � 0 8x 2 Â :(2.14)

For every k>0 we have in particular

hk P̂ z ; zi � k jP̂ zj2 + sup
n
hk P̂ z ; xi ; x 2 A

o
:(2.15)

Put

� := inf
n
k > 0 ; k P̂ z =2 A�

o
:(2.16)

From (2.15) it follows � > 0 and we distinguish two cases.

(i) � = +1 : Putting x := 0 in (2.14), we obtain

k jP̂ zj2 � hk P̂ z ; zi � 1 8 k > 0 :(2.17)

(ii) � < +1 : Then � P̂ z 2 @A� , hence sup
n
h� P̂ z; xi ; x 2 A

o
= 1 and (2.15) yields

1 + � jP̂ zj2 � h� P̂ z ; zi � 1 :(2.18)

In both cases (2.17) and (2.18), we conclude P̂ z = 0 , hence z 2 Â. Lemma 2.16 is proved.

l
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Lemma 2.17 Let A , A
�
be as in De�nition 2.15 and let R > 0 be given. Then

A � B
R
(0) () B1=R(0) � A

�
:(2.19)

Proof. Assume A � B
R
(0) and �x y 2 B1=R(0) . Then for x 2 A we have hy; xi �

jyj jxj � 1 , hence y 2 A
� . Conversely, let B1=R(0) � A

� and �x x 2 A . Then jxj =
sup fhx;wi ; w 2 B1(0)g = R sup fhx; yi ; y 2 B1=R(0)g � R . l

De�nition 2.18 Let Z � X be a convex closed set, 0 2 Z . The functional M : X !
R

+ [ f+1g de�ned by the formula

M(x) := inf

�
s > 0 ;

1

s
x 2 Z

�
for x 2 X :(2.20)

is called the Minkowski functional of Z .

The functional M is sometimes called gauge, cf. [Ro]. We list without proof some of its

basic properties.

Proposition 2.19 In the situation of De�nition 2.18, we have

(i) Z = fx 2 X; M(x) � 1g ;
(ii) C

Z
:= fx 2 X; M(x) = 0g ;

(iii) M(tx) = tM(x) 8x 2 X ; 8 t � 0 ;

(iv) M(x + y) � M(x) + M(y) 8x; y 2 X :

As an immediate consequence of the above considerations, we have the following

Proposition 2.20 Let Z � X be a convex closed set and let R > r > 0 be given numbers

such that

B
r
(0) � Z � B

R
(0) :(2.21)

Then

B1=R(0) � Z
� � B1=r(0) ;(2.22)

1

R
jxj � M(x) � 1

r
jxj 8x 2 X ;(2.23)

where Z
�
is the polar and M is the Minkowski functional of Z .

According to (2.23) and Proposition 2.19, the Minkowski functional of a convex set Z

satisfying the hypotheses of Proposition 2.20 is convex and Lipschitz continuous. Its

subdi�erential has the following properties.
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Lemma 2.21 Let Z satisfy the hypotheses of Proposition 2.20, let M;M
�
be the Minkow-

ski functionals of Z;Z
�
, respectively, and let @M be the subdi�erential of M . Then

(i) @M(x) 6= ; 8x 2 X ,

(ii) @M(tx) = @M(x) 8x 2 X ; 8 t > 0 ,

(iii) hw; xi = M(x) ; hw; yi � M(y) 8x; y 2 X ; 8w 2 @M(x) .

(iv) M
�(w) = 1 8w 2 @M(x) ; 8x 6= 0 .

Proof. (i) We have for all x 2 X
w 2 @M(x) () hw; x � yi � M(x) � M(y) 8 y 2 X ;(2.24)

hence 0 2 @M(0) . For x 6= 0 , we choose a sequence 0 < t
n
% M(x); n = 1; 2; : : : , and

put x
n
:= x=t

n
, x0 := x=M(x) . Let (P;Q) be the projection pair associated to Z by

(2.3). Then x
n
62 Z for n � 1 , hence Px

n
6= 0 and

hPx
n
; Qx

n
� zi � 0 8 z 2 Z :(2.25)

On the other hand, we have Qx0 = x0 , and jQx
n
� x0j � jx

n
� x0j ! 0 as n ! 1 .

Selecting a subsequence, if necessary, we may assume that Px
n
=jPx

n
j converge weakly

to some w0 2 B1(0) . Then (2.25) yields

hw0; x0 � zi � 0 8 z 2 Z :(2.26)

Putting z := r Px
n
=jPx

n
j in (2.25) and passing to the limit as n!1 , we obtain

hw0; x0i � r > 0 :(2.27)

Inequality (2.26) implies�
w0;

x

M(x)
� y

M(y)

�
� 0 8 y 2 X n f0g ;(2.28)

or equivalently,

hw0; x � yi � (M(x) � M(y)) hw0; x0i 8 y 2 X :(2.29)

According to (2.24) and (2.27), we have w := w0=hw0; x0i 2 @M(x) and (i) is proved.

Using Proposition 2.19 (iii) we obtain (ii) trivially from (2.24), part (iii) follows from

(2.24) by putting successively y := 0 and y := 2x and part (iv) follows from (iii). l

Remark 2.22 Lemma 2.21 does not hold for general convex closed sets Z . To see this,

we �rst notice that by (2.24), for every x with M(x) > 0 and every w 2 @M(x) we have

w 6= 0 ;(2.30)

�
w;

x

M(x)
� y

�
� 0 8 y 2 Z :(2.31)
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As an example, we choose X := L
2(0; 1) , Z := fz 2 X; �1 � z(t) � 1 a.e. g , x(t) := t

for t 2 [0; 1] . Then Z is convex and closed, 0 2 Z , M(x) = 1 . Assume that @M(x) is

nonempty and let w 2 @M(x) be arbitrary. By (2.31), we haveZ 1

0

w(t) t dt � sup

�Z 1

0

w(t) y(t) dt ; y 2 X ; � 1 � y(t) � 1 a.e.

�

=

Z 1

0

jw(t)j dt

hence w = 0 , which contradicts (2.30).

The main result of this section reads as follows.

Theorem 2.23 Let Z satisfy the hypotheses of Proposition 2.20. Let Z
�
be the polar of

Z and let M ; M
�
be the Minkowski functionals of Z ; Z

�
, respectively. For x 2 X put

J(x) :=M(x) @M(x) ; J�(x) := M
�(x) @M�(x) . Then

(i) hw � z; x � yi � (M(x) � M(y))
2

8x; y 2 X ; w 2 J(x) ; z 2 J(y) ;

(ii) hw� � z
�
; x � yi � (M�(x) � M

�(y))
2

8x; y 2 X ; w
� 2 J

�(x) ; z� 2 J
�(y) ;

(iii) y 2 J(x) () x 2 J
�(y) 8x; y 2 X ;

(iv) Z
� = J(Z) ; Z = J

�(Z�) ;

where J(Z) :=
[
x2Z

J(x) ; J�(Z�) :=
[
y2Z�

J
�(y) .

Before proving Theorem 2.23, we state an auxiliary Lemma.

Lemma 2.24 Let the hypotheses of Theorem 2.23 hold. Then for all x; y 2 X n f0g we

have

hy; xi � M(x)M�(y) ;(2.32)

hy; xi = M
�(y)M(x) () x

M(x)
2 @M�(y) () y

M�(y)
2 @M(x) :(2.33)

Proof of Lemma 2.24. Inequality (2.32) follows immediately from the de�nition of Z�

and Lemma 2.21 (iii) yields the implications

x

M(x)
2 @M�(y) ) hy; xi =M

�(y)M(x) ;

y

M�(y)
2 @M(x) ) hy; xi =M

�(y)M(x) :

Assume now

hx; yi = M(x)M�(y) for some x; y 2 X n f0g :(2.34)
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Then, by (2.32) we have�
x

M(x)
; y � z

�
� M

�(y) � M
�(z) 8 z 2 X ;�

y

M�(y)
; x � z

�
� M(x) � M(z) 8 z 2 X

and the assertion follows. l

Proof of Theorem 2.23. Inequalities (i), (ii) follow from (2.24) (and the corresponding

inequality for M� ). To prove (iii), it su�ces to �x x 2 X and y 2 J(x) and prove that

x 2 J
�(y) . The other implication then follows from the duality Z = Z

�� and J = J
�� .

The de�nition of J immediately entails J(0) = f0g ; J�(0) = f0g , hence it su�ces to

assume x 6= 0 . By Lemma 2.21 (iii), (iv) we have

hy; xi =M
2(x) ; M

�(y) = M(x) :(2.35)

and Lemma 2.24 (ii) yields the assertion. To prove (iv), it su�ces to use (iii) and (2.35).

l

We call J the duality mapping induced by Z . It can be interpreted geometrically by

means of the normal cone N
Z
(x) in the following way.

Proposition 2.25 Let the hypotheses of Theorem 2.23 hold. Then for every x 2 @Z , we

have J(x) � N
Z
(x) . Conversely, for each y 2 N

Z
(x) , y 6= 0 , we have hy; xi = M

�(y)

and y=hy; xi 2 J(x) .

Proof. The inclusion J(x) � N
Z
(x) follows immediately from the de�nition. Let now

y 2 N
Z
(x) , y 6= 0 be given. Then hy; xi � hy; zi for all z 2 Z , hence y=hy; xi 2 Z

� .

We have in particular M�(y) � hy; xi and from (2.32) (note that M(x) = 1) we obtain

hy; xi =M
�(y) . Lemma 2.24 then completes the proof. l

Exercise 2.26 Prove that M�2
=2 is the conjugate function to M2

=2 in the sense of [AE],

that is,

1

2
M

�2(y) = sup

�
hy; xi � 1

2
M

2(x) ; x 2 X
�

for every y 2 X :(2.36)

`Smooth' convex domains Z � X are those where N
Z
(x) reduces to a half-line for each

x 2 @Z . By Proposition 2.25, this is equivalent to saying that J is a single-valued

mapping. We have the following dual characterization of such domains.

Theorem 2.27 In the situation of Theorem 2.23, the following conditions are equivalent.

(i) J is single-valued,

(ii) Z
�
is strictly convex according to De�nition 2.9.
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Proof.

(ii) ) (i) : Let x 2 X and y0; y1 2 J(x) be given. For x = 0 we have y0 = y1 = 0 ,

otherwise we put y := (y0 + y1)=2 . Then y 2 J(x) and M
�(y) = M

�(y0) = M
�(y1) =

M(x) . Consequently, all y0=M(x) , y1=M(x) , y=M(x) belong to @Z� , hence y0 = y1 .

non (ii) ) non (i) : Assume that there exist y0 6= y1 2 Z
� such that y := (y0 + y1)=2 2

@Z
� . Let x 2 J�(y) be arbitrarily chosen. Then M(x) = M

�(y) = 1 and

1 = hx; yi = 1

2
(hx; y0i + hx; y1i) � 1 :

This yields hx; y0i = hx; y1i = 1 = M
�(y0) = M

�(y1) and from Lemma 2.24 (ii), we

conclude y0; y1 2 J(x) and Theorem 2.27 is proved. l

Example 2.28 If Z = fx 2 X ; hx; n
i
i � �

i
; i = 1; : : : ; pg is a polyhedron with a

system fn
i
; i = 1; : : : ; pg of unit vectors and with �

i
> 0 , then Z

� is the polyhedron

Z
� = conv (f0; n1=�1; : : : ; np=�pg).

3 The play and stop operators

The elementary hysteresis operators called stop and play have already been introduced in

Section 1. The rigorous construction presented here follows the exposition in [K] and is

slightly di�erent from the approach of [KP] and [V]. We admit the in�nitely dimensional

case and start with nonsmooth input functions. More precisely, we de�ne the inputs and

outputs in the space CBV (0; T ;X) of continuous functions of bounded variation with

values in a Hilbert space X . We further prove that the restriction of the play and stop

operators to Sobolev spaces W 1;p(0; T ;X) is continuous and bounded if 1 � p < 1
and discontinuous for p = +1 . If the convex constraint Z has nonempty interior, the

extension of these operators is shown to be continuous (but not necessarily bounded)

from C([0; T ];X) to C([0; T ];X) , together with an interesting smoothening property of

the play, namely that it maps C([0; T ];X) into CBV (0; T ;X) . A brief survey of the

functional framework used here can be found in Section 8. The �rst step consists in

proving the following generalization of Theorem 1.7.

Theorem 3.1 Let a real separable Hilbert space X , a convex closed set Z � X with

0 2 Z , an element x0 2 Z and a function u 2 CBV (0; T ;X) be given. Then there exist

uniquely determined � 2 CBV (0; T ;X) , x 2 CBV (0; T ;Z) such that

(i) x(t) + �(t) = u(t) 8t 2 [0; T ] ;(3.1)

(ii) x(0) = x0 ;

(iii)

Z
T

0



x(t)� '(t); d�(t)

� � 0 8' 2 C([0; T ];Z) :

We rewrite the Riemann-Stieltjes integral in (iii) in an equivalent, but more convenient

form.
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Lemma 3.2 Let x 2 C([0; T ];Z) and � 2 NBV (0; T ;X) satisfy (3.1) (iii). Then

Z
t

s



x(� )�  (� ); d�(� )

� � 0 8 2 C([s; t];Z) for all 0 � s < t � T :(3.2)

Proof. Let 0 < s < t � T and  2 C([s; t];Z) be given (the case s = 0 is analogous).

