
Local Estimation for an Integral Equation of

First Kind with Analytic Kernel

J. Cheng, � S. Pröÿdorf, y M. Yamamotoz

August 25, 1998

1991 Mathematics Subject Classi�cation: 45A05, 45H05, 45M10

Keywords: First kind integral equation, Riesz kernel, analytic kernel,

pointwise estimate for the solution severly ill-posed, Cauchy problem, Laplace

equation.

�Supported partially by the National Natural Science Foundation of China (19501001),

Research funds from Fudan University at Shanghai, China and the fellowship of Monbusho

of Japan Government.
ySupported partially by JSPS.
zSupported partially by Sanwa Systems Development Co. Ltd(Tokyo, Japan).



Abstract

In this paper, an integral equation of the �rst kind with Riesz kernel

is discussed. Since the kernel of this integral equation is analytic,

this problem is severe ill-posed. We prove that, for solutions of the

integral equation, a local conditional pointwise estimate holds at a

point if the solution has some additional smoothness properties in a

neighbourhood of this point.

1 Introduction

From many applications such as local tomography, geophysics and problems

of detection (e.g. [3], [4], [8], [14], [15]), the following integral equation

with Riesz kernel arises:Z
D

1

r2xy

�(y)dy = f(x); x 2 D1 (1.1)

where rxy =
p
(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2, D and D1 are simply

connected domains in R
3 and D

T
D1 = ;.

Since D
T
D1 = ;, the kernel 1

r2
xy

is analytic with respect to x 2 D1

and y 2 D. From the theory of ill-posed problems ( [10], [16]), it is well

known that this integral equation is severe ill-posed in Hadamard`s sense.

Since the singular values of the integral operator decrease to 0 very fast, it is

rather di�cult to get approximation solutions for this integral equation. The

discussions on the stability of the problem (1.1) are important for numerical

analysis, but there are very few such results.

In [1], the equation (1.1) is transformed into a Cauchy problem for the

Laplace equation in R
4. Under the assumption that the solution is extra

smooth over the whole domain D, some L2-norm estimate is established for

the solution of the integral equation. However, in applications, it is more
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natural that the solution of the integral equation is only a piecewise smooth

function, that is, the solution has no global smoothness properties. Then

only some local stability estimate can be expected.

In this paper, we study the local stability estimate for (1.1). By the

complex extension method ( [6], [7]) and the maximum principle for holo-

morphic functions ( [2]), we can obtain a local stabilizing estimate for the

integral equation. We prove that, if the solution of the integral equation (1.1)

has some additional smoothness properties in a neighbourhood of a point,

then a local conditional estimation of logarithmic type holds at this point.

This paper is organized as follows. In Section 2, we state our main result.

In Section 3, we prove the main result and give some comments.

2 Notations and Main Results

Let D1 and D be bounded domains in R
3 . Without loss of generality, we

can assume that D and D1 are simply connected domains in R
3 and D is

compactly contained in the ball BR � fx 2 R
3jjxj < Rg. Henceforth the

intersection of BR and D1 is assumed to be empty, that is, D1

T
BR = ;.

Moreover, the spaces Lp(
), Cn(
),

C
n
0 (
), C

n;�(
), 0 < � < 1 are de�ned as usual.

We discuss the following integral equation with analytic kernel:Z
D

1

r2xy

�(y)dy = f(x); x 2 D1: (2.1)

We note that since x, y are in the disjoint domains, the kernel is an

analytic function.

Our problem is: Given f in D1, we want to establish a conditional point-

wise estimate for the solution of the equation (2.1).
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Remark 2.1. This kind of integral equation comes from practical problems

such as identi�cation of steel reinforcement bars in concrete [3] and geo-

physics [14].

Henceforth we set O�(x0) = fx 2 R
3jjx� x0j < �g for � > 0 and

� = (
R
D1

(j 5 f(x)j2 + jf(x)j2)dx) 12 .
Now we state our main result.

Theorem 2.1. Let � be a solution of (2.1). Suppose � 2 L
1(D) and for

x0 2 D, there exists a positive constant � such that � 2 C
2;�(O�(x0)). If

k�kL1(D) �M and k�kC2;�(O�) �M , then there exists a constant C depend-

ing on M and � such that

j�(x0)j � C
1

log
1
�

where � < 1.

