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Abstract

We give an overview of the theory of multidimensional hysteresis operators de-
fined as solution operators of rate-independent variational inequalities in a Hilbert
space X with given convex constraints. Emphasis is put on analytical properties of
these operators in the space of functions of bounded variation with values in X, in
Sobolev spaces and in the space of continuous functions. We discuss in detail the
influence of the geometry of the convex constraint on the input-output behavior. It
is shown how multidimensional hysteresis operators arise naturally in constitutive
laws of rate-independent plasticity and concrete examples of application of the above
theory in material sciences are given.

Introduction

One may wonder why such a particular problem like the variational inequality
(0.1) (u(t) —z(t),z(t)— ) >0 Vi e Z,

where Z is a convex closed subset of a Hilbert space X, u is a given X -valued function
of t € [0,T], z is the unknown function with values in Z and dot denotes the derivative
with respect to ¢, should draw an exceptional attention. As in many analogous cases,
it has been extracted as a common feature of different physical models. Its variational
character is typically interpreted as a special form of the mazimal dissipation principle in
evolution systems with convex constraints. It turns out that inequalities of the form (0.1)
play (explicitly or implicitly) a central role in modeling nonequilibrium processes with
rate-independent memory in mechanics of elastoplastic and thermoelastoplastic materials
including metals, polymers or for instance bread dough, as well as in ferromagnetism,
piezoelectricity or phase transitions (see e.g. [DL, LC, Al, LT, NH, BS, V, Be, KSI,
KS2, KS3, KS4, AGM]). They also naturally arise in the analysis of fatigue and damage
accumulation, see [BDK, BS].

Another area of application is related to mathematical optimization, where inequality
(0.1) is known as a special case of the Skorokhod problem, cf. [DI, DN], which consists in
approximating a given function u : [0,T] — X by a function ¢ of bounded total variation
in a given convex neighborhood of w in such a way that 13 (in a generalized sense) points
in a prescribed direction. Equation (0.1) corresponds to the case where f = u —z belongs
to the outward normal cone to Z at the point z. On the other hand, (0.1) is a special
case of a ‘sweeping process’, see [M].

If Z has nonempty interior, the decomposition u = z 4 ¢ defined by inequality (0.1),
where z is Z-valued and ¢ has bounded variation, can be extended to every continuous
function w. Moreover, there are some indications to conjecture that this decomposition is
manimal in the sense that among all decompositions of w of this form, the total variation
of ¢ is minimal with respect to a suitable norm in X. In the case dim X = 1, this
observation has been made by V. Chernorutskii and a proof can be found in [K]; in
higher dimensions, this question seems to be open.

The present text is devoted to a discussion about the influence of the geometry of the
convex constraint Z (the characteristic) on analytical properties of the mappings u — =



and u — £ (the so-called stop and play operators). They are hysteresis operators, that
is, according to the classification in [V], operators that are causal and rate-independent
(see (1.25), (1.26) below). This terminology is justified by the fact that in the scalar case
dim X = 1, hysteresis operators are exactly those that admit a local representation by
means of superposition operators in each interval of monotonicity of the input, with a
possible branching when the input changes direction.

Most of the material collected here is taken from [KP, K] with some small improvements.
More recent contributions ([BK, D, DT]) are referred to in the text, the results of Sections
5 and 7 are new to a large extent.

In Section 1 we present some typical issues of elastoplasticity related to inequality (0.1).
Basic elements of convex analysis are recalled in Section 2. In Section 3 we construct
the play and stop operators in the space of continuous X -valued functions of bounded
variation and prove their continuity in WP(0,T; X) for every 1 < p < oo and every
convex closed set Z. A continuous extension to the space C([0,T]; X) of continuous
functions is established provided Z has nonempty interior. The uniform continuity in
C(]0,T]; X) is proved in Section 4 under the hypothesis that the set Z is uniformly
strictly convex. The local Lipschitz continuity in W''(0,T; X) is obtained in Section
5 when the boundary of Z is smooth. If Z is a convex polyhedron, the play and stop
are globally Lipschitz in both C([0,T]; X) and W'(0,T; X); a detailed proof is given
in Section 6. In Section 7 we prove a maximal regularity result, namely that the total
variation of the derivative of the output can be estimated above by that of the input.
Indeed, one cannot expect the output derivative to be continuous across the boundary of
Z even if the input is arbitrarily smooth. The last Section 8 gives a brief survey of the
theory of Hilbert space-valued functions.

Even in application to elastoplasticity, the investigation of the stop and play operator
is not just an academic question. Indeed, the theory of monotone operators provides
a traditional tool for solving classical problems ([DL, NH, Al, LT]) without referring to
hysteresis operators. The advantage of the hysteresis approach consists however in the fact
that additional geometrical considerations allow for solving also nonmonotone problems.
Typical examples can be found in [K] and [BK].

We do not give an exhaustive list of related publications and historical references here;
an interested reader may consult in particular the pioneering monographs [KP] and [V],
or a recent survey paper [Bro].

1 Physical motivation

The equation of motion of a deformable body © C RY for some N € N, where N denotes
the set of positive integers and RY is the N-dimensional Euclidian space, is in classical
continuum mechanics ([LL]) considered in the form

62’11,1' N (90'1'1' .
(1.1) Pom = . Be, +¢, 2=1,...,N,
where z € Q, t > 0 are the space and time variables, respectively, u = (u;) is the

displacement vector, p > 0 is the density, o = (0;;) is the symmetric stress tensor and



g = (gi) is the volume force density, z,7 = 1,..., N. The meaningful choice in applications
is usually N = 3. Equation (1.1) has to be coupled with initial and boundary conditions
and with a constitutive law between the stress tensor ¢ = (oy;) and, for example, the
linearized strain tensor € = (g;;) defined as the symmetric derivative of u

(1.2)

1 ( 6u1 (9’11,]'
+

i = o , t,7=1,...,N.
9= 9 \ 8z, a@> "

While (1.1) is a general physical law, the constitutive relation characterizes specific prop-
erties of a given material, subject to time-dependent loading.

In engineering applications, one has always been searching for a mathematically simple
phenomenological description of the strain - stress constitutive behavior for a possibly
large class of different types of material response including memory effects. Rheological
models play a prominent role here and offer one of the main tools in the theory of inelastic
constitutive laws (see e.g. [LC], [Al], [LT]). We recall here its main constituents.

1.1 Rheological elements

Let T be the space of symmetric tensors ¢ = (&), 4,7 = 1,...,N, N € N, &; =
&ji, endowed with the scalar product £:79 := vajzl &jmij, and let 6 be the well-known
Kronecker tensor

0 if i47,
5€T’5ﬁ:{1 ﬁii?

We split the space T into the subspace Ts := span {é} and its orthogonal complement
(the so-called deviatoric space) Tgey 1= Tj. According to this decomposition, we denote

by &1 := £: 6 the first invariant (trace) of a symmetric tensor ¢ € T and by €gqev := € —
1/N &1 é € Taey the deviator of €.

The strain and stress tensors € and o, respectively, are in general functions of the space
variable € © C RY and time variable ¢ > 0 with values in T. We consider here only
homogeneous media, where the constitutive law is independent of the spatial variable z
which thus plays the role of a parameter.

Definition 1.1 A system consisting of

(1.3) (i) @ constitutive relation between & and o,

(ii)  a potential energy U >0

1s called a rheological element.

A rheological element 1s said to be thermodynamically consistent, if the quantity
(1.4) ji=é:0—U

called dissipation rate, where the dot denotes the time derivative, is nonnegative in the
sense of distributions for all e,0,U satisfying (1.8).



Example 1.2 The elastic element £.

Elastic materials are characterized by a linear stress-strain relation and by the complete
reversibility of dynamical processes. In mathematical terminology, it is assumed that
there exists a matrix A = (A;jr) over T such that

N
(1.5) o= Ae orequivalently o;; = Z Aijke€re, 1,7 =1,...,N.
k=1

Reversibility means that the potential energy U involves no memory and can be chosen
in such a way that the dissipation rate ¢ vanishes, i.e. the value of U(¢) for each ¢ > 0
depends only on the instantaneous value of £(¢) and U = é: Ae almost everywhere for
every absolutely continuous €. This necessarily implies that the matrix A is symmetric
with respect to the scalar product ‘:’ and U has the form

1
(1.6) U= 5/15:5

up to an additive constant. Indeed, for an arbitrary ¢ € W'(0,T;T) and ¢t €]0,T]|
put &(7) := €(0) + 7/t (e(t) — €(0)) for 7 € [0,¢]. We can choose the initial value for U
arbitrarily, for instance U(0) := 1/2 Ae(0):e(0). We have by hypothesis

(1.7)  U(t)=U(0) + /0 E(7): A&(r) dr = %5(t):A5(t) + %5(75) (A — AT)e(0),
where (AT)Z'J'M = Aklij; hence
U(t) = é(t) : Ae(t) + %é(t) :(A— AT)(e(0) — e(2))

and we easily conclude that the matrix A is symmetric and (1.6) holds.

To guarantee that the stress-strain relation is one-to-one and the material law is deter-
ministic, we assume that the matrix A is positive definite.

The elastic element is said to be isotropic, if the matrix A has the form
(1.8) A=2ul+ NX\PF;s,
where g, A are positive numbers called Lamé’s constants (see [Ral]), I is the identity

matrix [§ = ¢ and Ps is the orthogonal projection onto Ts, that is Psé = 1/N £16.

Example 1.3 The viscous element £.

Modeling of rate-dependent relaxation effects makes often use of the concept of wiscosity
based on the hypothesis that there exist two coefficients > 0,{ > 0 of proportionality
between the deviators and first invariants of the strain rate and stress, that is

(19) Odev = nédEV7 o = CE:I

The assumption that no reversible energy can be stored by the viscous element (U = 0)
ensures its thermodynamical consistency.



Example 1.4 The rigid-plastic element R .

The basic concept in plasticity is the yield surface in the stress space which can be
described as the boundary 0Z of a convex closed set Z C T.

The rigid-plastic behavior consists of two different phases characterized by the instanta-
neous value o of the stress tensor. The material remains rigid as long as ¢ € Int Z (the
interior of Z). In this case no deformation occurs and € = 0. The material becomes
plastic if o reaches the boundary 0Z of Z. Plasticity is governed by three physical princi-
ples: the stress values remain confined to the set Z, no reversible energy is stored, and the
dissipation rate is maximal with respect to all admissible stress values. Mathematically,
this means

(1.10) vcZ,
(1.11) U=0,
(1.12) Ei(c—5)>0 VéeZ,

Geometrically, € points in the direction of the outward normal cone, and condition (1.12)
is also called the normality rule. We see that the variational inequality (1.12) includes the
rigid behavior (for o € Int Z it entails € = 0). In order to ensure the thermodynamical
consistency, we assume 0 € Z. In fact, it is natural to assume that no deformation occurs
for ¢ = 0. This is equivalent to the hypothesis 0 € Int Z which, as we show in the next
sections, has a considerable impact on the regularity in the mathematical setting.

It has been observed that volume changes are negligible during plastic deformation ([Ra]).
Combining constitutive relation (1.10) - (1.12) with the volume invariance condition

(1.13) er=20,
we conclude from Proposition 2.9 below that Z has the form of a cylinder
(1.14) Z =1Zy+Ts,

where Zy C Tgev is a convex closed set. In applications, it is often assumed that Z,
is bounded. The classical models of Tresca and von Mises are special cases of (1.10)-
(1.14) with (von Mises) Zo = B,(0) N Tgev (ball centered at 0 with radius r) or (Tresca)
Zy :={€ € T4ev; Zszl |€x| < r} for some r > 0, where {&} are the eigenvalues of the
symmetric matrix ¢ = (&;;). Note that we have Zszl & = 0 for € € Tgev. The Tresca
set Zy is usually represented for N = 3 by a hexagon in the plane & + & + & = 0.

Example 1.5 The rigid-plastic element with isotropic hardening 7 .

In many materials, the yield surface does not remain fixed in time, but changes according
to the loading history. This phenomenon is called hardening (softening). We first recall
the concept of isotropic hardening, where the yield surface evolution is a simple dilation
governed by a scalar hardening parameter a. Following [NH] we assume analogously as in
Example 1.4 that a bounded convex closed set Zy C Tgev is given such that 0 € Int Z,,
and we denote by My : Tgey — [0,00][ the Minkowski functional associated to Zy by
Definition 2.18 below. Let further a concave nondecreasing function ¢ : [1,00[ — [1, 00|
be given, ¢(1) =1.



We denote by T; the space T xR' endowed with the natural scalar product {(¢,8),(n,7))
=¢:n+ By for £, €T, B,v7 € R, and by Z; the convex closed subset of T,

(1.15) Zy ={({,a) € T1; >0, Mo(baev) < (1 4+ a)}.

The constitutive relations are analogous to (1.10)-(1.12), namely

(1.16) (0,a) € Z7,
(1.17) U=0, o(0)=0,
(1.18) (¢, —(1/c) &), (o,a) — (5,&)) >0 Y(5,&)€ Z,

where ¢ > 0 is a given physical constant.

We immediately observe that choosing & = ¢ in (1.18), we obtain &(a— &) < 0 for every
& > a, hence a > 0.

Let Z* := {£ € T; (¢, ) € Z1} be the domain of admissible stresses for an instantaneous
value a of the hardening parameter. We see that Z® increases without changing its shape
with increasing o.

1.2 Composition of rheological elements

A large variety of models for the material behavior can be obtained by composing rheo-
logical elements from Examples 1.2 - 1.5 in series or in parallel.

Let G1, G, be two rheological elements and let ¢;, o;, U; be the strain, stress and potential
energy, respectively, corresponding to the elements G;, 1 = 1, 2.

The total strain ¢, stress o and potential energy U for the combination in parallel G;|G,
and in series G; — (G, are defined by the following relations

G1|G, G — G,
£E=€1 =€y E=¢1+¢
o =01+ 0g O =01 = 09y
U=U,+U, U=U,+U,

in analogy with the theory of electrical circuits. It is easy to see that every combination
of thermodynamically consistent elements is thermodynamically consistent.

Example 1.6 Elastoplastic models £ — R,E/R.

There are good reasons for rewriting constitutive variational inequalities in plasticity in
operator form. This enables us to distinguish clearly between input and output quantities:
while the input can be controlled, the output is determined by solving the constitutive
equation.

Let us compare the constitutive relations for two elastoplastic models E|R, £ — R. We
denote by €°, 0° and €P, 0P the strain and stress on the elastic and rigid-plastic element,
respectively.



E=¢°=¢P e=c¢°+¢P
oc=0°4o0"F oc=0°=0P
0° = Ae o = Ae®

o e Z oceZ
Ei(c?P—6)>0 Vo e Z EPi(c—6)>0
U=3e:0° U=3e:o

Recall that Z C T is a given convex closed set, 0 € Int Z. We see that both models are
governed by a variational inequality of the same type, namely

ER: (Ao —067)): (P =5)>0 .

(1.19) E-R: (A Aé-06)):(0—5)2>0

The solvability of such equations is ensured by the following theorem whose detailed proof
(in a more general setting) will be given in Section 3. Definition and general information
about the space W'(0,T; X) of absolutely continuous Hilbert space valued functions is
given in Section 8.

Theorem 1.7 Let X be a real separable Hilbert space endowed with a scalar product <., > .
Let Z C X be a convez closed set, 0 € Z, and let z° € Z be a given element. Then for
every function u € WH(0,T; X) there exists a unique z € WH(0,T; Z) satisfying the
variational inequality

(1.20) (u(t) — z(t),z(t)—2) >0 ae Vi€ Z
and the wnitial condition
(1.21) z(0) = z°.

We define the solution operators S, P : ZxWh(0,T; X) —» W(0,T ; X) of the problem
(1.20), (1.21) by the formula

(1.22) Sz u) =z, P(z°u):=u—8(z%u).

According to [KP], the operators S, P are called stop and play, respectively. The set Z
is called the characteristic of S and P.
The constitutive relations for the elastoplastic models above can be written in the form

(A7t P(08,0)) : P(05,0),
(A7t S(0° Ag)) : S(0°, Ae),

(1.93) { EIR: e=A"1P(d},0),

U=,
E-R: 0=8(c%4e), U=3

where S, are the stop and play in X = T endowed with the scalar product <§,77> =
(A7%€) :m, and of,0° are given initial output values.