For 0 < � < minfs; t� sg put

'
�
(� ) :=

8>><
>>:

x(� ) for � 2 [0; s� �[[ ]t; T ] ;

x(s� �) + ��s+�
�

( (s)� x(s� �)) for � 2 [s� �; s[ ;

 (� ) for � 2 [s; t� �] ;

x(t) + t��
�

( (t� �)� x(t)) for � 2 ]t� �; t] :

Then (3.1) (iii) and (8.26) yield

0 �
Z

T

0



x(� )� '

�
(� ); d�(� )

�
=

Z
t

s



x(� )�  (� ); d�(� )

�
+

1

�

Z
s

s��



�(s) � �(� ); x(s� �)�  (s)

�
d�

+

Z
s

s��



x(� )� x(s� �); d�(� )

�
+

Z
t

t��



 (� )�  (t� �); d�(� )

�
+

1

�

Z
t

t��



�(t)� �(� );  (t� �)� x(t)

�
d� :

Using (8.22) and (8.7) we can pass to the limit as �! 0 and the proof is complete. l

Let us note that if two variational inequalities of the form (3.2) are satis�ed, that is,

Z
t

s



x
i
(� )�  (� ); d�

i
(� )
� � 0 8 2 C([s; t];Z) ; i = 1; 2 ;(3.3)

with u
i
= x

i
+ �

i
, x

i
2 C([s; t];Z) , �

i
2 CBV (s; t ;X) , then putting  := (x1 + x2)=2 ,

we obtain from (3.2), (8.24) and (8.22)

j�1(t)� �2(t)j2 � j�1(s)� �2(s)j2 + 2ju1 � u2j1
�
Var
[s;t]

�1 +Var
[s;t]

�2

�
:(3.4)

Proof of Theorem 3.1. Uniqueness follows immediately from the inequality (3.4). The

existence proof is carried out by a simple time-discretization scheme. For a �xed n 2 N
we de�ne

u
j
:= u

�
jT

n

�
; j = 0; : : : ; n :(3.5)

Let (P;Q) be the projection pair de�ned by formula (2.3). We construct the sequences(
x
j
:= Q(x

j�1 + u
j
� u

j�1); j = 1; : : : ; n;

�
j
:= u

j
� x

j
; j = 0; : : : ; n:

(3.6)
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We have �
j
� �

j�1 = P (x
j�1 + u

j
� u

j�1) and Lemma 2.2 (i) yields

�
j
� �

j�1; xj � z
� � 0 8z 2 Z; 8j 2 f1; : : : ; ng:(3.7)

Putting z := x
j�1 and V

u
:= Var

[0;T ]
u , we immediately obtain from (3.7)

nX
j=1

j�
j
� �

j�1j � V
u
:(3.8)

We now de�ne piecewise linear functions u(n); �(n); x(n) 2 W 1;1(0; T X) by the formula8>>><
>>>:
u
(n)(t) := u

j�1 + n
�
t

T

� j�1

n

�
(u

j
� u

j�1);

�
(n)(t) := �

j�1 + n
�
t

T

� j�1

n

�
(�

j
� �

j�1);

x
(n)(t) := x

j�1 + n
�
t

T

� j�1

n

�
(x

j
� x

j�1)

(3.9)

for t 2 [(j � 1)T=n; jT=n[ and j = 1; : : : ; n , continuously extended to t = T .

Let �
u
: R+ ! R

+ be the continuity modulus of u , that is

�
u
(�) := sup fju(t)� u(s)j ; jt� sj � �g for � > 0:(3.10)

For every � 2 ](j � 1)T=n; jT=n[ and z 2 Z we have by (3.7) and Lemma 2.2 (i)



_�(n)(� ); x(n)(� )� z

� � �n
T



�
j
� �

j�1; xj � x
j�1

�
� �n

T



�
j
� �

j�1; uj � u
j�1

�
� �n

T
�
u

�
T

n

�
j�
j
� �

j�1j

and estimate (3.8) yieldsZ
t

0



x
(n)(� )� '(� ); d�(n)(� )

� � �V
u
�
u

�
T

n

�
(3.11)

for all n 2 N , t 2 [0; T ] and ' 2 C([0; T ];Z) .

The proof of Theorem 3.1 will be complete if we prove that

f�(n) ;n 2 Ng is a uniformly convergent sequence.(3.12)

Indeed, in this case it su�ces to use inequality (3.11) and Theorem 8.16, since the sequence

fu(n)g is uniformly convergent and Var
[0;T ]

�
(n) � V

u
by (3.8).

To prove (3.12), we put '(� ) :=
�
x
(n)(� ) + x

(`)(� )
�
=2 for two di�erent values of n in

(3.11), say n; ` . ThenZ
t

0



_�(n)(� )� _�(`)(� ); x(n)(� )� x

(`)(� )
�
d� � �V

u

�
�
u

�
T

n

�
+ �

u

�
T

`

��
;(3.13)
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hence, by inequality (8.22),

1

2

���(n) � �
(`)
��2
1
�
��u(n) � u

(`)
��
1

�
Var
[0;T ]

�
(n) +Var

[0;T ]
�
(`)

�
+ V

u

�
�
u

�T
n

�
+ �

u

�T
`

��
:

The sequence f�(n)g is therefore fundamental in C([0; T ];X) , hence (3.12) holds and

Theorem 3.1 is proved. l

De�nition 3.3 Let Z � X be a convex closed set, 0 2 Z and let u 2 CBV (0; T ;X) ,

x
0 2 Z be given. Let (x; �) be the solution of (3.1). We de�ne the value P(x0; u);S(x0; u)

of the play and stop operators P;S : Z � CBV (0; T ;X) ! CBV (0; T ;X) , respectively,

by the formula

P(x0; u) := �; S(x0; u) := x:(3.14)

Remark 3.4 The initially unperturbed state is characterized by the choice x0 = Qu(0)

of the initial condition (3.1) (ii). In this case we use the simpli�ed notation

P(u) := P(Qu(0); u); S(u) := S(Qu(0); u):(3.15)

3.1 Absolutely continuous inputs

It is natural to expect that play and stop operators act in Sobolev spaces W 1;p(0; T ;X) .

Before passing to the continuity statement, we give in Proposition 3.5 below a precise

meaning to the normality rule mentioned in Section 1. It also yields the unique orthogonal

decomposition of _u(t) into the components _�(t) 2 N
Z
(x(t)) and _x(t) 2 T

Z
(x(t)) , see

Subsection 2.2. This can be used as an alternative de�nition of the play and stop operators,

see [KP].

Proposition 3.5 Let Z � X be a convex closed set with 0 2 Z , let x0 2 Z be a given

initial value and let u 2 W
1;1(0; T ;X) be given. Then � := P(x0; u) , x := S(x0; u)

belong to W
1;1(0; T ;X) and satisfy

(i)


_�(t); x(t)� z

� � 0 a.e. 8z 2 Z ;(3.16)

(ii)


_�(t); _x(t)

�
= 0 a.e.

Proof. For arbitrary 0 � s < t � T and � 2 [s; t] put  (� ) := x(s) in (3.2). Then (8.24)

and (8.26) yield

1

2
j�(t)� �(s)j2 �

Z
t

s

hu(� )� u(s); d�(� )i =

Z
t

s

h�(t) � �(� ); _u(� )i d�(3.17)

� max
s���t

fj�(t)� �(� )jg
Z

t

s

j _u(� )j d� ;

hence

j�(t)� �(s)j � 2

Z
t

s

j _u(� )j d� 8 0 � s < t � T :(3.18)
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This implies � 2 W 1;1(0; T ;X) and according to (8.25), we haveZ
t

s

h _�(� ); x(� )�  (� )i d� � 0 8 2 C([s; t];Z) ; 8 0 � s < t � T(3.19)

which is equivalent to (3.16) (i). To prove (3.16) (ii), it su�ces to put z := x(t� h) in

(3.16) (i) and let h tend to 0+ using Theorem 8.14. l

It is easy to see that P;S are Lipschitz continuous as operators from Z �W
1;1(0; T ;X)

to C([0; T ];X) . Indeed, putting x := S(x0; u) , y := S(y0; v) for given x0; y0 2 Z ,

u; v 2 W 1;1(0; T ;X) we immediately obtain from (3.16)(i)

1

2

d

dt

��x(t)� y(t)
��2 � 
x(t)� y(t); _u(t)� _v(t)

�
a.e.,(3.20)

consequently

jx(t)� y(t)j � jx0 � y0j+
Z

t

0

j _u(� )� _v(� )j d� 8t 2 [0; T ] :(3.21)

The continuity of P;S in Z � W
1;p(0; T ;X) ! W

1;p(0; T ;X) for 1 � p < 1 with

respect to the norm juj1;p := ju(0)j+ j _uj
p
is established in Theorem 3.6 below.

Theorem 3.6 Let Z � X be a convex closed set with 0 2 Z , let fu
n
; n 2 N [ f0gg be

a given sequence in W
1;p(0; T ;X) for some p 2 [1;1[ such that lim

n!1 jun� u0j1;p = 0

and let x
0
n
2 Z be given initial values, lim

n!1 jx0n � x
0
0j = 0 . Put �

n
:= P(x0

n
; u

n
) for

n 2 N [ f0g . Then lim
n!1 j�n � �0j1;p = 0 .

Proof. For n 2 N [ f0g put x
n

:= u
n
� �

n
, y

n
:= x

n
� �

n
. From (3.21) we infer

j�
n
� �0j1 ! 0 , jx

n
� x0j1 ! 0 , jy

n
� y0j1 ! 0 . By (3.16)(ii) we also have

j _y
n
j = j _u

n
j a.e. 8n 2 N [ f0g :(3.22)

Theorem 8.7 for v
n
:= _y

n
, g

n
:= j _u

n
j yields lim

n!1 jyn�y0j1;1 = 0 . There exists therefore

a subsequence fy
nk
g such that lim

k!1 j _ynk(t)� _y0(t)j = 0 a.e. and from Theorem 8.5 we

conclude

lim
k!1

jy
nk
� y0j1;p = 0 :(3.23)

Since every subsequence of fy
n
g contains a subsequence satisfying (3.23), the proof is

complete if we take into account the relations x
n
= (u

n
+ y

n
)=2 , �

n
= (u

n
� y

n
)=2 . l

In [K] it is proved that the play operator depends continuously also on its characteristic

Z in terms of the Hausdor� distance H(A;B) of two sets A;B � X de�ned as

H(A;B) := maxfsup fdist (y;A); y 2 Bg; sup fdist (x;B);x 2 Agg :(3.24)

The result reads as follows.

Theorem 3.7 Let fZ
n
; n 2 N [ f0gg be a sequence of convex closed sets in X such that

0 2 \1
n=0Zn

, lim
n!1H(Z0; Zn

) = 0 and let fx0
n
g be a sequence of initial values such that

lim
n!1 jx0n � x

0
0j = 0 . Let fu

n
; n 2 N [ f0gg be a sequence in W

1;p(0; T ;X) such that

lim
n!1 jun � u0j1;p = 0 for some p 2 [1;+1[ . Put �

n
:= P

n
(x0

n
; u

n
) for n 2 N [ f0g ,

where P
n
is the play with characteristic Z

n
. Then lim

n!1 j�n � �0j1;p = 0 .
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Remark 3.8 A counterpart of Theorem 3.6 does not hold for p = +1 even if dimX = 1 .

It su�ces to consider Z = [�1; 1] , T = 1 and the sequence u
n
(t) := (1 + 1=n) t for

t 2 [0; 1] , n 2 N with u0(t) := t , x0
n
:= 0 . We then have

�0(t) � 0; �
n
(t) :=

(
0 for t 2 �0; n

n+1

�
;�

1 + 1
n

�
t� 1 for t 2 � n

n+1
; 1
� for n 2 N;

hence ju
n
� u0j1;1 ! 0 , j�

n
� �0j1;1 � 1 .

Remark 3.9 rm On smooth characteristics, i.e. those, where the unit outward normal

n(x) is de�ned for every x 2 @Z , we can derive explicit di�erential equations for the

output values of the stop and play operators. Denoting as usual � = P(x0; u) , x =

S(x0; u) , we have

_x(t) =

�
_u(t) � 


_u(t); n(x(t))
�
n(x(t)) if x(t) 2 @Z ; 
 _u(t); n(x(t))� > 0 ;

_u(t) otherwise :
(3.25)

3.2 Continuous inputs

Theorem 3.12 below enables us to extend the stop and play to the space C([0; T ];X) .

The construction in [KP] has originally been designed for bounded convex sets Z with

nonempty interior in a �nite-dimensional space X . Using the concept of complementary

function (see De�nition 2.4), we apply the same idea to the general case of recession sets

(De�nition 2.6) in a Hilbert space. The argument relies on the following Lemma.