Remark 2.2. Theorem 2.1 indicates that, if some smoothness assumption

is added in a neighbourhood of x0, we can obtain a pointwise conditional

estimate. Such an additional assumption is essential for restoring stability

because the original integral equation is an ill-posed problem. However we do

not know whether the assumption can be further weakened.

In applications, one frequently assumes that � is piecewise constant. In

this case, from Theorem 2.1, we can directly deduce

Corollary 2.1. Suppose � =
Pk

j=1 cj�
j
where cj is a constant and �
j

is

the characteristic function of the domains 
j, j = 1; : : : ; k,
Sk

j=1
j = D,


j \ 
i = ; for j 6= i.

Then, for any x 2 
j, there exists a constant C which depends on

d(x; @
j) and max1�i�kfcig such that

j�(x)j � C
1

log 1
�
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where � < 1 and d(x; @
j) is the distance from x to @
j.

We should notice that the corollary does not assert stability for x 2 @
j ,

1 � j � k.

Remark 2.3. In [4], under some stronger a-priori information about �,

the Lipschitz stability estimation is established. Corollary 2.1 asserts weaker

stability estimation under more general a-priori information.

3 Proof of the Main Result

3.1 Transform to a Cauchy Problem for Laplace Equa-

tion

We de�ne a new function

G(x; �) =

Z
D

1

r2xy + �2
�(y)dy; � 2 R

1
: (3.1)

In [1], the following properties for G(x; �) are proved. We will state these

properties without proofs.

Proposition 3.1. The function G(x; �) satis�es

(�x +
@
2

@�2
)G(x; �) = 0; (x; �) 2 b
 (3.2)

G(x; 0) =

Z
D

1

r2xy

�(y)dy = f(x); x 2 D1 (3.3)

@G

@�
(x; 0) = 0; x 2 D1; (3.4)

where b
 = R
4 n (D � f� = 0g).

Proposition 3.2. If � 2 L
p(D) with p > 1, then

@G(�; �)
@�

�! �!4�(�); � ! +0 in L
p(D)
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where !4 is the area of the unit sphere in R
4.

Moreover, for x0 2 D and 0 < � � 1, if � 2 C
�(O�(x0)), then

@G(x0; �)

@�
�! �!4�(x0); � ! +0: (3.5)

For the second part of the Proposition 3.2, we refer to [10] or [11].

On the basis of the above result, our problem can be reformulated as a

Cauchy problem (3.2) - (3.4) for the Laplace equation. Thus our problem

can be stated as

Problem: Given a function f in D1, we want to �nd a harmonic function

G(x; �) which satis�es (3.2)-(3.4). Then by (3.5), the solution of the original

integral equation (2.1) can be obtained from �1
!4

lim�!0
@G(x;�)

@�
, x 2 D.

Henceforth we simply write

@G

@�
(x; 0) = lim

�!0

@G(x; �)

@�
for x 2 D:

3.2 Auxiliary Lemmas

We �rst show a result on conditional stability of a Cauchy problem for the

Laplace equation which will be used for our estimate below. The readers can

�nd the proof in Payne [12].

Lemma 3.1. Let 
 � R
n be a domain which is bounded by a closed surface

S, � a part of S, and W (z) satisfy

�W (z) = 0; z = (z1; :::; zn) 2 


and

jW (z)j �M1; z 2 
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with a constant M1 > 0. Then, for a point ẑ inside 
, the following inequality

holds:

MaxfjW (ẑ)j; jrW (ẑ)jg � K0M
2(1��0)
1 [�1 + �2]

�0

where �0 2 (0; 1) and K0 are constants which depend on � and d(ẑ; S), the

distance between ẑ and S. We set �1 =
R
�
W

2
d�, �2 =

R
�
(@W
@z1

@W
@z1

+ @W
@z2

@W
@z2

+

@W

@z3

@W

@z3
)d� =

R
�
jrW j2d�.

It should be remarked that, if d(ẑ; S) tends to zero, then �0 may tend to

zero and the constant K0 may tend to 1.

Remark 3.1. The same estimation holds for
@2W (ẑ)

@zi@zj
, 1 � i; j � n and higher

derivatives of W at ẑ ( [12], P.43).

Since � will be obtained as the boundary value of
@G(x;�)

@�
, we need a

sharper result concerning conditional stability estimation.

To this end, we �rst show some results about the conditional stability

estimation for holomorphic functions.