It is clear that the roles of input and output in the models £|R and £& — R cannot be
reversed.

The definition immediately suggests that the stop has the

Semigroup property : For v € WhY(0,T;X), s €]0,7[ and ¢t € [0,T — s] put
us(t) := u(s +t). Then for every z° € Z we have

(1.24) S(z°,u)(t + 8) = S(S(z°, u)(s), us)(t).

An operator F' acting in some space R(0,7; X) of functions [0,T] — X is called

Rate-independent , if for every u € R(0,T ; X) and every nondecreasing mapping o of
[0,T] onto [0, T] such that us(t) := u(a(t)) belongs to R(0,7; X) we have

(1.25) F(ua)(t) = F(u)(a(t)) forall te0,T],

Causal , if the implication

(1.26) u(t) = v(t) Vte [0t = F(u)lto) = F(v)(to).

Rate-independence and causality characterize hysteresis operators according to the classi-
fication of [V]. By definition, the stop and play are hysteresis operators in W'(0,T'; X)
(we will see in the next section that they can be extended to the space of continuous func-
tions C([0,7]; X)). Indeed, the concept of ‘hysteresis branching’ or ‘hysteresis loops’ is
meaningful only in the scalar case dim X = 1. However, the play operator turns out to be
the main building block for a very large family of scalar hysteresis models used in elasto-
plasticity (Prandtl-Ishlinskii model), ferromagnetism (Preisach and Della Torre models),
fatigue analysis (the ‘rainflow’ method) and many others. A more complete information
can be found in [BS] and [K]. Recent applications to thermoplasticity ([KS1, KS2]) and
phase transitions ([KS3, KS4]) also confirm its universal character.

We remain here within the multidimensional framework and give some examples of ap-
plication of hysteresis operators for modeling the kinematic and isotropic hardening in
elastoplastic materials.

1.3 Linear kinematic hardening

Let us consider the so-called Prager model £ — (€|R). The general rheological rules yield

o = o°40oP,
e° 4 €P,
of = AP,
o = Be®,
o € Z,
éPi(eP—6) > 0 VéeZ,
U = %(5e:a—|-5” o®)



where A, B are given constant symmetric positive definite matrices and Z C T is a convex
closed set, 0 € Int Z. For ¢t € [0, T] put

(1.27) Z(t) = Z + o°(t).

Then o(t) € Z(t) for all ¢t € [0,T]. Relation (1.27) can be interpreted as a translation of
Z in the stress space T driven by the elastic component o° of the stress without changing
shape and size. This phenomenon is called kinematic hardening and is typical for metals,
see [LC]. The word ‘linear’ is related to the linear dependence between o° and eP.

The evolution of ¢° is governed by variational inequality of the form (1.20), namely

(1.28) (A76%) : (6P —5) >0, VG6€Z

Inequality (1.28) can be interpreted as a normality condition for the hardening rate ¢
with respect to the scalar product <-, ->A := (A™! - :.); both the hardening rate &°
and the plastic strain rate €7 have the outward normal direction to 0Z at the point o,
but with respect to different scalar products.

With the intention to deal with several scalar products in T we introduce the subscript

A for the play Pa and stop Ss corresponding to the scalar product < , >A.

Using (1.23) we can express the constitutive law for the model £ —(£|R) in the form
(1.29) e=B o+ A Pa(ab, 0)

with input o and output £. We now prove that the constitutive operator B~! + A~1Pp,
is invertible. Identity (1.31) below gives an equivalent expression for (1.29) with input €
and output o.

Lemma 1.8 Let of € Z be given and let A, C be given constant matrices such that A,CA
are symmetric and positive definite. Put A:= A+ CA. Then for all c € WH(0,T;T)

we have
(1.30) Si(08,0 + CPa(of,0)) = Salol,0).

Proof. Put © := Sa(0f,0), vy := S;(08,0+CPa(0h,0)). Then y = S;(of, (I+C)o—Cx),

where [ is the identity matrix. Putting & :=(z 4 y)/2 in the variational inequalities

Ao — )i (z—5) >

> 0,
AN(I+C)o—Ca—5):(y—5) > 0,

and using the identity A1+ A0 = A™! we conclude <a: -y, T —y>A <0, hence z = y.

A
We now apply Lemma 1.8 with C = BA™! to the constitutive equation (1.29). We obtain

Si(of, Be) = Sa(of,0) for A=A+ B,
hence (I + BA™')o = Be + BA—lgg(ag, Be), or equivalently

(1.31) o= (A" + B e+ BAT'S;(0F, Be) = Be — BA™'p;(oF, Be),

10



where ¢ is the input and o is the output.

In the particular case B=1,A = }7] for some v > 0, we obtain P4 = P; = Pr and the
inversion formula

(1.32) (T +vPr(% ) =T — 117731(930,.)

holds for all z° € Z, where 7 is the identity mapping in W(0,T; X).

Exercise 1.9 Assume that the matrices A, B commute, i.e. AB = BA. Prove that
(1.31) is the constitutive equation of the model £ |(£ —R) with

o = Ae,
oP = Be®,

e:(o?—5)>0 VocZ,Z=B(A+B)YZ).

Hint. Use the identity CSa(z°,u) = Scac(Cxz®, Cu) for each positive definite symmetric
matrix C, where S is the stop with characteristic Z = C(Z).

The commutativity hypothesis AB = BA 1is satisfied for instance if both elastic elements
are isotropic. In this case the models £ —(£|R) and £|(£ —R) are equivalent.
1.4 Isotropic and kinematic hardening

Let us consider now the model £ —(&£|J). With the notation taken from Example 1.5,
the constitutive relations are analogous to the model £ —(£|R), namely

(1.33) (0,0) = (0%, —a) + (¢, a), (oF, ) € Zy,
(1.34) (e,—(1/c)a) = (£%,0) + (e?, —(1/c)a), o = Be®, 0% = AP,
(1.35) ((e?,—(1/c)a),(o?, o) — (6,&)) >0 V(6,a) € Zy,

where A, B are symmetric positive definite matrices.

Let A;,B; : Ty — T; be the linear mappings defined by the identities A;(¢,a) :=
(A€, ca), Bi(€, o) :=(B¢,ca). We have

(A7 ((6,0) — (6%, &), (0%, a) — (6,&)) >0 V(5,&) € Z,
hence (¢?,a) = & ((05,0),(0,0)), (¢¢,—a) = P1((05,0),(0,0)), where S, n are the

stop and play in T; endowed with the scalar product <A1 L, ->, with characteristic Z;
and with a given initial condition (o§,0) € Z;. The constitutive equation has the form

(1.36) (e,—(1/c) &) = BY(0,0) + A7 ((02,0), (0, 0)) .

We derive now some consequences of the constitutive equation. For a function f : [0,T] —

R" and ¢ € [0,T] we denote ||f||p,g := sup {|f(7)|; 7 € [0,t]}.

11



Lemma 1.10 Let 0 € WHY0,T;T) be given and assume o(0) = of = 0. Let ¢, be
given by the equation (1.36). Then we have

(1.37) (1 + a(t)) = max {1, | Mo(cg., )l }

where @, Mo are as in (1.15) and o, is the deviator of the plastic stress o®.

Proof. We have (0?(t),a(t)) € Z; for all t € [0,T], hence My (05 ,(t)) < (1 + a(t))
by definition. The fact that « is nondecreasing (cf. (1.18)) entails ||Mo(oh.,)|[0,g <
©(1 4+ a(t)). In the case ||Mo(o.,)|l0g < 1 we obviously have a(t) = 0 and (1.37)
holds. Let us assume now 1 < |[Mo(0h.,)|l0,g < ©(1 + «(t)) for some ¢t €]0,T[. Then
there exists 7 €]0,¢[ such that &(7) > 0 and [[Mo(o5,, )0 < ®(1 + a(7)), hence
(o®(7),a(r)) € Int Z;. From (1.35) we conclude &(7) = 0, which is a contradiction.

According to general rheological principles, we associate to the model £ —(£|J) the
potential energy U = (<5e, 0'> + <5”, Ue>) /2. The dissipated energy ¢(t) is then equal to

the plastic work fot €P(7):0P(7)dr and is related to a(t) by the following identity.

Proposition 1.11 Let the assumptions of Lemma 1.10 hold. Put r :=inf{8 > 0;¢'(1 +
B) =0} € [0,00]. For p € [0,r] put

[P e(1+P)
o) -—/0 w11 p) %

Then we have a(t) € [0,r] for all t € [0,T] and

(1.38) q(t) = ®(a(t)) provided «ft) € [0,r].

Proof. Assume «(t) > r for some t €]0,T[. Then there exists 7 < ¢ such that &(7) >0
and a(7) > r. Putting & := o?(7),& = r we have p(1 + &) = ¢(1 + a(7)), hence
(6,&) € Z; and (1.35) yields &(7) < 0, which is a contradiction.

Identity (1.38) can be equivalently written in the form

(1.39) q(t) = d(t)cp(l—l——a(tg) a.e. provided a(t) < r.

cp'(1 + a(t))

To prove (1.39) we distinguish two cases.

a) &(t) =0. We choose a > 0 sufficiently small and b > 0 sufficiently large such that
& :=(1+a)o?(t) and & := a(t)+b satisfy Mo(Ggev)—p(1+&) = (1+a) (Mo(agev(t))—
o(l+ a(t))) +(1+a)e(l+a(t) —e(l+ a(t)+b) <0, that is, (6,&) € Z;. From
inequality (1.35) we infer a€P: 0o <0, hence ¢(t) =0.

b) &(t) > 0. We will see in Section 3 that the play depends continuously on the
characteristic with respect to the Hausdorff distance. It therefore suffices to assume
that ¢ and M, are smooth functions. We have (0%(t), a(t)) € 0Z; and according to
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(1.35), the vector (£7(t), —(1/c)a(t)) points in the direction of the outward normal
vector to Z;. In other words, we have

P(t), —(1/c)e = —d(t) o® —¢' o
(&), ~(1/)alt)) = s (OM(oFe (6, = (1 +alt))
where OM, is the gradient of My. This yields
8 — 2PN e P($) — 2P(4) . 4P _ L
q(t) =€ (t) ‘g (t) =¢ (t) ° Udev(t) - C(p'(l + a(t))

We have OMo(oh_,): 0k, = Mo(oh,,) by Lemma 2.21 and My(of_,(t)) = o(1+a(t))
by hypothesis, hence identity (1.39) holds.

OMo(03, (1)) 0den(t) -

A

As a consequence of Proposition 1.11, we see that the isotropic hardening can be equiva-
lently characterized by the plastic work (or dissipation) g. For this reason it is sometimes
referred to as work hardening, see [NH], [LC].

1.5 Nonlinear kinematic hardening

In order to account for the phenomenon of ratchetting which is manifested by the accumu-
lation of the plastic strain under cyclic stress loading, Armstrong and Frederick proposed
in [AF] a modification of the Prager model from Example 1.3, replacing the linear relation
between ¢° and €P by a nonlinear one, namely

(1.40) o° =y (RE” —o°[e7|)

with given positive constants v, R. It is assumed that the convex closed set Z is the von
Mises cylinder of radius » > 0,

(1.41) Z =(B(0)NTgev) + Ts .

The normality rule here implies é? = of_ |€P|/r, hence (1.40) is equivalent to
(1.42) 6 =v4((R+7)eP — 04gev |EP]) -

Introducing an auxiliary function u by the formula

(1.43) ui=vy(R+r)e? + o5,

we see that the variational inequality

(1.44) EPi(o?P—5) >0 Vo e Z

can be rewritten as

(1.45) (w—oh,,):(oh,—6)>0 V& € B,(0) N Tgev ,

13



hence of_, = §(0f4005u), €8 = (1/(7(R+7))) P(0} 4, %) according to the above notation
for a given initial plastic stress o5. The function u is to be determined as the solution of
the operator - differential equation

ev d
(1.46) U = Ggey + 2 ‘

R+ dt

P(Ugdev7 u)

for each given stress input ¢ and with an appropriate initial condition. The constitutive
operator of the stress-controlled Armstrong-Frederick model thus contains a superposi-
tion of the play operator to the solution operator o +— u of the equation (1.46). It is
shown in [BK] that the model is well posed. The strain-controlled case leads to similar
considerations. We do not give the details here; let us just point out that the solvability of
equation (1.46) is closely related to the local Lipschitz estimate (5.6) for the play operator
in WH10, T ; Taev) -

2 Convex sets

The aim of this section is to recall some basic elements of convex analysis in Hilbert
spaces. Most of the results are well-known. We present them in order to fix the notation
and to keep the presentation consistent (for more information we refer the reader to the
monographs [Ro] and [AE]). The complementary function of a convex set (Definition 2.4
below) has been introduced in [K].

Throughout the section, X denotes a real separable Hilbert space endowed with a scalar

1/

product <-, > and norm |z| := <az,az> 2 By Z we denote a convex closed subset of X

such that 0 € Z. We fix the number
(2.1) m :=dist (0,072) :=inf {|z|;2 € 0Z} > 0.
It is clear that m > 0 if and only if 0 € Int Z.

We start with a simple lemma.

Lemma 2.1 For each © € X there exists a unique z € Z such that |z—z| = dist (2, Z) =
min{|z —y|;y € Z}.

Proof. Let z € X be given. Put p:=inf{|z — y|;y € Z} and let {y,} be a sequence in
Z such that |z — y,| — p. From the identity

(2.2) [ — vl + [u+of* = 2(|uf* + [v]*)

foru =2 —y,, v =2 — yi, it follows

2

1 Yn + Yk

Slvm = el = |2 —yaf* + 2 — e’ -2 ‘w - <z —yal* + |2 — yl* — 207,
hence {y,} is a convergent sequence and it suffices to put z := lim y,. Uniqueness is
obtained analogously. 0
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Using Lemma 2.1 we can define the projection ¢ : X — Z onto Z and its complement

P :=1—@Q (I is the identity) by the formulae
(2.3) Qr € Z, |Pz|=dist(z,Z) forze X.

In the sequel, we call (P, Q) the projection pair associated to Z. We make extensive use
of the following lemma.

Lemma 2.2 For every z,y € X we have

(i) Pm,Qaz—z>20 Vz e Z,
(ii) (Pz— Py,Qz—Qy) >0,
)

(iii) (Pz,xz) > m|Pz|+ |Pz|* with m given by (2.1),

{
{

(iv) Q(z+ aPz)=Qz Vo> —1.

Proof. (i) For z € Z, z # Qz and v €]0,1] we have |z — vz — (1 — 7)Qz|* > |Pz|?,
hence 2<Pa:, Rz — z> +v|Qz — z|* > 0 and the assertion follows easily. Statement (ii)
is an obvious consequence of (i). We obtain (iii) from (i) by putting z := m Pz/|Pz| if
z ¢ Z, the case ¢ € Z is trivial. To prove (iv) we notice that for all z € Z we have
|z + aPz — 2|2 = |Qz — 2> + (1 + a)?|Pz|? + 2(1 + a){Pz,Qz — z), hence the minimum
of |z + aPz — z| is attained for z = Qz. A

2.1 Recession cone

Definition 2.3 A nonempty closed convex set C C X 1is called a cone, if the itmplication
z€C = azx €C holds for all z € X and o > 0.

Definition 2.4 Let Z C X be a convex closed set, 0 € Z. The set
(2.4) Cz={ze€Z;,axecZ Va>0}

is called the recession cone of Z and the function Kz : [0,00] — [0,00[ defined by the
formula

(2.5) Kz(r) :=sup{dist (z,Cz); 2 € ZN B,(0)} forr >0
18 called the complementary function of Z, where
(2.6) B.(zo)={z € X; |z —zo| <1}

denotes the ball centered at zo with radius .

The following properties of the complementary function are proved in [K].
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Proposition 2.5 Let Z C X be a convex closed set with 0 € Int Z and with the recession
cone Cz and complementary function Kz. Then

(i) z+y€Z Vze Oz Yy€ Bn(0), where m is given by (2.1),
(ii) Kz is nondecreasing in [0,00] , 1 > Kz(s)/s > Kz(r)/r for 0 <s <,
(iii) #f dim X < oo, then

(2.7) lim £2(7)

r—o0 r

=0.

Let us note that by Proposition 2.5 (ii) we have Kz(r) — Kz(s) < (r — s) Kz(r)/r for
r > s >0, hence Kz is Lipschitz.