Lemma 3.10 Let B � C([0; T ];X) be a compact set, let Z � X be a recession set with

B
m
(0) � Z and let r > 0 be given. Then there exists a constant C > 0 such that for

every u 2 B \ BV (0; T ;X) and every x0 2 Z \ Br
(0) we have

Var
[0;T ]

P(x0; u) � C;(3.26)

where P is the play operator corresponding to Z .

Proof. Put 
 := m=6 . We �nd u1; : : : ; uN 2 B such that B � [N
k=1fu 2 C([0; T ];X) ; ju�

u
k
j1 < 
g , and �x � > 0 such that maxf�

uk
(�) ; k = 1; : : : ; Ng < 
 . We �rst prove that

for every u 2 B \BV (0; T ;X) , x0 2 Z and 0 � s < t � T such that jt� sj < � we have

Var
[s;t]

P(x0; u) � 1

m
K

2
Z
(jS(x0; u)(s)j) ;(3.27)

where K
Z

is the complementary function. Put � := P(x0; u) , x := S(x0; u) . We �nd

x̂ 2 C
Z
such that jx(s)� x̂j � K

Z
(jx(s)j) and put for � 2 [s; t]

 (� ) := x̂+ u(� )� u(s) +
m

2
'(� )

for some ' 2 C([s; t];X) ; j'j1 � 1 . We have j (� ) � x̂j � m for all � 2 [s; t] , hence

 2 C([s; t];Z) by Proposition 2.5. Inequality (3.2) and identity (8.24) then entail

m

4

Z
t

s



'(� ); d�(� )

� � Z t

s



u(s)� x̂� �(� ); d�(� )

�
=

1

2
jx(s)� x̂j2 � 1

2
ju(s)� x̂� �(t)j2;
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and inequality (3.27) follows from (8.23).

Putting R := 1 + T=� , we obtain from (3.27)

Var
[0;T ]

� � R

m
K

2
Z
(jxj1):(3.28)

Inequality (3.4) for u2 = �2 = 0 , s = 0 , u1 = u , �1 = � yields j�j21 � ju(0) � x0j2 +
2juj1 Var

[0;T ]
� , hence

jxj21 � 4 juj21 + r
2 +

2R

m
juj1 (K

Z
(jxj1))

2

The set B is bounded, hence the last inequality and property (2.7) of recession sets

provide an upper bound for jxj1 independent of u 2 B . Inequality (3.26) then follows

from (3.28). l

We now use Lemma 3.10 to extend the operators P;S to arbitrary continuous inputs in

the following way.

Theorem 3.11 Let Z � X be a recession set and let x0 2 Z , u 2 C([0; T ];X) be given.

Then there exist uniquely determined � 2 CBV (0; T ;X) , x 2 C([0; T ];Z) such that (3.1)

holds.

Proof. Let fu
n
;n 2 Ng be a sequence in CBV (0; T ;X) such that lim

n!1 ju�unj1 = 0 .

From Lemma 3.10 we obtain

9C > 0 8n 2 N : Var
[0;T ]

P(x0; un) � C(3.29)

and (3.4) yields

jP(x0; un)�P(x0; uk)j21 � ju
n
(0)� u

k
(0)j2 + 4Cju

n
� u

k
j1(3.30)

for all k; n 2 N . The sequence fP(x0; un)g therefore admits a uniform limit in the space

C([0; T ];X) . This limit is independent of the concrete choice of the sequence fu
n
g and

we denote it by P(x0; u) . By Proposition 8.10 (ii) we have

Var
[0;T ]

P(x0; u) � C ;(3.31)

and using Theorem 8.16 we can pass to the limit in (3.1). l

As a consequence of Theorem 3.11, we see that inequality (3.4) holds whenever u1; u2 2
C([0; T ];X) . This immediately yields the following result which states that P : Z �
C([0; T ];X)! C([0; T ];X) is 1=2 -Hölder continuous on compact sets.

Theorem 3.12 Let the hypotheses of Lemma 3.10 be satis�ed. Then there exists a con-

stant C > 0 such that for all u; v 2 B and x
0
; y

0 2 Z \B
r
(0) we have

jP(x0; u)�P(y0; v)j1 � C (ju� vj1)1=2 + ju� vj1 + jx0 � y
0j :(3.32)
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Corollary 3.13 Let fu
n
;n 2 N [ f0gg be a given sequence in C([0; T ];X) such that

lim
n!1 jun � u0j1 = 0 and let x

0
n
2 Z be given initial values, x

0
0 = lim

n!1 x
0
n
. Put

�
n
:= P(x0

n
; u

n
) for n 2 N [ f0g . Then lim

n!1 j�n � �0j1 = 0 .

Similarly as in Theorem 3.7, the play operator depends continuously on the set Z also in

C([0; T ];X) , see [K].

Theorem 3.14 Let fu
n
g1
n=0 be a sequence in C([0; T ];X) , let fZ

n
g1
n=0 be a sequence of

recession sets such that lim
n!1 jun � u0j1 = 0 , lim

n!1H(Z
n
; Z0) = 0 , and let x

0
n
2 Z

n

be given initial values, lim
n!1 jx0n � x

0
0j = 0 . Put �

n
:= P

n
(x0

n
; u

n
) for n 2 N [ f0g ,

where P
n
is the play with characteristic Z

n
. Then lim

n!1 j�n � �0j1 = 0 .

By Proposition 3.5, we have j _x(t)j � j _u(t)j almost everywhere for every u 2 W 1;p(0; T ;X)

and x0 2 Z , hence the stop operator S : Z � W
1;p(0; T ;X) ! W

1;p(0; T ;X) is not

only continuous, but also bounded. Example 3.15 below shows that this is not true

in C([0; T ];X) in general. In fact, such behavior arises typically in isotropic hardening

models (cf. Example 1.5). Combining this result with identity (1.32) we obtain an elegant

example of general interest in functional analysis of an operator which is continuous

together with its inverse, but neither the operator itself, nor its inverse are bounded.

Example 3.15 Consider a set Z := f(a; b) 2 R2 ; �f(a) � b � f(a)g � X = R
2 , where

f : [�1;1[! [�1; 1[ is a concave increasing smooth function, f(�1) = 0 , f 0(�1+) =

+1 . Let w be an arbitrary continuously di�erentiable function in [0; 1] and put u(t) :=

(0; w(t)) , x(t) = (a(t); b(t)) := S(0; u)(t) for t 2 [0; 1] . By (3.25) we have

_a(t) =

8<
: j _w(t)j f

0(a(t))

1 + f 0
2(a(t))

if _w(t) 6= 0 ; sign ( _w(t)) b(t) = f(a(t)) ;

0 otherwise ;

(3.33)

hence a is nondecreasing and nonnegative. Assume that w increases in an interval [s; t] ,

w(s) = �1 , w(t) = 1 . Then a(� ) = a(s) as long as b(� ) = b(s) + w(� ) � w(s) stays

below f(a(s)) , i.e. for � 2 [s; �0] with w(�0) � w(s) = f(a(s))� b(s) , while in ]�0; t] we

�nd a(� ) as solution of the equation (3.33) with initial condition a(�0) = a(s) . We have

in particular

a(t)� a(s) =

Z
t

�0

_w(� )
f
0(a(� ))

1 + f 0
2(a(� ))

d� � (w(t)� w(�0))
f
0(a(t))

1 + f 0
2(a(t))

(3.34)

� 2 (1� f(a(t)))
f
0(a(t))

1 + f 0
2(a(t))

:

The same estimate holds if we assume that w decreases in [s; t] , w(s) = 1 , w(t) =

�1 . The above considerations show that S(0; �) does not map the bounded set M =

fu
n
2 C([0; 1];R2) ; u

n
(t) = (0; cos n�t)g into a bounded set, since by (3.34) we have

sup fa
n
(1) ; n 2 Ng =1 , where (a

n
; b

n
) := S(0; u

n
) .

Remark 3.16 We have seen in (1.13), (1.14) that in classical models of plasticity, the

characteristic Z has often the form of a convex cylinder Z = ~Z+Y ? as in De�nition 2.8.
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Let P;S : Z � C([0; T ];X) ! C([0; T ];X) , ~P; ~S : ~Z � C([0; T ];Y ) ! C([0; T ];Y ) be

the play and stop operators with characteristics Z; ~Z , respectively, let ~x0 2 ~Z , y 2 Y ,

x
0 = ~x0 + y be given vectors and let v 2 C([0; T ];Y ) , w 2 C([0; T ];Y ?) , u = v + w be

given functions. The time-discrete construction in the proof of Theorem 3.1 and Remark

2.10 then yield

P(x0; u) = ~P(~x0; v) ; S(x0; u) = ~S(~x0; v) + w :(3.35)

4 Uniformly strictly convex characteristics

The concept of uniform strict convexity introduced in De�nition 2.13 enables us to prove

a uniform continuity result for the play operator in Z � C([0; T ];X) ! C([0; T ];X)

following Section 17.1 of [KP].

Theorem 4.1 Let Z � X be uniformly strictly convex and let � be the function associ-

ated to Z by formula (2.10). Then for all u; v 2 C([0; T ];X) , x0; y0 2 Z we have

jP(x0; u)�P(y0; v)j1 � max
�jx0 � y

0 � u(0) + v(0)j ; ��1 (ju� vj1)
	
:(4.1)

Proof. By density and continuity, it su�ces to assume u; v 2 W
1;1(0; T ;X) . Put � :=

P(x0; u) , � := P(y0; v) , x := u� � , y := v � � and

V (t) := max
�j�(t)� �(t)j ; ��1 (ju� vj1)

	
for t 2 [0; T ] :

The function V is absolutely continuous. Assume that for some t 2]0; T [ we have _V (t) >

0 . Then

j�(t)� �(t)j > �
�1 (ju� vj1)(4.2)

and d=dt (j�(t)� �(t)j2) = 2


_�(t)� _�(t); �(t)� �(t)

�
> 0 .

At least one of the expressions


_�(t); �(t) � �(t)

�
,


_�(t); �(t) � �(t)

�
must therefore be

positive. Let us choose for instance


_�(t); �(t)� �(t)

�
> 0 . This implies _�(t) 6= 0 , hence

by Proposition 3.5 we have x(t) := u(t) � �(t) 2 @Z and �(t) � �(t) 2 X n T
Z

�
x(t)

�
.

From the de�nition of the function � we infer

�(j�(t) � �(t)j) � jP �x(t) + �(t)� �(t)
�j � jx(t) + �(t) � �(t)� y(t)j = ju(t)� v(t)j

which contradicts (4.2). We conclude _V (t) � 0 a.e. and the assertion follows. l

Proposition 2.14 implies that Theorem 4.1 cannot give better results than a global 1=2 -

Hölder estimate. Example 4.3 of [K] shows that for Z = B
r
(0) , the uniform bound (4.1)

is optimal.

5 Smooth characteristics

In this section we derive further regularity properties of the play operator P under the

following hypothesis.
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Hypothesis 5.1 Z � X is a convex closed set such that

(i) B
r
(0) � Z � B

R
(0) ;(5.1)

(ii) for each x 2 @Z there exists a unique outward normal vector n(x) ;

jn(x)j = 1 ;

(iii) the mapping n : @Z ! @B1(0) is continuous :

Indeed, (iii) follows from (ii) if dimX < 1 . This need not be true for dimX = 1 , cf.

the example on p. 46 of [K].

5.1 Strict continuity

We already know that the play maps in general Z � C([0; T ];X) into CBV (0; T ;X) .

This mapping is discontinuous with respect to the strong topologies of C([0; T ];X) and

BV (0; T ;X) even in the simplest case dimX = 1 . This can easily be veri�ed by the

following construction.

Example 5.2 Put X := R
1 , Z = [�1; 1] , u0(t) := 1+ t , u

n
(t) := 1+ t+(1=n) sin nt for

n 2 N and t 2 [0; 2�] , �
n
:= P(1; u

n
) , x

n
:= u

n
� �

n
for n 2 N [ f0g . The functions u

n

are nondecreasing, x
n
(0) = 1 . Proposition 3.5 yields x

n
(t) = 1 for all n 2 N [ f0g and

t 2 [0; 2�] , hence �0(t) = t , �
n
(t) = t+ (1=n) sin nt for n 2 N , and we easily check that

lim
n!1 jun � u0j1 = 0 , Var

[0;2�]
(�

n
� �0) = 4 .

We however prove here that the play operator is continuous with respect to the strict

metric (8.11).

Proposition 5.3 Let Hypothesis 5.1 hold. Then for every sequence
�
(x0

k
; u

k
) ; k 2 N [

f0g	 in Z�C([0; T ];X) such that lim
k!1 juk�u0j1 = 0 , lim

k!1 jx0k�x00j = 0 we have

Var
[0;T ]

P(u0) = lim
k!1Var

[0;T ]
P(u

k
) .

Proposition 5.3 is an easy consequence of Lemma 3.10, Corollary 3.13, Theorem 8.16 and

of the following Lemma.