We will �rst prove some estimate for harmonic measure in the complex

plane C which is similar to one in [6], [7].

Let 
1 = f� 2 Cjj� � 2j < 2; �
2
< arg(� � 2) < 3�

2
g and [�1; �2] � 
1

where 0 < �1 < �2 < 2.

De�nition 3.1. A function �(�) de�ned in 
1 is called a harmonic measure

for 
1 and [�1; �2] , if �(�) satis�es the following equation and boundary

conditions:

��(�) = 0 in 
1 n [�1; �2]

�(�) = 0 on @
1

�(�) = 1 on [�1; �2]

6



For the unique existence of the harmonic measure �(�), we refer to [5]

and Chapter X in [9]. In particular, �(�) 2 C(
 n (�1; �2)).

Lemma 3.2. Assume that � is a harmonic measure for 
1 and [�1; �2]. Then

there exists a positive constant C1 which depends on �1, �2 and 
1 such that

�(x) � C1x; x 2 [0; �1]: (3.6)

Proof. From the de�nition of �(z), by using the maximum principle for the

Laplace equation (Theorems 6 and 7 (Page 64,65) in [13]), we know that

0 < �(z) < 1; z 2 
1 n [�1; �2]

and
@�(z)

@x1

jz=0 6= 0

where z = x1 + ix2.

If the conclusion (3.6) is not true, there exist fyng1n=0 � [0; �1] such that

�(yn)

yn

�! 0; n!1: (3.7)

Since [0; �1] is a compact set, there exists a point ~y 2 [0; �1] such that

yn �! ~y; n!1:

If ~y = 0, from (3.7) and �(0) = 0, we have

@�(z)

@x1

jz=0 = 0:

This is a contradiction. If ~y 6= 0, from (3.7) and � 2 C[0; �1], we have

�(~y) = 0; for ~y 2 (0; �1]:

This is also a contradiction. Thus the proof is complete.
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For a holomorphic function in 
1, we have

Lemma 3.3. Suppose u = u(�) is holomorphic in 
1 and continuous in 
1.

Suppose ju(�)j � M2; � 2 
1. Then there exists a positive constant C2

which is dependent on 
1, but independent of x and u, such that

ju(x)j �M
1�C2x
2 �

C2x
1 ; x 2 [0;

3

4
]

where �1 = maxx2[ 3
4
;1] ju(x)j.

Proof. By taking �1 =
3
4
< �2 = 1 < 2 in Lemma 3.2, the argument on p.121

in [2] yields

ju(x)j � M2(
�1

M2

)�(x); x 2 [0;
3

4
]:

Applying Lemma 3.2, we have the conclusion of this lemma.

Henceforth without loss of generality, we may assume x0 = 0. Let us

recall that � = (
R
D1

(j 5 f(x)j2 + jf(x)j2)dx) 12 .
Applying Lemma 3.1, we obtain

Lemma 3.4. Suppose � 2 L
1(D) and k�kL1(D) � M . Then there exist

constants C3, �1 2 (0; 1) such that

jG(0; �)j � C3�
�1 (3.8)

j@G(0; �)
@�

j � C3�
�1 (3.9)

j@
2
G(0; �)

@�2
j � C3�

�1 (3.10)

for � 2 [3
4
; 1].

Proof. It is su�cient to verify that G(x; �) is bounded in the domain

R
4 n (BR � fj�j � 1

2
g). Since D is contained in BR compactly, we have that

d(@BR; D) > 0.
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From the expression of G(x; �), we can obtain

jG(x; �)j � (minf1
2
; d(@BR; D)g)�2

Z
D

j�(y)jdy � (minf1
2
; d(B@R; D)g)�2M jDj

for (x; �) 2 R
4 n (BR � fj�j � 1

2
g). So Lemma 3.1 yields (3.8). Similarly we

can show (3.9) and (3.10).

In the following, we extend �(x) outside D by �(x) = 0; x 2 R
3 nD.

For � 2 C, we de�ne a function H = H(�) with respect to the complex

variable � 2 C by

H(�) =

Z
BR

1

r2 + �2
�(y)dy

where r2 = y
2
1 + y

2
2 + y

2
3.

Henceforth we set 
 = f� 2 Cjj� � 2j < 2g.
Then we have

Lemma 3.5. Suppose � 2 L
1(D). Then H is holomorphic with respect to

� in the domain 
.