Property (2.7) is crucial for the extension of hysteresis operators to the space of continuous
functions. We therefore introduce the following terminology.

Definition 2.6 A convez closed set Z C X s called a recession set if 0 € Int Z and the
complementary function Kz satisfies (2.7).

Indeed, every convex closed set Z C X with 0 € Int Z is a recession set if dim X < oco.
This is not true for infinitely dimensional spaces, where there exist unbounded sets Z with
Cz = {0}, but condition (2.7) holds for instance for all sets of the form Z = C + Zp,
where C is a cone and Zp is bounded, 0 € Int Zp.

2.2 Tangent and normal cones

A natural generalization of normal vectors and tangent hyperplanes which in general are
not uniquely determined, is the concept of normal cone Nz(z) and tangent cone Tz(z)
to a convex closed set Z C X at a point € Z. They are defined by the formula

{Nz(m) ={ye X; (y,z—2) >0 Vze 7},

(2.8) Ty(e) = {w € X; (w,y) <0 Vy € Ny(a)}.

Every element u € X admits a unique orthogonal decomposition into the sum v =v+w
of the normal component v € Nz(z) and the tangential component w € Tz(z), namely
v = @Qn(u), w = Py(u), where (Py,Qn) is the projection pair associated to Nz(z).
Indeed, by Lemma 2.2 (i) we have <w, (1— a)v> >0 for all @ > 0, hence <w,v> =0 and
{(w,y) <0 for every y € Nz(z). Uniqueness is easy: assume v; +w; = vy + w, for some
v; € Nz(z), w; € Tz(z), (w;,v;) =0,%=1,2. Then 0 < (w;—ws,v1—v2) < —|wy —wsl?,
hence wi; = wy, v1 = v,.

For ¢ € Int Z we obviously have Nz(z) = {0}, Tz(z) = X. One might expect
that for z € 0Z the normal cone should contain nonzero elements. The example
Z = {z € X;|{z,ex)| < 1/k Vk € N}, where {e;} is an orthonormal basis, shows
that this conjecture is false, since 0 € Z and Nz(0) = {0}. In regular cases this cannot
happen.
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Proposition 2.7 Assume Int Z # 0. Then for every z € 0Z we have Nz(z)\ {0} # 0.

Proof. Let {z,;n € N} be a sequence in X \ Z such that lim, .o |z, — z| = 0. Put
€n = |Pzy| >0, yn := 2, + 1/, Pz,. We have &, < |z, — z| and Lemma 2.2 (iv) yields
QYn = Qzn, Py, = (1 +1/e,) Pz,. By Lemma 2.2 (i) we further have |Qy, — z|* =
Q2 — | = |20 — 2|* — |Pzy|> — 2(P2zy,Qzn — z) < |2, — z|* and

(2.9) <Pyn, Qyn — z> >0 Vze Z, VneN.

Passing to subsequences we can assume that {Py,} converges weakly to an element ¢
which belongs to Nz(z) by (2.9). It remains to verify that ¢ # 0. We fix an arbitrary
ball Bs(zo) C Int Z. Putting z := 2o+ 6/(1 4 €,) Pyn in (2.9) we obtain § < <f,az —a:0>,
hence ¢ # 0. a

Let us mention the important particular case of cylinders in X .

Definition 2.8 Let Y C X be a closed subspace of X, let Yt be 1ts orthogonal comple-
ment and let Z CY be a convez closed set. Then the set Z := Z + Y1 is called a convex
cylinder in X .

Proposition 2.9 A convez closed set Z C X 1is a convez cylinder of the form Z = Z+Y+
with Z CY if and only if Nz(z) CY forall z € Z.

Proof. The ‘only if’ part is trivial. To prove the converse we put Z := ZNY and choose
arbitrarily u € Z and w € Y*. From Lemma 2.2 (i) we infer <P(u—|—w), Q(u—l—w)—u> >0,
hence |P(u + w)|2 < <P(u + w),w>. On the other hand, we have P(u+ w) € Nz(Q(u +
w)) C Y, and we conclude <P(u—|—w),w> = |P(u+w)|* = 0. Consequently, Z4+YtcZ
and equality follows from the convexity of Z. 0

Remark 2.10 Cylinders of the form Z = Z + Y+ with Z C Y are characterized by the
condition Pz € Y for all z € X. Denoting by (]5, Q) the projection pair associated to
Z in Y, we obtain for every # € X of theform ¢ = u+w, u € Y, w € Y the identities
Pz =Pu, Qz = Qu+w.

2.3 Strict convexity
In general, the boundary 0Z of a convex closed set Z C X can contain straight segments.

We recall two criteria for their existence. It is easy to verify that 0Z contains a segment
of length r > 0 if one of the following conditions is satisfied.

Internal criterion There exist z,y € 0Z such that |z —y|=7r, (z+y)/2 € 0Z.

FEuxternal criterion There exists a point z € 0Z and a sequence {w,;n € N} in X \Tz(2)
such that |w,| =1, lim w, =w, 24+ rw € 0Z.

n— 00
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The terminology is justified by the fact that we always have (z +y)/2 € Z for z,y € Z
and z+rw ¢ Z for 2€ 0Z, we X \Tz(z) and r > 0.

According to these criteria we introduce the functions «,§ : [0, c0[— [0, 00| by the for-
mulae

(2.10) {5(r) := inf {dist (%(m —|—y),6Z); 2,y €2, |z—y|= 27‘} 7
a(r) :=inf {|P(z +rw)|; 2 € 0Z, w € X \ Tz(z2), |w| = 1},

where P is defined by (2.3). We naturally have 6(r) = 4oo if 2r > diam Z :=
sup{|z —y|; z,y € Z} (the diameter of Z) and é(r) <|(z+y)/2—z| =7 for 0 <7 <
1/2 diam Z. Choosing an arbitrary z € X\ Z we obtain a(r) < ‘P(Qaz—l—r Pa:/|Pa:|)‘ =r
by Lemma 2.2.

The case dimX = 1 is trivial (then é6(r) = r for r < 1/2 diam Z, «(r) = r for all
r >0), as well as the case Int Z =0 (then é(r) = a(r) =0 for r < 1/2 diam Z).

Proposition 2.11 Let Z C X be a convez closed set, Int Z # 0. Then forall 0 <p <r
we have

(i) alp)/p < a(r)/r,

Proof.

(i) Let 0 <p <7 and £ > 0 be given. Put v:=p/r. Wefix 2 € 0Z and w € X \ Tz(z2),

|lw| =1 such that |P(z +rw)| < a(r) +¢e. For v:=(1 —v)z+vQ(2 + rw) € Z we have
a(p) < [P(z + pw)| < |2+ pw — v| = 9| P(z + rw)| < E(a(r) +¢)

hence (i) holds.

(ii) It suffices to assume 6(r) < co. We find z,y € Z and z € 0Z such that |z —y| = 2r
and

z+Yy
2

(2.11)

—z| - g < dist (#,8Z) <é(r)+ g

Put 2 :=yz4+(1—7)z, ¥y :=~vy+ (1 —v)z with v as above. Then 2,5 € Z, |2—7| =2p
and 8(p) < |(3 1 9)/2 — 2| =|(&+ ¥)/2 — 2| < (8(r) +¢)p/r-

(iii) Let z,y,z,e be as in (ii). We fix an arbitrary ¢ € Nz(z), |¢| = 1 and assume
<1/J,a:—y> > 0 (otherwise we interchange z and y). Put v, := (z—y)/2+ep € X \Tz(z2).
Then a(r) < ‘P(z—l—rv5/|v5|)‘ < ‘z—l—rv5/|v5|—m‘ < ‘z—(m—l—y)/Z‘—l—‘mﬁ—(1—7‘/|v5|)v5 <
‘z —(z + y)/Z‘ + £. Letting € tend to 0 we obtain (iii) from (2.11).

We see that both «, § are nondecreasing in their domains. One can derive by elementary
means further interesting properties of these functions. Details are left to the reader as
an exercise.
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Exercise 2.12 Let Z C X be a closed convex domain with a nonempty interior. Prove
that

(i) 6(r) < a(2r +26(r))/2 for r € [0,1/2 diam Z],
(ii) ar) —a(p) <r—pfor 0<p<r,

(iii) if dim X > 2, then for every = € Int Z, ¢ := dist (z,0Z) and r € [0,c] we have
2¢6(r) < r? + &(r);

(iv) if é(r) > 0 for some r €]0,1/2 diam Z[, then

7+ 8.

diam Z <

Hint. (i) Assume a(2r + 26(r)) < 26(r) — € for some » > 0, ¢ > 0. Find z € 07,
w € 0B1(0) N (X \ Tz(m)) such that ‘P(az + (2r + 25(7’))741)‘ < 26(r) and put z :=
Q(az + (2r + 25(r))w). Then z € Z, |z — 2| >2r, 2+ (r+6(r))w ¢ Z, hence ‘az +(r +
8(r)w — (z + z)/Z‘ > 6(r) which is a contradiction.

(ii) Use the Lipschitz continuity of P which follows from Lemma 2.2 (ii).

(iii) Let 2z, € 0Z be such that |z.—z| < c+¢. Find w, € B1(0) such that <w5,ze—az> =0
and put ug :=z++vc? —r¥(z;—z)/|ze—z| trw,. Then uy € B(z) C Z, Juy —u_| =2r
and 6(r) < |ze — (uy +u_)/2
(iv) Assume s := |z — y|/2 > 7/(28%(r)) (r? + 8*(r)) for some z,y € Z. Then s > r,
hence 6(s) > sé(r)/r > (7’2 + 52(r))/(25(7')) > r. By (iii) we have 26(s)é(r) < r? + §(r)

which is a contradiction.

The upper bound for diam Z in Exercise 2.12 (iv) does not seem to be optimal. If Z
is a ball, then we obtain for instance diam Z = (r* 4 §*(r))/8(r). We can nevertheless
conclude that Z is unbounded if and only if a(r) =0 for all » > 0. Let us consider now
the opposite situation.

Definition 2.13

(i) A convex closed set Z C X 1is said to be strictly convex, if (z +y)/2 € Int Z for
dlz,yeZ, z#y.

(i) A convez closed set Z C X is said to be uniformly strictly convex, if a(r) >0 for
all v>0.

Proposition 2.14 Let Z be a uniformly strictly convez subset of X, dim X > 2, B,(z)
C Z for some z € Int Z. Then a™* : [0,00[— [0,00] is locally Lipschitz in |0, 0],
lim a!(s)/s =1, a7 '(s) > /ms for all s > 0.

Proof. Proposition 2.11 (i) entails a(r) — a(p) > (r — p) a(p)/p for all » > p > 0, hence
a™! is locally Lipschitz in ]0,00[. We obviously have r > a(r) > r — diam Z, hence
lim, (@™ !(s))/s = 1. To conclude, notice that Exercise 2.12 (iii) and Proposition 2.11
(iii) yield ma(r) < r? for » € [0,m] and the trivial inequality a(r) < r < r?/m for
r > m completes the proof. 0
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2.4 The Minkowski functional

Definition 2.15 Let A C X be a given set. Then
(2.12) A" ={y € X; (y,z) <1 Vz € A}

18 called the polar of A.

We immediately see that A* is convex and closed, 0 € A*. The following duality state-
ment holds.

Lemma 2.16 Let A be as in Definition 2.15, let A** be the polar of A* and let conv
denote the closure of the conver hull. Then

A*™ = conv (AU {0}).

Proof. Put A :=conv (AU {0}) . We have by definition
(2.13) A = {z € X;(y,2) <1 Vy e A*},

hence 0 € A* and A C A*. Since A* is convex and closed, we necessarily have
A C A**. To prove the inclusion A** C A, we fix an arbitrary z € A** and apply Lemma
2.1 with the projection pair (P, Q) associated to A. This yields

(2.14) <]f’z,z—]f’z—m>20 Vz e A.

For every k>0 we have in particular

(2.15) (kPz,z) > k|Pz]* + sup {<kﬁz, )z € A}.
Put
(2.16) n::inf{k>0; k]f’zgéA*} .

From (2.15) it follows k > 0 and we distinguish two cases.

(i) K = +o0 : Putting = := 0 in (2.14), we obtain

(2.17) E|Pz? < (kPz,z) <1 Vk>0.

(ii) K < +00 : Then k Pz € OA*, hence sup {(nlf’z,@; z € A} = 1 and (2.15) yields
(2.18) 14 x|Pz]? < (kPz,2) < 1.

In both cases (2.17) and (2.18), we conclude Pz =0, hence z € A. Lemma 2.16 is proved.
m
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Lemma 2.17 Let A, A* be as in Definition 2.15 and let R > 0 be given. Then

(2.19) A C Bg(0) < By/r(0) C A™.

Proof. Assume A C Bg(0) and fix y € By/r(0). Then for z € A we have (y,z)
ly||z] < 1, hence y € A*. Conversely, let By/r(0) C A* and fix z € A. Then |z|
sup {(z,w); w € B1(0)} = R sup{(z,y); y € Byr(0)} < R.

d A

!

Definition 2.18 Let Z C X be a convex closed set, 0 € Z. The functional M : X
Rt U {+o0} defined by the formula

(2.20) M(z) = inf{s>0;la:€Z} forz € X.

S

1s called the Minkowski functional of Z.

The functional M is sometimes called gauge, cf. [Ro]. We list without proof some of its
basic properties.

Proposition 2.19 In the situation of Definition 2.18, we have

Z = {z € X; M(z) < 13,
Cz = {z € X; M(z) = 0},
M(tz) = tM(z) Ve e X, Vt >0,
M(z +y) < M(z) + M(y) Vz,y € X.

As an immediate consequence of the above considerations, we have the following

Proposition 2.20 Let Z C X be a convez closed set and let R > r > 0 be given numbers
such that

(2.21) B.(0) C Z C Bg(0).

Then

(222) Bl/R(O) C Z* C Bl/T(O),

(2.23) Ligl < M) < Yjo| Voex
. R | S r) =~ ” Zz Zz ,

where Z* 1s the polar and M is the Minkowski functional of Z .

According to (2.23) and Proposition 2.19, the Minkowski functional of a convex set Z
satisfying the hypotheses of Proposition 2.20 is convex and Lipschitz continuous. Its
subdifferential has the following properties.
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Lemma 2.21 Let Z satisfy the hypotheses of Proposition 2.20, let M, M* be the Minkow-
skt functionals of Z,Z* | respectively, and let OM be the subdifferential of M. Then

(w,z) = M(z), (w,y) < M(y) Vz,y € X, Yw € 0M(z).
M*(w)=1 Vwe 0M(z), Va#0 .

Proof. (i) We have for all z € X
(2.24) w € OM(z) <= (w,z —y) > M(z) — M(y) Vy € X,

hence 0 € OM(0). For =z # 0, we choose a sequence 0 < ¢, ,/ M(z),n=1,2,..., and
put @, := x/tn, zo := z/M(z). Let (P,Q) be the projection pair associated to Z by
(2.3). Then z, ¢ Z for n > 1, hence Pz, # 0 and

(2.25) (Pzp,Qz,—2) >0 Vz € Z.

On the other hand, we have Qzo = ¢, and |Qz, — zo| < |2, — 20| = 0 as n — 0.
Selecting a subsequence, if necessary, we may assume that Pz,/|Pz,| converge weakly

to some wo € B1(0). Then (2.25) yields

(2.26) (wo, o — 2) >0 Vz € Z.

Putting z :=r Pz, /|Pz,| in (2.25) and passing to the limit as n — oo, we obtain
(2.27) (wo,zo) > 7 > 0.

Inequality (2.26) implies

(2.28) <w0, M?a;) - Mf‘éy)> >0 Vye X\ {0},

or equivalently,
(2.29) (wo,z — y) > (M(z) — M(y)) (wo,z0) Vy € X.

According to (2.24) and (2.27), we have w := wq/(wo,zo) € OM(z) and (i) is proved.
Using Proposition 2.19 (iii) we obtain (ii) trivially from (2.24), part (iii) follows from
(2.24) by putting successively y := 0 and y := 2z and part (iv) follows from (iii). A

Remark 2.22 Lemma 2.21 does not hold for general convex closed sets Z. To see this,
we first notice that by (2.24), for every z with M(z) > 0 and every w € OM(z) we have

(2.30) w#0,

(2.31) @ﬁ - y> >0 Vyc Z.
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As an example, we choose X := L*(0,1), Z:={z € X; -1 < 2(t)<lae. }, z(t):=t
for t € [0,1]. Then Z is convex and closed, 0 € Z, M(z) = 1. Assume that OM(z) is
nonempty and let w € OM(z) be arbitrary. By (2.31), we have

/Olw(t)tdt > sup {/Olw(t)y(t)dt; yeX,—1<yt)< 1a.e.}

[ wtoa

hence w = 0, which contradicts (2.30).