Lemma 5.4 Let the assumptions of Proposition 5.3 be satis�ed. Let � : Z ! B1(0)

be de�ned by the formula �(0) := 0 , �(x) := M(x)n(x=M(x)) for x 2 Z n f0g , where
M is the Minkowski functional associated to Z by formula (2.9). Then for every u 2
C([0; T ];X) and x

0 2 Z we have

Var
[0;T ]

� =

Z
T

0



�(x(t)); d�(t)

�
;(5.2)

where � = P(x0; u) , x = u� � .
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Proof of Lemma 5.4. Let us �rst assume u 2 W
1;1(0; T ;X) . Then _�(t) = 0 if x(t) 2

Int Z , _�(t) = j _�(t)jn(x(t)) if x(t) 2 @Z , hence, j _�(t)j = 

�(x(t)); _�(t)

�
a.e. and (5.2)

holds.

Let now u 2 C([0; T ];X) be arbitrary and let fu
k
; k 2 Ng be a sequence in W 1;1(0; T ;X)

such that lim
k!1 juk � uj1 = 0 , and put �

k
:= P(x0; u

k
) , x

k
:= u

k
� �

k
. Let 0 = t0 <

t1 < � � � < t
N

= T be an arbitrary partition of [0; T ] . The mapping � is continuous;

by Lemma 3.10, Corollary 3.13 and Theorem 8.16 we therefore have Var
[0;T ]

�
k
� const.,

lim
k!1Var

[0;T ]
�
k
=
R
T

0



�(x(t)); d�(t)

�
and

NX
j=1

j�(t
j
)� �(t

j�1)j = lim
k!1

NX
j=1

j�
k
(t
j
)� �

k
(t
j�1)j �

Z
T

0



�(x(t)); d�(t)

� � Var
[0;T ]

�;

hence (5.2) holds. l

A.A. Vladimirov's example below shows that the smoothness assumption in Proposition

5.3 cannot be omitted.

Example 5.5 Assume that there exists �x 2 @Z and n1; n2 2 NZ
(�x) such that n1 6= n2 ,

jn1j = jn2j = 1 . We de�ne a sequence fu
k
; k 2 N [ f0gg in W

1;1(0; 1 ;X) by the formula

u
k
(0) = 0 for k � 0 ;

_u0(t) =
1

2
(n1 + n2) for t 2 ]0; 1[ ;

_u
k
(t) =

�
n1 for t 2 ](j � 1)21�k ; (2j � 1)2�k[ ;

n2 for t 2 ](2j � 1)2�k; j 21�k[ ;
j = 1; : : : ; 2k�1 ; k > 0 :

For k � 1 put �
k
:= P(�x; u

k
) . Then _u

k
(t) 2 N

Z
(�x) a.e., hence _�

k
(t) = _u

k
(t) a.e. By

construction we have lim
k!1 juk � u0j1 = 0 and Var

[0;1]
�
k
=
R 1

0
j _u

k
(t)j dt , hence

Var
[0;1]

�0 =
1

2
jn1 + n2j < 1 = lim

k!1
Var
[0;1]

�
k
:

5.2 Local Lipschitz continuity in W 1;1(0; T ;X)

In this subsection (Theorem 5.6 and Corollary 5.9 below) we derive a local Lipschitz

estimate which improves the result of [D] mentioned without proof in [KP], in the sense

that we give an explicit upper bound for the Lipschitz constant. For the ball Z = B
r
(0)

we �ll the gap between inequality (A.34) and Example A.8 of [BK] and show that our

estimate (5.6) is optimal.

We start by introducing an auxiliary functional � : X ! R
+ by the formula

�(z) :=
jzj2
M�(z)

for z 2 X n f0g ; �(0) = 0 :(5.3)
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Then, by Proposition 2.20, we have for all z 2 X ,

1

R
jzj � �(z) � M(z) � 1

r
jzj :(5.4)

The functional � is not necessarily convex. It su�ces to consider the complex plane C

with C � Z := fa+bi ; jajp+jbjp � 1g for some p > 2 . Then Z� = fa+bi ; jajp0+jbjp0 � 1g
with 1=p+1=p0 = 1 and the set ~Z := fz 2 C ; �(z) � 1g has the form ~Z := fa+ bi ; a2+
b
2 � (jajp0 + jbjp0)1=p0g . To check that ~Z is nonconvex, we put z = a+ bi , ẑ = a� bi with
a = (1 + "

p
0

)1=p
0

=(1 + "
2) , b = " a . Then z , ẑ belong to ~Z , but (z + ẑ)=2 =2 ~Z for " > 0

su�ciently small.

Theorem 5.6 Let Z satisfy Hypothesis 5.1. Then for every x0; y0 2 Z and u; v 2
W

1;1(0; T ;X) , we have

�( _� � _�) +
1

2

d

dt

��M2(x) � M
2(y)

��(5.5)

� R

r
(j _uj jJ(x) � J(y)j + M( _u � _v)) a.e. ;

where � = P(x0; u) , � = P(y0; v) , x = u� � , y = v� � , M is the Minkowski functional

of Z and J is the duality mapping from Theorem 2.23. Note that J is single-valued by

Proposition 2.25 and Hypothesis 5.1.

Example 5.7 Estimate (5.5) is optimal for Z = B
r
(0) . In this case we have �(z) =

M(z) = jzj=r , J(z) = z=r
2 and (5.5) reads

j _� � _�j+ 1

2r

d

dt

��jxj2 � jyj2�� � 1

r
j _uj jx� yj+ j _u� _vj a.e.(5.6)

To see that (5.6) cannot be improved, it su�ces to consider the disk Z = B
r
(0) in the

complex plane C . For some � > 0 and h > 0 we de�ne the functions u(t) := r e
i�t ,

v(t) := (r + h) ei�t for t 2 [0; T ] . Let � 2 ]0; �=2[ be the solution of the equation

cos� = r=(r + h) . We easily check using formula (3.25) that the functions x(t) := u(t) ,

y(t) := r e
i(�t+�) satisfy x = S(r; u) , y = S(r ei�; v) . We therefore have j _�� _�j = j _y� _vj =

�

��r + h� r e
i�

�� = � (h2 + 2rh)
1=2

, jx�yj= r

��1 � e
i�

�� = r (2h=(r + h))
1=2

, j _u� _vj = h� ,

j _uj = r� , jxj = jyj = r . The quantity C > 0 for which the inequality

j _� � _�j+ 1

2r

d

dt

��jxj2 � jyj2�� � C jx� yj+ j _u� _vj

holds independently of � and h , must satisfy

C � �
p
2r + 2hp

2r + h +
p
h
;

hence C = � = j _uj=r is the best possible.

Proof of Theorem 5.6. Let t be a Lebesgue point of all functions _u , _v , _� , _� , d=dtM(x) ,

d=dtM(y) and d=dt jM2(x) �M
2(y)j . Using Remark 3.9, we distinguish the following

cases (omitting the argument t which is the same everywhere).
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A. _� = _� = 0 . Then _x = _u , _y = _v and

�( _� � _�) +
1

2

d

dt

���M2(x) � M
2(y)

��� � ��� hJ(x); _ui � hJ(y); _vi
���

� j _ujjJ(x) � J(y)j +
���hJ(y); _u � _vi

���
� j _ujjJ(x) � J(y)j + M

� (J(y))M( _u � _v) ;

where M�(J(y)) = M(y) � 1 .

B. _� 6= 0 , _� = 0 . Then M(x) = 1 , M(y) � 1 , _y = _v , d=dtM(x) = 0 , _� =

hn(x); _uin(x) , hn(x); _ui > 0 , hence

�( _� � _�) +
1

2

d

dt

���M2(x) � M
2(y)

���
= �( _�) +

1

2

d

dt

�
M

2(x) � M
2(y)

�
= �( _�) � hJ(y); _vi :

Here, we have by Proposition 2.25 n(x) = J(x)=jJ(x)j and

�( _�) =
hn(x); _ui2

M�(n(x))hn(x); _ui = hJ(x); _ui

and we obtain the same conclusion as in case A.

C. _� = 0 , _� 6= 0 . We proceed analogously as in B. with the same result.

D. _� 6= 0 , _� 6= 0 . Then M(x) = M(y) = 1 , d=dtM(x) = d=dtM(y) = 0 , hn(x); _ui > 0 ,

hn(y); _vi > 0 , _� = hn(x); _uin(x) , _� = hn(y); _vin(y) , hence, by (5.4),

�( _� � _�) +
1

2

d

dt

���M2(x) � M
2(y)

��� � M (hn(x); _uin(x) � hn(y); _vin(y))
� M (hn(y); _u � _vin(y)) + M (hn(x); _uin(x) � hn(y); _uin(y)) ;

where

M (hn(y); _u � _vin(y)) � 1

r

���hn(y); _u � _vi
���

� 1

r
M

�(n(y))M( _u � _v) � R

r
M( _u � _v) ;

M (hn(x); _ui n(x) � hn(y); _ui n(y)) � 1

r

���hn(x); _uin(x) � hn(y); _uin(y)
���

� 1

r
(j _uj jn(x) � n(y)j) � R

r
j _uj jJ(x) � J(y)j :

The last two inequalities follow from Lemma 5.8 below and from the fact that for x; y 2 @Z
we have jJ(x)j � jM�(J(x))j=R = 1=R , jJ(y)j � 1=R . Theorem 5.6 is proved. l
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Lemma 5.8

(i) For all e; f; w 2 X with jej = jf j = 1 we have

��he;wi e � hf;wi f�� � 1

2
jwj je � f j je + f j ;

(ii) for all u; v 2 X ; juj; jvj � 1=R , we have���� ujuj � v

jvj
���� � R ju � vj :

Proof.

(i) The case e = �f is trivial. For e 6= �f we have

��he;wi e� hf;wi f��2 =
1

4
je� f j2 je+ f j2

 �
e� f

je� f j ; w
�2

+

�
e+ f

je+ f j ; w
�2
!

� 1

4
je � f j2 je + f j2 jwj2 ;

since he� f ; e+ fi = 0 .

(ii) The inequality follows from the elementary computation���� ujuj � v

jvj
����
2

= 2 � 2 hu; vi
juj jvj

= 2 + 2hu; vi
�
R

2 � 1

juj jvj
�
� 2R2 hu; vi

� 2R2 (juj jvj � hu; vi) � R
2 ju � vj2 :

l

Corollary 5.9 Under the hypotheses of Theorem 5.6 we have��� _� � _�
��� + R

2

d

dt

��M2(x)�M
2(y)

�� � R
2

r
j _uj jJ(x) � J(y)j + R

2

r2
j _u � _vj a.e.

If moreover there exists a constant k > 0 such that

jn(x) � n(y)j � k jx � yj 8x; y 2 @Z ;(5.7)

then Z
T

0

��� _� � _�
��� dt � �

R
2

r2
+ L

R
2

r

Z
T

0

j _uj dt
����x0 � y

0
��+ Z T

0

j _u � _vj dt
�
;

where

L :=

 
1

r2
+
k

r

�
1 +

R

r

�2
!
:(5.8)
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Corollary 5.9 is an immediate consequence of inequalities (5.5), (5.4), (3.21) and of the

following lemma.

Lemma 5.10 Let Hypothesis 5.1 and inequality (5.7) hold. Then for every x; y 2 X we

have jJ(x) � J(y)j � L jx � yj with Q given by (5.8).

Proof. Assume �rst x; y 2 @Z . Then

jJ(x) � J(y)j =

���� n(x)

M�(n(x))
� n(y)

M�(n(y))

����
� 1

M�(n(x))

�
jn(x) � n(y)j + 1

M�(n(y))
M

� (n(x) � n(y))

�

� 1

r

�
1 +

R

r

�
jn(x) � n(y)j � K jx � yj ;

where K := (1 +R=r) k=r .

The assertion is trivial if x = 0 or y = 0 . For arbitrary x; y 2 X n f0g we have

jJ(x) � J(y)j =

����M(x)J

�
x

M(x)

�
� M(y)J

�
y

M(y)

�����
�

����J
�

x

M(x)

�����M(x � y) + M(y)

����J
�

x

M(x)

�
� J

�
y

M(y)

�����
� 1

r2
jx � yj + KM(y)

���� x

M(x)
� y

M(y)

����
�

�
1

r2
+ K

�
jx � yj + K

jxj
M(x)

M(x � y)

�
�

1

r2
+ K

�
1 +

r

R

��
jx � yj

and Lemma 5.10 is proved. l

Example 5.11 The smoothness of Z is substantial for the local Lipschitz continuity of

the play in W
1;1(0; T ;X) . We show here a counterexample motivated by an idea of [D].

Let Z 2 R3 be a cone of the form

Z =

8<
:
0
@ a

b

c

1
A 2 R3 ; c �

p
a2 + b2

9=
;

We de�ne a two-parameter family fu
�;�

; � > 1 ; � 2 [0; �=2]g of functions [0; 1]! R
3 by

the formula

u
�;�

(t) :=
1

�

0
@ cos�t

sin�t

��t sin�

1
A ; t 2 [0; 1] :
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Putting

x
�;�

(t) :=
1

�
cos�

0
@ cos(�t+ �)

sin(�t+ �)

1

1
A ; �

�;�
(t) :=

1

�

0
@ sin� sin(�t+ �)

� sin� cos(�t+ �)

��t sin �� cos �

1
A ;

we check similarly as in Example 5.7 above that we have x
�;�

= S (x
�;�

(0); u
�;�

) , �
�;�

=

P (x
�;�

(0); u
�;�

) for all � and � .