Proof. Introducing the polar coordinates, we set

�(r) =

Z
S2

�(y)d! =

Z
S2

�(r; !)d!

where S2 is the unit sphere in R
3.

Then we haveZ
BR

1

r2 + �2
�(y)dy =

Z R

0

r
2
�(r)

r2 + �2
dr

=
1

2

Z R

0

[
1

r + i�
+

1

r � i�
]r�(r)dr

where i =
p
�1.

Changing variables in the second term, we have

1

2

Z R

0

1

r � i�
r�(r)dr =

1

2

Z 0

�R

1

s+ i�
s�(�s)ds;
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so that

H(�) =

Z
BR

1

r2 + �2
�(y)dy =

1

2

Z R

�R

1

s+ i�
sb�(s)ds (3.11)

where we set b�(s) = �(s); s � 0 and b�(s) = �(�s); s < 0.

Since � 2 L
1(R3), from the expression for �(r), it follows that b� 2

L
1(R1). Therefore H(�) is a holomorphic function in 
. The proof is com-

plete.

We recall that O�(0) = O� = fx 2 R
3jjxj =

p
x
2
1 + x

2
2 + x

2
3 < �g and

C
�(O�) is the usual space of Hölder continuous functions in O�. We have

Lemma 3.6. Suppose � 2 C
�(O�). Then we have b� 2 C

�(��; �) and

jb�jC�(��;�) � C4j�jC�(O�); jb�jL1(�R;R) � C4j�jL1(D)

where a constant C4 is independent of �, but dependent on �.

Proof. From the expression of �, we can see the conclusion easily.

Next we will estimate H(�) for � 2 
.

Lemma 3.7. Suppose � 2 L
1(D) and � 2 C

�(O�). Then

jH(�)j � C5(j�jC�(O�) + j�jL1(D)); � 2 


where the constant C5 is independent of �, but dependent on � > 0.

Proof. We rewrite (3.11) as

H(�) =
1

2

Z �

2

�
�

2

sb�(s)
s+ i�

ds+
1

2

Z
�

�

2

�R

sb�(s)
s + i�

ds+
1

2

Z R

�

2

sb�(s)
s + i�

ds

� A1 + A2 + A3:
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First we have

A1 =
1

2

Z �

2

�
�

2

sb�(s)
s + i�

ds

=
1

2

Z �

2

�
�

2

s(b�(s)� b�( �
2
))

s+ i�
ds+

b�( �
2
)

2

Z �

2

�
�

2

s

s + i�
ds:

By Lemma 3.6 and the theory of one dimensional singular integral equa-

tions (e.g. [11]), we know that, for � 2 


jA1j � C6jb�jC�(��;�) � C7(j�jC�(O�) + j�jL1(D)) (3.12)

where C6 and C7 are positive constants which depend on �. For � 2 
 and

s 2 [�R;� �

2
] [ [ �

2
; R], it easy to verify that

j 1

s+ i�
j � 2

�
:

Therefore we �nd

jA3j �
R

�

Z R

�

2

j�(s)jds;

so that

jA3j �
C8

�
j�jL1(D): (3.13)

By Lemma 3.6, the constant C8 is independent of �. Similarly we have

jA2j �
C8

�
j�jL1(D): (3.14)

Therefore, from (3.12), (3.13), (3.14), we obtain the conclusion. Thus

the proof is complete.

3.3 Completion of Proof of Theorem 2.1

By Proposition 3.2, we have

�!4�(0) =
@G

@�
(0;

3

4
) +

Z 0

3

4

@
2
G(0; t)

@t2
dt: (3.15)
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Lemma 3.4 implies

j@G
@�

(0;
3

4
)j � C3�

�1
: (3.16)

Next we will give an estimate for
@2G(0;�)

@�2
. From (3.2), we know that, for

� 6= 0,

(
@
2

@�2
+�y)

1

r2 + �2
= 0;

where �y =
P3

j=1
@2

@y2
j

. Therefore

@
2
G

@�2
(0; �) =

@
2

@�2

Z
O�

�(y)

r2 + �2
dy +

@
2

@�2

Z
BRnO�

�(y)

r2 + �2
dy

= �
Z
O�

�(y)�y(
1

r2 + �2
)dy +

@
2

@�2

Z
BRnO�

�(y)

r2 + �2
dy:

Since O�(0) is a ball, @

@r
is the normal derivative on the sphere @O�(0),

and we note that
@

@r

�
1

r2 + �2

�
= � 2r

(r2 + �2)2
:

By integration by parts for the �rst term at the left side, we obtain

@
2
G

@�2
(0; �) = �

Z
O �

2

�y

�
1

r2 + �2

�
�(y)dy +

@
2

@�2

Z
BRnO �

2

�(y)

r2 + �2
dy

= �
Z
O �

2

1

r2 + �2
(�y�)(y)dy +

Z
@O �

2

@�

@r
(y)

1

r2 + �2
dS

+

Z
@O �

2

�(y)
2r

(r2 + �2)2
dS +

@
2

@�2

Z
BRnO �

2

�(y)

r2 + �2
dy

= �
Z
O �

2

1

r2 + �2
(�y�)(y)dy +

Z
@O �

2

@�

@r
(y)

1

r2 + �2
dS

+

Z
@O �

2

�(y)
2r

(r2 + �2)2
dS +

Z
BRnO �

2

[
8�2

(r2 + �2)3
� 2

(r2 + �2)2
]�(y)dy:

12



For � 2 C; � 6= 0, we set

	1(�) =

Z
@O �

2

@�

@r
(y)

1

r2 + �2
dS

+

Z
@O �

2

�(y)
2r

(r2 + �2)2
dS

+

Z
BRnO �

2

[
8�2

(r2 + �2)3
� 2

(r2 + �2)2
]�(y)dy:

Then we have

@
2
G

@�2
(0; �) = �

Z
O �

2

1

r2 + �2
(�y�)(y)dy +	1(�); � 2 R; � 6= 0: (3.17)

It can be directly veri�ed that 	1 = 	1(�) is a holomorphic function in


 = f� 2 Cjj� � 2j < 2g and

j	1(�)j � C9(j�jC1(O�) + j�jL1(D)); � 2 


where C9 is a constant which depends on �.

It is easy to verify that
R
O �

2

1
r2+�2

(�y�)(y)dy is holomorphic with respect

to � 2 
, because of r2 + �
2 6= 0 for � 2 
. Moreover, similarly to Lemma

3.7, we can see that there exists a constant C10 depending on � > 0 such that

j
Z
O �

2

1

r2 + �2
(�y�)(y)dyj � C10(j�jC2;�(O�) + j�jL1(D)); � 2 
:

For � 2 C; � 6= 0, we set

H1(�) =

Z
BR

[
8�2

(r2 + �2)3
� 2

(r2 + �2)2
]�(y)dy:

Then, from (3.1), we �nd that

@
2
G

@�2
(0; �) = H1(�); � 2 R; � 6= 0: (3.18)

13



Moreover, H1 = H1(�) is a holomorphic function in 
1 � 
. From (3.17),

(3.18), the expression of H1(�) and the unicity of holomorphic functions, we

can state that

H1(�) = �
Z
O �

2

1

r2 + �2
(�y�)(y)dy +	1(�); � 2 
:

Consequently,

jH1(�)j � C11(j�jC2;�(O�) + j�jL1(D)) � 2C11M; � 2 
1

where the constant C11 depends on �. Applying Lemma 3.3, we have

jH1(t)j � 2C11M(
�1

2C11M
)C2t

; t 2 (0;
3

4
) (3.19)

where �1 = maxt2[ 3
4
;1] jH1(t)j. Here we note that C2 > 0 depends only on 
1.

By Lemma 3.4 and (3.18), we have

�1 � C3�
�1 : (3.20)

Combining (3.15), (3.16), (3.18), (3.19) and (3.20), we obtain

j�(0)j � C3�
�1 +

Z 3

4

0

2C11M(
�1

2C11M
)C2tdt:

It can be directly calculated that

j�(0)j � C12(�
�1 +

Z 3

4

0

�
�1C2tdt)

� 2C12

1

log 1
�

where � < 1 and C12 is a constant which depends on � and M . Therefore the

proof of Theorem 2.1 is complete.

Remark 3.2. We can use the same method to treat the integral equation

which models steel reinforcement bars in concrete ([3]) and is obtained by
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applying a partial di�erential operator to (2.1). That integral equation is

discussed in [1] where L
2-conditional stability estimation is obtained. By

using the method of Section 3, we can also get the local pointwise estimation

if we assume some additional smoothness properties. We do not treat it here.
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