The main result of this section reads as follows.

Theorem 2.23 Let Z satisfy the hypotheses of Proposition 2.20. Let Z* be the polar of
Z and let M, M* be the Minkowski functionals of Z , Z*, respectively. For z € X put
J(z):=M(z)OM(z), J*(z) := M*(z)OM*(z). Then

(i) (w—2zz-y) > (M) - My)
Vez,y € X, w € J(z),z € J(y),
(i) (w* —zz —y) > (M*(z) — M*(y))’
Ve,y € X,w* € J¥z), z* € J*(y),
(i) y € J(z) <= z € J*(y) Vez,y € X,

(iv) 2* = J(2), 2 = J*(Z*),

where J(Z) = U J(z), J(Z*) := U J*(y).

T€Z yEZ*

Before proving Theorem 2.23, we state an auxiliary Lemma.

Lemma 2.24 Let the hypotheses of Theorem 2.28 hold. Then for all z,y € X \ {0} we

have
(2.32) (y,z) < M(z) M*(y),
* z * Y
(2.33) (y,z) = M*(y) M(z) <— () €M (y) — M+(y) € OM(z).

Proof of Lemma 2.24. Inequality (2.32) follows immediately from the definition of Z*
and Lemma 2.21 (iii) yields the implications

11y €M) = (y2) = M'(y) M(2),
Mf/(y) €0M(z) = (y,a) = M*(y) M(a).
Assume now
(2.34) (2,9) = M(z) M*(y) for some 2,y € X \ {0}.
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Then, by (2.32) we have
<W7y - Z> Z M*(y) - M*(Z) Vz € X7
Y
<W,m — z> > M(z) — M(z) Vze X

and the assertion follows. |

Proof of Theorem 2.23. Inequalities (i), (ii) follow from (2.24) (and the corresponding
inequality for M*). To prove (iii), it suffices to fix z € X and y € J(z) and prove that
z € J*(y). The other implication then follows from the duality Z = Z** and J = J**.
The definition of J immediately entails J(0) = {0}, J*(0) = {0}, hence it suffices to

assume z # 0. By Lemma 2.21 (iii), (iv) we have
(2.35) (y,) = M*(z), M*(y) = M(z).

and Lemma 2.24 (ii) yields the assertion. To prove (iv), it suffices to use (iii) and (2.35).
m

We call J the duality mapping induced by Z. It can be interpreted geometrically by
means of the normal cone Nz(z) in the following way.

Proposition 2.25 Let the hypotheses of Theorem 2.28 hold. Then for every z € 0Z , we
have J(z) C Nz(z). Conversely, for each y € Nz(z), y # 0, we have (y,z) = M*(y)
and y/y,z) € J(z).

Proof. The inclusion J(z) C Nz(z) follows immediately from the definition. Let now
y € Nz(z), y # 0 be given. Then (y,z) > (y,2) for all z € Z, hence y/({y,z) € Z*.
We have in particular M*(y) < (y,z) and from (2.32) (note that M(z) = 1) we obtain
(y,z) = M*(y). Lemma 2.24 then completes the proof. a

Exercise 2.26 Prove that M*?/2 is the conjugate function to M?/2 in the sense of [AE],
that is,

1 1
(2.36) §M*2(y) = sup {(y,az) — §M2(a:); T € X} for every y € X .

‘Smooth’ convex domains Z C X are those where Nz(z) reduces to a half-line for each
z € 0Z. By Proposition 2.25, this is equivalent to saying that J is a single-valued
mapping. We have the following dual characterization of such domains.

Theorem 2.27 [n the situation of Theorem 2.23, the following conditions are equivalent.

(1) J is single-valued,

(i1) Z* is strictly convez according to Definition 2.9.
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Proof.

(ii) = (i): Let z € X and yo, y1 € J(z) be given. For z = 0 we have yo = y; = 0,
otherwise we put y := (yo + y1)/2. Then y € J(z) and M*(y) = M*(yo) = M*(y1) =
M(z). Consequently, all yo/M(z), y1/M(z), y/M(z) belong to 0Z*, hence yo = y1.

non (ii) = non (i): Assume that there exist yo # y1 € Z* such that y := (yo +v1)/2 €
0Z*. Let z € J*(y) be arbitrarily chosen. Then M(z) = M*(y) =1 and

1= (0,9) = 5 ((o,90) + (&,3)) < 1.

2
This yields (z,y0) = (z,y1) = 1 = M*(yo) = M*(y1) and from Lemma 2.24 (ii), we
conclude yo,y1 € J(z) and Theorem 2.27 is proved. 0

Example 2.28 If Z = {z € X; (z,n;) < B;,© = 1,...,p} is a polyhedron with a
system {n;;7=1,...,p} of unit vectors and with gB; > 0, then Z* is the polyhedron
2% = conv ({0, 7 /B, -, mp/Bp})-

3 The play and stop operators

The elementary hysteresis operators called stop and play have already been introduced in
Section 1. The rigorous construction presented here follows the exposition in [K] and is
slightly different from the approach of [KP] and [V]. We admit the infinitely dimensional
case and start with nonsmooth input functions. More precisely, we define the inputs and
outputs in the space CBV(0,T;X) of continuous functions of bounded variation with
values in a Hilbert space X . We further prove that the restriction of the play and stop
operators to Sobolev spaces W'P(0,T;X) is continuous and bounded if 1 < p < oo
and discontinuous for p = 4+00. If the convex constraint Z has nonempty interior, the
extension of these operators is shown to be continuous (but not necessarily bounded)
from C([0,T]; X) to C([0,T]; X), together with an interesting smoothening property of
the play, namely that it maps C([0,7]; X) into CBV(0,7;X). A brief survey of the
functional framework used here can be found in Section 8. The first step consists in
proving the following generalization of Theorem 1.7.

Theorem 3.1 Let a real separable Hilbert space X, a convexr closed set Z C X with

0€ Z, an element zo € Z and a function w € CBV(0,T; X) be given. Then there exist

uniquely determined ¢ € CBV(0,T;X), « € CBV(0,T;Z) such that

(3.1) (i) =) +&(E) =ut) Vielo,T],
(ii) z(0) ==

i) [ (o) ol de(0) 20 Vo€ O(0, 7] 2),

0>

We rewrite the Riemann-Stieltjes integral in (iii) in an equivalent, but more convenient
form.
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Lemma 3.2 Let ¢ € C([0,T);Z) and £ € NBV(0,T;X) satisfy (3.1) (i5). Then
(3.2) / <a:(7') — 1/}(7'),d§(7’)> >0 Yy eC([st];Z) forall 0<s<t<T.

Proof. Let 0 < s <t < T and ¢ € C([s,t]; Z) be given (the case s = 0 is analogous).
For 0 < § < min{s,t — s} put

z(T) . for 7€ [0,s—6[U]Jt,T],
o z(s — &)+ =2 (p(s) —z(s — §)) for T€[s—6s],
ps(T) = ¥(7) ° for 7€ [s,t—46],
z(t) + S (9(t — 6) — 2(1)) for 7€t —6,1].

T
0 <

D) + 5 [ ()~ )yl - 6) — b)) dr

/
[ (eto 5
e — ) + [ (ol — - 8),d6()

¥ / (€(6) — &), 9t = 6) — a(t)) dr

S

Using (8.22) and (8.7) we can pass to the limit as § — 0 and the proof is complete. 3

Let us note that if two variational inequalities of the form (3.2) are satisfied, that is,

(3.3) / o) — () (1) 20 V€ Ol 8 Z), =12,

with u; = z; + &, z; € C([s,t];Z), . € CBV(s,t; X), then putting ¢ := (21 + z2)/2,
we obtain from (3.2), (8.24) and (8.22)

(3.4) [€1(t) = & < Jea(s) = &a(s)]” + 2lur — uslo (\[fatl]f &+ Var 62) :

Proof of Theorem 8.1. Uniqueness follows immediately from the inequality (3.4). The
existence proof is carried out by a simple time-discretization scheme. For a fixed n € N
we define

T
(3.5) uj::u<]—>, 7=0,...,n.

n

Let (P, Q) be the projection pair defined by formula (2.3). We construct the sequences

(3.6) {ma' = Q(zjo1 +uj —uj1), j=1,...,n,

& =uj—zj, 7=0,...,n
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We have ¢; — €1 = P(zj_1 + u; — u;j—1) and Lemma 2.2 (i) yields
(37) <€j—€j_1,:11j—2> ZO VZE Z, V] € {1,,’)’L}

Putting z :=z,_; and V,, := }/aTr] u, we immediately obtain from (3.7)
0,

(3.8) Z & — &-1] < Vi

We now define piecewise linear functions u(™, ¢ z(") ¢ WL(0,T X) by the formula
= 27) (uj — uja),

— TN (& &),

- %) (zj — 2j-1)

for t€[(j —1)T/n,jT/n] and 7 =1,...,n, continuously extended to ¢t =T.

u(”)(t) =Uuj_1+n (
(3.9) EM(2) = &1+ (
a:(”)(t) =z + n(

N

Let p, : R — RT be the continuity modulus of u, that is
(3.10) pu(6) := sup {|u(t) — u(s)|; |t — s| < 8} for 6 > 0.

For every 7 €|(7 — 1)T/n,3T/n| and z € Z we have by (3.7) and Lemma 2.2 (i)

n

(€)(r),a™(r) = z) > —m (6 — & e —35)
> _T<€j — &1, Uy — ujy)

> —%#u (%) &5 — &l

and estimate (3.8) yields

(3.11) /Ot (2™(7) = o(7), dEM(T)) >~V (g)

foralln € N, ¢t € [0,T] and ¢ € C([0,T]; Z).
The proof of Theorem 3.1 will be complete if we prove that

(3.12) {€™:n € N} is a uniformly convergent sequence.

Indeed, in this case it suffices to use inequality (3.11) and Theorem 8.16, since the sequence
{u{™} is uniformly convergent and }/ar] £ <V, by (3.8).
0T

To prove (3.12), we put ¢(7) := (az(”)(T) + :IJ(l)(T)) /2 for two different values of n in
(3.11), say n,£. Then

i) [ @00 -0, a0 0> v (e (D) 4 (1)),
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hence, by inequality (8.22),

T

16— €01, < )~ 0] (yar € 4 Yar £9) 1+ (D) + () ).

The sequence {£(™} is therefore fundamental in C([0,T]; X), hence (3.12) holds and
Theorem 3.1 is proved. 0

Definition 3.3 Let Z C X be a convex closed set, 0 € Z and let w € CBV(0,T;X),
z° € Z be given. Let (z,£) be the solution of (8.1). We define the value P(zq,u), S(zo,u)
of the play and stop operators P,S: Z x CBV(0,T;X) — CBV(0,T;X), respectively,
by the formula

(3.14) P(zo,u) := ¢, S(zo,u) 1= z.

Remark 3.4 The initially unperturbed state is characterized by the choice zo = Qu(0)
of the initial condition (3.1) (ii). In this case we use the simplified notation

(3.15) Pu) := P(Qu(0),u), S(u):=S8(Qu(0),u).

3.1 Absolutely continuous inputs

It is natural to expect that play and stop operators act in Sobolev spaces W'?(0,T; X).
Before passing to the continuity statement, we give in Proposition 3.5 below a precise
meaning to the normality rule mentioned in Section 1. It also yields the unique orthogonal
decomposition of u(t) into the components £(¢) € Nz(z(t)) and z(t) € Tz(z(t)), see
Subsection 2.2. This can be used as an alternative definition of the play and stop operators,

see [KP].

Proposition 3.5 Let Z C X be a convex closed set with 0 € Z, let zo € Z be a given
initial value and let w € WHY0,T;X) be giwen. Then & := P(zo,u), z := S(zo,u)
belong to WH1(0,T; X) and satisfy
(3.16) (i) (£(t), a(t) —2) > 0 ae Vze€Z,

(ii) (£(t), 2(t)) =0 ae.

Proof. For arbitrary 0 < s <t < T and 7 € [s,t] put ¥(7) := z(s) in (3.2). Then (8.24)
and (8.26) yield

IN

31 kO < [ —uls), dr) = [0 -, ) ar

< max{|¢(t) — (7))} / i) dr

s<7<t

hence

(3.18) () — €(s)] < 2/t lu(r)|dr  Y0<s<t<T.
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This implies £ € W'(0,T ; X) and according to (8.25), we have
t
(3.19) / (1), z(r) —p(r))dr 2 0 Ve C([s,t;Z), VO< s <t<T
which is equivalent to (3.16) (i). To prove (3.16) (ii), it suffices to put z := z(t + h) in

(3.16) (i) and let A tend to 04 using Theorem 8.14. 0

It is easy to see that P,S are Lipschitz continuous as operators from Z x W'(0,T; X)
to C(]0,T];X). Indeed, putting z := S(zo,u), y := S(yo,v) for given zo,y0 € Z,
u,v € WH(0,T; X) we immediately obtain from (3.16)(i)

(3.20) %% z(t) — y(t)‘2 < <a:(t) —y(t), () — b(t)> a.e.,
consequently
B21) -yl <leo-wil + [ lilr) - srdr e T

The continuity of P,S in Z x W'?(0,T;X) — W'P(0,T;X) for 1 < p < oo with

respect to the norm |ul;, := |u(0)| + |u|, is established in Theorem 3.6 below.

Theorem 3.6 Let Z C X be a convez closed set with 0 € Z, let {u, ; n € NU{0}} be
a given sequence in WP(0,T ; X) for some p € [1,00[ such that limy, e |tn — Uol1p = 0
and let 2 € Z be gwen initial values, lim, o |22 — 28| = 0. Put &, := P(z2,u,) for

n € NU{0}. Then lim, o0 |€n — €0]1p = 0.

Proof. For n € NU {0} put z, := un — &, Yn 1= @n — &. From (3.21) we infer
1€ — €oloo = 0, |Zn — Zoloo — 0, |Y¥n — Yoloo — 0. By (3.16)(ii) we also have

(3.22) n| = |in|  ae. VYneNU{0}.

Theorem 8.7 for vy, := Yn, gn = |[Un| yields lim, o0 [yn—yol1,1 = 0. There exists therefore
a subsequence {yn,} such that limg o |¥n,(¢) — ¥o(¢)| = 0 a.e. and from Theorem 8.5 we
conclude

(3.23) Jim [yn, —yol1p = 0.
Since every subsequence of {y,} contains a subsequence satisfying (3.23), the proof is
complete if we take into account the relations z, = (un + yn)/2, én = (Un —yn)/2. O

In [K] it is proved that the play operator depends continuously also on its characteristic

Z in terms of the Hausdorff distance H(A, B) of two sets A, B C X defined as
(3.24) H(A, B) := max {sup {dist (y, A);y € B},sup{dist (z, B);z € A}}.

The result reads as follows.

Theorem 3.7 Let {Z,;n € NU{0}} be a sequence of convez closed sets in X such that
0€ N2 o2, limy oo H(Zo, Zn) = 0 and let {2} be a sequence of initial values such that
limy oo |22 — 25| = 0. Let {un; n € NU{0}} be a sequence in W'P(0,T; X) such that
iMoo [Un — Uol1p = 0 for some p € [1,+0o[. Put &, := Pn(z2,u,) for n € NU {0},
where Py is the play with characteristic Z,. Then im0 |€n — €ol1p = 0.
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Remark 3.8 A counterpart of Theorem 3.6 does not hold for p = +o0 evenif dim X = 1.

It suffices to consider Z = [—1,1], T = 1 and the sequence u,(t) := (1 + 1/n)t for
t€[0,1], n € N with ug(¢t) :=t¢, 22 := 0. We then have
0 for te [0 L]
1)=0, &(t):= Tntll? f eN,
Sl®) &lt) {(1—|—%)t—1 for tel,1]

hence |un — Uol1,00 = 0, |€n — &ol1,00 > 1.