Assume that the operator P is locally Lipschitz in W
1;1(0; 1 ;R3) . The system fu

�;�
g is

bounded in W
1;1(0; 1 ;R3) , there must therefore exist a constant C > 0 independent of

� and � such thatZ 1

0

��� _��;�(t)� _�
�;

�
2
(t)
��� dt � C

� ��x
�;�

(0)� x
�;

�
2
(0)
��+ ��u

�;�
(0)� u

�;
�
2
(0)
��(5.9)

+

Z 1

0

�� _u
�;�

(t)� _u
�;

�
2
(t)
�� dt� :

We have
�� _u

�;�
(t)� _u

�;
�
2
(t)
�� = 1 � sin� ,

��� _��;�(t)� _�
�;

�
2
(t)
��� = p

2(1 � sin�) for all t 2
[0; 1] ,

��u
�;�

(0) � u
�;

�
2
(0)
�� = 0 ,

��x
�;�

(0)� x
�;

�
2
(0)
�� = (

p
2=�) cos� , hence (5.9) readsp

2(1� sin�) � C
�
(
p
2=�) cos �+ 1� sin�

�
independently of �!1 and �! �=2 ,

which is a contradiction.

6 Polyhedral characteristics

In this section we investigate continuity properties of the play with a polyhedral charac-

teristic of the form

Z := fz 2 X ; hz; n
i
i � �

i
; i = 1; : : : ; pg(6.1)

with given unit vectors n1; : : : ; np and given positive numbers �1; �2; : : : ; �p as in Exam-

ple 2.28. According to Remark 3.16 we may assume X = span fn1; : : : ; npg , dimX =

N < 1 .

Notation 6.1 For an arbitrary subspace X
0 � X we denote by P

X
0 the orthogonal

projection onto X
0 . In particular, P

X
= I is the identity operator and the orthogonal

projection onto spanfn
i
g is denoted by P

i
, i.e.

P
i
z := hz; n

i
in

i
; z 2 X ; i = 1; : : : ; p :(6.2)

We further denote by D
k
, 0 � k � N , the system of all k -dimensional subspaces of X

generated by the vectors n1; : : : ; np , that is, D0 = ff0gg , D
N

= fXg and

D
k

:= fX 0 � X ; X 0 = spanfn
i1
; : : : ; n

irg ; ij 2 f1; : : : ; pg
for j = 1; : : : ; r ; dimX

0 = kg ; k = 1; : : : ; N � 1 :

We need in the sequel the following elementary properties of projections.
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Lemma 6.2 Let X 00 � X
0 � X be subspaces of X . Then

(i) P
X
00P

X
0 = P

X
0P

X
00 = P

X
00 ;

(ii) jhz; vij � jP
X
0zj � jzj 8 z 2 X ; 8 v 2 X 0

; jvj � 1 :

Our main objective is to prove that on a polyhedron, P is globally Lipschitz continuous in

both Z�C([0; T ];X)! C([0; T ];X) and Z�W 1;1(0; T ;X)! W
1;1(0; T ;X) . Theorem

6.3 goes back to [KP]. Independently, a more general result in the space of regulated

functions (i.e. functions which have both one-sided limits at each point) endowed with

the sup-norm was obtained in [DI] for a larger class of problems. We show here a di�erent

(and simpler) proof based on the approach proposed in [P]. Theorem 6.5 was conjectured

without proof in [KP]. It has recently been proved by Desch and Turi in [DT] and we

repeat here their elegant argument.

Theorem 6.3 For every u; v 2 C([0; T ];X) , x0; y0 2 Z we have under the above hy-

potheses

jP(x0; u)�P(y0; v)j1 �M
N

�jx0 � y
0j+ ju� vj1

�
;(6.3)

where M
N

is de�ned recurrently by the formula

M0 := 0 ; M
k+1 :=

�
1

1� "
2
k

(1 +M
2
k
+ 2 "

k
M

k
)

�1=2

;(6.4)

"
k

:= maxfjP
X
0n

j
j ; X 0 2 D

k
; n

j
=2 X 0g(6.5)

for k = 0; 1; : : : ; N � 1 .

Remark 6.4 For N � 2 , the Lipschitz constant M
N
in Theorem 6.3 is the best possible,

for N � 3 this question is open. The optimality of M1 = 1 is obvious. In the case N = 2

we can identify X with the complex plane C and for a given � 2 ]0; �=2[ put

Z :=
�
% e

i' 2 C ; % � 0; ' 2 [��;�]	 :(6.6)

In fact, the condition 0 2 Int Z does not hold here, but it can be satis�ed by shifting

simply the �gure to the left. We have here

M2 =

�
1= sin � for � 2 ]0; �=4] ;

1= cos � for � 2 ]�=4; �=2[ :
(6.7)

To check that these values are optimal, we �x an arbitrary r > 0 and an arbitrary partition

0 = t0 < t1 < � � � < t
K

= T , and construct continuous functions u; v to be a�ne in each

interval [t
i�1; ti] , ju�vj1 = r , with the intention to get jP(x0; u)�P(x0; v)j1 arbitrarily

close to M2 r for a suitably chosen x
0 2 Z and for K su�ciently large. The argument is

di�erent in each of the two cases distinguished in (6.7). Technical details are left to the

reader, cf. also [KP], [K] and [DI].

A. � 2 ]0; �=4] : For k 2 N put u(t4k) = u(t4k+2) := 0 , u(t4k+1) := r i e
i� , u(t4k+3) :=

�r i e�i� , v(t) � 0 , x0 := 0 . Then jP(x0; u) � P(x0; v)j(t4k) converge to M2 r as

k !1 .

41



B. � 2 ]�=4; �=2[ : Put x0 := 0 , u(0) = v(0) := 0 and assume that u; v are de�ned in

an interval [0; t8k] , u(t8k) = v(t8k) = U
k
. We introduce the sequences

%
m

:= r tan� (1 � j cos 2�jm) ;
�
m

:= �%
m

cos 2�

sin�
;

for m 2 N [ f0g and de�ne the functions u; v in [t8k; t8k+8] recurrently as

u(t8k+1) := U
k
� r i e

�i�
; v(t8k+1) := U

k
;

u(t8k+2) := U
k
; v(t8k+2) := U

k
;

u(t8k+3) := U
k
+ i �2k ; v(t8k+3) := U

k
+ i �2k ;

u(t8k+4) := U
k
+ i �2k + r i e

i�

; v(t8k+4) := U
k
+ i �2k + r i e

i�

;

u(t8k+5) := u(t8k+4) ; v(t8k+5) := v(t8k+4) + r i e
i�

;

u(t8k+6) := u(t8k+4) ; v(t8k+6) := v(t8k+4) ;

u(t8k+7) := u(t8k+4)� i �2k+1 ; v(t8k+7) := v(t8k+4)� i �2k+1 ;

u(t8k+8) := u(t8k+7)� r i e
�i�

; v(t8k+8) := v(t8k+7)� r i e
�i�

:

Putting U
k+1 := u(t8k+8) = v(t8k+8) we continue by induction and show that for

all k , the outputs x := S(x0; u) , y := S(x0; v) of the stop operator S take on

the values x(t8k) = 0 , y(t8k) = %2k e
�i� , x(t8k+4) = %2k+1 e

i� , y(t8k+4) = 0 , and

jP(x0; u)(t8k+2) �P(x0; v)(t8k+2)j = jx(t8k+2)� y(t8k+2)j converge to M2 r as k !
1 .

The problem of optimality of the Lipschitz constant L
N

in Theorem 6.5 below is com-

pletely open, except for the trivial case N = 1 , indeed.

Theorem 6.5 For every u; v 2 W
1;1(0; T ;X) , x0; y0 2 Z we have under the above

hypotheses

Z
T

0

���� ddtP(x0; u)� d

dt
P(y0; v)

���� (t) dt � L
N

�
jx0 � y

0j+
Z

T

0

j _u(t)� _v(t)j dt
�
;(6.8)

where L
N

is de�ned recurrently by the formula

L1 := 1 ; L
k

:=
1 + L

k�1

1 � �
k

;(6.9)

�1 := 0 ; �
k

:= max
n
j(I � P

j
) (�

k�1PX 0w + (I � P
X
0)w)j ;(6.10)

j = 1; : : : ; p ; X 0 2 D
k�1 ; w 2 X

0 � spanfn
j
g ; jwj = 1

o
for k = 2; : : : ; N .

The de�nition of �
k
; L

k
is meaningful, since the set D

k�1 is �nite, the unit ball in X is

compact and the following Lemma holds.

Lemma 6.6 �
k
< 1 for all k 2 f1; : : : ; Ng :
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Proof. We proceed by induction over k . Assume that �
k�1 < 1 . We obviously have

�
k
� 1 . Assume that for some w ; j and X

0 we have���(I � P
j
) (�

k�1PX 0w + (I � P
X
0)w)

��� = 1 :(6.11)

Then

jP
X
0wj2 + j(I � P

X
0w)j2 = 1 = j(I � P

j
) (�

k�1PX 0w + (I � P
X
0)w)j2

= �
2
k�1jPX 0wj2 + j(I � P

X
0)wj2 � jP

j
(�

k�1PX 0w + (I � P
X
0)w)j2 ;

hence P
X
0w = 0 ; P

j
w = 0 and consequently w = 0 , which contradicts (6.11). l

6.1 Lipschitz continuity in C([0; T ];X)

To prove Theorem 6.3, we start with two auxiliary Lemmas which are due to V. Lovicar,

see [P].

Lemma 6.7 Let Z be a polyhedron (6.1). For z 2 Z put �(z) :=
�
k 2 f1; : : : ; pg ;


z; n
k

�
= �

k

	
; C(z) :=

�
w 2 X ; w =

P
k2�(z)

a
k
n
k
; a

k
� 0

	
. Then C(z) = N

Z
(z) , where

N
Z
(z) is the normal cone (2.8).

Proof. We obviously have C(z) � N
Z
(z) . The set C(z) is a convex closed cone and we

can associate to it the projection pair (P
z
; Q

z
) according to formula (2.3). Let w 2 N

Z
(z)

be arbitrary. We have by de�nition

P
z
w;Q

z
w � '

� � 0 8' 2 C(z) ;(6.12) 

w; z �  

� � 0 8 2 Z:(6.13)

For k 2 �(z) we have Q
z
w + n

k
2 C(z) , and (6.12) yields



P
z
w;n

k

� � 0 . For k 2
f1; : : : ; pg n �(z) we have



z; n

k

�
< �

k
. In both cases we obtain z + �P

z
w 2 Z for some

su�ciently small � > 0 . Putting  := z+ �P
z
w we infer from (6.13) and Lemma 2.2 (iii)

that jP
z
wj2 � 
P

z
w;w

� � 0 , hence w 2 C(z) . l

Lemma 6.8 Let Z be as above and let u; v 2 W
1;1(0; T ;X) be given. For t 2 [0; T ]

put �(t) := P(x0; u)(t) , �(t) := P(y0; v)(t) , x(t) := u(t) � �(t) , y(t) := v(t) � �(t) ,

g(t) := �(t)� �(t) . Then for every j 2 �(x(t)) we have


n
j
; g(t)

� � ju(t)� v(t)j and for

every i 2 �(y(t)) we have


n
i
; g(t)

� � �ju(t)� v(t)j .

Proof. For j 2 �(x(t)) we have n
j
2 N

Z
(x(t)) , hence



n
j
; g(t)

� � 

n
j
; u(t) � v(t)

� �
ju(t)� v(t)j and similarly for i 2 �(y(t)) . l

We now pass to the proof of Theorem 6.3.