Remark 3.9 rm On smooth characteristics, i.e. those, where the unit outward normal
n(z) is defined for every © € 0Z, we can derive explicit differential equations for the
output values of the stop and play operators. Denoting as usual & = P(zo,u), z =
S(zo,u), we have

() = (at),n(=(t)n(=(t) if =(t) € dZ, (u(t),n(z(t))) >0,

(3.25) a(t) = { u(t) otherwise .

3.2 Continuous inputs

Theorem 3.12 below enables us to extend the stop and play to the space C([0,T]; X).
The construction in [KP| has originally been designed for bounded convex sets Z with
nonempty interior in a finite-dimensional space X . Using the concept of complementary
function (see Definition 2.4), we apply the same idea to the general case of recession sets
(Definition 2.6) in a Hilbert space. The argument relies on the following Lemma.

Lemma 3.10 Let B C C([0,T]; X) be a compact set, let Z C X be a recession set with
Bn(0) C Z and let v > 0 be given. Then there ezists a constant C > 0 such that for
every u € BN BV(0,T;X) and every zo € Z N B,(0) we have

3.26 \% <C
( ) [o,a%] ’P(mmu) =Y,
where P 1is the play operator corresponding to Z .

Proof. Put v := m/6. We find uy,...,uny € B such that B C UM {u € C([0,T]; X); |u—
Ukloo < v}, and fix § > 0 such that max{u,, (6);k=1,...,N} <. We first prove that
for every u € BNBV(0,T;X), ®o € Z and 0 < s <t < T such that |t —s| < § we have

(3.27) Var Plao,u) < - K3(1S(e0,u)(5)),

where Ky is the complementary function. Put ¢ := P(zo,u), z := S(zo,u). We find
& € Cz such that |z(s) — &| < Kz(|z(s)|) and put for 7 € [s, ]
. m
${r) = &+ u(r) — u(s) + Top(r)

for some ¢ € C([s,t]; X),|¢leo < 1. We have |¢p(7) — &| < m for all 7 € [s,t], hence
¥ € C([s,t]; Z) by Proposition 2.5. Inequality (3.2) and identity (8.24) then entail

P lu(s) &~ E)P,

%/s <cp(7’),d§(7’)> < /s <u(s) -3 — f(T),d{(T» = %|az(s) -z
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and inequality (3.27) follows from (8.23).
Putting R:=1+4 T/é, we obtain from (3.27)

R
< —K7(||)-

[0,T] m

(3.28) Var ¢ <

Inequality (3.4) for uy = ¢, =0, s =0, uy = u, & = € yields |€]3, < |u(0) — zo|® +
2|t oo }/%r] ¢, hence
0,

2R
[ole < 4lull +7% + —lule (Kz(|2lo))’

The set B is bounded, hence the last inequality and property (2.7) of recession sets
provide an upper bound for |z|. independent of u € B. Inequality (3.26) then follows
from (3.28). A

We now use Lemma 3.10 to extend the operators P,S to arbitrary continuous inputs in
the following way.

Theorem 3.11 Let Z C X be a recession set and let ©o € Z, u € C([0,T]; X) be given.
Then there exist uniquely determined ¢ € CBV(0,T;X), = € C([0,T]; Z) such that (5.1)
holds.

Proof. Let {un;n € N} be a sequence in CBV(0,T; X) such that lim, e |t —Un|e = 0.

From Lemma 3.10 we obtain

(3.29) 1C >0VneN: Var P(zo,u,) <C

(0,77
and (3.4) yields
(330)  [P(o0,un) — Ploo,u)la < fun(0) — w0 + 4C un — o

for all k,n € N. The sequence {P(zo,un)} therefore admits a uniform limit in the space
C(]0,T]; X). This limit is independent of the concrete choice of the sequence {u,} and
we denote it by P(zo,u). By Proposition 8.10 (ii) we have

<
(3.31) }(/)'fizg] P(zo,u) < C,

and using Theorem 8.16 we can pass to the limit in (3.1). A

As a consequence of Theorem 3.11, we see that inequality (3.4) holds whenever u,u, €
C([0,T]; X). This immediately yields the following result which states that P : Z x
C([0,T]; X) — C(]0,T]; X) is 1/2-Holder continuous on compact sets.

Theorem 3.12 Let the hypotheses of Lemma 3.10 be satisfied. Then there exists a con-
stant C > 0 such that for all u,v € B and z°,y° € Z N B,(0) we have

(3.32) [P(2°,u) = P(3°,9)loo < C (Ju = v]oo)? + Ju = v]oo + 2° — 37
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Corollary 3.13 Let {un;n € NU{0}} be a given sequence in C([0,T]; X) such that
limy, oo [Un — Uolee = 0 and let 22 € Z be given initial values, z3 = lim, o 20 . Put

€n = P(28,uy) for n € NU{0}. Then lim, .o |€n — €o]oo = 0.

Similarly as in Theorem 3.7, the play operator depends continuously on the set Z also in

C([0,T]; X), see [K].

Theorem 3.14 Let {un} o, be a sequence in C([0,T]; X), let {Z,}or be a sequence of
recession sets such that iMoo |Un — Uoleo = 0, limy_eo H(Zn, Zo) =0, and let 0 € Z,
be gwen initial values, limp o |22 — 28| = 0. Put &, = Pu(zl,u,) for n € NU {0},
where Py, is the play with characteristic Z, . Then lim, . [€n — €oloo = 0.

By Proposition 3.5, we have |z(¢)| < |4(t)| almost everywhere for every u € W'?(0,T; X)
and zg € Z, hence the stop operator S : Z x W*?(0,T;X) — W'?(0,T; X) is not
only continuous, but also bounded. Example 3.15 below shows that this is not true
in C([0,T]; X) in general. In fact, such behavior arises typically in isotropic hardening
models (cf. Example 1.5). Combining this result with identity (1.32) we obtain an elegant
example of general interest in functional analysis of an operator which is continuous
together with its inverse, but neither the operator itself, nor its inverse are bounded.

Example 3.15 Consider aset Z := {(a,b) € R?; —f(a) < b< f(a)} C X =R?, where
f:[-1,00[— [-1,1] is a concave increasing smooth function, f(—1) =0, f/(-1+4) =
+00. Let w be an arbitrary continuously differentiable function in [0,1] and put u(t) :=
(0,w(t)), =(t) = (a(t),b(t)) := S(0,u)(t) for ¢t € [0,1]. By (3.25) we have

. flla(t)) .. . . B

0 otherwise,

hence a is nondecreasing and nonnegative. Assume that w increases in an interval [s, ],
w(s) = =1, w(t) = 1. Then a(7) = a(s) as long as b(7) = b(s) + w(r) — w(s) stays
below f(a(s)), i.e. for 7 € [s, 7] with w(m) — w(s) = f(a(s)) — b(s), while in |7o,t] we
find a(7) as solution of the equation (3.33) with initial condition a(7y) = a(s). We have
in particular

P 4 s o) — won
f'(a(?))
L+ f*(a(t))

The same estimate holds if we assume that w decreases in [s,t], w(s) = 1, w(t) =
—1. The above considerations show that S(0,-) does not map the bounded set M =
{un € C([0,1];R?); un(t) = (0,cosnwt)} into a bounded set, since by (3.34) we have
sup {an(1); n € N} = 00, where (an, b,) := S(0,un).

f'(a(?))

(3.34) a(t) —a(s) = /TO w(r) 1+ f(a(t))

> 21— f(a(?)))

Remark 3.16 We have seen in (1.13), (1.14) that in classical models of plasticity, the
characteristic Z has often the form of a convex cylinder Z = Z + Y as in Definition 2.8.
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Let P,S : Z x C([0,T]; X) — C([0,T); X), P,S : Zx C([0,T];Y) — C([0,T];Y) be
the play and stop operators with characteristics Z, Z, respectively, let i° € Z, y € Y,
z° = % + y be given vectors and let v € C([0,T];Y), w € C([0,T]; Y1), u = v +w be
given functions. The time-discrete construction in the proof of Theorem 3.1 and Remark

2.10 then yield
(3.35) P(z°,u) = P(2%v), S(z°u)= 5’(5:0,1)) +w.

4 Uniformly strictly convex characteristics

The concept of uniform strict convexity introduced in Definition 2.13 enables us to prove
a uniform continuity result for the play operator in Z x C([0,T];X) — C([0,T]; X)
following Section 17.1 of [KP].

Theorem 4.1 Let Z C X be uniformly strictly convex and let o be the function associ-
ated to Z by formula (2.10). Then for all u,v € C([0,T]; X), z°,y° € Z we have

(4.1) P(2°,u) = P(y°, v)]eo < max {J° — y° — u(0) +v(0)]; ™" (Ju — v]w)} -
Proof. By density and continuity, it suffices to assume u,v € W"'(0,T; X). Put ¢ :=
P(e%,u), 7= P(3°,0), & = u— &, y = v —7 and

V(t) :=max {|£(t) —n(t)]; @ (Ju — v|w) } for t € [0,T].

The function V is absolutely continuous. Assume that for some ¢ €]0,T| we have V(t) >
0. Then

(4.2) () = n(t)] > a7 (Ju — vl)
and d/dt (|¢(t) — n(t)[?) = 2(€(¢) — (¢ ) ( ) —n(t)) >
f(t)> must therefore be

At least one of the expressions <§(t) t)> <77
n t)> > 0 Thls implies f( ) # 0, hence
S

positive. Let us choose for instance <§( ) ( —
by Proposition 3.5 we have z(t) := u(t) — &(t) € 0Z and £(t) —n(t) € X \ Tz(m(t)).

From the definition of the function a we infer
a(lé(t) —n(2)]) <P (x(t) + €() — n(®))| < lz(t) + €(1) —n(t) — y(B)] = [u(t) —v(t)|

which contradicts (4.2). We conclude V(t) < 0 a.e. and the assertion follows. O

Proposition 2.14 implies that Theorem 4.1 cannot give better results than a global 1/2-
Holder estimate. Example 4.3 of [K]| shows that for Z = B,(0), the uniform bound (4.1)

is optimal.

5 Smooth characteristics

In this section we derive further regularity properties of the play operator P under the
following hypothesis.
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Hypothesis 5.1 Z C X is a convez closed set such that

(5.1) (i)  B.(0) C Z C Bg(0),
(ii)  for each x € O0Z there exists a unique outward normal vector n(z),
n(@) = 1,
(iii)  the mapping n: 0Z — 0B1(0) is continuous .

Indeed, (iii) follows from (ii) if dim X < co. This need not be true for dim X = oo, cf.
the example on p. 46 of [K].

5.1 Strict continuity

We already know that the play maps in general Z x C([0,T]; X) into CBV(0,T;X).
This mapping is discontinuous with respect to the strong topologies of C([0,T]; X) and
BV(0,T; X) even in the simplest case dim X = 1. This can easily be verified by the
following construction.

Example 5.2 Put X :=R", Z = [~1,1], uo(t) := 1+, un(t) := 1 + ¢+ (1/n)sinnt for
n € N and t € [0,27], & = P(L,un), @n := un — &, for n € NU{0}. The functions u,
are nondecreasing, z,(0) = 1. Proposition 3.5 yields z,(¢) = 1 for all n € NU {0} and
t € [0,27], hence &(t) = ¢, &.(t) =t + (1/n)sinnt for n € N, and we easily check that
limy, o0 |Un — Uoleo = 0, [\0/'1217{](5,1 — &) =4.

We however prove here that the play operator is continuous with respect to the strict
metric (8.11).

Proposition 5.3 Let Hypothesis 5.1 hold. Then for every sequence {(mg,uk); ke NU
{0}} in Zx C([0,T]; X) such that limg_,e0 [u — Uoloe = 0, lim_e0 |2 — 23| = 0 we have
Var P(uo) = limg_,o Var P(ug).

[0,T] [0,T]

Proposition 5.3 is an easy consequence of Lemma 3.10, Corollary 3.13, Theorem 8.16 and
of the following Lemma.

Lemma 5.4 Let the assumptions of Proposition 5.8 be satisfied. Let v : Z — B1(0)
be defined by the formula v(0) := 0, v(z) := M(z)n(z/M(z)) for z € Z \ {0}, where
M is the Minkowski functional associated to Z by formula (2.9). Then for every u €
C([0,T]; X) and z° € Z we have

(52) Var £ — / (n(a(2)), dé(t)),

[0,7]

where £ = P(z%u), z =u—&.
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Proof of Lemma 5.4. Let us first assume u € wh 1(O,T'
It Z, £(t) = [£(t)|n(a(2)) if () € 07, hence, €(2)
holds.

Let now u € C([0,T]; X) be arbitrary and let {ux; k € N} be a sequence in W(0,7T; X)
such that limg_e [ur — Ul = 0, and put & := P(z% ur), o = up — €. Let 0 =t <
t1 < -+- < ty = T be an arbitrary partition of [0,7]. The mapping v is continuous;
by Lemma 3.10, Corollary 3.13 and Theorem 8.16 we therefore have }g% & < const.,

limg oo Var = fo < (), dé(t )> and

)

ZI& £t = hmZm () < / (v(a(t)), dé(t)) < Var ¢,

hence (5.2) holds. m

A A. Vladimirov’s example below shows that the smoothness assumption in Proposition
5.3 cannot be omitted.

Example 5.5 Assume that there exists Z € 0Z and ni,ny € Nz(Z) such that n; # n,,
In1| = |n2| = 1. We define a sequence {ux;k € NU{0}} in W'(0,1; X) by the formula

ue(0) = 0 for >0,
1
uo(t) = 5(’)’1/1 + ’)’Lg) for ¢ S ]0, 1[ y

) B ny for te](j—1)217%,(25 —1)27%], . b1
'U/k(t) { N fOI‘ te](2]—1)2_k7]21_k[7 ]—1772 s k>0

For k > 1 put & := P(Z,ux). Then ux(t) € Nz(Z) a.e., hence fk( ) = u(t) a.e. By

construction we have limg_, o |ur — Uoleo = 0 and Var fk = fo |uk(t)| dt, hence

\[/ala o = |n1 +ny| <1 = lim Var §.
0,1

k—oo [0,1]

5.2 Local Lipschitz continuity in W(0,7T; X)

In this subsection (Theorem 5.6 and Corollary 5.9 below) we derive a local Lipschitz
estimate which improves the result of [D] mentioned without proof in [KP], in the sense
that we give an explicit upper bound for the Lipschitz constant. For the ball Z = B,(0)
we fill the gap between inequality (A.34) and Example A.8 of [BK] and show that our
estimate (5.6) is optimal.

We start by introducing an auxiliary functional x4 : X — R' by the formula

(5.3) p(z) = M (2 for z € X\ {0}, p(0)=0.
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Then, by Proposition 2.20, we have for all z € X,
(5.4 =l2] < w(z) < M(z) < o
: 72l < wz) < 2) < |z

The functional g is not necessarily convex. It suffices to consider the complex plane C
with C D Z := {a+bi; |a[P4|b|P < 1} forsome p > 2. Then Z* = {a+bi; |afP' 4[5 < 1}
with 1/p+1/p' =1 and the set Z := {z € C; u(z) < 1} has the form Z := {a+bi; a®+
b? < (|af?’ + |b|P')'/P'} . To check that Z is nonconvex, we put z = a+bi, 2 = a — bi with
a=(1+e?)/?/(1+€?), b=ca. Then z, 5 belong to Z, but (24 2)/2 ¢ Z for € > 0

sufficiently small.

Theorem 5.6 Let Z satisfy Hypothesis 5.1. Then for every zo,yo € Z and u,v €
Wh10,T;X), we have

(5.5) wé —n) + o |M?(z) — M*(y)|
< TallJ@) — Il + M - 9) ac,

where £ = P(zo,u), 1 = Pyo,v), c =u—&, y=v—mn, M is the Minkowski functional
of Z and J s the duality mapping from Theorem 2.23. Note that J s single-valued by
Proposition 2.25 and Hypothesis 5.1.

Example 5.7 Estimate (5.5) is optimal for Z = B,(0). In this case we have u(z) =
M(z) = |z|/r, J(z) = z/r* and (5.5) reads

: 1 d 1
(5. =il + s laP — Y| < Lidje—yl+ ti— 5] e
To see that (5.6) cannot be improved, it suffices to consider the disk Z = B,(0) in the
complex plane C. For some a > 0 and A > 0 we define the functions u(t) := r e,

v(t) := (r + h)e™ for ¢t € [0,T]. Let ¢ €]0,7/2[ be the solution of the equation
cos¢ =r1/(r + h). We easily check using formula (3.25) that the functions z(t) := u(t),
y(t) :=r eot+®) satisfy @ = S(r,u), y = S(r e®,v). We therefore have |§—77| =ly—2| =
a "r‘ +h—re?| = a(h? —|—27’h)1/2, lz—y|=7|1 —e?| =7 (2h/(r + h))l/z, | —v| = ha,
|u| = ra, |z| = |y| = 7. The quantity C > 0 for which the inequality

1 d

: . 2 2 . .
€=l + o= |2 = [y| < Clo—yl+ a1l

holds independently of @ and A, must satisfy

o> a\2r +2h
T Vrr+h+ VR

hence C = a = |u|/r is the best possible.

Proof of Theorem 5.6. Let ¢ be a Lebesgue point of all functions %, v, &, 7, d/dt M(z),
d/dt M(y) and d/dt|M?(z) — M?(y)|. Using Remark 3.9, we distinguish the following

cases (omitting the argument ¢ which is the same everywhere).
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A.é=9n=0.Then =1,y = v and

g - w)| < e, - (w9
< Jalld(e) = I)| + ()5 — 9)
<

[al|J(z) — J(y)| + M*(J(y)) M (v — v),

u(é — 7)

where M*(J(y)) = M(y) < 1.

B.{ # 0,7 =0 Then Mz) =1, M(y) < 1,5 = 4, d/dtM(z) =0, { =
(n(z),uw)n(z), (n(z),u) > 0, hence

: ) 1d
u(é —n) + T

= p(é) +

and we obtain the same conclusion as in case A.

C. f =0, 7 # 0. We proceed analogously as in B. with the same result.

D. £#0, 7 # 0. Then M(z) ()<=(1)

- d/dt M(z) = d/dt M(y) = 0, (n(z),u) > 0,
<n(y)>>0 ¢ = (n(z), ) n(a), v)

n(y), hence, by (5.4),
Wé — i) + S Me) - M)| < M((n(e), i) n(e) — (n(y), ) n(v))
< M((n(y),i — ) n(y)) + M((n(2), i) n(z) — (nly), ) n(v))

where

IN
|

M ((n(y),2 — v)n(y))

A

|
S
3
s
=

N

|
=
A

M ({n(z), ) n(z) — (n(y),2) n(y)) <

< (lilin(@) ~ n@)) < Clall(e) ~ Tl

The last two inequalities follow from Lemma 5.8 below and from the fact that for z,y € 0Z
we have |J(z)| > |M*(J(=z))|/R=1/R, |J(y)| > 1/R. Theorem 5.6 is proved. m
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Lemma 5.8
(i) For all e, f,w € X with |e| = |f| = 1 we have
(e,w)e — () | < Slolle — flle + 11,
(ii) for all uw, v € X, |u|,|v] > 1/R, we have

u v

< Rlu — v|.

[ul o]

Proof.
(i) The case e = +f is trivial. For e # +f we have

e, w)e — w 2 = l6— 26 2 e_f ’LU>2 <e+f ’LU>2
(e whe— (Fu) I = 7] f||+f|<<k_fw o )

1
Tle = fPle+ 1P fl?,

IN

since (e— f,e+ f) =

(ii) The inequality follows from the elementary computation

u v |? _ 5 2 (u,v)
| [v] ju] v
1
= 2+ 2(u,v (R2——)—2R2 U, v
(u,v) allol (u,v)

< 2R (Jul o] — (u,)) < R?Ju— of.

Corollary 5.9 Under the hypotheses of Theorem 5.6 we have

E— il + B4 ey - aer)| < Bl 10 - 1) + B0l a
2 dt T

If moreover there exists a constant k > 0 such that

(5.7) n(z) — n(y)| < klz —y| Va,y € 07,

/()T‘é—ﬁ‘dt < (R2 L—/ |u|dt> (‘az —yo‘—l—/ |u—v|dt)
where
(5.8) L = (% n 2(1 . §>2).
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Corollary 5.9 is an immediate consequence of inequalities (5.5), (5.4), (3.21) and of the
following lemma.

Lemma 5.10 Let Hypothesis 5.1 and inequality (5.7) hold. Then for every z,y € X we
have |J(z) — J(y)| < L|z — y| with Q given by (5.8).

Proof. Assume first z,y € 0Z. Then

n(z) n(y) ‘

[J(z) = J(y)| =

‘M*(n(w)) M*(n(y))
1

T | @) = 1]+ s M () = ()

< 3(1 ¥ 5) n(z) - n(y)| < Ko — 3],

T

where K := (1 + R/r)k/r.
The assertion is trivial if £ =0 or y = 0. For arbitrary z,y € X \ {0} we have

9 = I = )T (5505) - M) (555 )]

< () e =9+ () = G )

eyl + KM(”‘ME) - MZ)‘

1
< <—2+K)|m—y|+KﬂM(m—y)

IN

T M(z)
1 T
(7E+K(1+E)>|m_y|
and Lemma 5.10 is proved. 0

Example 5.11 The smoothness of Z is substantial for the local Lipschitz continuity of
the play in W'(0,T; X). We show here a counterexample motivated by an idea of [D].
Let Z € R? be a cone of the form

Z = b | eR®; ¢>Va?+ b2
C

We define a two-parameter family {us 4; @ > 1, ¢ € [0,7/2]} of functions [0,1] — R® by
the formula

cos at
Uag(t) := — sin ot , t€[0,1].
* \ —at sin )
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Putting

1 cos(at + @) 1 sin ¢ sin(at + ¢)
Tas(t) ;= —cosd | sin(at + ¢) , ap(t) == — | —sing cos(at + ¢) ,
@ 1 @ —at sin ¢ — cos ¢

we check similarly as in Example 5.7 above that we have 244 = S (Za,6(0), Ua,), Eap =
P (20,6(0),Ua,e) for all & and .

Assume that the operator P is locally Lipschitz in W1%(0,1;R?). The system {uq g} is
bounded in W(0,1;R?), there must therefore exist a constant C' > 0 independent of
a and ¢ such that

(5.9) /0 1

bad(t) — bag(®)] &t < C([oas(0) — 20 5(0)] + |uas(0) — uaz(0)]
+ /0 | p() — tha, z ()] dt).

We have ‘ﬂa,qg(t) — ﬂa,g(t)‘ =1—sing, ‘fa,¢(t) — fa,g(t)‘ = \/2(1 —sing) for all ¢t €
[0,1], ‘ua,qg(()) —ua,g(O)‘ =0, ‘:Ea,qg(()) —ma,z(O)‘ = (V/2/a) cos ¢, hence (5.9) reads

2

V2(l —sing) < C ((\/5/04) cos g+ 1 —sinqS) independently of @ — co and ¢ — 7/2,

which is a contradiction.

6 Polyhedral characteristics

In this section we investigate continuity properties of the play with a polyhedral charac-
teristic of the form

(6.1) Z ={z€X; (z,n) < Bi,1=1,...,p}

with given unit vectors n4,... ,n, and given positive numbers 51,8s,... , B, as in Exam-
ple 2.28. According to Remark 3.16 we may assume X = span{ni,...,n,}, dimX =
N < .

Notation 6.1 For an arbitrary subspace X' C X we denote by Px: the orthogonal
projection onto X'. In particular, Px = I is the identity operator and the orthogonal
projection onto span{n;} is denoted by F;, i.e.

(6.2) Pz = (z,n)n;, z€X, 1=1,...,p.

We further denote by D, 0 < & < N, the system of all k-dimensional subspaces of X
generated by the vectors ny,... ,n,, that is, Dy = {{0}}, Dy = {X} and

Dy = {X'cX; X' =span{n;,...,n;.}, ;€ {1,...,p}
for j=1,...,r,dmX =k}, k=1,...,N—1.

We need in the sequel the following elementary properties of projections.
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Lemma 6.2 Let X” C X' C X be subspaces of X. Then

(1) PXHPX/ = PXIPXII = f)Xu7

(ii)  |(z,v)] < |Pxiz| < |2| VzeX,Vve X', |p| <1.

Our main objective is to prove that on a polyhedron, P is globally Lipschitz continuous in
both Z x C([0,T]; X) — C([0,T]; X) and Z x W'(0,T; X) —» WH(0,T; X). Theorem
6.3 goes back to [KP]. Independently, a more general result in the space of regulated
functions (i.e. functions which have both one-sided limits at each point) endowed with
the sup-norm was obtained in [DI] for a larger class of problems. We show here a different
(and simpler) proof based on the approach proposed in [P]. Theorem 6.5 was conjectured
without proof in [KP]. It has recently been proved by Desch and Turi in [DT] and we
repeat here their elegant argument.

Theorem 6.3 For every u,v € C([0,T];X), z° y° € Z we have under the above hy-
potheses

(6'3) |P(m07u) - P(yoav)|oo < My (|:110 - y0| + |u - 'U|00) )

where My s defined recurrently by the formula

1 1/2
(6.4) My == 0, Mgy := (1 © (1+M,§+2ngk)) :
Tk
(6.5) er = max{|Pxm;|; X' €Dr,n; ¢ X'}

fork=01,..., N—-1.

Remark 6.4 For N < 2, the Lipschitz constant My in Theorem 6.3 is the best possible,
for N > 3 this question is open. The optimality of M; = 1 is obvious. In the case N =2
we can identify X with the complex plane C and for a given « €]0,7/2[ put

(6.6) Z:={pe?€C;0>0,p€[-a,al}.

In fact, the condition 0 € Int Z does not hold here, but it can be satisfied by shifting
simply the figure to the left. We have here

1/sine for a€]0,7/4],
(6.7) M, = { 1/ cos a for a€|n/4,n/2[.

To check that these values are optimal, we fix an arbitrary r > 0 and an arbitrary partition
0=ty <t; <---<tg =T, and construct continuous functions u,v to be affine in each
interval [t;_1,%], |[u—v|e = 7, with the intention to get |P(z% u)—P(z° v)|e arbitrarily
close to M, r for a suitably chosen z° € Z and for K sufficiently large. The argument is
different in each of the two cases distinguished in (6.7). Technical details are left to the
reader, cf. also [KP], [K] and [DI].

A ac ]0,'7r/4]: For k € N put u(ta) = u(tags2) := 0, u(tars1) := 71€*, u(tapss) i=
—rie™, v(t) =0, 2° := 0. Then |P(z° u) — P(z° v)|(tar) converge to Myr as

k — oco.
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B. a€|r/4,7/2]: Put 2°:=0, u(0) = v(0) := 0 and assume that u,v are defined in
an interval [0,tgk], u(tsx) = v(tsk) = Ur. We introduce the sequences

om = rtana (1l —|cos2a™),
cos 2a

Um = —0m— )
sin o

for m € NU {0} and define the functions u,v in [tgk,tskts] recurrently as

u(tgpq1) == Up —r21e ™, v(tgpt1) := Uk,
U t8k+2 = Uk, v t8k+2 = Uk,
u(tskt+s) = Ur + 0 pok v(l8k+3

= Uk + 7 piox,
= Uk + 7 pok —I—T?eia,
= V(tgkta) + T2 €,
v(tskta)

(t8k+4) - Z',Udzk+'1 ’
= v(tgryr) — T ET.

?

(tah+a)
(t8k+4) - Z',Udzk+'1 , U
(tak+7)

|
S

—ix

—rie*, v(lskis

/\/\/\/\%/\/\/\
o
El
S
e e e e e e
I
=
-+
. .
= .
N
Eol
-+
=3
.
m
-,
R
I~
R R A A e R
o
El
S
e e e e e e
I

Putting Ugt1 := u(tskt+s) = v(tsk+s) we continue by induction and show that for
all k, the outputs z := S(z%u), y = S(z°v) of the stop operator S take on
the values z(tsx) = 0, y(tsk) = o2k €7, z(lskt4a) = 0241 €™, Y(tskra) = 0, and
|P(z° u)(tarra) — P(z°v)(tsks2)| = |z(tskt2) — y(tsks2)| converge to Mar as k —
00.

The problem of optimality of the Lipschitz constant Ly in Theorem 6.5 below is com-
pletely open, except for the trivial case N = 1, indeed.

Theorem 6.5 For every u,v € WH(0,T;X), z°y° € Z we have under the above
hypotheses

(6.8) /0 '

where Ly is defined recurrently by the formula

d d
—P(a%u) = - Py’ v)

o 7 (t)dt < Ly (|az0 — %+ /OT [a(t) — o(2)] dt) ,

1 4+ Lg
6.9 Ly =1 Ly = ———
( ) 1 ? k 1 _ 5k ?
(6.10) 61 = 0, b := max{ (I — P;) (6g—1Pxw + (I — Px)w)|;

7=1...,p, X' € D1, w € X' @®span{n;}, |w| = 1}

fork =2,...,N.

The definition of 6, Ly 1s meaningful, since the set Dy_; is finite, the unit ball in X 1s
compact and the following Lemma holds.

Lemma 6.6 6, < 1 forall k€ {1,... N}.
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Proof. We proceed by induction over k. Assume that é;_; < 1. We obviously have
6 < 1. Assume that for some w, 5 and X' we have

(6.11) (I — P;) (5ssPxw + (I — Px)w)| = 1.
Then
|Pxw|® + (I — Pxw)* = 1 = [(I = ) (§-1Pxw + (I — Pxr)w)|*
= & 4|Pxwl* + (I — Px)w|’” — |P;j (81 Pxw + (I — Px)w)l*,

hence Pxw =0, P;w = 0 and consequently w = 0, which contradicts (6.11). 0

6.1 Lipschitz continuity in C([0,7]; X)

To prove Theorem 6.3, we start with two auxiliary Lemmas which are due to V. Lovicar,

see [P].

Lemma 6.7 Let Z be a polyhedron (6.1). For z € Z put I'(z) := {k e {1,...,p};

<z,nk> = ﬁk}, C(z):= {w eX;w= > agng,ar > 0}. Then C(z) = Nz(z), where
keT(2)
Nz(z) is the normal cone (2.8).

Proof. We obviously have C(z) C Nz(z). The set C(z) is a convex closed cone and we
can associate to it the projection pair (P,, Q,) according to formula (2.3). Let w € Nz(z)
be arbitrary. We have by definition

(6.12) <Pzw, Q. w — cp> Vo € C(z),
(6.13) <w, z— 1/J> Vi € Z.

For k € T'(z) we have Q,w + ni € C(z), and (6.12) yields <Pzw,nk> < 0. For k ¢
{1,...,p} \ I'(2) we have <z,nk> < Br. In both cases we obtain z + § P,w € Z for some
sufficiently small § > 0. Putting ¢ := z + § P,w we infer from (6.13) and Lemma 2.2 (iii)
that |Pw|?* < <Pzw,w> <0, hence w € C(z). |

> 0
> 0

Lemma 6.8 Let Z be as above and let u,v € W(0,T;X) be giwven. For t € [0,T]

put (1) = P(a®,u)(t), n(t) = Py, 0)), a(t) = (5 () y(t) == v(t) —n(d),
g(t) :=€&(t) —n(t). Then for every j € I'(z(t)) we have < n;, > < |u(t) —v(t)| and for

every 1 € I'(y(t)) we have <ni,g(t)> > —u(t) —v(t)].

Proof. For j € I'(z(t)) we have n; € Nz(z(t)), hence <nj,g(t)> < <nj,u(t) — v(t)>
lu(t) — v(t)| and similarly for 7 € I'(y(t)).

We now pass to the proof of Theorem 6.3.

Proof of Theorem 6.3. We may assume that u,v € WH'(0,T; X). We fix an arbitrary

number 7 > |2° — 4% + |u — v|o and introduce a Lyapunov function V : X — R' by

dIA

the formula

(6.14) V(z):= maX{M,f r? 4+ |(I - PX/)z|2 s X' eDy, k= 0,...,N} :
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The function V is convex, hence t — V(g(¢)) is absolutely continuous. Keeping the
notation from Lemma 6.8, we check that

d

(6.15) 7 —V(g(t)) <0 almost everywhere.
Assume the contrary, namely that for some ¢ €0, T the derivatives f(t),n(t) exist and
d
1 .
(6.16) Ly(g(0) >0
Then there exist k € {0,..., N — 1} and X" € Dy such that
(6.17) V(g(t)) = Mir* +|(I — Pxn)g(t)|"

(note that for & = N we have I—Px» = 0). Inequality (6.16) yields <g(t), (I—PXu)g(t)> >
0. We can assume <f(t), (I— PXu)g(t)> > 0 (otherwise we interchange the roles of u and
v). We have f(t) € Nz(z(t)), hence by Lemmas 6.7, 6.8 there exists 7 € I'(z(t)) such

that

(618) r> <’)’Lj,g(t)> > <’)’Lj,PXHg(t)> .