Proof of Theorem 6.3. We may assume that u; v 2 W
1;1(0; T ;X) . We �x an arbitrary

number r > jx0 � y
0j + ju � vj1 and introduce a Lyapunov function V : X ! R

1 by

the formula

V (z) := max
�
M

2
k
r
2 + j(I � P

X
0)zj2 ; X 0 2 D

k
; k = 0; : : : ; N

	
:(6.14)
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The function V is convex, hence t 7! V (g(t)) is absolutely continuous. Keeping the

notation from Lemma 6.8, we check that

d

dt
V (g(t)) � 0 almost everywhere :(6.15)

Assume the contrary, namely that for some t 2 ]0; T [ the derivatives _�(t); _�(t) exist and

d

dt
V (g(t)) > 0 :(6.16)

Then there exist k 2 f0; : : : ; N � 1g and X
00 2 D

k
such that

V (g(t)) = M
2
k
r
2 + j(I � P

X
00)g(t)j2(6.17)

(note that for k = N we have I�P
X
00 = 0). Inequality (6.16) yields



_g(t); (I�P

X
00)g(t)

�
>

0 . We can assume


_�(t); (I�P

X
00)g(t)

�
> 0 (otherwise we interchange the roles of u and

v ). We have _�(t) 2 N
Z
(x(t)) , hence by Lemmas 6.7, 6.8 there exists j 2 �(x(t)) such

that

r >


n
j
; g(t)

�
>


n
j
; P

X
00g(t)

�
:(6.18)

This implies in particular that n
j
=2 X 00 . We put X 0 := X

00� spanfn
j
g and �nd v 2 X 00 ,

jvj = 1 and real numbers a; b such that

P
X
0g(t) = an

j
+ b v:(6.19)

Put " :=


n
j
; v
� 2 [�"

k
; "

k
] . By Lemma 6.2 (ii) we have

jP
X
00g(t)j � j
g(t); v�j = ja"+ bj :(6.20)

On the other hand, inequality (6.18) yields

r > a+ b" > ajP
X
00n

j
j2 + b" ;(6.21)

hence a > 0 . From (6.20), (6.21) it follows a(1 � "
2) < r � b"� a"

2 � r + j"j jP
X
00g(t)j

and

jP
X
0g(t)j2 = a

2 + b
2 + 2ab" = (a"+ b)2 + a

2(1� "
2)(6.22)

< jP
X
00g(t)j2 + 1

1� "2
(r + j"j jP

X
00g(t)j)2

� 1

1 � "
2
k

�jP
X
00g(t)j2 + r

2 + 2 r "
k
jP

X
00g(t)j� :

We have X 0 2 D
k+1 . Assumption (6.17) then yields

M
2
k+1 r

2 � jP
X
0g(t)j2 �M

2
k
r
2 � jP

X
00g(t)j2 ;(6.23)

and combining (6.23), (6.22) and the de�nition of M
k+1 we obtain

"
k

�
M

2
k
r
2 � jP

X
00g(t)j2� + 2 r (M

k
r � jP

X
00g(t)j) < 0;(6.24)

hence

0 > M
2
k
r
2 � jP

X
00g(t)j2(6.25)

=
�
M

2
k
r
2 + j(I � P

X
00)g(t)j2�� �M2

0 r
2 + j(I � Pf0g)g(t)j2

�
;

which contradicts the assumption (6.17). Consequently, (6.15) holds. By hypothesis, we

have jg(0)j < r , hence jg(t)j2 � V (g(t)) � V (g(0)) � M
2
N
r
2 for all t and the proof is

complete. l
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6.2 Lipschitz continuity in W 1;1(0; T ;X)

Before passing to the proof of Theorem 6.5, we �rst de�ne an equivalent norm in X based

on the following construction.

De�nition 6.9 Let m 2 N ; z 2 X and a sequence fi
j
gm
j=1 be given, i

j
2 f1; : : : ; pg for

j = 1; : : : ;m . Then the sequence fz
j
gm
j=1 of elements of X de�ned by the formula

z1 := z ; z
j+1 = (I � P

ij
) z

j
; j = 1; : : : ;m(6.26)

is called a string. We denote by T (z;m) the set of all strings of the form (6.26)

T (z;m) =
n
fz

j
gm+1

j=1
; z

j
given by (6.26) , i

j
2 f1; : : : ; pg ; j = 1; : : : ;m

o
:(6.27)

The main result of this subsection reads

Theorem 6.10 For z 2 X put

kzk := sup

(
mX
j=1

jP
ij
z
j
j ; m 2 N ; fz

j
gm+1

j=1
2 T (z;m)

)
:(6.28)

Then k � k is a norm in X satisfying the inequalities

kzk � jP
i
zj + k(I � P

i
)zk 8 z 2 X ; 8 i 2 f1; : : : ; pg :(6.29)

kzk � L
N
jzj 8 z 2 X ;(6.30)

with L
N

de�ned in Theorem 6.5.

For the proof of Theorem 6.10 we need some auxiliary results which we state in the

following form.

Lemma 6.11 Let i1; : : : ; ir 2 f1; : : : ; pg be given, X
0 = span fn

i1
; : : : ; n

irg , dimX
0 =

k . Then for every z 2 Z we have���(I � P
ir ) (I � P

ir�1
) � � � (I � P

i1
)P

X
0z

��� � �
k
jP

X
0zj :(6.31)

Proof of Lemma 6.11. The statement is trivial for k = 1 . For k > 1 we proved by

induction. Assume that the assertion holds for k � 1 . We �nd l � r such that X 0 =

span fn
i1
; : : : ; n

il
g ; X 00 := span fn

i1
; : : : ; n

il�1
g 2 D

k�1 . Let z 2 X be given.

We de�ne

w1 := (I � P
il�1

) � � � (I � P
i1
)P

X
00z

w2 := (I � P
X
00)P

X
0z
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By induction hypothesis, we have jw1j � �
k�1jPX 00zj . Further, put

w :=

(
w2 if �

k�1 = 0 ;

w2 + 1
�k�1

w1 ; if �
k�1 > 0 :

Then w1 = �
k�1PX 00w ; w2 = (I � P

X
00)w , and

jwj2 = jP
X
00wj2 +

���(I � P
X
00)w
���2 � jP

X
00zj2 +

���(I � P
X
00)P

X
0z

���2 = jP
X
0zj2 :

By Lemma 6.2 we have

(I � P
il
) (I � P

il�1
) � � � (I � P

i1
)P

X
0z(6.32)

= (I � P
il
)
�
P
X
00

�
I � P

il�1

� � � � (I � P
i1
)P

X
0z

+ (I � P
X
00)(I � P

il�1
) � � � (I � P

i1
)P

X
0z
�

= (I � P
il
) (w1 + w2) ;

hence, by de�nition of �
k
, we have���(I � P

ir ) (I � P
ir�1

) � � � (I � P
i1
)P

X
0z

���(6.33)

�
���(I � P

il
) (I � P

il
) � � � (I � P

i1
)P

X
0z

���
=

���(I � P
il
) (�

k�1PX 00w + (I � P
X
00)w)

��� � �
k
jwj

and inequality (6.31) follows easily. l

Lemma 6.12 Let m 2 N , z 2 X and a sequence fi
j
gm
j=1 be given, i

j
2 f1; : : : ; pg for

j = 1; : : : ;m ; X := span fn
i1
; : : : ; n

img 2 Dk
for some k 2 f1; : : : ; Ng . Let fz

j
gm+1
j=1 be

the string de�ned by (6.26) . Then

mX
j=1

��P
ij
z
j

�� � L
k
jP

X
0zj ;(6.34)

where L
k
is given by (6.9).

Proof of Lemma 6.12. Here again, we use the induction over k . For k = 1 , we obviously

have P
ij
z
j
= 0 for j � 2 and the assertion holds. Assume now that it holds for 1; : : : ; k�

1 . For a given z 2 X we construct the sequence j(0) < j(1) < : : : < j(s) � m recurrently

over d = 0; 1; : : : ; s as follows

(i) j(0) = 0 ;

(ii) if span fN
ij(d)+1

; n
img = X

0 then

j(d + 1) := min
n
j > j(d) ; span fn

ij(d)+1
; : : : ; n

ij
g = X

0
o
:
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We have

mX
j=1

jP
ij
z
j
j =

sX
d=1

0
@ j(d)X

j=j(d�1)+1

jP
ij
z
j
j
1
A +

mX
j=j(s)+1

jP
ij
z
j
j(6.35)

where, according to the induction hypothesis, we have

j(d)�1X
j=j(d�1)+1

jP
ij
z
j
j � L

k�1 jPX 0z
j(d�1)+1j ; d = 1; : : : ; s ;(6.36)

mX
j=j(s)+1

jP
ij
z
j
j � L

k�1jPX 0
zj(s)+1

j(6.37)

and, obviously,

jP
ij(d)

z
j(d)j � jP

X
0z
j(d�1)+1j ; d = 1; : : : ; s :(6.38)

Then (6.35�6.38) yield

mX
j=1

jP
ij
z
j
j �

sX
d=0

(1 + L
k�1)jPX 0z

j(d)+1j :(6.39)

By Lemma 6.11, we have for all d = 1; 2; : : : ; s

jP
X
0z
j(d)+1j � �

k
jP

X
0z
j(d�1)+1j ;(6.40)

hence

mX
j=1

jP
ij
z
j
j � (1 + L

k�1)

 
1X
d=0

�
d

k

!
jP

X
0zj = 1 + L

k�1

1 � �
k

jP
X
0zj(6.41)

and Lemma 6.12 is proved. l

Proof of Theorem 6.10. Inequality (6.30) follows from Lemma 6.12 above. In particular,

kzk is �nite for all z 2 Z ; k0k = 0 . Conversely, kzk = 0 implies jP
i
zj = 0 for all i =

1; : : : ; p , hence z = 0 . Furthermore, the triangle inequality and the identity ktzk = jtj kzk
for all z 2 X and t 2 R follow automatically from (6.28). We thus proved that k � k
is a norm. It remains to check that inequality (6.29) holds. Let z 2 X ; i 2 f1; : : : ; pg
and a sequence fi

j
gm
j=1 ; ij 2 f1; : : : ; pg be given and put z1 := (I � P

i
) z ; z

j+1 :=

(I � P
ij
) z

j
; j = 1; : : : ;m ; z0 := z ; i0 := i . Then

mX
j=1

jP
ij
z
j
j =

mX
j=0

jP
ij
z
j
j � jP

i
zj(6.42)

� kzk � jP
i
zj

and passing to the supremum in the left-hand side of (6.42) we obtain (6.29). Theorem

6.10 is proved. l

Theorem 6.10 has the following consequences.

47



Corollary 6.13 For every z;w 2 X such that w is of the form

w =

pX
i=1

�
i
n
i
; �

i
2 R ;(6.43)

where the coe�cients �
i
satisfy the implication

�
i
6= 0 ) �

i
hz; n

i
i > 0 ;(6.44)

there exists "0 > 0 such that

kz � "wk + "jwj � kzk 8 " 2 ]0; "0[:(6.45)

Proof. Put A0 := fi 2 f1; : : : ; pg; �
i
= 0g ; AC

0 := f1; : : : ; pg nA0 . Let "0 > 0 be chosen

in such a way that

X
i2AC0

�
i

hz; n
i
i �

1

"0
:(6.46)

For " 2 ]0; "0[ and i 2 AC

0 put �
i
:=

"�
i

hz; n
i
i . Then �

i
> 0 ,

P
i2AC0

�
i
< 1 and

z � "w = z �
X
i2AC0

"�
i
n
i
= z �

X
i2AC0

�
i
P
i
z

= z

0
@1 �

X
i2AC0

�
i

1
A +

X
i2AC0

�
i
(I � P

i
)z :

From (6.29), we infer

kz � "wk � kzk
0
@1 �

X
i2AC0

�
i

1
A +

X
i2AC0

�
i
(kzk � jP

i
zj)

= kzk �
X
i2AC0

"j�
i
j � kzk � "jwj

and Corollary 6.13 is proved. l

Corollary 6.14 For every z ; w 2 X , such that w is of the form (6.43), with coe�cients

�
i
satisfying the inequality

�
i
hz; n

i
i � 0 8 i 2 f1; : : : ; pg ;(6.47)

we have

kz + wk � kzk + jwj(6.48)
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Proof. Put A1 := fi 2 f1; : : : ; pg; hz; n
i
i = 0g ; AC

1 := f1; : : : ; pgnA1 ; X1 := span fn
i
; i 2

A1g . We �x a subset A2 � A1 in such a way that fn
i
; i 2 A2g are linearly independent,

X1 = span fn
i
; i 2 A2g . We then have

w =

pX
i=1

~�
i
n
i
;(6.49)

where ~�
i
= 0 for i 2 A1 nA2 ; ~�i = �

i
for i 2 AC

1 .

We now �nd the dual basis fn�
i
; i 2 A2g of X1 with the property

hn�
i
; n

j
i = �

ij
for all i; j 2 A2 :(6.50)

This can be done in the following way. Let fe
k
; k 2 A2g be an orthonormal basis in X1 .

Then n
j
=
P

k2A2
n
jk
e
k
, where N = (n

jk
)
j;k2A2

is a nonsingular matrix. We look for a

matrix N� = (n�
jk
)
j;k2A2

such that the vectors n�
j
=
P

k2A2
n
�
jk
e
k
satisfy (6.50), that is

X
k2A2

n
jk
n
�
ik

= �
ij
:(6.51)

In other words, it su�ces to put N� = (N?)�1 .

We further denote h :=
P

i2A2
~�
i
n
�
i
and claim that for � > 0 su�ciently small, the vectors

z + �h ; w satisfy the assumptions of Corollary 6.13. Indeed, let � > 0 be so small that

sign (hz + �h; n
i
i) = sign (hz; n

i
i) 8 i 2 A

C

1 :(6.52)

We want to prove that the implication

~�
i
6= 0 ) ~�

i
hz + �h; n

i
i > 0 8 i 2 f1; : : : ; pg :(6.53)

holds.

For i 2 AC

1 , (6.53) follows from (6.52) and (6.47), for i 2 A1 nA2 , we have ~�
i
= 0 , hence

(6.53) holds. For i 2 A2 , the de�nition of h entails

hz + �h; n
i
i = �hh; n

i
i = �~�

i
(6.54)

and (6.53) follows.