This implies in particular that n; ¢ X”. We put X' := X" @ span{n,} and find v € X",
|v| =1 and real numbers a,b such that

(6.19) Pxig(t) = anj + bv.

Put € := (n;,v) € [—ek, ex]. By Lemma 6.2 (ii) we have
(6.20) Prog(8) > |(g(2),v)| = lac + .
On the other hand, inequality (6.18) yields

(6.21) r > a+ be > a|Pxmm;|* + be,

hence @ > 0. From (6.20), (6.21) it follows a(l — &?) < r — be — ae? < r + || |Pxng(t)|

and

(6.22) |Px:g(t)]? = a®+ b + 2abe = (ae + b)* + a®*(1 — €?)

1
< |Pxeg@)fF + =5 (r £ Iel |Pxng(t)])?
1
< 77 (IPeog@)F +7° + 27 x| Prog(1)]) -
— &
We have X' € Diy1. Assumption (6.17) then yields
(6.23) M2, — gl > M2r® — |Prog(t)]?,
and combining (6.23), (6.22) and the definition of My, we obtain
(6.24) e (Myr® —|Pxng(t)]®) + 2r (Myr —|Pxng(t)]) < 0,
hence

= (Mgr®*+|(I = Pxn)g(t)]*) — (Mg r* + |(I — Pro)g(t)) ,

which contradicts the assumption (6.17). Consequently, (6.15) holds. By hypothesis, we
have |g(0)] < r, hence |g(%)|* < V(g(t)) < V(g(0)) < M% r? for all ¢ and the proof is
complete. 0
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6.2 Lipschitz continuity in WH(0,7T ; X)

Before passing to the proof of Theorem 6.5, we first define an equivalent norm in X based
on the following construction.

Definition 6.9 Let m € N, z € X and a sequence {1;}7, be given, i; € {1,... ,p} for
j=1,...,m. Then the sequence {2z;}7, of elements of X defined by the formula

(6.26) z1:=2, zjn=U-PF,)z, j=1,...,m

is called a string. We denote by T (z,m) the set of all strings of the form (6.26)

(6.27) T(z,m) = {{zj};n:tl ; zj gwen by (6.26) ,1; € {1,...,p}, 7 =1,... ,m} .
The main result of this subsection reads

Theorem 6.10 For z € X put

(6.28) |z]| := sup {Z|Pijzj|;m €N, {5} € T(Z,m)} :
7=1

Then || - || is @ norm in X satisfying the inequalities
(6.29) |lz|| > |Piz| + ||({ — P)z|| Vze X, Ve {l,...,p}.
(6.30) |z|| < Lnlz| Vz € X,

with Ly defined in Theorem 6.5.

For the proof of Theorem 6.10 we need some auxiliary results which we state in the
following form.

Lemma 6.11 Let 41,... ,2, € {1,... ,p} be given, X' = span {n;,,... ,n;.}, dimX' =
k. Then for every z € Z we have

(6.31) (I — P~ P, ) (I — P,)Pyz| < 6|Pyzl|.

Proof of Lemma 6.11. The statement is trivial for £ = 1. For k& > 1 we proved by
induction. Assume that the assertion holds for £ — 1. We find { < r such that X' =

span {n;,...,n;}t, X" :=span {n;,... ,n;_,} € Dr_1. Let z € X be given.
We define

wy, = (I — Pil—l) (I — Pil)PXHZ

Wo = (I — PXH)PXIZ
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By induction hypothesis, we have |w;| < 8x_1|Pxnz|. Further, put

w =

{ Wao lf 5k_1 = 0,

Wao + ﬁwl, if 5k_1 > 0.
Then wy = 81 Pxnw, wy = (I — Pxn)w, and
2 2 2 2 2 2
|’LU| = |PX//’LU| —|— ‘(I — PXII)'LU‘ S |PXHZ| —|— ‘(I — PXII)PXIZ = |PXIZ| .

By Lemma 6.2 we have

(6.32) (I -P)I—-P,,) (I~ P)Pxz
= (I - PB)[Px»(I - P, ) (I - P,)Px=
+ (I = Pxo)(I — P,_,) -+ (I — P,)Px:z]
= (I = Fy) (w1 + we),

hence, by definition of é, we have

(6.33) (I =PI = Poy) -+ (I = Py)Puz
< |0-P)I-P) - PPy
= (1 = P) (busProw + (I = Projw)| < Gl
and inequality (6.31) follows easily. 9

Lemma 6.12 Let m € N, z € X and a sequence {1;}72; be given, 1; € {1,...,p} for
j=1,...,m, X :=span {n;,... ,n;, } € D for some k€ {1,... ,N}. Let {zj};-’:'il be
the string defined by (6.26). Then

m

(6.34) >

i=1

Pijzj‘ S Lk|PX/Z| s

where Ly is given by (6.9).

Proof of Lemma 6.12. Here again, we use the induction over k. For k = 1, we obviously
have P;;z; = 0 for 7 > 2 and the assertion holds. Assume now that it holds for 1,... ,k—
1. For a given z € X we construct the sequence 7(0) < 7(1) < ... < j(s) < m recurrently
over d =0,1,...,s as follows

(ii) if span {N; n;,, + = X' then

i(d)+1)

jd+1) = min{j > j(d);  span {mi; 4 -0, 1 = X'}.
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We have

s 3(d) m

(6.35) SoIPizl =D 1 Y. Pyml| + Y [Pyl

j=1 d=1 \j=j(d-1)+1 3=3(s)+1
where, according to the induction hypothesis, we have

j(d)-1

(636) Z | ZJ| < Lk 1 |PX’Z_7(d 1)_|_1| d = 1,. ey 8,

i=i(d—1)+1
(6.37) > IPyz| < Lia| Py,

3=3(s)+1
and, obviously,
(638) |Pij(d)zj(d)| S |PXIZj(d_1)_|_1| s d = 1, e, S
Then (6.35-6.38) yield
(639) Z |P,LJZJ| S Z(l —|— Lk—1)|PX’zj(d)—|—1| .
=1 d=0

By Lemma 6.11, we have for all d =1,2,... s

(6.40) |Pxrzjaya| < 6lPxrzja-1)41l,
hence
1 —|— L
(6.41) Z| 7] < (1 + L) (Zsk> |Pyiz| = ke 1|PX,Z|
and Lemma 6.12 is proved. |

Proof of Theorem 6.10. Inequality (6.30) follows from Lemma 6.12 above. In particular,
||z|| is finite for all z € Z, ||0]] = 0. Conversely, ||z|| = 0 implies |P;z| = 0 for all 7+ =
1,...,p, hence z = 0. Furthermore, the triangle inequality and the identity ||tz|| = |¢|||2||
for all z € X and t € R follow automatically from (6.28). We thus proved that || - ||
is a norm. It remains to check that inequality (6.29) holds. Let z € X ,: € {1,...,p}
and a sequence {%;}72;,7; € {1,...,p} be given and put 2z, := (I — )z, zj1 =
(I-P;)z,5=1,...,m, z0:= 2,1 :=1%. Then

(6.42) > Pzl = Y|Pzl — |Pial
7=1 7=0
< lzfl = |Pi2]

and passing to the supremum in the left-hand side of (6.42) we obtain (6.29). Theorem
6.10 is proved. 0

Theorem 6.10 has the following consequences.
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Corollary 6.13 For every z,w € X such that w is of the form

P

(6.43) w = Zaini; a € R,
=1

where the coefficients a; satisfy the implication

(6.44) a, # 0 = a;(z,n;) > 0,

there exists €9 > 0 such that

(6.45) |z — ew]|| + elw| < |2 Ve €]0,&0].

Proof. Put Ao := {1 c{l,... ,p}; a; =0}, AS :={1,... ,p} \ Ao. Let &0 > 0 be chosen

in such a way that

(6.46) v < “_ <L

For £ €]0,&0[ and i € AS put n; := . Then 7, >0, Zierc 7 < 1 and

zZ —Ew = 2z — E EQq;M; = 2 — E n; Bz

i€AT i€AS
:zl—Zm —I—Zm(I—Pz
i€Af i€Af

From (6.29), we infer

1€ AS 'LEAC

Iz —ew| < |z |1 - Zm) + > w2l - |[Pa2l)
< |

=zl = ) elaul < |lzl| — elwl

'LEAC

and Corollary 6.13 is proved. 0

Corollary 6.14 For every z, w € X, such that w is of the form (6.43), with coefficients
a; satisfying the inequality

(6.47) a;(z,n;) >0 Vie {1,...,p},
we have
(6.48) |z + w|| > [lz] + [w]
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Proof. Put Ay :={1 € {1,...,p};(2,n;) =0}, AY :={1,... ,p}\A;, X; :=span {n,;;7 €
A;}. We fix a subset Ay C A; in such a way that {n;;2 € Ay} are linearly independent,
X; = span {n;;1 € Ay}. We then have

P
(6.49) 0= G,

=1
where &; = 0 for 2 € A; \ Ay, & = a; for 1 € A%
We now find the dual basis {n’; i € Ay} of X; with the property
(6.50) (ni,n;) = &; forall 1,5 € A,.

This can be done in the following way. Let {ex; k € A,} be an orthonormal basis in Xj .
Then n; = ZkeAg n;kek, where N = (n;k)jkca, 1s a nonsingular matrix. We look for a
matrix N* = (n},);kea, such that the vectors n} = >, , n3 e satisfy (6.50), that is

(6.51) D nanh = 8.

kEAg

In other words, it suffices to put N* = (N+)~1.

We further denote h := ZieAg a;n; and claim that for 6 > 0 sufficiently small, the vectors
z 4+ 6h, w satisfy the assumptions of Corollary 6.13. Indeed, let § > 0 be so small that

(6.52) sign ((z 4+ 6h,n;)) = sign ({z,n;)) Vi € A%.
We want to prove that the implication
(6.53) & # 0 = &z + 6h,n;) >0 Ve e {l,...,p}.

holds.

For 1 € AY, (6.53) follows from (6.52) and (6.47), for 1 € A; \ A3, we have & = 0, hence
(6.53) holds. For 7 € A,, the definition of & entails

and (6.53) follows.

From Corollary 6.13 we infer that there exists some £¢(8) such that for all € €]0,e0(6)]
we have

(6.55) |z + 6h — ew| + elw| < ||z + éA|,
and, in particular,

(6.56) (1 + ¢e)l|z + 6h| = |z + 6h — ew + e(z + 6h + w)|
< llz + 8hl| — elw| + ellz + 8k + w]],

hence
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(6.57) |z + 6h| + [w| < ||z + 6k + w||.

Letting 6 tend to 0, we obtain the assertion. 0

Theorem 6.5 is an immediate consequence of Theorem 6.10 and of Theorem 6.15 below.

Theorem 6.15 Let u,v € WH(0,T) be given, let Pz be the play with characteristic Z
gwen by (6.1). Put & :=Pz(u),n:=Pz(v),z:=u—¢,y:=v—mn. Then

d : . . .
(6.58) lle =yl + 1€ —al < & =9 ae

Proof. Let t €]0,T[ be an arbitrary Lebesgue point of all functions %, v, é, n, z, Y,
d/dt||z —y|| and let 7 €]0,¢[ be arbitrary. Put 2 := z(t) —y(t), w := 7(£(¢) —n(t)). By
Lemma 6.7, we have £(t) = Zker(z(t))'}’k ng, 7(t) = Zjer(y(t)) yim; with v > 0,4, >0
for all k € I'(z(¢)), 7 € I'(y(¢)). We thus can write

(6.59) w = zp:aini
with
a; =0 for 2 € {1,...,p}\ (T(=(¢)) UT(y(2))),
(6.60) a; =%, (z,n) 20 for 2 € I'(2(2)) \ L(y(?)),
' ai = =%, (z,ni) <0 for o+ € I(y(2)) \ T(=(t)),
(z,m;) = for 2 € T(z(t))NT(y(t)),

hence inequality (6.47) holds. From Corollary 6.14 it follows

(6.61)

(o) = v(®) + 7 (&) —A(w) | >

o(t) = n(8)|| + Tl — A(2)].

This yields

(6.62) (z —y)(& — 1)

@) - [ G-
= | - ) + 7€ - ) - 7@ - o))
[ G- - G- o) ds
(= = »)O)|| + 7|¢€ = D] - || - )
G0 - 6 - e s

T

Y

-7

Dividing inequality (6.62) by 7 and passing to the limit as 7 — 0+ we obtain (6.58). O3
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7 Second order variation

In this short section we prove an additional regularity result for hysteresis operators,
namely an upper bound for the total variation of the derivative of the output. It can be
applied in particular to the play operator on smooth domains or polyhedrons, see Sections
5 and 6. Since the time derivative of the output is typically discontinuous, this is the
maximal regularity we can expect. The result is formulated for the whole class of causal
rate-independent operators (see (1.25), (1.26)) which are locally Lipschitz continuous in
wh0,T; X).

Lemma 7.1 Let F : WH(0,T;X) — WH(0,T; X) be a continuous, causal and rate-
independent operator, let w € W0, T; X) be gwen and let ¢ = F(u). For a given
h €]0,T] put

- u(O) for te€ [0, ];
uo(t) = { u(t _ h) for te€ ]h,T]-

Then

et for te [0,h+¢],
a(t):=¢ t—nh for t€]h+e,T—¢],
T + 2te(¢t —T) for te|T —¢,T].

Then «, is an increasing homeomorphism for every ¢ and the rate-independence yields

T—h
(7.1) Fluoa)(t) = €(au(t))  We[0,T], e € [0,——].
Let 0 < T* < T be arbitrarily chosen. For ¢ €]0,7 — T*[ put u’ := (u 0 o) 0.7
& = (£o ) 0.7+ uy = uo‘[o,T*], & = EO‘[O,T*]' From the causality of F we infer

& = F*(ul), where F* : WH(0,T* X) — WH1(0,T*; X) is the restriction of F. We

have u&(0) = u*(0) and
T hte . c hte
() —ug(t)|dt < ) t)| dt 1t — h)|dt
[z -wola < [T () as [ hie-n

= 2 [l

hence u! — u} in WH1(0,T*; X) as ¢ — 0. By construction, we analogously have & — £}
in W0, 7%, X) as ¢ — 0 and from the continuity of F it follows £ = F*(ug). Since
T* < T was arbitrary, the assertion follows. 0
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Theorem 7.2 Assume that an operator F : WH(0,T; X)) — WH(0,T; X) is causal,
rate-independent and locally Lipschitz in the following sense: there exists a function f :
R* — R such that for every u,v € WH(0,T; X) the functions ¢ = F(u), 1 = F(v)
satisfy

(7.2) /0 €(t) — ()] dt < f(max{|uly, [v]ia}) lu —v]is.

Then for every w € WU '(0,T; X) such that & € BV(0,T;X) there exists a function
w € NBV(0,T;X) such that w=¢ a.e. and

(7.3 Varw < f(luls) (|u<o+>| ; y]u) .

a.
(0,77

The hypotheses of Theorem 7.2 are fulfilled for the operator F(u) := P(z° u) for a fixed
z° € Z provided Z is a polyhedron (Theorem 6.5) or a smooth domain satisfyng the
hypotheses of Lemma 5.10. In the latter case, estimate (7.2) follows from Lemma 5.10,
Corollary 5.9 and inequality (3.21).

Proof of Theorem 7.2. Let w e WH(0,T; X) with w € BV(0,T; X). Put

 J u(t—nh) for te [A,T],
v(t) = { u(0) for te [0,h].

Lemma 7.1 yields

(t —h) for te€ [h,
0

From (7.2) we obtain

/ CIEW - mldt < S(uly) ( / (o) e+ / ) |a<t>—u<t—h>|dt)

and the rest of the proof follows from Theorem 8.12. 0

8 Integration of vector-valued functions

In this section we recall basic notions of the Bochner integral and of the theory of functions
of bounded variation that are referred to in the text; for details, see [Bre|, [Y], [HP], [K].

8.1 Bochner integral

Definition 8.1 Let B be a real Banach space endowed with norm ||-|| and let [a,b] C R*
be a compact interval. A function u: [a,b] — B is called
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(i) simple, if there exists a partition [a,b] = UkN:1 Ey of the interval [a,b] into a finite
union of pairwise disjoint Lebesque measurable sets {Ex; k = 1,..., N} and a sequence
{zk; k=1,...,N} in B such that for almost all t € [a, b] we have

N

(81) u(t) = ka XEk(t)7

k=1

where xg, s the characteristic function of the set Ey, that is,

o i t¢ B,
XE"(t)_{1 if te By

(ii) strongly measurable, if there ezists a sequence {un; n € N} of simple functions such
that lim ||un(t) —u(t)|| =0 for a.e. t € [a,b].

It is easy to see that for a strongly measurable function, u : [a,b] — B, the scalar-valued
function ¢ — ||u(t)|| is Lebesgue measurable. The following characterization of strongly
measurable functions is useful in applications.

Theorem 8.2 (Lusin) A function u : [a,b] — B is strongly measurable if and only if for
every 6 > 0 there exist a closed set Fg C [a,b] and a continuous function w : [a,b] — B

[
such that meas ([a,b]\ F5) < 8, u(t) = w(t) for all t € F5 and sup ||w(¢)]| < sup ||[u(?)].
b [a,b]

a,

For a simple function u : [a,b] — B of the form 8.1 we define its Bochner integral over a
measurable set A C [a,b], by the formula

N

(8.2) /Au(t) dt .= Zazk meas(Ex N A) € B.

k=1

The general definition reads as follows.

Definition 8.3 An arbitrary function u : [a,b] — B s said to be Bochner integrable
in [a,b] if there exists a sequence {un;n € N} of simple functions [a,b] — B such that
lim fab |lun(t) — u(t)||dt = 0 and we define its Bochner integral over a measurable set

A Cla,b] as

(8.3) /Au(t) dt := lim | un(t)dt € B.

n— 00 A

Notice that the sequence U, := fA Un(t) dt in Definition 8.3 is fundamental in B and its
limit (8.3) is independent of the choice of the sequence {u,}. The definition immediately

implies
/u(t) dtH < / |lu(?)]| dt < oo
A A

for each Bochner integrable function v and measurable set A C [a, b].

(5.4) |

Bochner’s Theorem 8.4 below gives an elegant characterization of Bochner integrable
functions.
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Theorem 8.4 (Bochner) A function u : [a,b] — B is Bochner integrable if and only if
1t 1is strongly measurable and fab ||u(t)]|dt < oo

We define in a standard way in the set of strongly measurable functions an equivalence
relation u ~ v < u(t) = v(t) a.e. Identifying in an obvious sense functions with their
equivalence classes we can define the normed linear spaces

i) L'(a,b;B) of Bochner integrable functions u : [a,b] — B endowed with norm
g
b
fuly = [ lu(t)|d,
(ii) LP(a,b; B) f(iI‘/ 1 < p < oo of functions u € L'(a,b; B) such that |u|, :=
P
(fab ||u(t)||pdt) < o0, endowed with norm |- |,

(iii) L*°(a,b; B) of functions u : [a,b] — B which are essentially bounded and strongly
measurable, endowed with norm |u|e := inf{sup {||u(¢)|;t € [a,b]\M}; M C [a, ],
meas (M) = 0},

(iv) C(la,b]; B) of continuous functions u : [a,b] — B endowed with norm | - |-

The fact that LP(a,b; B) for p € [1, 0] and C([a, b]; B) are Banach spaces is well known
([Ad]). Let us also mention the following classical results.

Theorem 8.5 (Lebesgue Dominated Convergence Theorem) Let p € [1,00[ be given
and let v, € LP(a,b; B), g € LP(a,b; R") be given sequences for n € NU {0} such that

() lim [} l9a(2) — golt)[Pdt = 0,

(ii) lm ||on(t) —vo(t)]| =0  a.e.,

n— 00

(iii) ||vn(t)|| < gn(t) a.e. for all n € NU{0}.

Then lim |v, — volp, = 0.

Theorem 8.6 (Mean Continuity Theorem) For every p € [1,00] and u € LP(a,b; B),

we have

(8.5) lim ) Hu(t) —u(t — h)det = 0.

h—0+ at

The following Theorem 8.7 in the context of Hilbert space - valued functions has been
tailored especially for situations that occur in the theory of hysteresis operators, see [K].
Notice that it does not follow from Theorem 8.5, since we do not assume the pointwise
convergence here.

Theorem 8.7 Let X be a Hilbert space endowed with a scalar product <,> and the

corresponding norm |- | = <-,->1’2. Let v, € L*(a,b; X), gn € L*(a,b; R") be given
sequences for n € NU {0} such that
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(i) Lm [ (va(t), () dt = [T (vo(t),0(t)) dt Ve € C([a,b]; X),

() lim [} lgn(t) - go(t)| dt = 0,
(iii) |vn(t)] < gu(t) a.e. VR EN,
(iv) [vo(t)| = go(t) a.e.

Then lim |v, —voly =0.
n—oo

8.2 Functions of bounded variation

Definition 8.8 A partition S := {{to,...,in}; a =t < t; < --- <ty = b} of the inter-
val [a, b] is said to be §-fine for § >0, if max{|t; —t;_1];2=1,...,N} < §. We denote
by As(a,b) the set of 6-fine partitions of the interval [a,b], Ao(a,bd) := sso As(a,d).

Definition 8.9 Let S = {to,...,tn} € Ao(a,bd) and a function, u: [a,b] — B be given.
We define the S-variation Vs(u) of u and the total variation \[/'abli u of u in [a,b] by the

formulae

Vs(u) = leu(ti)—u(ti_1)||,

Yaru := sup {Vs(u); § € Ao(a, b)}.

We denote by BV(a,b; B) := {u: [a,b] — B; \[/'abl]r u < oo} the set of all functions of

bounded total variation. For every w,v € BV(a,b; B) and every ¢ € ]a, b[ we obviously
have

(8.6) Var v = Var u + Var u, Var(u+v) < Varu+ Varv.
[a,b] [a,c] [e,b] [a,b] [a,b] [a,b]

The definition entails that every function v € BV(a,b; B) is bounded, the one-sided
limits u(t+) (u(t—)) exist for all ¢ € [a,b] (t €]a,b], respectively) and the set {t €
[a, B]; u(t+) # u(t) or u(t—) # u(t)} of discontinuity points is at most countable. Fur-
thermore, for all w € BV(a,b; B) and ¢ € |a, b] we have

8.7 t—)=u(t) <= lim V =0.

(8.7) u(t—) = u(t) Jm - Var u

Indeed, the implication ‘<=’ is straightforward. To prove the converse, we assume that
e > 0 is given and find 6§ > 0 such that ||u(¢) —u(s)|| <€ for t —§ < s < ¢. There exists
a partition 0 =ty < t; < --- <ty_; <ty =t such that t —ty_; < 6 and

N
\[/(')z,mtl]r u < g+ Z |lu(t:) —u(ti-1)]] < 2e+ Var wu.

O,tn_
g [0.t—1]
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Relation (8.7) now follows from (8.6). We analogously have

8.8 t+) = ul(t ~— i Vi =0
(55) uer) =) S

for every u € BV (a,b; B) and ¢t € [a, b] .
An important example of functions of bounded variation are the step functions

N

(8.9) £(t) == Z TiXts5— 1tJ —I_ZyJX{tJ

j=1
as a special case of (8.1), where S := {to,...,tn} € Ao(a,d) is a given partition and
{z;},{y;} are given sequences in B.

The following statement shows that functions of bounded variation are strongly measur-

able and that BV (a,b; B) endowed with the norm
(8.10) lulgv = sup {||u(t)||; t € [a,b]} + \[/'abli U

is a Banach space.

Proposition 8.10

(i) For every u € BV(a, b; B) there exists a sequence {&,; n € N} of step functions such
that lim sup ||u(t) — &a(t)|| =0, Var ¢, < Var u.

n=00 [gp) [a,8] [a,8]

(i1) Let {un; n € N} be a sequence in BV (a,b; B) and let u : [a,b] — B be a function
such that lim ||lun(t) — u(t)|| =0 for all ¢t € [a,b]. Then Var u < lim inf Var u,, .

[a,b] n—oo  [a,b]

Proof.
(1) The function V(t) := Var u is nondecreasing in [a, b]. For n € N put N(n) := max(NN

[a,t]
[0,nV()]) and 1} :=sup{t € [a,8]; V(¢) < 2} for j =1,...,N(n), i1 =5, 15 = a.
The assertion holds for &,(17) := u(t}), &(t) = u( (t” + tg-|-1)) for ¢ €]t?,17,,[, 7 =
0,...,N(n), €.(b) := u(b), with the convention ]t?,t?_l_l[ 0 if £7 =17,
Part (11) follows immediately from Definition 8.9. A
As a consequence of Proposition 8.10 we see that step functions form a dense subset of
BV(a,b; B) with respect to the so-called strict metric defined by the formula (see [V])

(8.11) ds(u, v) := sup {[[u(t) — v(t)]}; ¢ € [a, B]} + | Var u — Var v|.

Let us pass to another important concept.

Definition 8.11 A function u : [a,b] — B 1is called absolutely continuous, if for every
€ > 0 there exists § > 0 such that the implication

n

(8.12) D bk —ar) <8=) ||u(be) — u(ar)|| < e
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holds for every sequence of intervals lag,bx[C [a,b] such that |ag,be[N]a;, b= 0 for
We introduce the spaces
(i) AC(a,b;B) of all absolutely continuous functions u : [a,b] — B,

(it) CBV(a,b;B) = BV(a,b; B) N C([a,b]; B) of continuous functions v : [a,b] — B

of bounded variation,

(iti) NBV(a,b;B) = {u € BV(a,b;B); u(a+) = u(a),u(t—) = u(t) V¢t €]la,b]} of

normalized functions u : [a,b] — B of bounded variation.

It is easy to check the inclusions
(8.13) AC(a,b;B) C CBV(a,b;B) C NBV(a,b;B) C BV(a,b;B)
as well as the implication

(8.14) u € BV(a,b;B) = u* € NBV(a,b; B), u(t) =u*(t) ae.

Functions of bounded variations can be characterized in terms of the mean continuity
modulus (cf. Mean Continuity Theorem 8.6) in the following way.

Theorem 8.12 Let v € L'(a,b; B) be a given function satisfying

PR
(8.15) hhril)é_rl_lfg/a_l_h||v(t)—v(t—h)||dt = (C < o©.

Then there exists w € NBV(a,b; B) such that w(t) = v(t) a.e., \[/aI]‘ w=C.
a,b

Conversely, for each v € BV (a,b; B) and h €]0,b— a[, we have

1 b
(8.16) —/ |lv(t) —v(t — h)||dt < Varw.
h a+h [a7b]

If moreover v € NBV(a,b; B), then

1 b
8.17 \% = lim — t)—v(t—h)|dt.
(.17 o = Jim [ o) = o= )

Theorem 8.12 is proved (in a slightly different form) in [Bre|]. More precisely, it follows
from Proposition A.5 of [Bre] and from Lemma 8.13 below.

Lemma 8.13 For every v € L'(a,b; B) and every h €]0,b — a| we have

(8.18) %/ o(t) — vt — B[ dt < liminf%/ o(t) — v(t — B dt.

+h h—0+ +h
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Proof of Lemma 8.13. Let X :]0,b — a[ — R be the function defined by the formula

1 b
(8.19) A(R) = —/ |lv(t) —v(t — h)|| dt.

h a+h
By the Mean Continuity Theorem, it is continuous in its domain of definition and it
satisfies obviously for every A > 0, £ > 0, h + k£ < b — a the inequality

h k
AMh+ k) < —Ah)+ ——A(k).
(+)_h—|—k()+h—|—k()

For every h > 0 and every integer p < (b — a)/h we obtain by induction
(8.20) Alph) < A(R).

Let hn, N\, 0 be a sequence such that lim A(h,) = liminf A(R) and let h €]0,b — a[ be

n—o0 h—0+

arbitrarily chosen. For each n sufficiently large we find p, € N such that A < pph, <
h + h,. Then (8.20) yields A(pnhn) < A(hn) and passing to the limit we obtain the

assertion. |

In general, the problem of differentiability of absolutely continuous Banach space - valued
functions is nontrivial (see [Bre]). For our purposes it is sufficient to consider in the
sequel only functions with values in a separable Hilbert space X . We need the following
representation theorem ([Bre]).

Theorem 8.14 Let X be a separable Hilbert space. Then for every absolutely continuous
function u € AC([a,b];X) there exists an element 4 € L*(a,b;X) such that

(i) %(¢) = lim %(u(t + h) —u(?)) a.e.,

h—0

(i1) wu(t) —u(s) = f:ﬂ(T) dr  foral a<s<t<b.

According to Theorem 8.14, it is justified to denote similarly as in the scalar-valued case
by Wh'(a,b;X) the space of absolutely continuous functions with values in a Hilbert
space X and by W'P(a,b; X) for p €]1, 00] the space of all functions u € Wh(a,b; X)
such that @ € LP(a,b; X). The spaces WP are Banach spaces endowed with the norm
ulip = [u(0)] + |l

8.3 Riemann-Stieltjes integral

Let X be a separable Hilbert space with a scalar product <-, > For arbitrary functions
u € C(la,b]; X) and ¢ € BV(a,b;X) and for an arbitrary partition S = {to,...,tn} €
Ag(a,b) we define the Riemann-Stieltjes sum

(8.21) Is(u,€) := > (ul(t), é(te) — £(te1))

k=1
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with the intention to pass to the limit as 6 — 0.

Below we list without proofs standard results on the Riemann-Stieltjes integral. Details
can be found e.g. in [K].

Lemma 8.15 Let u € C([a,b]; X) and £ € BV(a,b; X) be given. Then for every € >0
there exists § > 0 such that for arbitrary partitions S, S’ € Ag(a,b) we have

[ Is(u, &) — Isi(u,§)| <e.

The limit 6lir(1)rl+ Is(u, &) therefore exists and is independent of the choice of S € Ag(a,bd).
It is called the Riemann-Stieltjes integral and denoted by fab <u(t), df(t)>

By construction, it is additive, that is fab <u(t), df(t)> =J <u(t), df(t)> + fcb <u(t), df(t)>
for every ¢ €]a,b]. Moreover, it is linear with respect to both u and ¢ and that the
estimate

(5.22) [ o, de0)| < o v ¢

holds for all u € C([a,b]; X) and ¢ € BV(a,b; X). Conversely, for every function ¢ €
NBV(a,b; X) we have

b
(8.23) Var £ = sup {/ (u(t), dé(t)); v € C([a, b]; X)), |ufoo < 1}.
For u,& € CBV(a,b; X) we have the integration-by-parts formula

820) [ (u0,dew) + [ (60 dult) = (u5)EB)) — (ula) (a),
and the following relations between Riemann-Stieltjes and Lebesgue integrals hold.
825) [ o) = [ (i)

Vue Cla,b]; X), £ € Whi(a,b;X),

(u(b),0)) — (ula), (@) ~ [ (800, 0
Vuc Wh(a,b;X), € € BV(a,b;X).

(8.26) / (u(t), d&(t))

The Riemann-Stieltjes integral depends continuously on the functions u and ¢ in the
following sense.

Theorem 8.16 Let u,{ : [a,b] — X be gwen functions and let {u,;n € N}, {{,;n € N}
be given sequences in C([a,b]; X), BV (a,b; X), respectively, such that

(i) lim |up —uleo =0,

n— 00

59



(i) lim [6a(t) — &(8) = 0 for all ¢ € [a, ],

(iii) \[/al]r &n(t) < ¢, where ¢ > 0 is a constant independent of n.
a,b

Then lim [7 (un(t),déa(t)) = [2 (u(t), dé(t)) .

n— 00

Notice that the integral fab <u(t), df(t)> is meaningful by Proposition 8.10. It is also worth
mentioning that condition (8.15) for v € L'(a,b;X) can equivalently be written in the
form

(8.27)

sup {/a <U(t)7ﬁb(t)> dt; ¢ € lew(a,b;X), [@loo <1, p(a) = p(b) = 0} —C.
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