From Corollary 6.13 we infer that there exists some "0(�) such that for all " 2]0; "0(�)[
we have

kz + �h � "wk + "jwj � kz + �hk ;(6.55)

and, in particular,

(1 + ")kz + �hk = kz + �h � "w + "(z + �h + w)k(6.56)

� kz + �hk � "jwj + "kz + �h + wk ;

hence
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kz + �hk + jwj � kz + �h + wk :(6.57)

Letting � tend to 0 , we obtain the assertion. l

Theorem 6.5 is an immediate consequence of Theorem 6.10 and of Theorem 6.15 below.

Theorem 6.15 Let u; v 2 W 1;1(0; T ) be given, let P
Z
be the play with characteristic Z

given by (6.1) . Put � := P
Z
(u) ; � := P

Z
(v) ; x := u� � ; y := v � � . Then

d

dt
kx � yk + j _� � _�j � k _u � _vk a.e.(6.58)

Proof. Let t 2 ]0; T [ be an arbitrary Lebesgue point of all functions _u, _v , _� , _� , _x, _y ,

d=dt kx� yk and let � 2 ]0; t[ be arbitrary. Put z := x(t)� y(t) , w := � ( _�(t)� _�(t)) . By

Lemma 6.7, we have _�(t) =
P

k2�(x(t))


k
n
k
, _�(t) =

P
j2�(y(t))

~

j
n
j
with 


k
� 0 , ~


j
� 0

for all k 2 �(x(t)) , j 2 �(y(t)) . We thus can write

w =

pX
i=1

�
i
n
i

(6.59)

with 8>><
>>:

�
i
= 0 for i 2 f1; : : : ; pg n (�(x(t)) [ �(y(t))) ;

�
i
= 


i
; hz; n

i
i � 0 for i 2 �(x(t)) n �(y(t)) ;

�
i
= � ~


i
; hz; n

i
i � 0 for i 2 �(y(t)) n �(x(t)) ;

hz; n
i
i = 0 for i 2 �(x(t)) \ �(y(t)) ;

(6.60)

hence inequality (6.47) holds. From Corollary 6.14 it follows




�x(t) � y(t)
�
+ �

�
_�(t) � _�(t)

�


 � 


x(t) � �(t)



 + �

�� _�(t) � _�(t)
�� :(6.61)

This yields




(x � y) (t � � )



 =




(x � y)(t) �
Z

t

t��

( _x � _y)(s) ds



(6.62)

=



(x � y)(t) + � ( _� � _�)(t) � � ( _u � _v)(t)

+

Z
t

t��

(( _x � _y)(t) � ( _x � _y)(s)) ds





�



(x � y)(t)




 + �

���( _� � _�)(t)
��� � �




( _u � _v)(t)





� �




1
�

Z
t

t��

(( _x � _y)(t) � ( _x � _y)(s)) ds






Dividing inequality (6.62) by � and passing to the limit as � ! 0+ we obtain (6.58). l
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7 Second order variation

In this short section we prove an additional regularity result for hysteresis operators,

namely an upper bound for the total variation of the derivative of the output. It can be

applied in particular to the play operator on smooth domains or polyhedrons, see Sections

5 and 6. Since the time derivative of the output is typically discontinuous, this is the

maximal regularity we can expect. The result is formulated for the whole class of causal

rate-independent operators (see (1.25), (1.26)) which are locally Lipschitz continuous in

W
1;1(0; T ;X) .

Lemma 7.1 Let F : W 1;1(0; T ;X) ! W
1;1(0; T ;X) be a continuous, causal and rate-

independent operator, let u 2 W
1;1(0; T ;X) be given and let � = F(u) . For a given

h 2 ]0; T [ put

u0(t) :=

�
u(0) for t 2 [0; h] ;

u(t� h) for t 2 ]h; T ] :

Then

F(u0)(t) = �0(t) :=

�
�(0) for t 2 [0; h] ;

�(t� h) for t 2 ]h; T ] :

Proof. For " 2 ]0; T�h
2

[ put

�
"
(t) :=

8<
:

"

h+"
t for t 2 [0; h+ "] ;

t� h for t 2 ]h+ "; T � "] ;

T + h+"
"

(t� T ) for t 2 ]T � "; T ] :

Then �
"
is an increasing homeomorphism for every " and the rate-independence yields

F(u � �
"
)(t) = �(�

"
(t)) 8t 2 [0; T ] ; " 2

i
0;
T � h

2

h
:(7.1)

Let 0 < T
�
< T be arbitrarily chosen. For " 2 ]0; T � T

�[ put u�
"
:= (u � �

"
)
��
[0;T �]

,

�
�
"
:= (� � �

"
)
��
[0;T �]

, u�0 := u0

��
[0;T �]

, ��0 := �0

��
[0;T �]

. From the causality of F we infer

�
�
"
= F�(u�

"
) , where F� : W 1;1(0; T �;X) ! W

1;1(0; T �;X) is the restriction of F . We

have u�0(0) = u
�
"
(0) and

Z
T
�

0

j _u�
"
(t)� _u�0(t)j dt �

Z
h+"

0

"

h+ "

���� _u
�

"

h+ "
t

����� dt+
Z

h+"

h

j _u(t� h)j dt

= 2

Z
"

0

j _u(t)j dt ;

hence u�
"
! u

�
0 in W

1;1(0; T �;X) as "! 0 . By construction, we analogously have ��
"
! �

�
0

in W
1;1(0; T �;X) as " ! 0 and from the continuity of F it follows ��0 = F�(u�0) . Since

T
�
< T was arbitrary, the assertion follows. l
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Theorem 7.2 Assume that an operator F : W 1;1(0; T ;X) ! W
1;1(0; T ;X) is causal,

rate-independent and locally Lipschitz in the following sense: there exists a function f :

R
+ ! R

+
such that for every u; v 2 W

1;1(0; T ;X) the functions � = F(u) , � = F(v)

satisfy

Z
T

0

j _�(t)� _�(t)j dt � f(maxfjuj1;1; jvj1;1g) ju� vj1;1 :(7.2)

Then for every u 2 W
1;1(0; T ;X) such that _u 2 BV (0; T ;X) there exists a function

w 2 NBV (0; T ;X) such that w = _� a.e. and

Var
[0;T ]

w � f(juj1;1)
�
j _u(0+)j + Var

[0;T ]
_u

�
:(7.3)

The hypotheses of Theorem 7.2 are ful�lled for the operator F(u) := P(x0; u) for a �xed

x
0 2 Z provided Z is a polyhedron (Theorem 6.5) or a smooth domain satisfyng the

hypotheses of Lemma 5.10. In the latter case, estimate (7.2) follows from Lemma 5.10,

Corollary 5.9 and inequality (3.21).

Proof of Theorem 7.2. Let u 2 W 1;1(0; T ;X) with _u 2 BV (0; T ;X) . Put

v(t) :=

�
u(t� h) for t 2 [h; T ] ;

u(0) for t 2 [0; h[ :

Lemma 7.1 yields

�(t) :=

�
�(t� h) for t 2 [h; T ] ;

�(0) for t 2 [0; h[ :

From (7.2) we obtain

Z
T

h

j _�(t)� _�(t� h)j dt � f(juj1;1)
�Z

h

0

j _u(t)j dt +
Z

T

h

j _u(t)� _u(t� h)j dt
�

and the rest of the proof follows from Theorem 8.12. l

8 Integration of vector-valued functions

In this section we recall basic notions of the Bochner integral and of the theory of functions

of bounded variation that are referred to in the text; for details, see [Bre], [Y], [HP], [K].

8.1 Bochner integral

De�nition 8.1 Let B be a real Banach space endowed with norm k�k and let [a; b] � R
1

be a compact interval. A function u : [a; b]! B is called
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(i) simple, if there exists a partition [a; b] =
S

N

k=1Ek
of the interval [a; b] into a �nite

union of pairwise disjoint Lebesgue measurable sets fE
k
; k = 1; : : : ; Ng and a sequence

fx
k
; k = 1; : : : ; Ng in B such that for almost all t 2 [a; b] we have

u(t) =

NX
k=1

x
k
�
Ek
(t);(8.1)

where �
Ek

is the characteristic function of the set E
k
, that is,

�
Ek
(t) =

(
0 if t =2 E

k
;

1 if t 2 E
k
;

(ii) strongly measurable, if there exists a sequence fu
n
; n 2 Ng of simple functions such

that lim
n!1

ku
n
(t)� u(t)k = 0 for a.e. t 2 [a; b] .

It is easy to see that for a strongly measurable function, u : [a; b]! B , the scalar-valued

function t 7! ku(t)k is Lebesgue measurable. The following characterization of strongly

measurable functions is useful in applications.

Theorem 8.2 (Lusin) A function u : [a; b]! B is strongly measurable if and only if for

every � > 0 there exist a closed set F
�
� [a; b] and a continuous function w : [a; b]! B

such that meas ([a; b]nF
�
) < �; u(t) = w(t) for all t 2 F

�
and sup

[a;b]

kw(t)k � sup
[a;b]

ku(t)k .

For a simple function u : [a; b]! B of the form 8.1 we de�ne its Bochner integral over a

measurable set A � [a; b] , by the formulaZ
A

u(t) dt :=

NX
k=1

x
k
meas (E

k
\A) 2 B:(8.2)

The general de�nition reads as follows.

De�nition 8.3 An arbitrary function u : [a; b] ! B is said to be Bochner integrable

in [a; b] if there exists a sequence fu
n
;n 2 Ng of simple functions [a; b] ! B such that

lim
n!1

R
b

a

ku
n
(t) � u(t)kdt = 0 and we de�ne its Bochner integral over a measurable set

A � [a; b] as Z
A

u(t) dt := lim
n!1

Z
A

u
n
(t) dt 2 B:(8.3)

Notice that the sequence U
n
:=
R
A

u
n
(t) dt in De�nition 8.3 is fundamental in B and its

limit (8.3) is independent of the choice of the sequence fu
n
g . The de�nition immediately

implies 




Z
A

u(t) dt





 �
Z
A

ku(t)k dt <1(8.4)

for each Bochner integrable function u and measurable set A � [a; b] .

Bochner's Theorem 8.4 below gives an elegant characterization of Bochner integrable

functions.
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Theorem 8.4 (Bochner) A function u : [a; b]! B is Bochner integrable if and only if

it is strongly measurable and
R
b

a

ku(t)kdt <1 .

We de�ne in a standard way in the set of strongly measurable functions an equivalence

relation u � v , u(t) = v(t) a.e. Identifying in an obvious sense functions with their

equivalence classes we can de�ne the normed linear spaces

(i) L
1(a; b ;B) of Bochner integrable functions u : [a; b] ! B endowed with norm

juj1 :=
R
b

a

ku(t)kdt ,
(ii) L

p(a; b ;B) for 1 < p < 1 of functions u 2 L
1(a; b ; B) such that juj

p
:=�R

b

a

ku(t)kpdt
�1=p

<1 , endowed with norm j � j
p
,

(iii) L
1(a; b ;B) of functions u : [a; b]! B which are essentially bounded and strongly

measurable, endowed with norm juj1 := inffsup fku(t)k; t 2 [a; b]nMg ; M � [a; b] ,

meas (M) = 0g ,
(iv) C([a; b];B) of continuous functions u : [a; b]! B endowed with norm j � j1 .

The fact that Lp(a; b ; B) for p 2 [1;1] and C([a; b];B) are Banach spaces is well known

([Ad]). Let us also mention the following classical results.

Theorem 8.5 (Lebesgue Dominated Convergence Theorem) Let p 2 [1;1[ be given

and let v
n
2 Lp(a; b ; B) , g

n
2 Lp(a; b ; R1) be given sequences for n 2 N [ f0g such that

(i) lim
n!1

R
b

a

jg
n
(t)� g0(t)jp dt = 0 ,

(ii) lim
n!1

kv
n
(t)� v0(t)k = 0 a.e.,

(iii) kv
n
(t)k � g

n
(t) a.e. for all n 2 N [ f0g .

Then lim
n!1

jv
n
� v0jp = 0 .

Theorem 8.6 (Mean Continuity Theorem) For every p 2 [1;1[ and u 2 L
p(a; b ; B) ,

we have

lim
h!0+

Z
b

a+h



u(t)� u(t� h)


pdt = 0:(8.5)

The following Theorem 8.7 in the context of Hilbert space - valued functions has been

tailored especially for situations that occur in the theory of hysteresis operators, see [K].

Notice that it does not follow from Theorem 8.5, since we do not assume the pointwise

convergence here.

Theorem 8.7 Let X be a Hilbert space endowed with a scalar product

�; �� and the

corresponding norm j � j = 
�; ��1;2 . Let v
n
2 L

1(a; b ; X) , g
n
2 L

1(a; b ; R1) be given

sequences for n 2 N [ f0g such that
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(i) lim
n!1

R
b

a



v
n
(t); '(t)

�
dt =

R
b

a



v0(t); '(t)

�
dt 8' 2 C([a; b];X) ,

(ii) lim
n!1

R
b

a

jg
n
(t)� g0(t)j dt = 0 ,

(iii) jv
n
(t)j � g

n
(t) a.e. 8n 2 N ,

(iv) jv0(t)j = g0(t) a.e.

Then lim
n!1

jv
n
� v0j1 = 0 .

8.2 Functions of bounded variation

De�nition 8.8 A partition S := fft0; : : : ; tNg; a = t0 < t1 < � � � < t
N
= bg of the inter-

val [a; b] is said to be � -�ne for � > 0 , if maxfjt
i
� t

i�1j; i = 1; : : : ; Ng � � . We denote

by �
�
(a; b) the set of � -�ne partitions of the interval [a; b] , �0(a; b) :=

S
�>0��

(a; b) .

De�nition 8.9 Let S = ft0; : : : ; tNg 2 �0(a; b) and a function, u : [a; b]! B be given.

We de�ne the S -variation V
S
(u) of u and the total variation Var

[a;b]
u of u in [a; b] by the

formulae

V
S
(u) :=

NX
i=1

ku(t
i
)� u(t

i�1)k;

Var
[a;b]

u := sup fV
S
(u); S 2 �0(a; b)g:

We denote by BV (a; b ; B) := fu : [a; b] ! B; Var
[a;b]

u < 1g the set of all functions of

bounded total variation. For every u; v 2 BV (a; b ; B) and every c 2 ]a; b[ we obviously

have

Var
[a;b]

u = Var
[a;c]

u+Var
[c;b]

u ; Var
[a;b]

(u+ v) � Var
[a;b]

u+Var
[a;b]

v :(8.6)

The de�nition entails that every function u 2 BV (a; b ; B) is bounded, the one-sided

limits u(t+) (u(t�)) exist for all t 2 [a; b[ (t 2 ]a; b] , respectively) and the set
�
t 2

[a; b]; u(t+) 6= u(t) or u(t�) 6= u(t)
	
of discontinuity points is at most countable. Fur-

thermore, for all u 2 BV (a; b ; B) and t 2 ]a; b] we have

u(t�) = u(t) () lim
�!0+

Var
[t��;t]

u = 0 :(8.7)

Indeed, the implication `( ' is straightforward. To prove the converse, we assume that

" > 0 is given and �nd � > 0 such that ku(t)� u(s)k � " for t� � < s < t . There exists

a partition 0 = t0 < t1 < � � � < t
N�1 < t

N
= t such that t� t

N�1 < � and

Var
[0;t]

u � "+

NX
i=1

ku(t
i
)� u(t

i�1)k � 2 " + Var
[0;tN�1]

u :
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Relation (8.7) now follows from (8.6). We analogously have

u(t+) = u(t) () lim
�!0+

Var
[t;t+�]

u = 0(8.8)

for every u 2 BV (a; b ; B) and t 2 [a; b[ .

An important example of functions of bounded variation are the step functions

�(t) :=

NX
j=1

x
j
�]tj�1;tj[(t) +

NX
j=0

y
j
�ftjg(t)(8.9)

as a special case of (8.1), where S := ft0; : : : ; tNg 2 �0(a; b) is a given partition and

fx
j
g; fy

j
g are given sequences in B .

The following statement shows that functions of bounded variation are strongly measur-

able and that BV (a; b ; B) endowed with the norm

juj
BV

:= sup fku(t)k ; t 2 [a; b]g+Var
[a;b]

u(8.10)

is a Banach space.

Proposition 8.10

(i) For every u 2 BV (a; b ; B) there exists a sequence f�
n
; n 2 Ng of step functions such

that lim
n!1

sup
[a;b]

ku(t)� �
n
(t)k = 0 , Var

[a;b]
�
n
� Var

[a;b]
u .

(ii) Let fu
n
; n 2 Ng be a sequence in BV (a; b ; B) and let u : [a; b] ! B be a function

such that lim
n!1

ku
n
(t)� u(t)k = 0 for all t 2 [a; b] . Then Var

[a;b]
u � lim inf

n!1
Var
[a;b]

u
n
.

Proof.

(i) The function V (t) := Var
[a;t]

u is nondecreasing in [a; b] . For n 2 N put N(n) := max(N\
[0; nV (b)]) and tn

j
:= sup ft 2 [a; b]; V (t) � j

n

g for j = 1; : : : ; N(n) , tn
N(n)+1 := b; t

n

0 := a .

The assertion holds for �
n
(tn
j
) := u(tn

j
) , �

n
(t) := u

�
1
2
(tn
j
+ t

n

j+1)
�
for t 2]tn

j
; t

n

j+1[ , j =

0; : : : ; N(n) , �
n
(b) := u(b) , with the convention ]tn

j
; t

n

j+1[= ; if tn
j
= t

n

j+1 .

Part (ii) follows immediately from De�nition 8.9. l

As a consequence of Proposition 8.10 we see that step functions form a dense subset of

BV (a; b ; B) with respect to the so-called strict metric de�ned by the formula (see [V])

d
s
(u; v) := sup fku(t)� v(t)k; t 2 [a; b]g+ jVar

[a;b]
u�Var

[a;b]
vj:(8.11)

Let us pass to another important concept.

De�nition 8.11 A function u : [a; b] ! B is called absolutely continuous, if for every

" > 0 there exists � > 0 such that the implication

nX
k=1

(b
k
� a

k
) < � )

nX
k=1



u(b
k
)� u(a

k
)


 < "(8.12)
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holds for every sequence of intervals ]a
k
; b

k
[� [a; b] such that ]a

k
; b

k
[\ ]a

j
; b

j
[= ; for

k 6= j .

We introduce the spaces

(i) AC(a; b ;B) of all absolutely continuous functions u : [a; b]! B ,

(ii) CBV (a; b ;B) = BV (a; b ;B) \ C([a; b];B) of continuous functions u : [a; b]! B

of bounded variation,

(iii) NBV (a; b ;B) = fu 2 BV (a; b ;B) ; u(a+) = u(a); u(t�) = u(t) 8t 2 ]a; b]g of

normalized functions u : [a; b]! B of bounded variation.

It is easy to check the inclusions

AC(a; b ;B) � CBV (a; b ;B) � NBV (a; b ;B) � BV (a; b ;B)(8.13)

as well as the implication

u 2 BV (a; b ;B) ) 9!u� 2 NBV (a; b ;B) ; u(t) = u
�(t) a.e.(8.14)

Functions of bounded variations can be characterized in terms of the mean continuity

modulus (cf. Mean Continuity Theorem 8.6) in the following way.

Theorem 8.12 Let v 2 L1(a; b ;B) be a given function satisfying

lim inf
h!0+

1

h

Z
b

a+h

kv(t)� v(t� h)k dt = C < 1 :(8.15)

Then there exists w 2 NBV (a; b ;B) such that w(t) = v(t) a.e., Var
[a;b]

w = C .

Conversely, for each v 2 BV (a; b ;B) and h 2 ]0; b� a[ , we have

1

h

Z
b

a+h

kv(t)� v(t� h)k dt � Var
[a;b]

v :(8.16)

If moreover v 2 NBV (a; b ;B) , then

Var
[a;b]

v = lim
h!0+

1

h

Z
b

a+h

kv(t)� v(t� h)k dt :(8.17)

Theorem 8.12 is proved (in a slightly di�erent form) in [Bre]. More precisely, it follows

from Proposition A.5 of [Bre] and from Lemma 8.13 below.

Lemma 8.13 For every v 2 L1(a; b ;B) and every h 2 ]0; b� a[ we have

1

h

Z
b

a+h

kv(t)� v(t� h)k dt � lim inf
h!0+

1

h

Z
b

a+h

kv(t)� v(t� h)k dt :(8.18)
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Proof of Lemma 8.13. Let � : ]0; b� a[! R
+ be the function de�ned by the formula

�(h) :=
1

h

Z
b

a+h

kv(t)� v(t� h)k dt :(8.19)

By the Mean Continuity Theorem, it is continuous in its domain of de�nition and it

satis�es obviously for every h > 0 , k > 0 , h+ k < b� a the inequality

�(h + k) � h

h+ k
�(h) +

k

h+ k
�(k) :

For every h > 0 and every integer p < (b� a)=h we obtain by induction

�(p h) � �(h):(8.20)

Let h
n
& 0 be a sequence such that lim

n!1
�(h

n
) = lim inf

h!0+
�(h) and let h 2 ]0; b � a[ be

arbitrarily chosen. For each n su�ciently large we �nd p
n
2 N such that h � p

n
h
n
<

h + h
n
. Then (8.20) yields �(p

n
h
n
) � �(h

n
) and passing to the limit we obtain the

assertion. l

In general, the problem of di�erentiability of absolutely continuous Banach space - valued

functions is nontrivial (see [Bre]). For our purposes it is su�cient to consider in the

sequel only functions with values in a separable Hilbert space X . We need the following

representation theorem ([Bre]).

Theorem 8.14 Let X be a separable Hilbert space. Then for every absolutely continuous

function u 2 AC([a; b] ;X) there exists an element _u 2 L1(a; b ;X) such that

(i) _u(t) = lim
h!0

1
h

(u(t+ h)� u(t)) a.e.,

(ii) u(t)� u(s) =
R
t

s

_u(� ) d� for all a � s < t � b .

According to Theorem 8.14, it is justi�ed to denote similarly as in the scalar-valued case

by W
1;1(a; b ;X) the space of absolutely continuous functions with values in a Hilbert

space X and by W 1;p(a; b ;X) for p 2 ]1;1] the space of all functions u 2 W 1;1(a; b ;X)

such that _u 2 L
p(a; b ;X) . The spaces W 1;p are Banach spaces endowed with the norm

juj1;p := ju(0)j+ j _uj
p
.

8.3 Riemann-Stieltjes integral

Let X be a separable Hilbert space with a scalar product

�; ��. For arbitrary functions

u 2 C([a; b];X) and � 2 BV (a; b ;X) and for an arbitrary partition S = ft0; : : : ; tNg 2
�

�
(a; b) we de�ne the Riemann-Stieltjes sum

I
S
(u; �) :=

NX
k=1



u(t

k
); �(t

k
)� �(t

k�1)
�

(8.21)
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with the intention to pass to the limit as � ! 0 .

Below we list without proofs standard results on the Riemann-Stieltjes integral. Details

can be found e.g. in [K].

Lemma 8.15 Let u 2 C([a; b];X) and � 2 BV (a; b ;X) be given. Then for every " > 0

there exists � > 0 such that for arbitrary partitions S; S
0 2 �

�
(a; b) we have

jI
S
(u; �) � I

S
0(u; �)j < ":

The limit lim
�!0+

I
S
(u; �) therefore exists and is independent of the choice of S 2 �

�
(a; b) .

It is called the Riemann-Stieltjes integral and denoted by
R
b

a



u(t); d�(t)

�
.

By construction, it is additive, that is
R
b

a



u(t); d�(t)

�
=
R
c

a



u(t); d�(t)

�
+
R
b

c



u(t); d�(t)

�
for every c 2 ]a; b[ . Moreover, it is linear with respect to both u and � and that the

estimate

��� Z b

a



u(t); d�(t)

���� � juj1Var
[a;b]

�(8.22)

holds for all u 2 C([a; b];X) and � 2 BV (a; b ;X) . Conversely, for every function � 2
NBV (a; b ;X) we have

Var
[a;b]

� = sup
nZ b

a



u(t); d�(t)

�
; u 2 C([a; b];X); juj1 � 1

o
:(8.23)

For u; � 2 CBV (a; b ;X) we have the integration-by-parts formula

Z
b

a



u(t); d�(t)

�
+

Z
b

a



�(t); du(t)

�
=


u(b); �(b)

�� 
u(a); �(a)�;(8.24)

and the following relations between Riemann-Stieltjes and Lebesgue integrals hold.Z
b

a



u(t); d�(t)

�
=

Z
b

a



u(t); _�(t)

�
dt(8.25)

8u 2 C([a; b];X) ; � 2 W 1;1(a; b ;X) ;Z
b

a



u(t); d�(t)

�
=



u(b); �(b)

�� 
u(a); �(a)�� Z b

a



�(t); _u(t)

�
dt(8.26)

8u 2 W 1;1(a; b ;X) ; � 2 BV (a; b ;X):

The Riemann-Stieltjes integral depends continuously on the functions u and � in the

following sense.

Theorem 8.16 Let u; � : [a; b]! X be given functions and let fu
n
;n 2 Ng , f�

n
;n 2 Ng

be given sequences in C([a; b];X) , BV (a; b ;X) , respectively, such that

(i) lim
n!1

ju
n
� uj1 = 0 ,
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(ii) lim
n!1

j�
n
(t)� �(t)j = 0 for all t 2 [a; b] ,

(iii) Var
[a;b]

�
n
(t) � c , where c > 0 is a constant independent of n .

Then lim
n!1

R
b

a



u
n
(t); d�

n
(t)
�
=
R
b

a



u(t); d�(t)

�
.

Notice that the integral
R
b

a



u(t); d�(t)

�
is meaningful by Proposition 8.10. It is also worth

mentioning that condition (8.15) for v 2 L
1(a; b ;X) can equivalently be written in the

form

sup

�Z
b

a



v(t); _'(t)

�
dt ; ' 2 W

1;1(a; b ;X) ; j'j1 � 1 ; '(a) = '(b) = 0

�
= C :

(8.27)
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